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Kurzfassung

Die Visualisierung von Zellen im allgemeinen und von Zellmembranen im besonderen
bildet die Grundlage für die hier vorliegende Arbeit. Diese Phospholipidmembranen
grafisch darzustellen ist das Ziel der vorgestellten Methoden. Besonderes Augenmerk
wurde dabei der nahtlosen Texturierung einer Oberfläche im dreidimensionalen Raum
gewidmet, um durch Verwendung entsprechender Texturkacheln die Speichernutzung
gering zu halten.

Der entwickelte Algorithmus erstellt zunächst ein Texturmesh, das der Oberflächenstruk-
tur eines vom Nutzer bereitgestellten Input-Meshes treu ist. Dieses weist die Eigenschaft
auf, eine Triangulierung, bestehend aus gleichseitigen Dreiecken, zu besitzen. Dies wird
erreicht, indem die Punkte, bevor sie trianguliert werden, durch Simulation von absto-
ßenden Kräften zwischeneinander, auf der Oberfläche des Inputmeshes repositioniert
werden. Besagte Eigenschaft erlaubt im Anschluss eine triviale Zuordnung von eben-
falls dreieckigen Texturkacheln. Dadurch ist die nahtlose Texturierung der Oberfläche
hergestellt.

Neben Details der Implementierung werden exemplarische Ergebnisse ebenso dargestellt
wie eine Performance-Analyse; diese zeigt Vor- und Nachteile, besonders in der Laufzeit,
an. Des weiteren wird ein kurzer Überblick über verwandte Themen und frühere Arbeiten
gegeben.

Das verwendete Framework hierbei ist Unity 3D.
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Abstract

Visualizing cells, in particular cell membranes, is the inspiration for this work. The
goal of the presented methods is the efficient visualization of phospholipid membranes.
A prominent role hereby plays the concept of seamlessly texturing a surface in three-
dimensional space. By using suitable texture patches, memory consumption can be kept
low.

The developed algorithm first creates a texture mesh that stays faithful to the surface
structure of a user-provided input-mesh. This texture mesh consists of equilateral triangles.
The triangulation is achieved by first simulating repulsion between the vertices making
up the texture mesh. This way they are moved around on the surface of the input-mesh
until they are uniformly distributed. Mapping texture onto equilateral triangles becomes
trivial if triangular texture patches are assumed as well. Thus, seamless texturing is
achieved.

The implementation is described in detail, followed by the demonstration of results. Also,
an exemplary performance-analysis is given, highlighting benefits and shortcomings of
the algorithm, especially concerning runtime. Additionally, a short overview of related
and prior work is given.

The used framework is Unity 3D.
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CHAPTER 1
Introduction
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1. Introduction

Trademarks used in this thesis generally belong to respective owners.
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Cells are the basic structural units of living organisms. The various parts that make
up a cell are separated from each other by membranes assembled from phospholipids.
Modelling this phospholipid membrane is the motivation for this thesis. If the membrane
is represented by a mesh of arbitrary complexity, the question is how to populate this mesh
with phospholipids while using memory efficiently and achieve fast rendering performance.

A phospholipid membrane has some unique characteristics. First, since membranes
have distinct shapes, the utilized algorithm mostly does not have to deal with sharp
angles. Also, their surface does not selfintersect. Secondly, while the general outline
of a membrane is known, its surface oftentimes has a degree of randomization to it.
Incorporating the described properties into one concept lead to work presented in this
thesis.

Figure 1.1: An example of a lipid membrane. Source: https://www.britannica.
com/science/lipid-bilayer26.07.2016

In order to faithfully model a phospholipid membrane in computer graphics, seamless
texturing of the mesh representing the membrane is a necessity. To conserve memory,
one or more repeating texture patches are applied to the surface of the mesh. Moreover,
these patches should be applied randomly to avoid visual aritfacts.

Applying texture to an arbitrary surface in three dimensional Euclidean space can be
a complicated procedure; Depending on the given object, resources have to be devoted
to correctly map the texture onto the surface while at the same time avoiding visible
distortions and seams. Additionally, if the object’s shape is not predetermined, the
texture coordinates have to be computed at runtime which poses a problem on its own.
Random texturing adds the task of choosing the right texture samples to this list. Since
the human eye is especially proficient in detecting repeating patterns, care has to be
taken to not only create a truly random distribution of texture patches but also to make
sure that neighbouring patches fit well with each other.

To facilitate the texturing process, a special texture mesh can be used. Its main feature
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1. Introduction

are uniformly distributed vertices, this way making assignment of texture coordinates
easier.

Concentrating on the core problem of randomly texturing an arbitrary surface in three
dimensional Euclidean space, the goal of this thesis is to create a simple yet versatile
script with which it is possible to process molecule-like 3D objects. This processing
consists of applying texture and displaying the textured object on screen. To this end,
the following approach will be taken: A texture mesh is created, representing the surface
of the input mesh. Vertices of the texture mesh are uniformly distributed, resulting in
an equilateral triangulation. This triangulation will be achieved via a physics based
approach. Then, texture patches are applied at random to the texture mesh. These
patches are equilateral triangles as well, making mapping trivial. Finally the output is
displayed.

Figure 1.2: An example for a random texturing pattern (Wang tiles). Source: https:
//en.wikipedia.org/wiki/Wang_tile26.07.2016
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CHAPTER 2
Related Work

This work is mainly about texturing, with mesh manipulation playing an important role
as well. Both these aspects have their own scientific fields dedicated to them. Since
this particular implementation will be physics based, particle physics simulations are a
valuable source of information and will also be mentioned in this chapter.

2.1 Texturing
Texturing was first introduced by Edwin Catmull in his thesis "A Subdivision Algorithm
for Computer Display of Curved Surfaces" [Cat74]. Here, it is described as photographs
being "...’mapped’ onto patches (of curved surfaces) thus providing a means for putting
texture on computer generated pictures." The notion of mapping texture onto a surface is
an integral part of the texturing process. Another, equally important step is choosing or
generating the texture. Finally the whole procedure can be preprocessed or takes place
at runtime.

Creating the texture itself can be done either by hand or automatically. The former
is time-consuming but exact, the latter fast but care must be taken to avoid visible
artifacts. A number of ways exist to procedurally generate textures. Simple methods
include using sine-functions or Perlin Noise to generate textures from scratch. A more
complex idea is the principle of reaction-diffusion: Two substances interact with each
other and themselves. The reacting agents can be represented by mathematical equations;
by simulating such equations over a period of time textures can also be created [Tur91].
These resemble the shapes and patterns in the fur of leopards or giraffes. An alternative
method works with a user-input. From an input image a number of texture patches that
follow specific constraints are created.

Correct mapping of texture patches onto an object’s surface is an equally important step.
The simplest methods used would be linear and trilinear projection as well as 3D-textures.
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2. Related Work

The first method projects a two-dimensional texture into 3D-space along one coordinate
axis, the second uses three textures, one for each axis. Both these techniques are rather
coarse and hardly suited for complex surfaces. A 3D-texture on the other hand foregoes
the projection completely but is very memory-intensive. More sophisticated methods
include cube mapping and polycube mapping. Finally chart segmentation breaks down a
surface into small parts called charts that share a beneficial characteristic (like equal face
normals), which are then stored in a texture atlas for easy access [Win11]. A special
type of maps are jump maps: For each pixel they store a set of similar pixels in the
sample image, weighted by similarity. During texture synthesis exchanging one pixel
with one of its jump-neighbours is allowed [ZG03].

