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Multi-Depth-Map Raytracing for
Efficient Large-Scene Reconstruction

Murat Arikan, Reinhold Preiner and Michael Wimmer

Abstract—With the enormous advances of the acquisition technology over the last years, fast processing and high-quality
visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point
cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials.
However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its
potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at
runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent
on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map
has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method
to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first
generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-
cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image
assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently
compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by
an order of magnitude.

Index Terms—Point-based rendering, raytracing depth maps, large-scale models
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1 INTRODUCTION

THe high-quality reconstruction and visualization
of large scenes from huge amounts of raw sensor

data is an important and particularly challenging task
in many application areas, ranging from digitization
and preservation of cultural heritage, over virtual real-
ity and games, to planning and visualization for archi-
tecture and industry. To virtually recreate such scenes,
geometry is reconstructed from scanned 3D point-
cloud data and commonly textured from registered
high-resolution photographs taken at the original site.

In practice, computing a high-quality texturing
from such images is a non-trivial task due to image
overlaps, varying lighting conditions, different sam-
pling rates and image misregistrations. One potential
workflow represents the geometry as a point cloud
again and directly texture-maps the resulting point-
based surface [1], [2]. However, this approach can
exhibit visible artifacts like illumination seams and
texture misalignments, which heavily degenerate the
visual quality of the result. A more common approach
is to convert the point data into a mesh once [3], [4]
and then render the scene as a textured mesh, re-
ducing both memory and bandwidth consumption. In
order to obtain the required texturing, an image-to-
triangle assignment (also called labeling) problem has
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to be solved, for which state-of-the-art methods [5], [6]
use a graph-cut based optimization, which provides
a homogeneous and high-quality solution. In large-
scale scenarios, this is done once in an expensive
preprocessing phase, and the resulting textured mesh
is then used for efficient rendering. However, these
methods are not very flexible – any change or addition
in the geometry or image data requires an expensive
relabeling of the mesh – and do not scale well due to
the time complexity of the global labeling. Moreover,
large-scale scenarios require an out-of-core computa-
tion of the mesh [7] and its texturing, imposing an
additional maintenance overhead.

State of the art: To break down the problem com-
plexity and accelerate the reconstruction and labeling
preprocessing, Arikan et al. [8] introduced a local-
ized textured surface reconstruction and visualiza-
tion approach. They employ a set of Textured Depth
Maps to represent the scene as a collection of surface
patches, avoiding the reconstruction and maintenance
of the whole surface and significantly reducing the
optimization costs by labeling only a set of small
depth maps instead of a large out-of-core mesh. These
patches are triangulated and stitched at runtime, trad-
ing a minor increase in rendering time against a huge
decrease in preprocessing time. Moreover, the patch-
based representation offers both more flexibility and
better scalability, since new patches can be added
and textured easily without recomputing the whole
surface. However, the rendering performance heavily
depends on the number of depth maps and their reso-
lution. This introduces a natural bound on the depth-
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Fig. 1. (a) Point-cloud and image data acquired by a scanner. The data set consists of 682M points and 192
images. (b) Scene overview rendered by our method. (c) and (d) compare the state of the art [8] and our method
in terms of performance and quality. The previous approach has to settle with a significantly lower geometric
resolution in order to reach the performance of our new method.

map resolution usable to be rendered interactively,
thus limiting the achievable geometric quality in the
rendered image.

Solution approach: We introduce an output-sensitive
visualization technique of such a patch-based surface
representation. Instead of stitching high-resolution
depth maps, which is expensive, we perform a multi-
depth-map raytracing approach, which efficiently iden-
tifies for each view ray the depth map that contains
the closest valid ray-surface intersection, and then
finds this intersection point. Our method also avoids
the labeling of every single depth map in the prepro-
cessing, but instead labels a strongly reduced subset of
the original point cloud, which in practice accelerates
the labeling process by over an order of magnitude.
To obtain high-quality per-pixel labels for texturing,
this coarse point set is projected to the screen and its
labels are upsampled using a geometry-aware Voronoi
decomposition of the depth buffer at runtime.

As our main contribution over the state of the
art, we propose a novel raytracing approach whose
performance is independent of the number and res-
olution of the depth maps, therefore allowing for a
high-quality real-time visualization of large scenes at
much higher geometric resolution than the previous
approach [8] (Fig. 1).

