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Kurzfassung

In der Biochemie ist Wissen über komplexe biochemische Reaktionsnetzwerke essentiell.
Das Gebiet hat in letzter Zeit viel Aufmerksamkeit von Softwareentwicklern bekommen.
Daher wurden bereits mehrere Visualisierungsprogramme zur Erzeugung von illustrativen
Darstellungen der Struktur einer Zelle erstellt. Jedoch finden pro Sekunde Millionen
von chemischen Reaktionen in einer realen Zelle statt die notwendig sind um das Leben
eines Organismus zu ermöglichen. Daher ist es notwendig den physiologischen Aspekt in
anatomischen Illustrationen einzubinden um Wissen über das Verhalten einer Zelle besser
kommunizieren zu können. In dieser These stelle ich ein Reaktionssystem vor, das mit
Hilfe eines Algorithmus zu Erkennung von Kollisionen auf atomarer Ebene in der Lage
ist, molekulare Interaktionen zu simulieren. Um das Verhalten von Molekülen während
des Simulationsprozesses visuell kommunizieren zu können, wurden ein Real-time Glow
Effekt in Kombination mit Clipping Objekten implementiert. Da intrazelluläre Prozesse
durch mehrere chemische Transformationen durchgeführt werden, wird eine hierarchi-
sche Struktur verwendet um den Einfluss einer Reaktion auf die gesamte Simulation
darzustellen. Das CellPathway-System verwendet mehrere Optimierungstechniken die
das Rendern von großen Datensätzen mit Millionen von Atomen in Echtzeit ermöglichen.
Weiters wird das Reaktionssystem direkt auf der GPU durchgeführt damit mehr als 1000
Moleküle in den Simulationsprozess inkludiert werden können. Schlussendlich wurde ein
grafisches Benutzerinterface implementiert das erlaubt, Einstellungsparameter während
der Simulation interaktiv zu verändern.
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Abstract

The molecular knowledge about complex biochemical reaction networks in biotechnology is
crucial and has received a lot of attention lately. As a consequence, multiple visualization
programs have been already developed to illustrate the anatomy of a cell. However, since
a real cell performs millions of reactions every second to sustain live, it is necessary to
move from anatomical to physiological illustrations to communicate knowledge about the
behavior of a cell more accurately. In this thesis I propose a reaction system including a
collision detection algorithm, which is able to work at the level of single atoms, to enable
precise simulation of molecular interactions. To visually explain molecular activities
during the simulation process, a real-time glow effect in combination with a clipping
object have been implemented. Since intracellular processes are performed with a set
of chemical transformations, a hierarchical structure is used to illustrate the impact of
one reaction on the entire simulation. The CellPathway system integrates acceleration
techniques to render large datasets containing millions of atoms in real-time, while the
reaction system is processed directly on the GPU to enable simulation with more than
1000 molecules. Furthermore, a graphical user interface has been implemented to allow
the user to control parameters during simulation interactively.
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CHAPTER 1
Introduction

The usage of illustrative tools is an established approach to communicate knowledge of
complex biochemical processes in cells to a broad audience. In the beginning, illustration
artists had to create time consuming handmade animations combined with sophisticated
visualization techniques to tell a structured story. The next step was to use software tools
to create images showing complex molecular structures. While at the beginning, render
processes took hours or days to complete, with increasing processing power it was possible
to explore large scenes containing millions of atoms in real-time. However, millions
of chemical reactions are performed every second in real cells to allow intercellular
communication and to sustain living organisms. To communicate knowledge about
complex intracellular processes which keep the cell alive, it is necessary to move from
anatomical to physiological illustrations. Therefore, the next logical step is to use
molecular reaction systems to simulate large scale reaction networks which are describing
the physiology of a cell.

While this area has received a lot of attention lately, many tools to simulate and
visualize molecules and reactions inside of a cell have been proposed in the last few
years. Lately, particle-based simulators got more popular to imitate a realistic behavior
of the molecules. Their general approach is to postpone most of the calculations and
operations from the central processing unit to the graphics card through a GPU first
approach by, for example, enabling GPU-to-GPU data flow. This is possible due to the
modern, freely programmable GPUs. General-purpose GPU programming accelerates the
performance of those systems immensely. That enables the simulation and visualization
of large-scale scenes containing billions of atoms on an average computer. However, most
of those approaches do not take global collision detection into account. This improves
performance but leads to visible artifacts during the animation.

My goal is to extend a modern particle-based illustration tool with a basic molecular
simulator and a collision detection system. Additionally, a visualization system to improve
the user’s awareness of biochemical processes and to display reaction networks inside of
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1. Introduction

a specified area is implemented. Besides, the user should be able to interact with the
system to optimize the learning effect. To implement those goals, more calculations per
frame have to be executed, which has a significant impact on the performance. Especially
the collision detection needs multiple processing steps. For load balancing, the simulation
is only executed in a specific part of the scene, whereby the user can determine the size
and the position of this area. Therefore, the program’s requirements can be scaled down
manually by the user to enable the simulation also on weaker computers.