There are many ways of combining these methods that offer different benefits and yield
different results. Turk employs the aforementioned technique of reaction-diffusion to
generate texture patches [Tur91]. It is combined with a mapping scheme that relies on
an even distribution of the vertices that make up the mesh of the 3D-model the texture
is applied to. Since this distribution cannot be guaranteed for an arbitrary mesh, a
second mesh with the desired quality has to be created. First a number of new vertices
on the surface of the existing mesh is created. These are then repositioned using a
relaxation technique and become the center of newly formed Voronoi-regions. In a last
step said regions fulfil the role of cells in a reaction-diffusion process, this way creating
a seamless texture. A different way to work with similar textures is to regard them as
progressively-variant [ZZV+03]. This means that although a pattern exhibits an overall
continuous variety it is stationary in small point neighbourhoods. Utilizing a texton-mask
the user is able to mark said stationary features. These can then be reproduced on a
larger scale without repetition using field distortion. In this case, seams are masked
by feature-based warping and blending. Other techniques build upon the principle of
working with a separate texture mesh. A direct side effect of uniform point distribution
on a surface is the possibility to get a triangulation consisting of equilateral triangles.
Mapping these to appropriate texture patches makes a seamless coverage possible as
well [NC99]. Moreover, if the patches obey certain rules regarding edge connectivity, a
pseudo-random tiling can be achieved. Nieser et al. describe a similar idea but instead
of triangles, hexagons are used to cover a mesh [NPPZ10]. This shape, as well as a
triangle, is well suited in this case since it is one of the basic geometric shapes that can
cover a plane without holes when used as tiling. The previous two examples work well
with triangulated meshes—an alternative exists for quad-meshes, replacing triangular
patches with rectangles [SYXA+11].

Arranging rectangular texture patches usually utilizes Wang-tiling. Ensuring the necessary
edge characteristics of these squares, as few as eight texture patches suffice to non-
periodically cover a plane [CSHD03]. Transferring this problem into three dimensional
space, Fu et al. combine the idea of polycube mapping with Wang-tiles [FL05]. First a
complex object is mapped to a quad-based representation where the size of a quad is
proportional to the local curvature of the surface. In a second step, every quad is covered
with square texture patches. Since these follow the edge layout of Wang-tiles, seamless
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2.1. Texturing

coverage is possible.

Another set of methods avoids irregularities by examining edges individually. One such
method would be to select texture patches of different sizes and shapes from a sample
image, ensuring edge connectivity for each patch. The surface is then hierarchically
structured, creating a subdivision for every element in a lower hierarchical level. For
example, the lowest level contains the whole surface, whereas higher levels consist of
smaller and smaller parts of the respective surface one level below them. To texture this
surface, each tier of the hierarchy is tested for distortions. If these are sufficiently low, a
texture patch of appropriate size is applied. Otherwise the next smaller subdivision is
examined in a coarse-to-fine approach [SCA02]. A variant of the above is employed by Wei
et al.: Here each mesh vertex is parametrized locally using a rectangular neighbourhood
[WL01]. The sample image is then searched for similar neighbourhoods which are mapped
onto the surface accordingly.

Textures can also be quilted together from patches [MK03]. This consists of two phases:
Preprocessing and synthesis. During the first phase each texture pixel is labelled by its
neighbourhood. In the second phase triangular patches the size of mesh triangles are
cut out and stitched together. The first step is necessary to make sure the edges of the
patches correspond to each other. The whole process starts with a triangle on the surface,
chosen at random, and is then continued outward. As an optional step edge blending
can be performed.

A technique of dealing with visual artifacts that was mentioned before is texture blending.
This method blends overlapping textures together, hiding the seam that they would
otherwise create. A straightforward example for this approach are lapped textures
[PFH00]. Assuming that a local parametrization exists even when a global one does not,
texture patches are repeated across a surface, overlapping each other. Alpha blending is
used to reduce artifacts in the overlapping regions and a tangential vector field controls
alignment and scale as per user input. For patch-placement, a random point on the
surface is chosen and the patch is grown from there. Once the distortion becomes
excessive, another patch is placed.

The above-mentioned chart segmentation is used by Ying et al., as well as Kolar et al.
[YHBZ01], [KCD15]. Here the object’s surface is covered by an atlas of overlapping
charts. As with other methods, texture patches are created from a sample image and
edge connectivity is ensured by checking for similarities between them.

Expanding on the general idea of mapping a surface into a different domain is the concept
of shell mapping [PBFJ05]. Here a bijective function is utilized that maps each surface
point to a point on a shell map which consists of 3D-objects as well, essentially replacing
a two-dimensional texture with a mesh. This is especially useful in contexts where, to
represent a real-world object with satisfactory graphical fidelity, finely detailed surface
structures have to be rendered as well.

Finally an example for a molecular visualization context is described in [WSB14]. This
work introduces a framework for representing cells on a mesoscopic as well as on a
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2. Related Work

molecular scale. To avoid the problems usually associated with variable resolutions,
objects are not textured on their whole surface but only on a user specified region instead.
This region can be changed at runtime, thus making it possible for the whole surface to
be inspected while maintaining a distortion-free texture mapping.

2.2 Mesh manipulation
As mentioned in the previous section the mesh plays an important role in the texturing
process. Following is a short description of basic properties of meshes as well as common
operations performed on them. A mesh, or wire-frame model, is a representation of an
object in three-dimensional space consisting of vertices and edges connecting the vertices.
All these connections taken together form the surface of the mesh. A surface in general
can be viewed as the two-dimensional boundary of a 3D-solid [BKP+10]. It can be
described using parametric or implicit representations. Examples for the former include
spline and subdivision surfaces as well as triangle meshes. Subdivision surfaces require a
coarse control mesh and a set of rules describing how points can be inserted into this
mesh to create a finer, more detailed output mesh [Cas12]. The latter—also called
volumetric representation—is achieved by deciding for each point of the embedding space
if it lies inside, outside of or on the object. Conversions exist between representations,
for example the marching cube method [LC87].

This algorithm works on the principle of partitioning space into a three-dimensional
grid, with every grid cell being a cube. Each cube’s corners are then marked as either
inside or outside a given mesh. Depending on the configuration of each cube a triangular
mesh is then constructed by processing the grid cells one by one [NY06]. Since it’s
introduction, this algorithm has been extended in various ways, for example to process
higher-dimensional data sets or time-varying data. Efficiency has also been improved
by incorporating the concept of octrees. Different output types exist nowadays as well,
including quads and spline meshes.

To store mesh data, different structures can be employed [BKP+10]. A simple method
is a face-based data structure. Here, individual polygonal faces, defined by their vertex
positions, are stored. The trade-off hereby is the loss of connectivity information. To
retain this kind of information, several edge-based data structures exist. They are in
turn refined by the concepts of halfedge- and directed-edge-based concepts. These allow
for finer control over a surface while increasing memory consumption. These boundary
representation data structures are able to represent vertices and edges, as well as surfaces,
explicitly, while also storing information about their components’ respective relationships
[ASB13].

When building a mesh, the local and global structure is of importance. The local
structure defines the properties of mesh elements, whereas the global structure describes
their interaction. Mesh elements can be discerned by their type and shape as well as
their density. Prominent types are triangles and quadrangles, while being isotropic
or anisotropic determines an element’s shape. Finally, mesh elements can either be
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2.2. Mesh manipulation

uniformly or nonuniformly distributed. Global structure mainly depends on vertex
neighbourhood—vertices are called regular if they have a certain number of neighbours
(depending on their type and placement). Once these characteristics are decided upon,
edges can be constructed between vertices. An important role hereby play Voronoi-
diagrams and their dual structure of Delaunay-triangulation, more specifically restricted
Delaunay-triangulation [DH92], [KS16]. Notable because of its simplicity is the Bowyer-
Watson-algorithm that generates such a triangulation by adding one point at a time and
then checking if Voronoi conditions are met [Reb93]. Delaunay-triangulation can also be
used to refine or optimize already existing meshes. Here certain favourable attributes of
triangles, that are created this way, are exploited, namely their angle size and their area
[She02].

Improving upon triangulated meshes, especially encoding-wise, are triangle strips. Instead
of storing each face individually they are grouped together, exploiting spatial coherence,
thus reducing redundancy [VdFG99]. As with other methods, triangle strip creation can
be either done as a conversion step from a triangle mesh or dynamically as an addition
to a triangulation process [ESEK+00].

If the desired shapes are quadrangles, the spawning algorithm falls into one of four
classes: Triangle to quad conversion, patch based, parametrization based or Voronoi
based [BLP+13]. One such conversion uses integer-grid maps, a class of piece-wise linear
maps that map a grid of integer isolines non-degenerately into a quad mesh [BCE+13].
Although a conversion, the technique falls into the patch based domain; here, instead of
mapping triangles onto square patches, the original surface is mapped directly.

