FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Game Design Patterns for CPU
Performance Gain in Games

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science
im Rahmen des Studiums
Software & Information Engineering

eingereicht von

Xi Wang
Matrikelnummer 1226083

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Univ.Ass. Dipl.-Ing. Bernhard Steiner

Wien, 23. August 2016

Xi Wang Michael Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Game Design Patterns for
Performance Gain in Games

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in
Software & Information Engineering
by

Xi Wang
Registration Number 1226083

to the Faculty of Informatics
at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Univ.Ass. Dipl.-Ing. Bernhard Steiner

Vienna, 23 August, 2016

Xi Wang Michael Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Xi Wang
Paminagasse 104, 1230 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. August 2016

Xi Wang

Kurzfassung

Diese Bachelorarbeit beschaftigt sich mit Design Patterns, welche in Computerspielen
angewendet werden kénnen, um die Performance zu verbessern. Dabei wurde ein ineffi-
zientes Beispielprogramm in C++4 implementiert, bei welchem vorallem die CPU zum
Flaschenhals wird. Anschliefend wurden verschiedene Design Patterns in das Programm
eingebaut und der Performancegewinn in verschiedenen Kombinationen ausgewertet. Im
Konkreten geht es um die Pattern: Flyweight, Object Pool, Component, Data Locality

und Spatial Partitioning.

vii

Abstract

This thesis looks into some Design Patterns that can be applied in game programming in
order to improve performance. To measure the performance gain an inefficient sample
program was implemented in C++, causing a CPU bottleneck. Afterwards patterns are
applied to the program and the performance gain is measured for different combinations
of patterns. In particular, the following patterns are investigated: Flyweight, Object
Pool, Component, Data Locality and Spatial Partitioning.

ix

Kurzfassung

Abstract

Contents

1

2

5

6

Introduction

Design Patterns

2.1 Flyweight|
2.2 Object Pool
2.3 Data Locality

2.5 Component|

2.4 Spatial Partitioning
Implementation

3.1 Libraries
3.2 General description

3.3 Base Implementation
3.4 Adding the Pattern

Testing
4.1 Test environment,

4,2 Test method

Results

Conclusion

List of Figures

List of Tables

List of Algorithms

Contents

vii
ix

xi

15

..................... 15
..................... 15

17

21

23

23

25

X1

Bibliography

27

CHAPTER

Introduction

Over the past few decades computers have improved tremendously. CPU computation
time has been doubling every two year, though in recent years the percentage of improve-
ment seems to decrease. While for many software development sectors this improvement
has solved the problem of performance, in the branch of game development, however,
performance is still an issue. Often GPU bottlenecks are the cause of performance
problems, but the waste of CPU computation time due to poor software design is not to
be underestimated, especially with computer games becoming more and more extensive
and complex.

This thesis looks into a few design patterns that are used or can be used in game
programming and measures their performance gain when using them. In particular, the
Flyweight Pattern, Component Pattern, Data Locality, Spatial Partitioning and Object
Pool Pattern are analyzed. The Flyweight Pattern is a structural pattern which improves
performance by sharing common data between objects. The Component Pattern is a
decoupling pattern, making the code more flexible. However this pattern can prevent
deep inheritance hierarchy and therefore also might improve performance. Data Locality
uses knowledge about the memory architecture for optimization while object pool helps
to avoid unnecessary expensive memory allocations. Spatial partitioning splits the game
world into smaller pieces in order to speed up calculations.

This thesis is structured as follows: First a description of the patterns and a more detailed
explanation on how those patterns can improve performance is provided in Chapter 2.
Chapter 3 describes the base implementation, which is a poorly designed game simulation,
and how each pattern was included in order to improve the performance. Afterwards, for
each tested combination, time was measured. Detailed test methodology are explained in
Chapter 4. Results are discussed in Chapter 5.

CHAPTER

Design Patterns

2.1 Flyweight

The Flyweight Pattern is a structural pattern from the Gang of Fours [Joh94]. This
pattern is very useful when an application needs a lot of objects that have common
information between them. The typical OOP object has states. These states can be
categorized into "intrinsic data" and "extrinsic data". Extrinsic data is information that
depend on the context, for example, the position of some objects in the game world
or individual health of a monster. Intrinsic data is data that is context independent,
which would be the mesh of an object that can be drawn hundreds of times or a breed of
monster that has certain characteristics. Therefore intrinsic data can be shared between
many instances and can be encapsulated into a new object. This object can be shared
and is referred to as the flyweight.

