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Abstract. The over-segmentation problem for images is studied in the8

new resolution-independent formulation when a large image is approx-9

imated by a small number of convex polygons with straight edges at10

subpixel precision. These polygonal superpixels are obtained by refining11

and extending subpixel edge segments to a full mesh of convex polygons12

without small angles and with approximation guarantees. Another nov-13

elty is the objective error difference between an original pixel-based image14

and the reconstructed image with a best constant color over each super-15

pixel, which does not need human segmentations. The experiments on16

images from the Berkeley Segmentation Database show that new meshes17

are smaller and provide better approximations than the state-of-the-art.18

1 Introduction: motivations, problem and contributions19

1.1 Spatially Continuous Model for Over-segmentation of Images20

Digital images are given by pixel values at discrete positions. Since images rep-21

resent a spatially continuous world, the reconstruction problem should be solved22

in terms of functions defined over a continuous image domain, not over a dis-23

cretization such as a regular grid. For example, grayscale values across a real24

image edge rarely drop from 255 (white) to 0 (black), but change gradually over25

2-3 pixels, see details in [1, Fig. 1]. Hence a real edge between objects is often26

not along pixel boundaries and should be considered in the infinite family of27

line segments with any slope and endpoints having real coordinates. The first28

algorithm to output subpixel edges with theoretical guarantees is LSD [2].29

The over-segmentation problem is to split an image into superpixels (larger30

than pixels and usually smaller than real objects) that have a nice shape and31

low variation of color. Traditional superpixels are formed by merging square-32

based pixels, e.g. by clustering. These superpixels often have irregular shapes33

with zigzag boundaries and holes inside. The resolution-independent approach34

[1] models a superpixel as a convex polygon with straight edges and vertices35

at subpixel resolution. Such a polygonal mesh can be rendered at any higher36

resolution by choosing a best color for each polygon in the reconstructed image.37
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A resulting mesh with constant colors over all polygons can be used to sub-38

stantially speed-up any higher level processing such as object detection or recog-39

nition. Fig. 1 shows that only 231 convex polygons are enough to approximate40

the original 512×512 image with a small reconstruction error from Definition 1.41

1.2 Energy Minimization for Resolution-Independent Superpixels42

A real image is modeled as a function I that is defined at any point of a con-43

tinuous image domain Ω ⊂ R2 and takes values in R (grayscale) or R3 (color44

images). We consider the function I(x) taking the same color value at any point45

x ∈ Ω within every square pixel Bp considered as a continuous subset of Ω. This46

function I(x) defines a piecewise constant surface over the image domain Ω.47

Fig. 1. Left: 512 × 512 input. Middle: 275 Voronoi superpixels have nRMS≈10.2%.
Right: 246 superpixels based on a Convex Constrained Mesh have nRMS≈4.48%.

The reconstruction problem is to find a latent image represented by a48

function u(x) that minimizes the energy E =
∫∫
Ω

||I(x)− u(x)||dx +R, where R49

is a regularizer that penalizes degenerate solutions or reflects an image prior.50

The energy E will be the reconstruction error from Definition 1. Usually u(x)51

is simpler than I(x) in a certain sense. In our case u(x) will have constant values52

over geometric polygons (superpixels) that are much larger than original pixels.53

The regularizer will forbid small angles, because narrow triangles may not cover54

even one pixel, while large angles (even equal to 180◦) cause no difficulties.55

So the reconstruction problem is to split a large image into a fixed number of56

polygons minimizing a difference between the original image function I(x) over57

many pixels and the reconstructed image u(x) over fewer convex polygons.58

1.3 Contribution: Convex Constrained Mesh of Superpixels (CCM)59

Here are the stages of the algorithm for resolution-independent superpixels.60

1. The Line Segment Detector [2] finds line segments at subpixel resolution.61
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2. The LSD output is refined to resolve line intersections and small angles.62