As described by Bommes et al., quadrangle based meshes are actually preferable to
triangle meshes in a number of scenarios [BLP+13]. Polygon modelling, for example,
benefits from this representation since quadrangles more easily follow the lines of an
artist’s pen stroke. Also—for similar reasons—texture mapping onto quad meshes is
quite intuitive. The downside of quadrangles compared to triangles is their more complex
orientation in space and the resulting defining values.

It is also possible to combine the two type paradigms using a multiresolution atlas
structure [MVS14]. This way especially dense-polygon meshes become easier to render.
Meshes can also be used to describe something other than surfaces: in a biological
context for example, they are used to simulate blood flow [MCG+12]. In this case a
three-dimensional triangulation using tetrahedrons is implemented.

Finished models often times consume a lot of memory. A number of simplification
methods exist to deal with this problem—vertex clustering, incremental decimation and
shape approximation, to name just a few [BKP+10]. They all work under the common
principle of reducing memory consumption by sacrificing object detail. A simple example
for incremental decimation works as follows: One by one the vertices are examined and
checked if they can be safely removed. This means that by removing the vertex the
topology remains unchanged. If a vertex is removed, the resulting hole is then filled with
a new triangulation [SZL92]. Sometimes it is not necessary to reduce vertex numbers
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2. Related Work

but instead to reposition them while maintaining a faithful representation of an object’s
surface. Turk proposes such a method to achieve uniform mesh element distribution
[Tur92]. A number of new vertices are introduced into a mesh and then repositioned,
using a relaxation procedure. The old vertices are then decimated one by one, creating a
uniform point distribution.

Finally, techniques exist to repair meshes damaged either by data loss or sampling errors.
Examples of such errors include holes, singular vertices, overlaps and inconsistent face
orientation. Algorithms for model repair can be classified as either surface-oriented or
volumetric [BKP+10]. The former operate directly on the input data whereas the latter
convert the input mesh into volumetric space from where an output is created [ACK13].

The techniques described up to this point all have in common that they view an object’s
surface as a 2D-manifold embedded in 3D-space, essentially reducing the triangulation
problem in space to a problem in a plane. An alternative approach is to consider point
clouds as a surface representation. Algorithms that triangulate such a point cloud fall
into one of three categories: Sculpting-based approaches, contour-tracing approaches
and region-growing approaches [LTW04]. In sculpting-based approaches, the three-
dimensional Delaunay-triangulation is constructed first, resulting in a solid object made
up of tetrahedrons. This object is then decimated, removing vertices until only the surface
remains. Contour-tracing methods on the other hand use a signed distance function
to approximate the model. Region-growing techniques start with a seed triangle patch
that is then grown outwards by adding edges. At termination, the hull is completely
triangulated.

2.3 Physics, Math and Tools

In this section a few especially important concepts for this thesis are introduced. They
range from physics calculations to open-source libraries. As described previously, reposi-
tioning of vertices is sometimes necessary. One possible solution for finding new positions
is based on dynamic physics simulations. Here, each vertex is viewed as a physical object
able to interact with other objects in the same domain.

When considering such simulations, two of the most important models are particle
systems and rigid-body systems [Cou13]. Rigid-body computations usually take into
account the mass and shape of an object while at the same time assume them staying
unchanged throughout the simulation. Since rigid-bodies, in contrast to particles, are
three-dimensional, it is also possible to compute intersections and collisions between
objects. Since rigid-bodies are inherently unable to inter-penetrate, the resulting physics
calculations have to take this into account. Once collision is detected, forces between
colliding objects have to be calculated that prevent inter-penetration and thus simulate
the actual motion of these objects according to their shape and mass [Bar89] or friction
[Bar94].

To detect a collision in the first place, various detection algorithms exist. Simple
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2.3. Physics, Math and Tools

implementations rely on testing vertex-triangle-penetration or utilizing objects’ faces’
orientation by testing if a given vertex lies behind (inside) another triangle [MW88]. Since
most simulations deal with more than two potentially colliding bodies, more sophisticated
algorithms usually start with reducing the number of intersection tests that have to be
performed. Possibilities to achieve this include spatial subdivision or space decomposition
in general, sort-and-prune-methods or event-driven approaches. A way to speed up
collision testing further is by using bounding volumes. These range from spheres over
axis aligned bounding boxes to partitioning into voxelised containers [LAM01].

Once collision is detected between two rigid-bodies, a collision response has to follow.
This is usually application of force. A very simple way is to simulate a spring between
the two touching points. This spring can be of varying elasticity, this way controlling
the force exerted equally in both directions, pushing the objects apart [MW88]. An
alternative is to provide analytical solutions. These solutions conserve momentum during
a collision, resulting in a new angular and linear velocity for all involved objects.

Particle systems are especially useful when individual points’ properties are not as impor-
tant as the behaviour of the object they make up, for example fluids and gases. In contrast
to rigid bodies, these objects are not represented by a well defined surface but instead
are clouds of particles defining their volume. These particle systems are not necessarily
static; often times new particles are introduced into the system and old ones removed at
time intervals. This gives particle clouds an intrinsic non-deterministic character [Ree83].
Although generally associated with liquid and gas-like object simulation, particles can
also be used to represent solid bodies. This technique can be used to facilitate state
changes within the model, for example freezing water [Ton91]. The forces simulated
between particles can range from simple point-mass systems to complex implementations
of computational fluid mechanics or spring connections [Cou13].

The basic principle behind such physics simulations is as follows: At first, for every actor
in the simulated system, all of the influencing forces are determined and computed. Then
every one of them is repositioned accordingly. Repeating these steps, the whole system’s
state at a given time is always the result of a previous state, this way simulating physics
forces [SFM12]. To summarize, the position of an object in such a system is the result
of a time integration method used to update velocities according to accelerations. The
velocity determines the final position, whereas acceleration is derived from internal and
external forces using computations based on Newton’s second law of motion [BMO+12].

An alternative to these force-based methods exists in the form of position-based simulation
methods. Instead of evolving positions as described through numerical integration
of accelerations and velocities, position-based approaches compute positions directly
[BMO+12].

Another important aspect when dealing with object interactions and physics are metrics.
A prominent role in three-dimensional space plays the Euclidean distance, measuring
the direct distance between two points. A classic algorithm computing the Euclidean
distance between two convex objects is the Gilbert-Johnson-Keerthi distance algorithm
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2. Related Work

[Lin09]. As a side effect, the objects’ respective points closest to each other are also
determined. Geometrical objects are described using supporting mapping functions and in
a simplification step one object’s distance to the origin is computed using the Minkowski
difference. Finally the actual distance between the two objects is obtained, relying on
simplices contained in the distant object.

But, dealing with 2D-surfaces embedded into 3D, measuring distance on the surface
instead can produce useful data. Geodesic paths are exactly that—a distance mea-
sure on a surface. Examples for their application include mesh parametrization, mesh
segmentation or the definition of surface vector fields [SSK+05]. Although far from
trivial, many algorithms exist that solve geodesic distance exactly by employing window
propagation techniques or sequence trees [CHK13]. Sometimes though, an approximation
is sufficient—one such approach, using wavefront-propagation, is described by Tang et al.
[TWZZ07]. Other possibilities include graph approximation and fast-marching methods,
propagating distances across triangle faces as well as edges of a mesh [CHK13].

This final section is devoted to presenting a representative set of tools and libraries that
can be used to facilitate calculations necessary to perform some of the already described
tasks. The first entry, "MeshLab", is an open source mesh processing system [CCC+08].
Its interface is modelled as a mesh viewer, allowing for a variety of tasks to be carried
out. These include selection and deletion of whole meshes or portions, smoothing and
colouring. Many different mesh data formats are supported as well as point clouds.
Aside from that, it is possible to repair and remesh loaded models as well as measuring
distances. Lastly MeshLab can also be used as a range map processing tool.

Second on this list is the "Computational Geometry Algorithm Library" or "CGAL", a
C++ library of data structures and algorithms. The project was started 1995 and is
supported to this day [FP09]. It consists of a kernel, a basic and a support library. The
kernel contains simple geometric objects and operations thereupon, whereas the basic
library offers more complex data structures. These include convex hulls, triangulations
and polygons.