The Flyweight pattern helps to avoid unnecessary instantiation of shared data which
saves instantiation time. Furthermore it saves memory since only one instance is loaded
instead of hundreds, which might improve speed as well. The downside, however, is that
each flyweight is a reference or pointer in the flyweight context, introducing an extra
pointer indirection and possible cache miss (see Data Locality) and therefore again hurts
the performance.

2.2 Object Pool

Dynamic memory allocation and deallocation in C++ can be a very slow operation.
Firstly, the heap allocator can allocate memory of arbitrary size. However this requires a
lot of extra management. Secondly, an (de-)allocation can force a context-switch from
user-mode to kernel-mode and back which can be very expensive. [Grel4]

2.

DESIGN PATTERNS

Object Pooling is one possibility to avoid expensive allocations. As the name suggests, the
Object Pool pattern keeps a pool of objects. Instead of instantiating a new object each
time when needed and freeing it afterwards the application "borrows" the object from the
object pool. When the object is no longer needed, the application gives it back to the
pool and the object can be reused. Though this pattern needs extra management of which
objects are in use and is limited to a certain number of objects, it saves instantiation
time, as well as memory allocation and freeing. Especially when many similar objects
are created and released again, an object pool can increase performance.

Furthermore, using an Object Pool can prevent memory fragmentation. Memory frag-
mentation means that the available, non-allocated memory is split into smaller pieces
instead of being one contiguous block. The resulting problem is that, when allocating
memory that is bigger than the biggest contiguous memory available, the allocation will
fail even if there is enough memory in total. The Object Pool allocates a contiguous
memory, instead of allocating small memory blocks all over the place, and reuses the
allocated memory, and prevents fragmentation of allocated and non-allocated memory.

2.3 Data Locality

While CPUs became faster and faster over the years, memory access stayed slow. In order
to avoid long waits CPU caches were introduced. The typical memory hierarchy consists
of registers, L1 cache, L2 cache, possible further levels of caches and main memory,
ordered from fasted access time to slowest access time. A main memory access can take
more than five hundreds of CPU cycles and while the data is fetched, the CPU wastes
hundreds of cycles to wait for data, which is referred to as a CPU stall. In contrast a L1
cache access can take only around five to eight cycles [LIo11].

The underlying memory management works as followed: When main memory is accessed
for a certain data, then bytes adjacent to this data are loaded too to fill a cache line. If
for the next processing the CPU needs data and this data was already loaded into the
cache, the CPU would not have to wait for data from the main memory. This is also
called a "cache hit". If the data was not loaded in the cache then it is called "cache miss"
and the main memory has to be accessed, which causes a CPU to wait more than five
hundreds of cycles instead of five cycles.

The Data Locality Pattern uses this knowledge to improve performance. If the needed
data is stored in the cache then the CPU does not have to wait for data, which results in
a better performance. In order to make this cache loading behaviour to an advantage,
data is stored in a contiguous memory block, putting as much data, that will be processed
in the near future, into adjacent memory space to avoid cache misses. Cache misses were
also one of the main reasons why today’s game development is shifting from an object
oriented design to a data oriented design [Llol1].

2.4. Spatial Partitioning

2.4 Spatial Partitioning

Spatial partitioning is often used to reduce the number of intersection or collision tests
between objects and can improve performance drastically if there is a large number
of objects. This pattern uses data structures to partition the world space. Objects in
the game world are stored into a spatial data structure ordered by their position and
therefore are separated from objects that are far away from each other. This helps to
keep operations on objects locally instead of going through all objects.

The most simple spatial partitioning data structure is a grid. Other structures include
Quadtree, Octree, Binary Space Partitioning Tree, Bounding Volume Hierarchy, k-d Tree
and Spatial Hashing. Each structure has its advantages and disadvantages in a certain
context, but all structures help to reduce the number of operations on objects. However
using spatial partitioning means keeping movable objects in order.