3. The resulting graph is extended to a triangulation without small angles.63

4. Triangles are merged in convex polygons that also have no small angles.64

5. The reconstructed image is obtained by finding the best constant color of any65

convex superpixel after minimizing the approximation error in Definition 1.66

The input of the LSD and CCM algorithms above is a grayscale image. The67

Convex Constrained Mesh (CCM) built at Stage 4 is introduced in Definition 268

and has guarantees in Theorem 5 in terms of the following parameters.69

• Min Angle is the minimum angle between adjacent edges in a final mesh.70

• Min Distance is an approximation tolerance of LSD segments by CCM edges.71

The default values are 3 pixels and 30◦ motivated by a similar angle bound72

in Shewchuk triangulations used at Stage 3. Here are the main contributions.73

• The new concepts of the reconstruction error (a new quality measure for74

resolution-independent superpixels not relying on ground truth segmentations)75

and a Convex Constrained Mesh (CCM) are introduced in Definitions 1–2.76

• The LSD refinement (Algorithm 3): disorganized line segments are converted77

into a planar graph well approximating the original LSD with guarantees.78

• Shewchuk’s Triangle extension (Algorithm 4): a triangulation is upgraded to a79

Convex Constrained Mesh without small angles as guaranteed by Theorem 5.80

• The experiments on BSD [3] in section 4 show that CCM have smaller sizes81

and reconstruction errors than other resolution-independent superpixels, also82

achieving similar benchmark results in comparison with traditional superpixels.83

2 Pixel-based and Resolution-Independent Superpixels84

A pixel-based image is represented by a lattice L whose nodes are in a 1–185

correspondence with all pixels, while all edges of L represent adjacency relations86

between pixels. Usually each pixel is connected to its closest 4 or 8 neighbors.87

The seminal Normalized Cuts algorithm by Shi and Malik [4] finds an optimal88

partition of L into connected components, which minimizes an energy taking into89

account all nodes of L. The algorithm by Felzenszwalb and Huttenlocher [5] was90

faster, but sometimes produced superpixels of irregular sizes and shapes as found91

by Levinstein at el. [6]. The Lattice Cut algorithm by Moore et al. [7] guarantees92

that the final mesh of superpixels is regular like the original grid of pixels. The93

best quality in this category is achieved by the Entropy Rate Superpixels (ERS)94

of Lie et al. [8] minimizing the entropy rate of a random walk on a graph.95

The Simple Linear Iterative Clustering (SLIC) algorithm by Achanta et al. [9]96

forms superpixels by k-means clustering in a 5-dimensional space using 3 colors97

and 2 coordinates per pixel. Because the search is restricted to a neighborhood98

of a given size, the complexity is O(kmn), where n and m are the numbers of99

pixels and iterations. This gives an average time of 0.2s per BSD500 image.100
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SEEDS (Superpixels Extracted via Energy-Driven Sampling) by Van den101

Bergh et al. [10] seems the first superpixel algorithm to use a coarse-to-fine102

optimization. The colors of all pixels within each fixed superpixel are put in bins,103

usually 5 bins for each color channel. Each superpixel has the associated sum104

of deviations of all bins from an average bin within the superpixel. This sum is105

maximal for a superpixel whose pixels have colors in one bin. SEEDS iteratively106

maximizes the sum of deviations by shrinking or expanding superpixels.107

Almost all past superpixels have no geometric or topological constraints, only108

in a soft form of a regularizer [11]. If a final cluster of pixels in SLIC is discon-109

nected or contains holes, post-processing is needed. TopoCut [12] by Chen et al.110

has a hard topological constraint in a related problem of image segmentation.111

The key limitation of pixel-based superpixels is the fixed resolution of an112

original pixel grid. Resolution-independent superpixels are the next step in ap-113

proximating images by polygons whose vertices have any subpixel precision.114

The only past resolution-independent superpixels by Duan and Lafarge [13]115

and new CCM superpixels use constrained edges from the LSD algorithm of116

Grompone von Gioi et al. [2], which outputs thin rectangles such that the color117

substantially changes at their long middle lines, see Fig. 3. The parameters are118

a tolerance τ for angles between gradients and a threshold ε for false alarms.119