2 RELATED WORK

The problem of textured scene reconstruction and vi-
sualization from large point clouds and photographs
has been addressed by several authors.

Point-based rendering techniques like surface splat-
ting [9], [10], [11], [12] render the input points as
elliptical surface primitives (splats), which are blended
to obtain a smooth continuous surface. These methods
have been coupled with texturing [1], [2] to obtain a
textured point-based visualization of a scene. Texture
mapping point-based surfaces avoids a costly large-
scale mesh reconstruction, but does not produce op-
timal point-to-texture assignments. This can produce
visible artifacts like texture misalignments and illumi-
nation seams.

Mesh-based textured reconstruction techniques
achieve a continuous high-quality texturing of the
scene by performing a global, graph-cut based op-
timization of the triangle-to-texture assignments on
a single huge mesh [5], [6]. These methods produce
high-quality visualizations of large scenes, but require
a time-expensive preprocessing for the mesh recon-
struction and labeling as well as a large maintenance
overhead, making it inflexible to changes and exten-
sions in the data set.

Therefore, Arikan et al. [8] recently proposed a
patch-based reconstruction approach, which breaks
down the meshing and labeling complexity by repre-
senting the scene by several surface patches, allowing
for both a more efficient preprocessing and a more
flexible and scalable data management. Their method
generates a set of textured depth maps in a prepro-
cessing and stitches them at runtime, which strongly
couples the rendering performance with the number
and resolution of these depth maps.
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Our method builds upon this localized approach
for the data representation, but alleviates its perfor-
mance limitations by introducing a solution for an
efficient raytracing of multiple depth maps. Finding
ray intersections with surfaces represented by two-
dimensional range maps has various applications, like
rendering soft shadows [13], [14] or reflections [15].

Previous methods for raytracing large-scale scenes
depend on the use of spatial acceleration data struc-
tures. Reshetov et al. [16] employs a spatial kd-tree to
detect scene parts that are guaranteed not to intersect
with a collection of view rays. Agrawala et al. [13]
proposed a hierarchical ray traversal to skip over
large sections of a ray that cannot possibly intersect
the scene. Xie et al. [14] raytraces a multi-layer depth
map to reduce shadowing artifacts. To cope with
the additional overhead of searching an intersection
point in multiple layers, they introduced a hierarchical
intersection test against a quadtree, where each node
contains the minimum and maximum depth value of
the four child nodes in the layer below. In contrast, we
use multiple single-layer depth maps covering a scene
and employ a labeled coarse subset of the original
point cloud to directly determine the depth map that
is first intersected by a view ray. This is done by
splatting the label information of these points into the
screen, and upsampling their labels to obtain per-pixel
labels. The resulting label of a pixel then indicates the
depth map to be intersected by the pixel’s correspond-
ing view ray.

In the following, we give an overview of our pre-
processing and rendering pipeline, and then describe
each step of our reconstruction and texturing system
in detail.

3 OVERVIEW
Our method takes as input a high-density 3D point
cloud (denoted by PHD), for example from a laser
scanner, and a set of high-resolution photographs {Ij}
with known camera registrations. We propose a two-
phase solution for an efficient high-quality visualiza-
tion of the data.

In the preprocessing phase, we generate high-
resolution depth maps by rendering the input point
cloud PHD from image cameras (Fig. 2a, Section 4.1),
and compute an image-to-point assignment (referred
to as labeling) only for a small subset PLD ⊆ PHD

(Fig. 2b, Sections 4.2 and 4.3), which we will call proxy
points.

At runtime, we reconstruct a high-resolution depth
buffer, which stores depth values of the scene as
viewed from the user’s camera. This is done by
first splatting proxy points, and then raytracing the
precomputed depth maps, starting from coarse splat
positions (Fig. 2c, Section 5.1). In a second step, the
labels of PLD are used to obtain an upsampled depth-
buffer labeling, which is required for texturing the
final output image (Section 5.2).

4 PREPROCESSING

4.1 Generating the Depth Maps

For each image Ii, we generate a depth map Di by
rendering the original point cloud PHD from the same
viewpoint and with the same viewing parameters
as Ii. For rendering, we use oriented circular splats
as rendering primitives and employ an out-of-core
octree data structure [17] to store PHD and stream
visible points to the GPU. If point normals are not
available, we compute them by fitting a least-square
plane to a neighborhood of each point. The splat
radii are determined from the density of the rendered
points [17].