2.5 Component

The component pattern is a decoupling pattern and often used in game engines nowadays
(for example in Unity)[Nys14]. It is a pattern that helps to make the code more flexible.
Instead of having one object that contains all behaviors and tasks, an object is a
composition of many components, each having their own behavior and state. For
example, an object can be rendered, which needs a mesh. It further can contain Al, which
needs a game context. If the object represents a monster, it might contain information
on how the monster moves, attacks and how it defends itself. Among different monsters
there are many combinations of those behaviors. If all those behaviors were to be packed
into one class it will become hard to manage. Furthermore, code for each behavior can
not easily be reused with inheritance.

GameObject

GameObject
Ghost

+GFameWorldContext

VisibleObject
+velocity

+5prites
+S5ound

oy <]_ |Animated0hject|

+collides ()
+render|()
+playsound()
+updateAl ()

o T mation MovingObject
updatelnimationt()
+maove () %

+updatePhysics ()

| CollidableObject |

Figure 2.1: Possible class hierarchy designs.

2.

DESIGN PATTERNS

Figure 2.1| shows two different design approaches without composition. The left one puts
everything into the GameOb ject class, making it very big and probably unmanagable
over time. Additionally deriving classes do not need all the inherited logic. A Ghost
is not affected by physics and does not collide. Likewise Decoration does not need
an Al The design in Figure 2.1 (right) splits the huge class into smaller ones and uses
inheritance for code reuse. A Decoration might inherit from VisibleObject and a
Ghost from MovingObject. But what if a Decoration should be collidable but not
movable? As one can see this design is limited as well.

A better approach would be to use composition as in Figure 2.2l With composition the
object class would have a reference to its components. The Dragon would have a reference
to a render-component, Al-component and different components for behavior. The
Ghost would not need to have a CollisionDetection and PhysicController,
while Decoration does not have an ATIComponent. A GameObject can have any
component it needs. At the same time code is reused.

PhysicController

‘ AnimationController
CollisionDetection| _g,| GameObject

!

Renderer

AIComponent

Figure 2.2: Possible component based design.

The component pattern is not known for performance optimization but rather for its
flexibility for creating new objects with different behaviors. However, when inheritance
is heavily used, with a deep inheritance tree and many virtual functions, a component
based approach might also yield better performance. The reason for that is the extra
overhead of V-Table lookups for each virtual function when using inheritance. With a
component based approach only a reference or pointer is stored.

CHAPTER

Implementation

3.1 Libraries

The base 3D game simulation application was implemented in C++11 using OpenGL 3.3
[Opel6] as graphics API. Since OpenGL 3.3 was used GLEW |GLE16] had to be included
as well. GLEW is the OpenGL Extension Wrangler and enables core functionalities as
well as other extensions of OpenGL.

Furthermore SDL2 [SDL16a] was used. SDL2 is a cross platform library that enables
easier access to OS dependent functionalities like window creation and keyboard and
mouse input.

As the game scene uses complex 3D meshes a model loader was required. A well known
model importer is the assimp library [Ass16]. Assimp can load models in various formats
and stores the information into its own data structure. Using assimp often means parsing
assimp’s data structure into custom data structures, but this is still less work than writing
a simple model loader.

A model contains textures. SDLimage [SDL16b] was used for texture loading.

For an easier use of mathematical computations the GLM library [GLM16] was also
included. GLM provides vectors and matrices as data structures and many matrix and
vector operations.

3.2 General description

In the simulation monsters are moving towards the center of the game world. Figure 3.1
shows a screenshot of the simulation. On their way there are towers shooting arrows
that kill those monsters. Each time a monster reaches its destination or is killed by a
tower the monster disappears and a new monster appears. Arrows disappear when they

7

3.

IMPLEMENTATION

hit a target or the traveled distance is greater than a treshold. Collision is only applied
between monsters and between monster and arrow.

B GamePatterns — X

Figure 3.1: Game simulation screenshot

3.3 Base Implementation

In Figure 3.2 a class diagram of the implementation is shown.

Each game object in the game world is derived from the GameObject class. Each game
object creates its own model, which has a vector of meshes, for rendering and therefore
requires loading a mesh when instantiated. This is an expensive operation since it needs
the traversal of hundreds of vertices, UVs and other information. Especially when many
objects are deleted and created (like monsters and arrows) this design hurts performance
badly.