The last entry is the "Point Cloud Library", a library for point cloud processing, written
in C++ [RC11]. It supports data filtering (downsampling, outlier removal, projections),
feature extraction (surface normals, boundary point estimation, curvatures), cluster
extraction, surface meshing and convex hulls. Since PCL has its own visualization
libraries it is also possible to render point clouds as well as changing visual properties.
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CHAPTER 3
Approach

The goal of this work is the seamless texturing of an arbitrary three-dimensional object
with semi-random texture patches. Semi-random means that the whole surface gets
textured by choosing from a fixed set of texture patches at random. Figure 3.1 shows
two possible results side by side.

Figure 3.1: Two objects textured semi-randomly. The object on the left had its texture
patches chosen at random from four different input patches. The other object only has
one patch applied to its surface. Notice the visible triangulation.
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3. Approach

To achieve the stated goal, a physics-based approach has been adopted, exchanging the
input mesh with a newly generated output mesh. The input mesh is called the geometry
mesh (since it retains all the information about the object’s shape and position) and the
output mesh is called the texture mesh, as the texture will be applied to it (Figure 3.2).

Figure 3.2: From left to right: Triangle patches, texture mesh, geometry mesh.

The texture meshes’ main characteristic will be the fact that it is made up of equilateral
triangles, serving as trivial mapping points for the equally triangular texture patches.
Turk shows that this can be done without losing information about the surfaces shape
[Tur92]. Choosing to create a second mesh instead of repositioning the vertices of the
input mesh has the advantage that the resolution of the texture patches can be taken
into account, resulting in a more fine or coarse texturing (Figure 3.3).

Figure 3.3: Examples for a coarse (left) and fine (right) texture mesh.

To set the vertex positions for the texture mesh, a simple system of repulsive forces is
implemented. It pushes a user specified number of new vertices across the surface of the
geometry mesh until they are regularly distributed, thus forming a mesh of equilateral
triangles. The number of new vertices at the same time determines the resolution of the
texture mesh. After their positions are calculated, these points are triangulated, resulting
in the texture mesh. Here, every triangle corresponds to a single texture patch, chosen
at random from the set of input patches. To recapitulate: A texture mesh, consisting
of equilateral triangles and reproducing the geometry meshes’ surface, is created using
repulsive physics forces on a user specified number of newly introduced texture vertices.
Due to its regularity, the vertices can easily be mapped to texture space, resulting in a
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fully textured and trivially seamless surface.

Figure 3.4: Examples for different input textures.

The algorithm is divided into three phases and a setup step. Figure 3.5 shows a
representation of the pipeline. During setup, data from the input mesh is extracted and
preliminary parameters are calculated according to user input. In Phase 1, new vertices
are created and—using a simple statistical analysis of triangle size—positioned on the
geometry mesh. They are subsequently moved by repulsion. During the second phase,
the texture vertices are triangulated, creating the texture mesh. Lastly, in the third and
final phase, texture coordinates are assigned and texture patches are applied onto the
surface.

Figure 3.5: The texturing pipeline.

3.1 Setup
During setup, the radius of influence for each vertex is calculated as well as data from
the input mesh is extracted. This means two lists, one for triangles and one for vertices,
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are filled. The radius of influence determines the distance inside which each vertex
exerts repulsing force onto other vertices. Additionally, triangle area and neighbourhood
are calculated. A triangle’s area is needed to place texture vertices in phase one, its
neighbourhood during vertex repositioning to find the origin of repulsing forces. To
obtain the triangle neighbourhood, a greedy algorithm is employed: for every one of
the three triangle vertices the distance to each of their vertex neighbours is measured.
If this distance is smaller or equal to the radius of influence times two, the vertex is
added to the neighbourhood. This specific value is chosen because it creates a sufficiently
large neighbourhood, making sure that potential neighbours are not missed at the cost
of memory usage. This is repeated for the second-level neighbours as well, until no more
additions to the list can be found. Then for every vertex in this list, each triangle that
contains it, is added to the triangle neighbourhood.

(a) A triangle is selected from
the list of triangles.

(b) Every vertex within range
is determined.

(c) Triangles are added to the
neighbourhood.

Figure 3.6: The three steps of creating a triangle’s neighbourhood.

3.2 Phase One
In phase one, the vertices that will later make up the texture mesh are introduced into
the geometry mesh. This is done by assigning a position inside one of the geometry
meshes’ triangles to each new vertex. This triangle is called the vertex’ parent triangle.
It is determined at random for each newly created vertex individually by choosing from
available triangles that make up the geometry mesh. To account for meshes with non-
uniform sized triangles, the chance to become a vertex parent is directly proportional
to triangle area. This also acts as an optimization step towards achieving a uniform
distribution of texture vertices. Important to note is that these new points are not
connected to each other or any triangle other than by data reference. At this point they
act as simple particles for the following physics calculations.

As mentioned, once the vertex creation is finished, the vertex repositioning starts. This
serves the purpose of uniformly distributing the texture vertices on the surface of the
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geometry mesh. Throughout these calculations the geometry mesh only acts as a frame
of reference; Its vertices are not considered in the described repulsion process, only the
newly introduced points are of interest.

In each loop of code for each texture vertex a check for neighbouring texture vertices is
performed. This adjacency is dependent on the radius of influence r that was calculated
during setup. Once all the neighbours of one vertex are found, repulsion is simulated by
simply adding the vector between the point and a neighbour to the current position posc
of the vertex with a negative sign after normalizing it. Then this direction d is scaled
by distance: The farther away a neighbouring point poso is, the weaker the repulsion.
Additional scaling is done by multiplying with a fixed force constant f with a value of
0.5. This generally damps a vertex’ movement and avoids erratic behaviour. The value
of 0.5 was adjusted by experiment.

posnew = posc + (r − ||posc − poso||) ∗ f ∗ d (3.1)

Since the vertices inside the neighbourhood cannot, by definition, be farther away than
r, the term (r − ||posc − poso||) has a range of [0, r].

Performing this change of position for each neighbour, a new position is calculated for
each texture vertex. Since this position does not have to lie inside a triangle of the
geometry mesh, as a final step the vertex is snapped back onto the geometry’s surface.
First, the closest triangle is determined. Then, the closest point inside this triangle is
calculated and the vertex’ final position is set to that point.

Turk uses a value of k = 40 for determining how often this process is repeated [Tur91].
Through testing, we found this value to produce satisfying results and therefore have
adopted it.

During development of this phase a number of alternative approaches were investigated
and discarded. An early concept made use of rigid body physics. Simulating points as
rigid bodies would allow each vertex to interact with other vertices as described above.
But the caveat is that this functionality is not optimized for large amounts of rigid
bodies, resulting in notable performance loss. When changing the vertices’ position it
can happen that they are pushed off a triangle edge. In this case a mechanism is needed
to correctly reposition them on the surface again. To this end, a "gravitational" constant
g was initially introduced. This constant would add a force towards the surface to the
new position of each vertex.

posfinal = posnew + g (3.2)

In certain configurations, however, the vertices would hover above the surface. This
was due to strong repulsive forces from neighbouring vertices already positioned directly
below them. In the final version, the idea of adding such a constant to the repulsion
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process was switched out for the more direct snapping to the surface. This was done to
ensure that the texture vertices stay true to the original surfaces’ form.

The whole algorithm depends on distance calculations between vertices. The used
measure is Euclidean distance, simply calculating a straight line in three dimensional
space between two points and returning this line’s length. But an alternative exists in
geodesic distance. Here, the distance between two points is the length of the shortest
path on a surface they are both part of. For example, the distance between two cities on a
road map is actually geodesic, since both cities are part of the earth’s surface. Using this
measure, vertices could be positioned more precisely. But, finally, the notion of geodesic
distance calculation got cut from the final algorithm. Although the overall precision of
the repositioning step would have been increased, the tested implementations (one an
exact calculation, the other an approximation) either introduced too many numerical
errors or slowed down the algorithm too much.

3.3 Phase Two
Phase two is closely connected to phase one. As explained above, during phase one
the texture vertices are repositioned, forming equilateral triangles. In phase two they
are triangulated, thus creating the texture mesh that is textured in the final phase.
The goal of this phase is to create a new mesh consisting of equilateral triangles that
represents the original geometry. Triangulation itself is done using a straightforward
greedy algorithm. It assumes that each vertex’ neighbourhood only contains vertices that
are to be connected by an edge in the texture mesh. To ensure this condition is met,
each vertex neighbourhood has to be checked for integrity. This is done by constructing
hypothetical edges between each vertex and its neighbours, creating a star-like structure.