4.2 Generating the Proxy Points

The proxy points PLD are obtained by sub-sampling
PHD. To this end, the octree storing PHD is pruned to
contain only its k top-most levels, which correspond
to the k lowest levels of detail of PHD. As we will
show in Section 6.1, the choice of k is a trade-off
between performance and rendering quality. We will
also demonstrate that using only a small subset of
the original point cloud as proxy points strongly
accelerates the subsequent labeling stage, but is still
sufficient for a high-quality textured reconstruction
from the depth maps at render time.

4.3 Labeling

To obtain a point-to-image assignment, first a set of
candidate images of each point p ∈ PLD is deter-
mined. The image Ii is a candidate of p if p is not
occluded from the camera view of Ii. In the second
step, we pick for each point p its best-suited candidate
image Ij for texturing, i.e., p is labeled with the index
j.

This assignment has to consider the quality of the
image-to-geometry mapping as well as continuity in
the texturing (i.e., avoiding visible artifacts between
areas labeled by different images). We solve this
problem by a graph-cut based optimization, where
the quality and continuity criteria are addressed by
a data and a smoothness term, respectively. However,
instead of operating on triangles as done in previous
approaches, we use the knn-graph built upon the
points as input graph for the optimization. We use the
same data and smoothness term as in Arikan et al. [8]:
For the points, the data term favors orthogonal and
close image views. In contrast, the smoothness term
penalizes label changes with strong color differences
along edges between neighboring points.

5 MULTI-DEPTH-MAP RAYTRACING

In this section, we describe how the precomputed data
is used at runtime to obtain a high-quality visualiza-
tion of the scene. We perform two major steps, surface
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(a) Depth-map generation

PLDPLD

(b) Point-cloud labeling (c) Rendering

Fig. 2. Overview of our pipeline. (a) High-resolution depth maps are generated by rendering the high-density
input point cloud PHD from image cameras. The depth maps Di and Dj , lifted to 3D, are color-coded by their
corresponding images Ii and Ij , respectively. (b) PHD is subsampled, and the resulting low-density point cloud
PLD is labeled by the input images, i.e., each point of PLD is assigned to an input image. This concludes the
preprocessing phase. (c) Coarse surface positions (marked with 4) that are equipped with labels are efficiently
obtained by splatting points of PLD. Then, starting from these positions, raytracing the respective depth maps
yields high-resolution surface positions (marked with©).

(a) (b)

(c) (e)(d)

2 
la

ye
rs

1 
la

ye
r

1 
la

ye
r

2 
la

ye
rs

Fig. 3. (a)-(d) Rendering pipeline. (a) Splatting proxy points PLD (color coded according to labels). (b) Raytracing
high-resolution depth maps. (c) Per-pixel labeling to be used for texturing. (d) Textured and shaded surface. (e)
shows invalid intersections with discontinuity triangles that can occur when raytracing a single depth-map layer
along each view ray.

generation and color mapping, to render a textured
surface.

The surface-generation step first renders PLD as
splats to create a depth buffer representing coarse
surface positions and a corresponding label buffer
(Fig. 3a, Section 5.1.1). For rendering, we employ the
same out-of-core data structure [17] that we used to
generate the depth maps. Then, starting from these
coarse positions, for each pixel the depth map indi-
cated by the label buffer is raytraced in a full-screen
rendering pass to produce a high-resolution depth
buffer (Fig. 3b, Section 5.1.2).

The following color-mapping step splats PLD again
to generate a high-resolution label buffer by upsam-

pling the labels that were output in the first pass
(Fig. 3c, Section 5.2.1).

Finally, high-resolution images relevant for textur-
ing are cached to the GPU (Section 5.2.2), and the
color of each pixel is retrieved in a full-screen pass
by projecting it onto its assigned image based on the
depth and label retrieved from the high-resolution
depth and label buffers (Fig. 3d, Section 5.2.3).

In the following, we will describe the individual
steps of our rendering pipeline in more detail.
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depth-map discontinuity

silhouette

Fig. 4. Multiple label layers for raytracing. Invalid
intersections (©, green) can be caused by initializing
raytracing with the front-most splat position (4, green)
and its label i. In this case, starting from second-layer
positions (4, red) with label j, raytracing Dj produces
valid intersection points (©, red).