Subclasses are derived from the tower and monster classes forming a deep inheritance
hierarchy. Inheriting classes call in their update function the parent update function and
an additional function call to some dummy function, as an extension to the parent class.
This should represent different characteristics and behaviors of towers and monsters.
In the given class diagram it is also worth noticing that there is a choice from which
the class F1lyingGoblinFireWizard inherits, either from FlyingGoblinWizard or

3.3. Base Implementation

FlyingGoblin

| FlyingGoblinWizard | | GublinWizardl |FireMagicaner| |FireArcheraner|

| FlyingGoblinFireWizard I—[>| GoblinFireWizard |

Figure 3.2: Class diagram with inheritance

GoblinFireWizard. In this case the class inherits from GoblinFireWizard and
needs to duplicate the code for the flying part of a FlyingGoblinWizard.

Each tower manages their arrows in a vector. Every frame a tower iterates over this
vector to delete arrows that hit a monster or that are already too far from the tower.
Afterwards the tower iterates over a vector of monsters and shoots at the closest reachable
monster, adding a new arrow object into its arrow-vector.

The whole implementation can be summarized as in Algorithm [3.1. Though the program
seems short and simple it has many flaws concerning performance.

Instances of tower and monster, in particular instances of FireMagicTower, FireArcherTower,
GoblinFireWizard and FlyingGoblinFireWizard, are stored in vectors at the
beginning. For each frame the following is done:

The first loop iterates over all monsters. It checks whether a monster died or has reached
its destination. If either is the case it will be removed from the vector and no further
computation for the monster is done. Otherwise an inner loop is used to check collision
with other monsters. If the monster collides with a monster its moving direction will be
altered to push it away from the colliding monster.

The second loop iterates over all towers. Each tower keeps track of its own arrows that has
been shot in a vector. The tower instance goes through all arrows and checks if they have

3.

IMPLEMENTATION

10

Algorithm 3.1: game simulation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

init towervector;
init monstervector;
while /quit do

foreach monster in monstervector do
if monster reached destination OR monster is killed then
monstervector.remove(monster);
else
var direction = monster.getToGoalDirection();
foreach monsterOther in monstervector do
if collides(monster, monsterOther, direction) then
‘ breakOutFromLoop;
end
end
monster.move(direction);

end
end
foreach tower in towervector do
foreach arrow in tower.arrowvector do
foreach monster in monstervector do
if collides(arrow, monster, arrowDirection) then
monster.health = monster.health - arrow.damage;
arrowvector.remove(arrow);
breakOutFromLoop;
end
end
if too far away from tower then
‘ remove arrow;
end

end
tower.shootClosest Monster(monstervector);

end

while monstervector.size < MAX NUM MONSTER do
‘ monstervector.addMonster();

end

render();

end

to be removed. An arrow will be removed if it collides with a monster (again, we need
an inner loop to iterate over all monsters) or if it is too far away from the tower. After
checking all arrows the tower attacks a nearby monster. The shootClosestMonster

3.4. Adding the Pattern

function iterates over all monsters to find the closest one and shoots an arrow in the
direction of the monster, adding a new arrow instance into the arrow-vector of the tower.

When all monsters and towers are updated, new monsters are added again to keep a
constant number of monsters in the game world. Finally everything will be rendered.

The collision detection in the sample program uses the Separating Axis Theorem (SAT)
algorithm. The SAT algorithm states that two convex shapes do not intersect if there
exists an axis on which the projection of the two shapes do not overlap. Otherwise those
two shapes intersect [Grel4]. Using the SAT algorithm it is also possible to calculate a
minimum translation vector (MTV) with which two objects can be pushed away upon
collision. Implementation was taken from [SAT16] and modified slightly.

3.4 Adding the Pattern

3.4.1 Flyweight Pattern

Each time a GameOb ject is instantiated the object needs to load its model from disk.
This includes loading the model via the assimp model loader, retrieving the information
from assimp’s data structure and saving it into the custom Model and Mesh objects
for further processing. This takes up a lot of time when new monsters and arrows are
spawned over and over again. Since all arrows and monsters look the same it is sufficient
to load the corresponding model once and pass the same model as pointer to all instances.
In the code only a new constructor for GameObject was added, which takes in a pointer
to a model instance (see Algorithm 3.2).