(a) A single vertex is selected
from the list of vertices.

(b) Hypothetical edges are
constructed.

(c) Each neighbour’s neigh-
bours are examined.

Figure 3.7: A vertex’ neighbourhood is checked for irregularities.

By checking for each neighbour’s neighbours, three cases can be observed for the space
between edges:
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Case 1: The connected vertices form a triangle (Figure 3.8a). This is the desired case
and does not require further handling.
Case 2: The connected vertices form a square (Figure 3.8b). In this case all four of the
concerned vertices have their individual radii of influence slightly increased, resulting in
the potential inclusion of another vertex in the neighbourhood, creating a diagonal for
the square.
Case 3: The connected vertices form a square with intersecting diagonals (Figure 3.8c).
This case is resolved by slightly decreasing the radius of influence for each involved vertex,
thus removing a connection from the neighbourhood.

(a) An example for case 1. (b) An example for case 2. (c) An example for case 3.

Figure 3.8: The three cases of edge neighbourhood.

The adjustment of radii is done until equilibrium is achieved. Then the triangulation
is initialized: Starting with the first texture vertex in the list, its neighbourhood is
converted into triangles. Depending on user input, each vertex is assigned a random color
or a random texture coordinate. Once the triangulation and conversion step is done, the
final data structures consist of an array of vertex positions as well as color or texture
coordinates, an array of normals and an array of vertex indices representing triangles.

As with phase one, for phase two several alternative approaches have been investigated.
A first concept actually combined the two phases, starting with a seed vertex that would
spawn a set of neighbours already connected to each other. The aforementioned physics
simulations were then used to determine the final position before spawning the next set
of points. The problem with this approach was handling the last few triangles when the
object was almost completely covered, oftentimes resulting in heavy distortions. The
reason for these distortions was the different number of repulsing neighbours for each
vertex. While some vertices would only be repulsed by one or two neighbours, others
would accumulate stronger forces because of a neighbourhood size of four or five. These
differences in spacing resulted in irregular triangles.

Neyret et al. describe a technique called "Mutual Tessellation" [NC99]. It works by first
triangulating the old geometry mesh by iteratively including the new texture vertices.
Subsequently, all geometry vertices are removed from this mutual tessellation, resulting in
a mesh consisting only of texture vertices. The problem hereby is, that the part of their
algorithm that creates a new triangulation for the holes that remain once a geometry
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vertex is removed is not trivial. It would have been beyond the scope of this work to
include all the possible cases and test for correctness.

3.4 Phase 3
During this final phase either the user-provided texture patches are applied to the mesh
or the vertices are coloured. Colouring is straightforward: Each vertex is assigned a
random number between one and three. This number corresponds with red, green or blue
respectively. If texture is to be applied, the user has to provide texture patches. Since
every vertex in the texture mesh corresponds to one corner of a texture patch, assigning
UV-coordinates is the same as assigning colours. The only addition is that on top of a
random texture coordinate, the specific patch is also chosen at random from the four
patches provided.

This means that the texture patches, aside from them being equilateral, also have to
have corresponding edges no matter the configuration. This means that each possible
pairing of touching edges between neighbouring texture patches has to be seamless. If the
desired texture effect calls for a more complex pattern the algorithm has to be changed
accordingly, adding functionality to control texture assignment instead of random chance.

Since the mapping to equilateral triangles is now easily done, a number of additions is
possible. Having a more complex texture by creating dependencies between patches was
already mentioned above. In addition to that it is now feasible to replace the texture by
3D-objects, thus creating a more detailed surface that can then in turn be textured. This
corresponds with our initial goal of visualizing a phospholipid membrane. Instead of an
image texture, we can place the respective phospholipid geometry on an object’s surface.
This geometry has to cover an equilateral triangle so seamless coverage of the object is
possible while maintaining a small memory footprint. Integrating presented texturing
concept into molecular visualization is the scope of our future work.

Figure 3.9 shows a sphere that was textured with four texture patches, distributed at
random. Close examination reveals the corners of the triangles that make up the texture
mesh since they were used as simple points of connectivity to create the texture. More
importantly, though, is the fact that no neighbouring regions look exactly the same.
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Figure 3.9: Example of a completely textured sphere. Four texture patches were used to
create this surface.
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CHAPTER 4
Implementation

The tool used for visualizing meshes and textures is the Unity 3D-engine. It also provides
a framework for algorithms to be realized as scripts. The scripting language is C#.

4.1 Data structures and algorithms

To aid in the texturing process and to compensate for some of Unity’s shortcomings on
this sector, a few classes representing specific data structures are introduced. Although
the Unity engine provides sufficient support for linear algebra, the meshes are stored with
a face-based data scheme. In concrete terms, every mesh consists of a list of vertices with
corresponding normals, texture coordinates and colors, each stored in a separate list of
equal cardinality. The mapping between these lists is bijective. Connectivity information
comes from another list containing vertex list indices: three subsequent entries link to
the members of one triangle.

This results in some problems. Since entries in the triangle list are unordered, neither
triangle nor vertex neighbours can be extracted. Also, since normal vectors are stored
on a per-vertex basis, two neighbouring triangles (i.e. triangles sharing two vertices)
with different surface normals require separate entries for the same vertex in the vertex
list. Although these have the same position, their normals are different, making it rather
obtuse how many vertices actually make up the mesh.

As a remedy, three classes are used.
1. Vertex: This class saves a position and all the vertex list indices of the geometry mesh
with that same position, this way making normal, uv and color information obtainable by
looking them up in the respective list. Additionally, neighbouring vertices and triangles
are referenced. The class methods are used to store vectors of influencing forces and to
reposition the vertex according to these forces. Parameters for repositioning are also
set via variables: these include force, drag and repulsion radius. In the case of a newly
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introduced vertex the triangle containing it called the parent triangle is also saved.
2. Edge: This basically acts as a helper class representing an edge; it references the two
vertices the edge connects.
3. Triangle: This class saves the three vertices making up a triangle as well as the surface
normal. Moreover, the triangle area and the index of the triangle in the original list is
stored as well as the texture vertices contained within the triangle. This—combined with a
vertex- as well as a triangle neighbourhood—is done to facilitate neighbourhood-searches.
These neighbourhoods are represented as lists. Methods exist to find the opposing edge
of an input vertex as well as a comparator to make sorting by area possible.

Algorithm 4.1: Vertex neighbourhood creation
input :Vertex v, Float radius
output :List l of neighbouring vertices

1 Queue q = new Queue;
2 q ← v;
3 while q¬empty do
4 Vertex current← q.pop;
5 for n ∈ current.neighbours do // 1-ring neighbours are known
6 if ||n− v|| < radius then
7 l← n;
8 q ← n;
9 end

10 end
11 end

Algorithm 4.2: Triangle neighbourhood creation
input :List lV ert of neighbouring vertices
output :List lT ri of neighbouring triangles

1 for n ∈ lV ert do
2 for Triangle t ∈ n.triangles do // Triangles containing a vertex

are known
3 lT ir ← t;
4 end
5 end

The input consists of a triangulated mesh, the desired number of texture vertices, a
set of texture patches and two shaders. Since our technology should be well suited for
structural biological models, some constraints apply: The mesh is expected to be without
holes or irregularities. Edges cannot be shared by more than two or less than one triangle.
Although not being a hard constraint, it is advisable for the input mesh not to have
too many sharp angles or corners as they can result in minor distortions. Furthermore,
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corners generally do not correspond to the molecular context. The number of texture
vertices directly controls the coarseness of the texture mesh; choosing too few will also
result in distortions. Since the notion of "too few texture vertices" greatly depends on
the input mesh, no reliable heuristic can be given, thus leaving this control in the users
hands. The texture has to contain four equilateral triangles arranged horizontally. The
shaders are optional input and only necessary if instead of texture the user wants color
applied to the mesh.