5.1 Surface Generation
5.1.1 Visibility Stage
In the first pass, PLD is rendered with z-buffering,
writing to a depth buffer Bd and a label buffer Bl. The
generated buffers represent the front-most label layer,
which will be used in the raytracing pass to compute
the intersection points of view rays with depth maps.
In particular, a ray cast from the viewpoint through
the pixel position p = (xp, yp) will intersect the
depth map indexed by label lp = Bl(xp, yp), and the
intersection search will start at the 3D position q0

p

corresponding to the depth value dp = Bd(xp, yp).
This fast, direct selection technique gives the correct

depth map for the vast majority of the view rays in the
screen. However, in some cases, the labels in Bl will
not correspond to a depth map that contains a valid
ray intersection. This mostly happens for proxy points
splatted very close to depth-map discontinuities and
silhouettes (Figs. 3e and 4). In such a case, we retrieve
the depth-map label for the intersection test from the
next closer proxy point splat along the ray with a
different label. For this, we have to store a second label
layer to look up the next depth map for raytracing if
no valid intersection point is found in the first depth
map (Figs. 3e and 4). To extract this second label layer,
PLD is rendered again with z-buffering, and at each
pixel p, fragments with label lp or depth values less
than dp are discarded. The resulting depth and label
values are written into two additional buffers. We then
extend this approach to multiple layers computed in
a depth-peeling fashion [18].

5.1.2 Raytracing Pass
We render a full-screen quad and perform for each
screen-space pixel p an iterative search in the high-
resolution depth map Dlp , followed by a binary

q
p

1Dlp

Ilp

q
p

0

rp

h0

Fig. 5. A single iteration of the iterative search, taking a
step of h0 on rp. The start position q0

p and its label index
lp are retrieved from the closest ray-splat intersection.

search. The iterative search starts at q0
p and uses a

stepsize that adapts to the current estimated distance
to the intersection. The next point on the ray is
computed as follows:

qi
p = qi−1

p + hi−1 ∗ rp, (1)

where rp is the normalized ray direction. The adaptive
stepsize hi−1 is calculated as the signed distance of
qi−1
p to Dlp along the line to the center of projection

of Ilp (Fig. 5). The distance is signed since the low-
resolution depth-buffer value used as initialization
can lie in front or behind the high-resolution depth
map.

Since q0
p provides a sufficiently good initialization,

only a few iterations are required (except at oblique
angles) to find a pair of points qk−1

p and qk
p enclosing

an intersection. In a second step, the interval [qk−1
p ,qk

p]
is refined by a binary search to find a more accurate
approximation q̂p of the intersection point.

We then check whether q̂p lies on a depth discon-
tinuity of Dlp . For this, we detect the four texels of
Dlp (yielding two triangles in 3D) that are nearest to
the projection of q̂p into Dlp , and assume a disconti-
nuity if the depth disparity between any two triangle
vertices is above a user-defined threshold (20cm in
our examples). Averaging the two triangle normals
also provides us with per-pixel normals, which can
be optionally used for lighting effects. In case of a
depth discontinuity, raytracing is re-performed to find
an intersection with the depth map retrieved from the
next label layer (Fig. 4).

The results of the raytracing pass basically refine
for each pixel the depth value and – in case of a
discontinuity – the label value originally obtained
from splatting PLD.

5.2 Color Mapping
5.2.1 Labeling Pass
The aim of this rendering pass is to equip the high-
resolution depth data from the previous pass with
labels that are suitable for texturing. Unfortunately,
we cannot use the label buffer Bl created in the
visibility stage as is, since due to the low resolution of
PLD, this buffer exhibits non-regular borders between
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Dj Di

Fig. 6. Illustration of false labels near silhouettes.
View rays through the splat at the silhouette have valid
intersections with Di. Therefore, this splat projects its
label i to the background, causing corresponding pixels
of that region to be assigned the label i instead of j.

differently labeled regions (Fig. 3b) and false labels
near silhouettes (Figs. 6 and 8c).

Instead, we compute a Voronoi decomposition of
the screen space into equally labeled regions. The
seeds of this decomposition are specified by the pro-
jection of the points cj ∈ PLD into screen space,
and distances between pixels and seed points are
measured by the Euclidean distances of the respective
points q̂p and cj in 3D. This way, each pixel will be
assigned the label of its closest seed cj . This results
in a high-resolution label buffer with per-pixel labels
upsampled from the sparse labeling information in
PLD.