Algorithm 3.2: New GameObject constructor

GameObject::GameObject(std::string path) {
model* = new Model(path);
// do other stuff

}

//new constructor
GameObject::GameObject(Model* m) : model(m) {
// do other stuff

}

B W N =

® N o w;

3.4.2 Object Pool Pattern

Another way to prevent costly instantiation is to use an object pool. The maximum
number of monsters is known upon application start. Therefore a vector can be reserved
for MAX_NUM_MONSTERS monsters. Instead of deleting a monster, the monster can be
marked as "not in use" with a boolean. However in this particular program, the monster

11

3.

IMPLEMENTATION

12

received a new position and full health again, representing a new monster, as at the end
of each frame monsters are added again.

On the other hand the number of arrows for each tower is not known beforehand. Upon
program start the arrow-vector is an empty vector. If an arrow is needed, first the pool is
looked up to check if there is an arrow available. If there is an arrow marked as "not in
use' this arrows is used and marked as "in use". Otherwise a new arrow is instantiated,
expanding the object pool.

3.4.3 Spatial Partitioning

Collision detection is a very expensive operation. The naive approach, like in the
sample program, would be a brute force check with a runtime of O(n?). With a huge
n this operation is unevitable slow. Therefore collision detection is usally separated
into two phases, the broadphase and narrowphase collision detection. The broadphase
uses less computational intensive methods to find potential colliding objects whereas the
narrowphase uses the information from the broadphase to check actual collision using
more expensive approaches (for example the SAT algorithm).

For broadphase collision detection there are usually two main approaches, sweep and
prune (SaP) and spatial partitioning. The basic idea of SaP is to sort the minimum and
maximum dimensions of the axis aligned bounding boxes (AABB) of objects on different
axis. After sorting, intersecting AABB are further investigated. SaP uses sorting to cut
down the number of collision checks |Grel4]. Spatial partitioning subdivides the game
world to reduce the number.

In this experiment performance is improved using the spatial partitioning approach (see
Chapter 5). Because the simulation contains many dynamic objects and models that do
not extremely vary in sizes a grid is used as a data structure. Using other data structures
may cause more overhead for managing moving objects. Each monster is referenced in a
cell of the grid depending on its position. When checking for collisions only monsters in
the same cell or neighboring cells are considered. When a monster moves the cells are
updated accordingly.

Performance gain is varying depending on the cell size and the number of collidables,
assuming that all collidables have similar sizes. Cell sizes should be at least as big as the
object it contains otherwise it would not be enough to only check for neighboring cells
and can lead to more computations. A reasonable cell size is however a size where each
cell contains a few collidables and having almost no cells leaving empty. Having a cell
size that is too big can result into a runtime near O(n?) again.

3.4.4 Data Locality

For each operation different attributes of the GameObject are needed. For example,
the collision detection check needs a bounding polygon and a position. However a
GameObject has other attributes like rotation and size too which will be loaded into

3.4. Adding the Pattern

the CPU cache as well. When the scene is rendered the attributes position, rotation and
size are needed but not the bounding polygon or a monster’s health. In order to have a
higher cache hit rate the data has to be reordered.

Algorithm 3.3 shows how Monster’s data was reordered. Instead of grouping Monster’s
attributes together, same attributes are grouped together and contained into one managing
class. The three attributes position, rotation and size are grouped together into
Data3d because they are frequently accessed together.

Algorithm 3.3: Vectorizing attributes

1 class Monster {
2 private:

3 vecd position;

4 BoundingPolygon transformedBp;
5 vec3 rotation;

6 bool inUse;

7 vecd size;

8 Model* model;

9 float health;

10 float speed;

11 vec3 destination;

12 }

13 class MonsterPool {

14 private:

15 Data3d data3d[MAX_ NUM_ MONSTER];

16 vec3d destination MAX NUM_MONSTER];

17 float speed]MAX_NUM__MONSTER]J;

18 float health MAX NUM_MONSTER];

19 Model* models]MAX_NUM_MONSTER];

20 BoundingPolygon bp[MAX_NUM_ MONSTER]J;

21 }

3.4.5 Component Pattern

For each inheritance an extra V-Table is kept, when virtual functions are used, and a
pointer to the V-Table, while when using composition there is only a pointer to the object.
This little overhead might have some effects on performance. In the sample code a part
of the inheritance tree was swapped out to use composition. The "is-a" relationship is
kept between GameObject, Monster and Tower. Each subclass of Monster is also
inheriting from Monster. The same is applied to Tower. However each additional
behavior of a monster or tower, for example FlyingGoblinFireWizard, is a compo-
sition. The FlyingGoblinFireWizard is therefore a monster with the component

13

3.