Repositioning and triangulation of vertices is implemented as follows:

Algorithm 4.3: Vertex repositioning
input :Vertex v
Result: Repositioning of v

1 for n ∈ v.neighbours do
2 v.position ← v.position +(radius− n.position) ∗force ∗ n.direction;
3 end

Algorithm 4.4: Triangulation
input :List verts of texture vertices
Result: Triangulation of verts

1 for v ∈ verts do
2 for n ∈ v.neighbours do
3 for m ∈ v.neighbours do
4 if n ∈ m.neighbours then
5 Add new Triangle(v, n, m) to Triangulation;
6 end
7 end
8 end
9 end

4.2 User interface

This section describes the user interface and how to operate it. A basic understanding of
Unity’s functionality is assumed. The main scene consists of three GameObjects: "Main
Camera", "Directional Light" and "BaseObject". Those can be seen in Figure 4.1 in the
hierarchy-window in the bottom right corner.

The camera and the light are there to provide basic lighting and the possibility to view
the textured object once it is finished. The "BaseObject" has the script containing the
functions for texturing attached to it and a child object, "Geometry". This "Geometry"-
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Figure 4.1: The main Unity window. On the left side the textured object is displayed
once the calculations are finished. The center shows the geometry mesh. On the right
are the input-fields for the script and in the bottom right is the hierarchy-window, where
new objects have to be placed.

object in turn should be the parent of the mesh that is to be textured. This mesh is
user-provided. It is activated by dragging it onto the "Geometry"-object.

The script attached to "BaseObject" handles the rest of the necessary user input: The
variable "New Vertices" expects an integer value, the checkbox "Color Vertices" is used
to switch between random colouring and texturing and the two materials "Geometry
Material" and "Texture Material" need to be set to provide shader functionality (since in
Unity, shaders are attached to materials). Figure 4.1 shows a possible configuration: 300
new texture vertices will be created and the "Color Vertices"-option is switched off. Both
materials have been set. By clicking "Play" (at the top of the screen), the calculations
are started.

All of the above-mentioned inputs underlie certain constraints. As mentioned before
the algorithm is developed with cell membranes as the main visualization goal in mind.
Consequently, if provided a sharp-angled object as input, visual distortions are likely to
occur. Since the number of new vertices directly corresponds to texture mesh resolution,
it is advised to choose this quantity carefully. Also, if less than three vertices are created,
triangulation cannot be completed. A value that worked well during development was
the number of vertices in the geometry mesh. Starting with this amount of new vertices
the user can then de- or increase that number according to the output.
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CHAPTER 5
Demonstration

This chapter will contain examples of possible output. Special care has to be taken
when choosing shaders: If the texture mesh is to be coloured at random (by checking
"Color Vertices"), an appropriate shader has to be attached to the "Texture Material".
This is mentioned because none of Unity’s built-in shaders provide vertex color support.
Selecting a shader is done via the drop-down menu of a material (Figure 5.1).

Figure 5.1: Different shaders can be selected by using the drop-down-menu of an assigned
material.
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Once input is taken care of, the script can be started by pressing "Play". The "Game"
view will then show the texture mesh. In this view, camera controls work by holding
down the left mousebutton and moving the mouse. The scrollwheel can be used to zoom
in and out. For additional manipulations, the texture mesh can also be found in the
"Hierarchy"-window as a child of the newly created "Texture" GameObject (Figure 5.2).

Figure 5.2: Once it is created, the texture mesh can be selected as a child of BaseObject.

Figure 5.3 shows a basic example for a coloured texture mesh. The colour values are
chosen at random from either red, green or blue.

A more complex example can be seen in Figure 5.4: Here, four texture patches are
applied to the mesh. Because of the patches’ motifs, no triangle edges are visible. This is
achieved by avoiding placement of foreground-objects (in this example: islands) near the
edges.

In Figure 5.5, the randomness of the distribution of texture patches can be observed.
Each patch has one to four dots on a white background, similar to a die. The figure
shows which patch number is assigned to different parts of the object’s surface.

Finally, Figure 5.6 shows a comparison between a coarse and a fine texture mesh.
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Figure 5.3: An object with randomly assigned colours for each vertex. Values are
interpolated in the fragment shader.

Figure 5.4: An object with texture applied at random, chosen from four input patches.
No triangle edges are visible.
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Figure 5.5: An object with texture applied at random, chosen from four input patches.
The texture either contains one, two, three or four dots. This is an example of how the
texture patches are distributed at random.

30



Figure 5.6: The same object with different texture mesh densities. On the top is a coarse
texture mesh, on the bottom a fine texture mesh.
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CHAPTER 6
Evaluation

Demonstrative cases from the previous chapter are now benchmarked for performance
and their visual quality is discussed. Analysing the code, O(n2) presents itself as an
expected runtime, depending on the number of new texture vertices. This is mainly due
to the fact that neighbour-comparison, as mentioned earlier, has to check each possible
neighbour for every vertex. But, as can be seen in the following benchmark results,
the actual runtime is worse than that. The reason for this is the way triangulation is
implemented. Sometimes an unstable equilibrium is created in a situation where a vertex
either has an empty or a filled square as one neighbour. By changing the radius, the
square switches from one false state to the other without reaching correct triangulation
until the resulting physics rearrange the whole vertex neighbourhood, which can take
rather long. An easy, albeit potentially imprecise solution to this problem would be to
stop rebalancing after a set amount of loops and just create or remove one arbitrary
diagonal for each detected hole. A more thorough approach calls for a restructured
triangulation procedure that creates more reliable output.

The following tables are to showcase input variations. Four objects, shown in figure 6.1,
were textured as well as coloured on three different computers, using different texture
mesh densities. The machines have these specifications:

PC 1:
-Intel Core i5-6600K 3,50 GHz
-16 GB DDR4 RAM
-AMD Radeon HD 5800
-Win7 64 Bit
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PC 2:
-Intel Core i5-4200U 1,60 GHz
-4 GB DDR3 RAM
-Intel HD Graphics 4400 onboard
-Win7 64 Bit

PC 3:
-Intel Core 2 Duo 2,33 GHz
-2 GB DDR3 RAM
-Nvidia GeForce 8800 GT
-Win7 64 Bit

Figure 6.1: Sphere and objects 1 (top left), 2 (bottom left) and 3 (bottom right).

Each table shows benchmark results for RAM (divided into total memory used, memory
reserved for textures and memory reserved for meshes), VRAM and execution time. The
time-column is further divided into time needed for vertex repositioning, triangulating
the texture mesh and total runtime. These values are listed along the x-axis. Along
the y-axis, the three test-systems are listed, with different rows for coloured or textured
output and vertex numbers. As expected, total memory usage corresponds to the number
of texture vertices since repositioning takes a lot of RAM. In the case of PC2 and PC3,
some entries in the memory column are almost identically high regardless of vertex
density. The reason for this is improper flushing of RAM after code execution. For
example, in Table 6.3, a coloured mesh with 250 vertices requires the same amount of
memory as the textured mesh with 800 vertices in Table 6.2 for PC2.

Texture and Mesh memory stay relatively low regardless of texture vertices. This is
a desired result, for it means that once the texture mesh is computed, it can be used
for display with a small memory footprint. The same goes for VRAM which also stays
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constantly low.

As far as runtime is concerned, the time it takes to reposition the texture vertices shows
the expected behaviour: The more vertices, the longer it takes to reposition them. But
triangulation unfortunately shows erratic behaviour. In Table 6.4 for example, a texture
mesh with 400 vertices takes longer to triangulate than a texture mesh with 800 vertices
(rows 11 & 12). As already mentioned, this is due to the way triangulation is implemented.