Voronoi superpixels [13] are obtained by splitting an image into Voronoi faces120

whose centers are chosen along LSD edges. The natural input would be a set121

of centers, however the algorithm first runs LSD [2] and then chooses centers122

on both sides of LSD edges. So the edges were soft constraints without proved123

guarantees yet. By Theorem 5 all given edges are a hard constraint for CCMs.124

A Shewchuk triangulation is produced by the state-of-the-art Triangle soft-125

ware [14] that guarantees a lower bound (as large as 28◦) for all angles. A Convex126

Constrained Mesh introduced in Definition 2 extends a Shewchuk triangulation127

to a mesh of convex polygons that also have no small angles by construction.128

3 A Convex Constrained Mesh (CCM) with Guarantees129

A superpixel in Definition 1 can be a union of square pixels or any polygon.130

Definition 1 Let an image I have n pixels, each pixel be the 1×1 square Bp and
have Intensity(p) ∈ [0, 255]. Let I be split in superpixels Fj (polygons or unions
of pixels) with Color(Fj) ∈ [0, 255], j = 1, . . . , s. The Reconstruction Error is

RE = min
∑

pixels p

(
Intensity(p)−

s∑
j=1

Area(Bp ∩ Fj)Color(Fj)
)2
, (1a)

where the minimum is over all Color(Fj), j = 1, . . . , s. The internal sum in RE
is small, because each square Bp non-trivially intersects only few superpixels Fj,
so the intersection Area(Bp ∩ Fj) is almost always 0 (when Bp is outside Fj)
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or 1 (when Fj covers Bp). For a fixed splitting I = ∪sj=1Fj, the function RE
quadratically depends on Color(Fj), which are found from a linear system.

The normalized Root Mean Square is nRMS =

√
RE

n
· 100%

255
. (1b)

The reconstructed image is the superpixel mesh with all optimal Color(Fj) min-131

imizing nRMS. This colored mesh can be rendered at any resolution, see Fig. 2.132

In Definition 1 if a superpixel Fj is a union of square pixels, then Area(Bp∩Fj)133

is always 0 or 1, so the optimal Color(Fj) is the mean color of all pixels in Fj .134

Fig. 2. Left: 589 Voronoi superpixels (mesh and reconstruction) have nRMS ≈ 9.22%.
Right: 416 CCM superpixels (red mesh and reconstruction) have nRMS ≈ 6.32%

Another important motivation for the new CCM superpixels is in Fig. 2,135

where the reconstructed image from Definition 1 in the second picture is consid-136

ered as the input for any higher level processing. Since boundaries of a Voronoi137

mesh may not well approximate constrained edges, the reconstructed image may138

miss long thin structures, such as legs of a camera tripod in Fig. 2.139

Definition 2 Let G be a planar straight line graph with angles at least ϕ ≤ 60◦.140

A Convex Constrained Mesh CCM(G) is a piecewise linear complex such that141

(2a) CCM(G) has convex polygons with angles ≥ Min Angle = arcsin

(
1√
2

sin
ϕ

2

)
;142

143

(2b) the graph G is covered by the edges of the Convex Constrained Mesh CCM(G).144

Any Shewchuk triangulation is an example of a Convex Constrained Mesh.145

However, Definition 2 allows general meshes of any convex polygons without146

small angles. We build CCM by converting the LSD output in Algorithm 3 into147

a planar graph G without self-intersections and then by extending G into a148

polygonal mesh without small angles. All steps below are needed to satisfy main149

Theorem 5. Subsection 4.1 confirms that CCMs are smaller than past meshes.150

Algorithm 3 We convert disorganised line segments with self-intersections from151

the LSD output into a straight line graph as follows, see details in [15].152
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(3.1) When a segment almost meets another segment (within the offset parameter153

Min Distance = 3 pixels), we extend the first one to a proper intersection .154

(3.2) When two segments almost meet (endpoints within Min Distance), we ex-155

tend both to the intersection to avoid small angles/triangles in Algorithm 4.156

(3.3) When segments meet, we insert their intersection as a vertex in the graph.157