In practice, this is implemented by rendering PLD

as splats using z-buffering, with the depth value of
a splat at pixel p manually set to the 3D Euclidean
distance d(cj , q̂p) between the splat center cj and
the point q̂p. This pass stores at each pixel p (corre-
sponding to the surface point q̂p) the label of cj with
j = argminj d(cj , q̂p).

5.2.2 Image Management
In this step, we employ an out-of-core streaming tech-
nique [8] for continuously caching the currently most
relevant images into a GPU texture array, where the
relevance of an image is measured by the frequency
of occurrence of its label in the updated label buffer.

5.2.3 Texturing Pass
A full-screen quad is rendered to retrieve the color of
each pixel p by projecting q̂p onto the image indicated
by the updated label buffer.

In a last step, we perform an online screen-space
leveling method [8] to balance the color intensities
between regions textured by different photographs
and thus reduce illumination seams in the final output
image.

6 RESULTS
We have tested our approach on three different data
sets acquired by a laser scanner (Table 1, Fig. 17).

TABLE 1
Scene characteristics.

Model # Points # Images
Hanghaus 2 Wohneinheit 6 (Scene 1) 35M 188

Hanghaus 2 Wohneinheit 1 (Scene 2) 682M 192

Centcelles (Scene 3) 1091M 161

Scene 1 and 2 are scans of different building units
in terrace house (Hanghaus) 2 in the excavation of
ancient Ephesus, while Scene 3 is a scan of the cupola
of the Roman villa of Centcelles. In the following, we
discuss performance and quality tradeoffs depend-
ing on the algorithm’s main parameters, and give
a detailed analysis of memory consumption, recon-
struction error compared to ground truth, and the
convergence of the iterative search. Then, we will
compare our approach (denoted by DMRT) to the
related depth-map triangulation approach (denoted
by DMT) in terms of both quality and performance.

All results in this paper were produced on a PC
with an Intel i7-4770K 3.50 GHz CPU, 32 GB RAM
and NVIDIA GeForce GTX TITAN GPU. A frame-
buffer resolution of 1280 × 720 was used in all our
experiments and the accompanying video.

6.1 Performance and Quality Tradeoffs
Number of layers. Currently, we extract layers in a
depth-peeling fashion [18], which requires a geometry
pass for every single layer. Therefore, the choice of
the number of layers is a trade-off between rendering
performance and quality. Table 2 shows that, even
using more than ten layers, DMRT achieves real-time
frame rates. For the measurements in this table, we
used a proxy point cloud that is sub-sampled from the
original point cloud by a factor of 686 (as in Fig. 17).
The table also shows a breakdown of the running time
of the algorithm by its stages.

Size of proxy point cloud. In our approach, another
key criterion for the rendering performance and qual-
ity as well as the labeling time is the size of the proxy
point cloud. Fig. 7 shows renderings for different pa-
rameters. As expected, the number of layers required
for a high-quality rendering decreases with growing
sizes of proxy point clouds. For the same layer count
on the other hand, a DMRT reconstruction with more
proxy points results in an increase of the labeling time
and a decrease of the rendering performance.

For more performance results, see Section 6.5.

6.2 GPU Memory Consumption
The GPU memory usage of our method is affected by
several factors, including the number of input images,
the size of the proxy point cloud, the layer count, and
the framebuffer resolution.

For all our test scenes, we generated depth maps of
size 1024 × 684. Each map consumes 2.8MB of GPU
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|PLD| 4.4M 1M 0.2M
labeling in 16.4 min 3.4 min 0.8 min
# layers 3 3 4 4 7
fps 44 54 48 49 36

Fig. 7. Results for different parameters. The red ellipses indicate regions of some artifacts.

TABLE 2
Average performance of DMRT rendering (in ms) for

different numbers of layers, measured during a
walkthrough of Scene 2.

# layers 1 3 5 7 9 11

visibility stage 2 6 9.8 13.7 17.5 21.2

raytracing pass 1.2 2 2.3 2.7 3 3.3

labeling pass 2 2 2 2 2 2

img. man. 2.5 2.8 2.9 3.1 3.3 3.3

texturing pass 6.3 6.4 6.3 6.3 6.3 6.3

total 14 19.2 23.3 27.8 32.1 36.1

fps 71 52 43 36 31 28

memory (one float per pixel). As described in Sec-
tion 5.2.2, the high-resolution input images are cached
in a GPU texture array on demand. We reserved 1GB
of GPU memory for them. We resort to low-resolution
images (of size 256 × 171) if input images are not
available in the texture array. All of these are stored on
the GPU, and each requires 0.13MB. As an example,
rendering Scene 2 requires 563MB for the 192 depth
maps and low-resolution images.