RAM VRAM Execution Time
Total Texture Mesh Repositioning Triangulation Total

PC 1

coloured
250 Vertices 189,7 MB 13 MB 2,6 MB 30,7 MB 1683,505 ms 2487,901 ms 2493,373 ms
1000 Vertices 0,52 GB 13 MB 2,6 MB 30,7 MB 5445,339 ms 11127,24 ms 11139,89 ms
5000 Vertices 1,11 GB 13 MB 3,1 MB 38,5 MB 59505,01 ms 574925,6 ms 574987,9 ms

textured
250 Vertices 0,65 GB 13,2 MB 2,6 MB 31,3 MB 1573,705 ms 2355,94 ms 2361,679 ms
1000 Vertices 0,71 GB 13,2 MB 2,6 MB 31,3 MB 5768,306 ms 11404,41 ms 11423,04 ms
5000 Vertices 1,11 GB 13,2 MB 2,6 MB 31,3 MB 57207,27 ms 570355,01 ms 570429,8 ms

PC 2

coloured
250 Vertices 121,1 MB 9,1 MB 3,2 MB 32,3 MB 3183,376 ms 5509,886 ms 5526,309 ms
1000 Vertices 309,6 MB 9,1 MB 3,2 MB 32,3 MB 11803,36 ms 45364,07 ms 45403,78 ms
5000 Vertices 0,63 GB 9,1 MB 3,2 MB 32,3 MB 115859,3 ms 1564378 ms 1564514 ms

textured
250 Vertices 0,7 GB 16,1 MB 3,2 MB 33,0 MB 2916,545 ms 5051,496 ms 5064,292 ms
1000 Vertices 0,69 GB 16,1 MB 3,2 MB 33,0 MB 16151,66 ms 57378,82 ms 57425,89 ms
5000 Vertices 0,68 GB 10,4 MB 3,2 MB 33,0 MB 151260,5 ms 1754535 ms 1754711 ms

PC 3

coloured
250 Vertices 133,6 MB 10,5 MB 3,3 MB 22,0 MB 4928,497 ms 7390,876 ms 7401,269 ms
1000 Vertices 311,0 MB 10,5 MB 3,3 MB 22,0 MB 13605,91 ms 50964,46 ms 50998,43 ms
5000 Vertices 0,61 GB 10,5 MB 3,3 MB 22,0 MB 127161,2 ms 1826559 ms 1827006 ms

textured
250 Vertices 0,62 GB 10,5 MB 3,3 MB 22,7 MB 3745,882 ms 6051,249 ms 6062,324 ms
1000 Vertices 0,68 GB 10,5 MB 3,3 MB 22,7 MB 13407,05 ms 50935,86 ms 50972,65 ms
5000 Vertices 0,61 GB 10,5 MB 3,3 MB 22,7 MB 126308,6 ms 1846259 ms 1846702 ms

Table 6.1: Benchmark results: Sphere
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RAM VRAM Execution Time
Total Texture Mesh Repositioning Triangulation Total

PC 1

coloured
250 Vertices 0,65 GB 13,2 MB 2,6 MB 30,7 MB 1831,824 ms 71588,16 ms 71593,63 ms
400 Vertices 262,2 MB 11,6 MB 2,6 MB 30,7 MB 2706,358 ms 26456,61 ms 26463,58 ms
800 Vertices 311,4 MB 11,6 MB 2,6 MB 30,7 MB 6400,358 ms 61923,73 ms 61934,48 ms

textured
250 Vertices 290,6 MB 13,0 MB 2,6 MB 31,3 MB 1788,846 ms 71545,41 ms 71551,85 ms
400 Vertices 329,2 MB 13,0 MB 2,6 MB 31,3 MB 2751,559 ms 26347,67 ms 26355,36 ms
800 Vertices 378,7 MB 13,0 MB 2,6 MB 31,3 MB 6313,446 ms 65208,42 ms 65220,35 ms

PC 2

coloured
250 Vertices 0,69 GB 16,1 MB 3,2 MB 32,3 MB 3330,815 ms 140587,8 ms 140599,8 ms
400 Vertices 0,69 GB 16,1 MB 3,2 MB 32,3 MB 5430,884 ms 58543,9 ms 58559,99 ms
800 Vertices 0,78 GB 16,1 MB 3,2 MB 32,3 MB 13193,18 ms 143408,5 ms 143426,8 ms

textured
250 Vertices 0,75 GB 16,1 MB 3,2 MB 33,0 MB 3384,735 ms 150364,5 ms 150376,9 ms
400 Vertices 0,69 GB 16,1 MB 3,2 MB 33,0 MB 5527,129 ms 53177,78 ms 53194,63 ms
800 Vertices 0,69 GB 16,1 MB 3,3 MB 33,0 MB 13381,74 ms 135645,6 ms 135676,1 ms

PC 3

coloured
250 Vertices 0,66 GB 10,5 MB 3,3 MB 22,0 MB 4241,007 ms 136325,6 ms 136335,8 ms
400 Vertices 0,61 GB 10,5 MB 3,3 MB 22,0 MB 6548,736 ms 56029,32 ms 56042,68 ms
800 Vertices 0,61 GB 10,5 MB 3,3 MB 22,0 MB 14788,7 ms 139602,5 ms 139623,1 ms

textured
250 Vertices 0,61 GB 10,5 MB 3,3 MB 22,7 MB 4228,289 ms 163946,8 ms 163957,8 ms
400 Vertices 0,65 GB 10,5 MB 3,3 MB 22,7 MB 6895,375 ms 56541,52 ms 56555,82 ms
800 Vertices 0,7 GB 10,5 MB 3,3 MB 22,7 MB 14844,23 ms 139335,7 ms 139359,1

Table 6.2: Benchmark results: Object 1

RAM VRAM Execution Time
Total Texture Mesh Repositioning Triangulation Total

PC 1

coloured
250 Vertices 297,3 MB 13,0 MB 2,6 MB 30,7 MB 4029,991 ms 18267,49 ms 18273,67 ms
400 Vertices 319,0 MB 13,0 MB 2,6 MB 30,7 MB 4205,69 ms 16881,24 ms 16888,77 ms
800 Vertices 354,1 MB 13,0 MB 2,6 MB 30,7 MB 5554,576 ms 41163,99 ms 41175,02 ms

textured
250 Vertices 295,4 MB 13,0 MB 2,6 MB 31,3 MB 4002,161 ms 18221,09 ms 18227,43 ms
400 Vertices 321,2 MB 13,0 MB 2,6 MB 31,3 MB 4088,836 ms 16816,96 ms 16824,83 ms
800 Vertices 354,2 MB 13,0 MB 2,6 MB 31,3 MB 5495,5 ms 41125,15 ms 41137,05 ms

PC 2

coloured
250 Vertices 0,69 GB 16,1 MB 3,2 MB 32,3 MB 9813,864 ms 22956,93 ms 22969,34 ms
400 Vertices 0,73 GB 16,1 MB 3,3 MB 32,3 MB 10232,3 ms 60504,98 ms 60516,87 ms
800 Vertices 0,69 GB 16,1 MB 3,2 MB 32,3 MB 12707,5 ms 182208,4 ms 182234,6 ms

textured
250 Vertices 0,72 GB 16,1 MB 3,2 MB 33,0 MB 9884,462 ms 21677,35 ms 21702,17 ms
400 Vertices 0,69 GB 16,1 MB 3,2 MB 33,0 MB 10088,16 ms 54918,77 ms 54931,95 ms
800 Vertices 0,69 GB 16,1 MB 3,2 MB 33,0 MB 13201,49 ms 139092,3 ms 139122,7 ms

PC 3

coloured
250 Vertices 0,61 GB 10,5 MB 3,3 MB 22,0 MB 11823,02 ms 25729,13 ms 25741,29 ms
400 Vertices 0,61 GB 10,5 MB 3,3 MB 22,0 MB 12310,6 ms 65535,46 ms 65548,63 ms
800 Vertices 0,61 GB 10,5 MB 3,3 MB 22,0 MB 15599,69 ms 151474,9 ms 151496 ms

textured
250 Vertices 0,63 GB 10,5 MB 3,3 MB 22,7 MB 11863,59 ms 25695,69 ms 25721,99 ms
400 Vertices 0,65 GB 10,5 MB 3,3 MB 22,7 MB 12333,46 ms 65319,29 ms 65347,97 ms
800 Vertices 0,61 GB 10,5 MB 3,3 MB 22,7 MB 15676,98 ms 151730,6 ms 151753,8 ms

Table 6.3: Benchmark results: Object 2

But although, without optimization, the algorithm is not suited for big vertex numbers,
oftentimes satisfying results can be achieved with vertex counts in the range between
102 and 103. In this range, texture mesh creation happens fast enough to be feasible in
real time. However, if triangulation is regarded as a preprocessing step, higher vertex
numbers are possible.
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RAM VRAM Execution Time
Total Texture Mesh Repositioning Triangulation Total