Algorithm 4 We extend a graph G from Algorithm 3, see details in [15].158

(4.1) The Triangle [14] extends the constrained edges of the graph G to a trian-159

gulation that has more edges, no angles smaller than Min Angle = 30◦.160

(4.2) We merge adjacent faces along their common edge e if the resulting face is161

still convex. If two new angles at the endpoints of e are almost convex, we try to162

perturb them within Min Distance to guarantee convexity and no small angles.163

(4.3) We collapse unconstrained edges if all constrained edges remain fixed.164

The steps above guarantee no small angles in CCM. Theorem 5 is proved in [15].165

Theorem 5 Let line segments S1, . . . , Sk have m intersections. Algorithm 3166

builds a CCM in time O((k +m) log(k +m)) so that167

(5a) any internal angle in a CCM face is not smaller than Min Angle;168

(5b) the union ∪iSi is covered by the Min Distance-offset of the CCM’s edges.169

4 Experimental Comparisons and Conclusions170

The sizes and reconstruction errors of the CCM and Voronoi superpixels are171

compared in subsections 4.1 and 4.2. Then two more superpixel algorithms SLIC172

[9] and SEEDS [10] are also included into BSD benchmarks in subsection 4.3.173

4.1 Sizes of CCMs, Shewchuk’s Triangulations and Voronoi meshes174

The first picture in Fig. 3 is the original LSD output. The second picture shows175

the graph G obtained by the LSD refinement in Algorithm 3. The refined LSD176

output has more edges than the original LSD, because we include boundary177

edges of images and also intersection points, which become vertices of graphs.178

We use φ = 30◦ for the LSD refinement, which leads to Min Angle ≈ 10.5◦ in179

Shewchuk’s Triangle [14]. We compare Shewchuk triangulations on the original180

LSD output and CCM on the refined LSD output in Fig. 3, where the 3rd181

picture shows a zoomed-in green box with many tiny triangles. The final picture182

in Fig. 3 contains only few faces after merge operations in Algorithm 4. The183

ratio of Shewchuk triangles to the number of faces in CCMs across BSD is 7.6.184

The first step for Voronoi superpixels [13] is to post-process the LSD output185

when close and near parallel lines are removed, because the target application186

was satellite images of urban scenes with many straight edges of buildings. Then187

long thin structures such as legs of a camera tripod in Fig. 3 are represented188

only by one edge and may not be recognized in any further processing.189
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Fig. 3. Top left: 259 LSD red middle segments in blue rectangles before the refinement
in Algorithm 3. Bottom left: the refined LSD output (a graph G) with 294 edges.
Top middle: Shewchuk triangulation T (G) with 2260 triangles. Bottom middle: the
Convex Constrained Mesh CCM(G) with 416 faces. Top right: zoomed in green box
with tiny triangles. Bottom right: zoomed in green box, all tiny triangles are merged.

That is why the LSD refinement in section 3 follows another approach and190

offers guarantees leading to Theorem 5. Table 1 displays the average ratios of191

face numbers over BSD images. Even when the parameter Eps Radius of Voronoi192

superpixels is increased to 12, these ratios converge to a factor of about 3.25.193

4.2 Approximation Quality of the CCM and Past Superpixels194

Since the aim of superpixels is to approximate a large image by a reconstructed195

image based on a smaller superpixel mesh, the important quality is the standard196

statistical error nRMS over all pixels, which is introduced in Definition 1.197

Table 1. Ratios of the face numbers for CCM and Voronoi meshes on the same LSD
edges, averaged across BSD images [3]. The parameter Eps Radius is in pixels.

Eps Radius of a superpixel 4 5 6 7 8 9 10 11 12

Mean
Voronoi superpixels [13]

number of faces in CCM
8.91 6.21 4.86 4.03 3.96 3.43 3.27 3.27 3.26
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Fig. 4. The normalized Root Mean Squares in percents for Voronoi and CCM super-
pixels (on the left), SLIC and SEEDS (on the right) averaged over BSD500 images.

Fig. 5. Left: 791 Voronoi superpixels (mesh and reconstruction) with nRMS ≈8.45%.
Right: 791 CCM superpixels (red mesh and reconstruction) with nRMS ≈7.22%.