IMPLEMENTATION

14

Magician, FireWielder and Flyer. Figure 3.3 shows the new relations between
classes. Using composition the problem of from which class to inherit, introduced in the
base implementation, is solved without code duplication.

A |
47 Arrow
SGameoriodtt——— 4

Munsterl-‘{ II Tower [<JH

GoblinWizard _
4' FlyingGoblinWizard i-%

|Magican|

FlyingGoblin

—.l FireMagicTuwerl—

4' FlyingGoblinFireWizard i.—

—|GnhlinFireWizard|‘

? |FireWielder FireArcheranerI—

Figure 3.3: Class diagram

CHAPTER

Testing

4.1 Test environment

The tests were performed on a HP ProBook 4530s with an Intel(R) Core(TM) i5-2450M
CPU (4 x 2.50 GHz). Furthermore the machine was equipped with 4GB of RAM and
an AMD Radeon HD 7400M GPU. The operating system was Windows 10 Pro. The
program was compiled with the Microsoft C/C++ compiler that came with Visual
Studio 2013 Professional (version 12.00.40639.0). For almost all test cases compiler
optimization was turned on with the option /O2 [Coml6]. Only for some test cases
concerning the Component Pattern the program was compiled without optimization as
there is the possibility that the dummy functions (or even whole classes) were optimized
out, influencing the difference in computation time.

4.2 Test method

Upon start the executable is given eight arguments. Five arguments indicate which
design patterns should be enabled or disabled. Two other arguments are the number of
towers and monsters in the simulation. The final argument is the number of frames that
should be rendered. Depending on the arguments for the design patterns different code
blocks will be executed, decided by an if-else statement. However not all combinations of
design patterns were implemented.

For each test case the needed time for the given number of frames is calculated including
profiling information. The time calculation starts after everything has been initialized
whereas profiling information include start up initialization and were gathered through
sampling. Test cases including Data Locality pattern had additional test cases with
instrumentation profiling to measure cache misses. In order to have better comparable
results the time step for each simulation step is constant, independent of how long the
computation time was for one frame.

15

4. TESTING

A PowerShell script (v. 5) was written to ease testing and profiling. The script starts
the Microsoft Visual Studio Profiling tool on the command line (see Algorithm 4.1)). For
each test case the profiler ran at least five times in order to get a more accurate results.

Algorithm 4.1: Code sniped of the PowerShell script

1 ./VSPerfCLREnv.cmd /traceon;

2 ./VSPerf.exe /launch:"pathTo.exe" /file:"output Path.vspz" /args:"0 0 0 0 0 800
100 1000" | Out-Null;

3 ./VSPerfCmd.exe /shutdown;

4 ./VSPerfCLREnv /sampleoft;

16

CHAPTER

Results

In the following the results are discussed and some profiling information will be provided.
All given percentages are relative to the whole execution time and not relative to the
calling functions. Percentages relative to calling functions may be given in parenthesis.
The pattern names will be abbreviated with FW (FlyWeight), OP(Object Pool), DL(Data
Locality), SP(Spatial Partitioning) and CP(Component Pattern)

There were eight combinations of design patterns in total. Table 5.1 shows the first
results. For each pattern combination the average needed time in seconds (without
initialization time) and frames per seconds (FPS) are given over five iterations. Each
iteration calculated 1000 frames using 800 monsters and 100 towers.

FW | OP | DL | SP | CP | Av. time(s) | Av. FPS
0 0 0 0 0 92.49 10.81
1 0 0 0 0 53.14 18.82
0 1 0 0 0 61.76 16.19
1 1 0 0 0 47.97 20.85
1 1 1 0 0 46.53 21.49
1 1 0 1 0 20.27 49.34
1 1 1 1 0 19.14 52.25
1 1 0 0 1 48.01 20.83

Table 5.1: Average times and FPS for 1000 frames, 800 monsters and 100 towers

As to be expected without the patterns the program runs very slow. With an average
time of 92 seconds this results in an average FPS of around 11. Total execution time
is around 110 seconds, therefore the initialization phase took around 18 seconds. Only
75% of execution time is spend in the actual program. The remaining 25% were spend in
other libraries like loading textures and other graphics related tasks. 16% (21% of time

17

d.