PC 1

coloured
250 Vertices 439,6 MB 13,1 MB 2,6 MB 30,7 MB 22256,89 ms 28168,12 ms 28192,62 ms
400 Vertices 368,4 MB 13,1 MB 2,6 MB 30,7 MB 22152,57 ms 36372,26 ms 36380,02 ms
800 Vertices 357,8 MB 13,1 MB 2,6 MB 30,7 MB 21978,75 ms 48985,91 ms 48996,88 ms

textured
250 Vertices 371,1 MB 13,1 MB 2,6 MB 31,3 MB 2236,17 ms 28215,7 ms 28222,21 ms
400 Vertices 367,3 MB 13,1 MB 2,6 MB 31,3 MB 22960,54 ms 36231,82 ms 36239,78 ms
800 Vertices 357,5 MB 13,1 MB 2,6 MB 31,3 MB 22079,1 ms 49056,01 ms 49067,82 ms

PC 2

coloured
250 Vertices 0,69 GB 16,1 MB 3,2 MB 32,3 MB 67437,02 ms 82084,99 ms 82098,55 ms
400 Vertices 0,69 GB 16,1 MB 3,2 MB 32,3 MB 45401,6 ms 94068,98 ms 94087,04 ms
800 Vertices 0,75 GB 16,1 MB 3,2 MB 32,3 MB 46161,54 ms 109780,6 ms 109810 ms

textured
250 Vertices 0,7 GB 16,1 MB 3,2 MB 33,0 MB 47625,23 ms 66045,52 ms 66060,79 ms
400 Vertices 0,77 GB 16,1 MB 3,2 MB 33,0 MB 48254 ms 90751,25 ms 90769,13 ms
800 Vertices 0,76 GB 16,1 MB 3,2 MB 33,0 MB 47541,57 ms 86373,43 ms 86394,65 ms

PC 3

coloured
250 Vertices 0,67 GB 10,5 MB 3,3 MB 22,0 MB 80220,44 ms 95170,34 ms 95180,71 ms
400 Vertices 0,61 GB 10,5 MB 3,3 MB 22,0 MB 58570,4 ms 98826,88 ms 98839,85 ms
800 Vertices 0,61 GB 10,5 MB 3,3 MB 22,0 MB 58522,55 ms 105062,7 ms 105083,5 ms

textured
250 Vertices 0,67 GB 10,5 MB 3,3 MB 22,7 MB 59161,63 ms 74207,41 ms 74218,48 ms
400 Vertices 0,61 GB 10,5 MB 3,3 MB 22,7 MB 58781,5 ms 98903,3 ms 98952,61 ms
800 Vertices 0,67 GB 10,5 MB 3,3 MB 22,7 MB 58657,45 ms 105108,2 ms 105131 ms

Table 6.4: Benchmark results: Object 3

Figure 6.2 shows a texture mesh with 200 vertices. As can be observed, the surface is
well represented and shows no visible edges.

Figure 6.3 on the other hand is an example for an anomaly that can occur if the texture
patches are not chosen carefully: Although the geometry is represented well by the
texture mesh, the edges connecting the texture vertices are clearly visible. This is because
the individual patches consist of a dense center, tracing the outline of the triangle, and a
strip of empty background along each edge. As a result, no matter the configuration,
whenever two edges meet, a thick white line is created.

Finally, figure 6.4 shows how a single patch with densely distributed points can sometimes
achieve good results. The used mesh is the same as in figure 6.2. On the right is a
magnification of the highlighted area: The structure of the texture mesh can be seen by
carefully searching for concentric circles.

Surprisingly, even a single texture patch with randomly distributed points can be applied
without noticeable artifacts. This increases the mapping possibilities as will be mentioned
in the conclusion.
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6. Evaluation

Figure 6.2: A sphere textured with four randomly assigned texture patches. Instances of
mirroring can be detected but the overall distribution is without heavy repetition.

Figure 6.3: This object demonstrates a disadvantageous choice of texture patches:
although four patches are used, their difference is not distinct enough. Furthermore, their
visual structure creates visible edges.
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Figure 6.4: A sphere that was textured using only one patch with randomly distributed
points. The magnification shows that underlying edges are very hard to see despite that.
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CHAPTER 7
Conclusions

This work represents a small foray into texturing and visualization within the framework
the Unity engine provides. It gave me the opportunity to familiarize myself with a
powerful game engine as well as learn a new programming language in the form of C#
and Cg/HLSL respectively. On top of that, various new concepts had to be incorporated
into the program such as triangulation and particle calculations. The meshes used were
created in blender, another technology I was not too well versed in and thus had to get
to know.

The original goal of this work, the seamless texturing of an arbitrary 3D-object, was
achieved. There were, however, unexpected results. First is the worse than quadratic
performance. Second is the fact that quick results heavily depend on the user choosing
a "good" amount of texture vertices. Both of these problems have their origin in the
chosen implementation of triangulation and can be solved by further optimizing this
implementation. However, performance optimization was not considered the main focus
of this thesis and the long runtime can be considered a pre-processing step if mesh
generation is static. In dynamic cases, though, the algorithm proves to be too slow.

This being said, an interesting question presenting itself at the end is this: Is Unity 3D
the best tool to work with in this context? As stated earlier, Unity has certain benefits.
These include portability, accessibility and a solid library of basic functionality. For
example, the framework contains libraries for vector calculations, rigid body-physics and
most importantly presentation in the form of lighting calculations and a streamlined
texturing process. The editor is easy to operate and the provided documentation and
tutorials cover most of the important topics. But despite all these benefits, Unity also
suffers from certain shortcomings. As it turns out, trying to manipulate meshes on such a
fine level (i.e. manipulating single vertices) quickly shows the engine’s limits. Especially
the used data structures are what hinders easy control of meshes. This is mostly due
to the fact that in game development such functionality is seldom needed since most
3D-models are either used as-is or provided with an animation rig prior to import into
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7. Conclusions

Unity. Another library that would have been useful is one containing functions from the
field of computational geometry, such as geodesic distance or three dimensional surface
manipulation. This is something even games would benefit from and some functionality
will in fact be added in the next major update.

To summarize my experience with Unity, I think it is a great engine that gave me the
opportunity to work from the ground up, implementing all the functionality I needed
myself. But the alternative of having some functions already at my disposal would have
possibly resulted in a more powerful algorithm overall. So for the future if I want to
create a game I definitely will consider Unity again, but aside from that I’d probably use
a more common, better equipped framework.

One such library was already mentioned: CGAL. An alternative would be NVIDIA’s
"Flex" framework. Both of them provide functions to easily calculate surface properties as
well as reposition vertices. Instead of writing the whole script in Unity it would have been
possible to create a pipeline that first repositions vertices in Flex and then triangulates
them using CGAL-functionality before using Unity to texture and display the resulting
mesh. Another alternative for triangulation would have been MeshLab.

These suggestions are mentioned because the algorithm in this work can definitely
be improved. The main flaw is the triangulation procedure, which takes too long to
finish. As mentioned during the evaluation this is due to the physics calculations
continuing in this step. An obvious solution would be to implement either point cloud-
or Delaunay-triangulation that has already been tested. Also, if Unity is used for point
repositioning, a robust geodesic distance calculation would benefit the precision greatly,
as well as overhauled or extended data structures. Main focus hereby should be accessible
neighbourhood structures with fast lookup.

Possible improvements aside, the algorithm definitely represents a stepping stone towards
more complex visualization. The assignment of texture coordinates can easily be extended
to accommodate for texture patches with edge constraints. Right now the input patches
have to fit together regardless of rotation. But by changing some of the code, it would be
possible to choose from a larger number of patches with edge constraints, making only
some of the other patches possible neighbours. This could be combined with automated
texture generation from a sample image, making the task of texturing an object even
easier for the user.

If physics calculations are reliable and fast, splitting objects would present another way to
add to the versatility of the algorithm. When an object’s animation calls for a surface that
is divided, new texture vertices could be introduced into the new seam and repositioned
at runtime to once again close the texture over the object’s parts.

But even the fact that texturing using only a single patch proves to be valid can be used
to further advance the algorithm. If a texture containing randomly distributed points
is applied, each point on the texture can in turn be mapped to another, more complex
texture or even geometry.
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These examples are just some of the possibilities this work opens up.
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