Fig. 4 shows that the reconstructed images of CCM superpixels better ap-198

proximate original images than Voronoi superpixels. Some convex polygons of199

CCMs are much larger than Voronoi superpixels, simply because the correspond-200

ing regions in images indeed have almost the same intensity, e.g. the sky. Hence201

taking the best constant color over each superpixel is reasonable.202

Voronoi superpixels have similar sizes, because extra centers are added to203

empty regions using other non-LSD edges. Despite CCMs being obtained from204

only LSD edges without using colors, the reconstructions have smaller errors in205

comparison with Voronoi meshes containing more superpixels in Fig. 5.206

Fig. 4 confirms smaller approximation errors of CCM superpixels across all207

BSD500 images, where we used the same LSD parameters for CCM and Voronoi208

superpixels. For all superpixels, we computed optimal colors minimizing the209

reconstruction error and measured nRMS in percents, see Definition 1.210

Each BSD experiment outputs 500 pairs (number of faces, nRMS). We aver-211

age each coordinate of these pairs and output a single dot per experiment. The212

first red dot at (377.1, 9.626%) in Fig. 4 means that CCMs have 377 faces and an213
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approximation error of 9.6% on average. For a fixed image, the LSD algorithm214

outputs roughly the same number of edges for all reasonable parameters τ, ε.215

So smaller CCMs seem impossible, because all LSD edges are hard con-216

straints, while all faces should be convex. To get larger CCMs, we stop merging217

faces in Algorithm 4 after getting a certain number of convex faces. The five218

experiments on Voronoi superpixels with Eps Radius = 7, 8, 9, 10, 11 produced 5219

dots along a decreasing curve. Fig. 4 implies that Voronoi meshes require more220

superpixels (507.3 on average) to achieve the similar nRMS = 9.696%.221

4.3 Standard Benchmarks for CCM and Past Superpixels222

The benchmarks BR and CUE are designed for pixel-based superpixels and use223

human segmentations from BSD [3], see details in [15]. We discretize CCM and224

Voronoi superpixels by drawing lines in OpenCV to detect boundary pixels. We225

put all pixels into one superpixel if their centers are in the same polygon.226

It is unfair to compare discretized resolution-independent superpixels and227

pixel-based superpixels on benchmarks designed for the latter superpixels. CCM228

achieves smaller undersegmentation errors than SEEDS/SLIC and most impor-229

tantly beats Voronoi superpixels on the objective nRMS as well as on BR.230

Fig. 6. Left: Boundary Recall (BR). Right: Corrected Undersegmentation Error.

Pixel-based superpixels SLIC and SEEDS achieve better results on nRMS231

and Boundary Recall (BR) in Fig. 6, because their superpixels can have irregular232

boundaries (of only horizontal and vertical edges). However, humans are more233

likely to sketch straight edges than boundaries consisting of short zigzags.234

So irregular pixel-based superpixels are often split by straight ground truth235

boundaries. Resolution-independent superpixels are convex polygons with straight236

edges and are expected to have smaller undersegmentation errors in Fig. 6.237
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Since only a Windows demo is available for Voronoi superpixels [13], we238

couldn’t directly compare the running times of resolution-independent superpix-239

els. We worked on a different platform and confirm that the running time for240

the CCM on a laptop with 8G RAM is about 0.15s across BSD500 images.241

The key contribution is the new concept of a Convex Constrained Mesh242

(CCM), which extends any constrained line segments to a mesh of convex poly-243

gons without small angles. The paper focused on the quality of CCM superpixels,244

which seem ideal for detecting long thin structures in urban scenes, see Fig. 2.245

• Theorem 5 guarantees the approximation quality and no small angles in CCMs,246

which also have smaller sizes on the same input in comparison with [14], [13].247

• The CCM outperforms the only past algorithm [13] for resolution-independent248

superpixels on BR (Boundary Recall) and the new error nRMS in Fig. 4, and249

even outperforms pixel-based superpixels on the CUE benchmark in Fig. 6.250

The first author was supported by the project FWF P24600-N23 at TU Wien.251
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