REsuLTS

18

in main function) was spend in the GameObject constructor processing models for the
object, this includes object initialization before the first frame as well as during frames.

Adding the flyweight pattern improves the program by 43% reducing the overhead of
loading models and textures. Total execution time took around 54 seconds, meaning the
initialization phase taking less than 1 second. Furthermore 93% was spend in the main
function leaving only 7% for graphic related tasks (creating window, drawing to screen,
etc). Less than 0.01% was spend in the GameObject constructor, despite instancing new
monsters and arrows each frame.

The object pool improves performance as well, however not as good as the flyweight
pattern. Using the object pool each object still loads their own models. One reason why
the object pool is slower than the flyweight pattern is possibly the loading of the arrow
model when no free arrow is found. Furthermore, when spawning a new arrow each tower
loops over the list of arrows to find a free arrow introducing extra overhead. Looking
into the samples the Arrow constructor had a few hundred samples whereas when using
the flyweight pattern there were no samples for the Arrow constructor. Interestingly
though, when using the object pool less time was spend in the tower update function,
which includes updating arrow position, removing arrows and shooting at monsters, than
when using the flyweight pattern.

Using both, flyweight pattern and object pool, the program is 48% faster than the initial
program and almost 10% faster than when only using the flyweight. The times spend for
the most relevant functions for flyweight /object pool configuration are compared to the
flyweight only configuration and are listed in Table |5.2.

FW (%) | FW (s) | FW & OP (%) | FW & OP (s)
render 3.96 2.10 3.66 1.76
GameObject::collides 67.18 35.70 65.58 31.46
Monster::checkCollision 55.22 29.34 60,54 29.04
Tower::update 18.55 9.86 11,43 5.48

Table 5.2: Times spend in the most important functions

The GameObject : : collides method checks whether two objects collide. This method
is called from within Monster: :checkCollision, which loops over a vector of mon-
sters for collisions, and Tower: :update, which loops over a vector of arrows and
monsters for collisions. The render method is responsible for drawing everything to
screen. It seems the most time is saved in the tower’s update function when using FW
and OP. This observation is in accordance to the previous comparison between FW and
OP. Furthermore there is also time saved in the GameObject::collides method,
which has to be related to the Tower: :update method as there is no improvement
in the Monster: :checkCollision. The reason for performance improvement in the
collision detection is not clear. The number of GameObject::collides calls for both
configurations are the same, tested with smaller sets of towers and monsters. This

eliminates the possibility that there are missing collision checks when using FW and OP.

Also, comparing cache misses did not yield clear results.

Adding Data Locality there is a very slight improvement. Instrumentation profiling for
counting last level cache misses shows that there were on average 1/8 less cache misses
in the update function. The update function can be split into four further functions:
tower update, monster update, arrow update and rendering. For the monster update
there were almost no difference concerning cache misses. However the tower and arrow
update had together 1/3 less misses. Instrumentation was performed with 80 monsters,
10 towers and 100 frames, as higher numbers would cause too much time consumption

and sometimes causing the profiler to stop midway. Further configurations were tested.

Table |5.3| compares the non-DL configuration with the DL-configuration with different
numbers of towers and monsters. Each test had five iterations, each run calculated 20000
frames.

tower | monster | Av.time | Av.FPS | Av.time(DL) | Av.FPS(DL) | Difft FPS(%)
800 10 139.79 | 143.07 141.35 141.49 - 1.58
800 0| 130.10 | 153.73 127.83 156.45 + 1.74
0 800 | 761.11 26.28 742.91 26.92 + 2.38

Table 5.3: Results for DL with different configurations. Average times are given in
seconds.

Interestingly when having only few monsters and many towers the performance worsens.

However when there were only towers or only monsters performance was improved.

The greatest bottleneck of the simulation was removed with the spatial partitioning.

Using the spatial partitioning for the broadphase collision detection doubles the already
improved program again. The used grid cell size was 10 x 10 on a 400 x 400 field resulting
in a 40 x 40 grid. The monster size is approximately 3 x 3. Changing the grid cell size
to 5 x 5, this makes a 80 x 80 grid, and using the same configuration as for Table 5.1

worsens the performance by around 5 FPS. Using a 20 x 20 grid yielded the same results.