Furthermore, each point of the proxy point cloud
is represented by six floats for the position and the
normal vector, and an integer for the label. A screen-
space pixel in a layer requires two floats, one for
the depth, and the other for the label. Therefore, an
optimal DMRT rendering of Scene 2 with |PLD| = 1M
at a resolution of 1280 × 720 and five layers (see the
accompanying video) occupies an additional 65MB of
GPU memory (37MB for the proxy points and 28MB
for the layers).

6.3 Ground-Truth Comparison

In order to analyze the reconstruction error of DMRT,
we rendered the scene from the viewpoint of one of
the image cameras, and compared the color output
and depth buffer at different stages of our rendering
pipeline to the original image and its correspond-
ing high-resolution depth map, respectively (Fig. 8).
This comparison can give a first impression of the

(a) image & high-res. surface

0

0.1

0.05

0

1

0.5

(b) coarse surface

(c) raytraced surface

(d) raytraced surface with per-pixel labels

voronoi decomposition

Fig. 8. Analysis of the reconstruction error. The scene
is rendered as seen by the image shown in (a). The
error is measured as the deviation of the color output
and depth buffer at different rendering stages (b)-
(d) from the reference image and its corresponding
high-resolution depth map, respectively. The color and
depth differences are visualized as heat maps shown
in the right column.
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(a) initial (b) 1 iteration (c) 5 iterations (d) 30 iterations (e) 100 iterations

(f) initial (g) 1 iteration (h) 5 iterations (i) 100 iterations (j) our output

Fig. 9. (a)-(e) show absolute stepsizes of the iterative search in the first layer. For each of the white pixels in (e),
where raytracing of the first layer fails, a maximum of three more layers are consecutively searched until a valid
intersection is found. (f)-(i) show stepsizes in the layer where raytracing succeeds. Note that for the visualization,
all stepsizes are multiplied by 10 and then clamped to the range [0, 1].

reconstruction error, however note that due to differ-
ent lighting conditions when acquiring the different
images, a full match to the “ground truth” is not
possible. The rightmost column in Fig. 8 shows color
and depth differences as heat maps. For this analysis,
we used a sub-sampling factor of 686 (|PLD| = 1M)
to generate the proxy point cloud, and rendered the
scene using four layers. Figs. 8c and 8d show the
DMRT reconstruction after a maximum of 100 iter-
ative search and 20 binary search iterations.

A comparison of the heat maps (of depth differ-
ences) in Figs. 8b and 8c shows that raytracing reduces
the overall depth error. As expected, remaining differ-
ences are maximal at oblique angles and silhouettes.
However, note that the differences at silhouettes are
not generated by our raytracing method. Instead,
these occur naturally since the depth map of the
image and the raytraced depth maps have different
sampling rates of the observed surface, and thus
exhibit slight geometric variations at silhouettes.

Interestingly, the overall color error is minimal,
except inside the two small rooms. This is because
the labeling assigns the points there to images that
have better geometric resolution, but were acquired
under different lighting conditions than the reference
image in Fig. 8a.

Fig. 8c shows that while raytracing resolves the
geometry at silhouettes adequately, it generates false
labels among these regions by mapping the labels
of proxy splats to the background (see also Fig. 6).
As we have shown in the accompanying video, these
false labels generate ghosting artifacts during anima-
tions, and are resolved by our per-pixel labeling step
(Fig. 8d).

(a) initial (b) 4 layers (c) 11 layers

Fig. 10. Worst-case scenario. (a) shows a poor initial-
ization of the stepsizes of the iterative search, therefore
requiring many layers for a high-quality visualization.
Our output with four (b) and eleven (c) layers.

6.4 Convergence

In this section, we analyze the convergence of the
iterative search with adaptive stepsize, which is re-
sponsible for finding a “tight” pair of points enclosing
an intersection point to seed the binary search. We
also discuss the limits of our rendering method for a
synthetically generated scene configuration.