The system is based on the technique proposed by Le Muzic et al. [20]. While almost
every aspect of the core visualization techniques are inherited, a simple reaction system
has been implemented. The quantitative simulation itself is calculated by the COPASI
[18] API and the reaction system is working with an omniscient intelligence while using
passive agents for dynamic simulation given by Kubera et al. [19]. To enable a fast
and easy change of the simulation system, the user is provided with a simple UI, whose
implementation is inspired by the paper of Daniel Gehrer [27].

Current techniques in mesoscale visualization of biochemical processes are including
collision detection only partially or they are ignoring it at all for the sake of performance.
Tools like ZigCell3D [25] or MegaMol [34] are great for visualization but because the
molecular participants do not collide and therefor don’t interact with each other beside
during a reaction, they are not able to showcase realistic animation of molecular crowding.
Furthermore, visible artifacts occur. The main contribution of this work is to implement
a three dimensional collision detection system which is able to detect the intersections of
two or more objects at the level of single atoms. Additionally, an illustration technique
using two adjustable cone-cut-objects in combination with a real-time glow effect is
implemented to make complex processes visible even in dense scenes but without losing
the impression of depth. Further, a hierarchical structure is used to illustrate intracellular
process, by showing the impact one reaction has on the entire simulation. Since this
project is based on the work proposed by Le Muzic et al., it also uses the Unity3D
[22] engine. Unity is a cross-platform game engine which is also available for free in
a limited, but still functional, scope. The provided user interface is also implemented
in Unity. Simulated molecules can be downloaded from the public PDB database [23]
and afterwards imported through the user interface. A screenshot of a simulation in
CellPathway is shown in Figure 1.1.

The rest of the paper is organized as follows: Chapter 2 describes the basics of
biochemistry. The related work is analyzed in Chapter 3. Chapter 4 gives an conceptional
overview of the whole system. While the methods are outlined in Chapter 5, their
implementation is described in detail in Chapter 6. Finally, the results are discussed in
Chapter 7.
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Figure 1.1: A screenshot of a simulation including 1640 reactants with a dataset illus-
trating a cross-section of human blood serum surrounding HIV virus. The products of
currently processed reactions are illustrated with a glowing effect.
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CHAPTER 2
Biochemistry 101

The main task of this project is to simulate and visualize biochemical reactions inside of
living cells to allow a better understanding of those complex processes. Since proteins
are taking part in essentially every structure and activity of life, basic knowledge of their
origination process and their functional principles are required.
Biochemistry is a section of organic chemistry and denotes the study of chemical processes
in living organisms. By collecting and controlling information about the energy flow
during metabolism in cells and intercellular signaling in chemical processes, biochemistry
tries to describe the complexity of living organisms. Therefore, the fundamentals of
macromolecules, protein synthesis and intrinsic biological networks are described in this
chapter.

2.1 Macromolecules

In biology macromolecules refer to a collection of four large molecular types: proteins,
lipids, carbohydrates and nucleic acids. Many large molecules in living organisms can be
divided into these groups and they have a wide range of responsibilities. For example,
proteins are included in intercellular communication and intracellular reactions, some
lipids are structural components of cell membrane, carbohydrates are needed to store
energy and nucleic acids are responsible to store and transfer genetic information.
While proteins, carbohydrates and nucleic acids are often found as polymers, most lipids
are much smaller and form generally monomers. Polymers are long chains consisting
of many different small molecules, called monomers, and are created during polymer
synthesis. Some examples of monomers, which are important for the synthesis process
are glycerol and fatty acids (lipids), amino acids (proteins), nucleotides (nucleic acids)
and monosaccharides (carbohydrates).
Since proteins have perhaps the broadest range of functions and are used in CellPathway
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2. Biochemistry 101

to illustrate the basic structure of a cell, the synthesis of proteins is described in more
detail in the next section.

2.2 Protein Synthesis
The creation of various types of proteins is one of the most important tasks of a cell
because they form structural components of the cell and facilitate essential life functions.
Protein synthesis is a complex process which requires the understanding of genetics.
Thus, the basics of chromosomes and DNA structures are described as well as the single
steps of protein creation.

Chromosomes

To create a new protein, the blueprint of the specific protein type is needed. This genetic
information is stored in the DNA, the cell’s hereditary material. In the nucleus of each cell,
the DNA molecules are packed into thread-like structures called chromosomes. Humans
are diploid, having two copies of each chromosome, whereby each cell contains 23 pairs
for a total of 46 chromosomes. 23 of those chromosomes originate from the mother and
23 originate form the father. Those chromosomes contain all the generic code in form of
double stranded DNA.