It seems that a 40 x 40 grid is optimal for the number of monsters size of field. Including
DL did improve performance very slightly again.

The component pattern did not improve performance. Since the compiler might have
optimized out the dummy functions in general, the program was compiled again, disabling
optimization. Different numbers of monsters and towers were used. However the result
was the same, neither did it improve nor worsen the performance.

19

CHAPTER

Conclusion

Design patterns are a means to solve reoccurring problems. In this thesis five game design
patterns are examined and evaluated concerning performance gain. Except the Component
Pattern all other patterns (Flyweight, Object Pool, Data Locality, Spatial Partitioning)
did improve performance. Using the configurations as in Table 5.1 performance was
improved by 79%, making the program almost five times faster.

One of the two major bottlenecks in the sample application was model loading. Therefore
it was no surprise that the Flyweight pattern could almost double the FPS by preventing
unnecessary model loading. However in the results it can clearly be deduced that although
the Object Pool also prevents unnecessary model loading it had other effects upon adding
too. Even when the reason could not be found the results show that even for very small
allocations an Object Pool still can improve performance.

The second bottleneck was the collision detection. Spatial partitioning is a very well
known technique for broadphase collision detection. In the sample program it was
implemented in its simplest form using a grid. This makes the program more than twice
as fast as when only using Flyweight and Object Pool.

There was a performance gain by using Data Locality. In [Nys14] the author states that
exploiting Data Locality can yield improvement up to 50%. In this case however it did
not, which was to be expected. Cache misses were not the reason for bad performance in
the beginning. But nevertheless there was an improvement.

Finally the Component Pattern was examined. Unfortunately there was no performance
improvement. Neither with compiler optimization nor without. Even with different
numbers of towers and monsters there was no difference. It can be concluded that
even if composition is faster than inheritance that its effect will be minimal and can be
disregarded. But using the Component Pattern has other advantages. It brings flexibility
to the code design and helps to write reusable code.

21

List of Figures

2.1 Possible class hierarchy designs.|. o 000 5
2.2 Possible component based design.|.o 6
3.1 Game simulation screenshot! Lo o oL 8
3.2 Class diagram with inheritance 9
3.3 Class diagram|. L 14
[]

List of Tables
5.1 Average times and FPS for 1000 frames, 800 monsters and 100 towers| 17
5.2 Times spend in the most important functions 18

5.3 Results for DL with different configurations. Average times are given in seconds. 19

23

3.1
3.2
3.3

4.1

List of Algorithms

game simulation| L. Lo Lo 10
New GameObject constructor| 11
Vectorizing attributes 13
Code sniped of the PowerShell script/. 16

25

[Ass16]

[Com16)]

[GLE16]
[GLM16]
[Grel4]

[Joh94]

[Llo11]

[Nys14]
[Opel6]
[SAT16]

Bibliography

Assimp. http://assimp.org/, 22-July-2016.

02 Mazimize Speed. https://msdn.microsoft.com/en-us/library /8f8h5cxt.aspx,
02-August-2016.

GLEW. http://glew.sourceforge.net/, 22-July-2016.
GLM. http://glm.g-truc.net/0.9.7 /index.html, 22-July-2016.

Jason Gregory. Game Engine Architecture. A K Peters/CRC Press, 2 edition,
2014.

Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John. Design Patterns.
Addison-Wesley Professional, 1994.

Noel Llopis. High-performance programming with data-oriented design. In
Eric Lengyel, editor, Game Engine Gems 2, pages 251-261. A K Peters, 2011.

Robert Nystrom. Game Programming Patterns. Genever Benning, 2014.
OpenGL. https://www.opengl.org/registry/, 22-July-2016.

SAT algorithm with MTV. http://www.codeproject.com/Articles/15573/D-
Polygon-Collision-Detection, 02-August-2016.

[SDL16a] SDL. https://www.libsdl.org/, 22-July-2016.

[SDL16b] SDLZ2 image. https://www.libsdl.org/projects/SDL__image, 22-July-2016.

27

	Kurzfassung
	Abstract
	Contents
	Introduction
	Design Patterns
	Flyweight
	Object Pool
	Data Locality
	Spatial Partitioning
	Component

	Implementation
	Libraries
	General description
	Base Implementation
	Adding the Pattern

	Testing
	Test environment
	Test method

	Results
	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