We rendered the scene using the same parameters
as in Section 6.3. Figs. 9a-9e show absolute stepsizes
of the iterative search in the first label layer. For some
pixels, our raytracing failed to find intersections in
this layer. These pixels are marked white in Fig. 9e,
and for each of them, an intersection point is searched
in three additional layers. Figs. 9f-9i show absolute
stepsizes in the layer where an intersection point is
found.

We perform a total of ctotal =
∑k

i=1 ci iterative
search iterations for each pixel, where 1 ≤ ci ≤ cmax

is the number of iterations performed in the ith layer.
The maximum iteration count in each layer is bound
by cmax (100 in this example), and k refers to the index
of the layer where the intersection is found (or the
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TABLE 3
Comparison of the labeling times and rendering

performance on Scene 2.

DMT

depth-map res. 256× 171 512× 342 1024× 684

aver. num. of labels
per depth map 46

labeling times 7 min 23 min 87 min
min/avg/max fps 32/45/84 11/17/46 3/5/16

DMRT

depth-map res. 1024× 684

|PLD| 1M
# labels 192

# layers 5

labeling times 3.4 min
min/avg/max fps 30/43/74

user-defined maximum layer count).
In practice, iterative search converges in a few

iterations to an intersection point, if any. Otherwise, it
terminates early if an intersection with a discontinuity
triangle is found. In our experiment, the iteration
count ctotal was on average 4.6 over all pixels, and it
took the raytracing pass 2.4 ms to complete (including
the binary search procedure).

The convergence of the iterative search is only guar-
anteed if each texel along the projection of the view
ray onto the depth map is visited, which is slow if
the depth-map resolution is high. The iterative search
with adaptive stepsize, on the other hand, proved
very efficient in practice to find in a few iterations
a pair of points enclosing an intersection point.

In order to see the performance of our raytracing
for a poor initialization of the stepsizes (Fig. 10a),
we multiplied the splat radii by 2.5, and rendered
the scene again. In this scenario, the iterative search
required on average ctotal = 9.5 iterations per pixel,
and the raytracing pass completed in 4.2 ms. Even
though our raytracing was still efficient, four lay-
ers was not sufficient to obtain a high-quality result
(Fig. 10b). To obtain a comparable result (Fig. 10c)
as in Fig. 9j, eleven layers were required, and the
raytracing pass performed in 8 ms with ctotal = 11
on average. We see that the most performance-critical
part of our rendering pipeline is still the extraction of
the layers, while searching for intersections in these
layers is quite efficient (see also Table 2).

6.5 Comparison to DMT
Finally, we compare our method to the related depth-
map triangulation approach on Scene 2. For this
comparison, we used a proxy point cloud of size
1M and five layers for the DMRT approach. Our
experiments suggest that this configuration is more
than sufficient for a not completely artifact-free, but
high-quality DMRT rendering. On the other hand,
depending on the chosen stitching threshold, DMT
can produce severe artifacts (Fig. 11).

Table 3 compares the labeling times and rendering
performance of DMT and DMRT for differently sized

�𝜀
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Fig. 11. DMT’s stitching artifacts. Top: Due to a small
stitching threshold ε, the points p and q are considered
as non-overlapping by the DMT, leading to the point
p on the low-resolution depth map to be chosen for
texturing. Bottom: In DMT, visibility is not resolved
for features smaller than the ε threshold. Thus, the
invisible point q can shine through the front surface.
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Fig. 12. Comparison of the rendering performance
of DMT and our DMRT approach for a walkthrough
of Scene 2. Using high-resolution depth maps, our
method runs at 43 fps, being on average about an order
of magnitude faster than the previous work, which has
to settle with a quarter of the resolution to reach this
performance.

depth maps. Since the resolution of the depth maps
does not have a direct effect on the performance
of DMRT, we used the highest resolution for our
approach. The table shows that DMT strongly cou-
ples the labeling time and rendering performance to
the resolution of the depth maps used to represent
the scene. If we aim for an equal-quality comparison
(Figs. 1c right and 1d), DMT needs to label 192 depth
maps of size 1024×684, which takes about 26 times
longer (87 min) than labeling the 1M proxy points
used by DMRT (3.4 min). While DMT cannot render
depth maps of this size in real time anymore (5 fps on
average), our new raytracing method is about 9 times
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(a) one layer (b) two layers (c) three layers

Fig. 13. (a)-(c) show results of raytracing different num-
ber of layers along each view ray. Raytracing a single
layer (a) produces severe artifacts (black background
pixels), especially near silhouettes. In this example,
artifacts produced by raytracing two layers (b) are
barely visible. Adding a third layer almost completely
removes artifacts.

Fig. 14. The left image shows the coarse surface
(without raytracing). By using textured coarse positions
where raytracing fails, the splats along silhouettes spu-
riously occlude the background (right top). Therefore,
we always discard pixels if no valid intersection with
the surface could be found (right bottom).

faster, thus providing a real-time high-quality visual-
ization of the scene (Figs. 1d and 12, see also Table 2).
Reducing the depth-map resolution to 256×171 allows
DMT to almost match these performance values for la-
beling and real-time rendering, but noticeably reduces
the geometric resolution of the output (Fig. 1c left).

7 LIMITATIONS AND FUTURE WORK

Number of layers We found that extracting a few
layers in the visibility stage (Section 5.1.1) is sufficient
for high-quality visualizations (Fig. 13). However, in
scenes of higher geometric complexity, more layers
might be required (e.g., see Fig. 10). At the moment,
we use a naive implementation that performs k geom-
etry passes for k layers, which can become inefficient
as k increases. In such cases, more elaborate A-Buffer
techniques could be incorporated to achieve a multi-
layer setup in a single pass [19]. Also, for a few pixels
where raytracing fails to find a valid intersection with
any of the layers, we show the background color
instead of textured coarse surface points (Fig. 14). We

S

Ii

Fig. 15. Sub-sampling issue. The shown view ray
intersects a discontinuity edge of Ii. Due to the poor
sampling of the surface S by proxy points, there isn’t
any second layer to search for a valid intersection in
this case.
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Fig. 16. Label changes under camera motion can lead
to view-dependent geometry of silhouettes.

opted for this solution since splats along silhouettes
can also occlude the background.

Size of proxy point cloud. As discussed in Sec-
tion 6.1, the sub-sampling factor is a trade-off between
performance and quality. In order to achieve high
performance, this factor has to be large enough, but
should be small enough to maintain fine surface de-
tails. Currently, we discard the highest levels of detail
of the input point cloud to obtain proxy points. How-
ever, a feature-aware sub-sampling strategy could
produce an even better rendering quality, since the
generation of the proxy points currently does not
take local surface characteristics into account. Fig. 15
illustrates the absence of layers for raytracing, even
for a reasonable coverage of the surface by proxy
splats.

Motion artifacts. Depth maps can have slightly
varying representations of silhouettes based on the
viewing angle and distance relative to the observed
surface. Thus, label changes under camera motion
can lead to raytracing of depth maps with possibly
different representations of silhouettes (Fig. 16).

Inherited artifacts. Other rendering artifacts that
are inherited from the previous approach [8] are the
flickering during animations, and false textures at
some silhouettes due to image misregistrations and
the noise inherent in point clouds.

Extension. Note that the runtime steps required to
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Fig. 17. Results from three data sets. From left to right: Splatted proxy points with (from top to bottom) increasing
sub-sampling factors of the original point cloud ranging from 87× up to 2075×; raytraced surface without and with
per-pixel labels; and textured surface. The insets demonstrate how the labels of the column are mapped to the
back wall if the labeling pass is not applied.

create a high-resolution depth buffer (splatting a small
number of proxy points (visibility stage) and perform-
ing an efficient raytracing in a full-screen pass) are so
fast that they could be run twice per frame. This could
be used, for example, to create a shadow map for a
moving light source, allowing dynamic shadows at
interactive frame rates.

8 CONCLUSION

In this paper, we introduced a novel multi-depth-map
raytracing approach for high-quality reconstruction
and visualization of large-scale scenes. In a prepro-
cessing, we generate multiple high-resolution depth
maps and perform a graph-cut based optimization
of the point-to-image assignments (point labels) on a
strongly reduced subset of the original point cloud. At
runtime, we first reconstruct a high-resolution depth
buffer by raytracing these depth maps, where the
labels indicate which depth maps to intersect. In a
second step, we compute high-quality per-pixel labels

from the sparse label information and use these for
texturing the depth buffer.

We have shown that our method allows for a real-
time visualization of large-scale scenes at much higher
geometric resolution than the related state of the
art, which is based on rendering and stitching of
many depth maps. Our results also indicate a huge
performance gain in the labeling step as compared to
the previous method.
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