DNA

DNA is short for deoxyribonucleic acid and is stored as code made up from four chemical
bases, adenine (A), thymine (T), guanine (G) and cytosine (C). The DNA molecule is
constructed in a spiral form called double helix, where DNA bases pair up with each
other, whereby only the pairs A-T and G-C are possible. The formed units are called
base pairs and are also connected to a monosaccharide sugar and a phosphate group.
Together, a base, sugar, and phosphate are called nucleotide. The order of the nucleotides
determine the information available for building and maintaining an organism. Since
every base can only connect with exactly one other base, the sequence of bases on one
strand of DNA provides exact information about the sequence of the second strand. For
example, if the sequence of one strand is ATGCCGTACGAT, the second strand has to
have the structure TACGGCATGCTA. An example of this DNA sequence is shown in
Figure 2.1.

From DNA to Protein

The central dogma of molecular biology explains how proteins are created from DNA. As
already mentioned above, specific DNA-sequences are the blueprints for the respective
proteins. Since each cell possesses only one genome, it has to be protected against damage.
Otherwise, the cell would not be able to create new, correctly working molecules any
more. Therefore, the DNA is stored in the nucleus, where it is well protected against
dangerous influences in the cytoplasm. Cytoplasm is a thick fluid which surrounds the
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2.2. Protein Synthesis

nucleus and is enclosed by the cell membrane, in which many vital biological reactions
take place. Thus, proteins are not created directly from DNA. Instead, an interim stage
is carried out. This splits the creation process in two steps: transcription and translation.

During the first step, the DNA is transcribed into ribonucleic acid (RNA). Chemically,
RNA resembles DNA with the minor differences that instead of the nucleotide T, the
functionally equivalent uracil (U) is used and that RNA consists of only one strand,
instead of two.
The development process of a random DNA sequence is shown in Figure 2.1. An RNA
message is created by processing the read DNA string. The information contained in the
DNA is processed and for each base, the respective counterpart is used. Thus, the RNA
message corresponds to the blue DNA string, except for the U-T substitution.
During the transcription preparation phase, various transcription factors are gathered
around DNA, each having different tasks and responsibilities. First, the chromosomes are
unfolded and one of the transcription factors finds a transcription initiation site on DNA
and docks. Another transcription factor breaks the double helical structure of the DNA
apart to enable information processing. The enzyme most responsible for the synthesis
of RNA is RNA polymerase II (Pol II). A multitude of transcription factors assemble at
the transcription initiation site to recruit and properly place Pol II. Together, this large
complex of proteins is called the preinitiation complex. This completes the preparation
for transcription.

The DNA opens up, Pol II begins to read information and serially transcribes from
DNA to RNA. Nucleotides are used to create the RNA sequence, whereby their bases

Figure 2.1: An example of a DNA sequence and the respective mRNA and protein
structure after transcription and translation [16].
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2. Biochemistry 101

and order are determined by the DNA strand. A simplified representation of this process
is shown in Figure 2.2, whereby RNAP is used as an abbreviation for RNA polymerase
II. In Figure 2.2(a), multiple transcription factors are docked to the initiation site and
are placing RNAP. The separated DNA strings are shown in Figure 2.2(b). RNAP is
processing the DNA’s information while it is sliding along the bottom string. This way,
a RNA copy of the upper string is created.
During the creation of the RNA sequence the already created part is subjected to various
processes. Because only information for protein synthesis is needed, the unused areas
are eliminated form the RNA and the necessary areas are linked together to form the
completed messenger RNA (mRNA). After all information is transcribed, Pol II leaves
the DNA and the mRNA is transported outside the nucleus into the cytoplasm.

The second step is the translation of genomic information to create proteins from a
mRNA strand. First, mRNA forms a ring to be translated. The ribosome, a complex
molecular machine found within all living cells, slides along the mRNA and synthesizes
a new protein with amino acids. The information is encoded by units of three mRNA
nucleotides. Each set of three bases is called a codon. Individual amino acids are
transported by transfer RNA (tRNA) molecules, whereby each tRNA recognizes a certain
codon and leaves the corresponding amino acid. So a certain combination of three
nucleotides always gives the same amino acid. The protein is folded sterically while being

Figure 2.2: Simplified representation of of transcription initiation and elongation. RNAP
= RNA polymerase II. [13]
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2.3. Cellular Functions of Proteins

formed. The thus created chain of amino acids, called polypeptide, may be processed by
a number of other chemical reactions to form the mature protein.
Figure 2.3 shows the interaction of tRNA molecules and the mRNA string during
translation. The ribosome has two sites where the transfer RNA molecules can bind, a
peptide site (p-site) and an acceptor site (a-site). Additionally, processed tRNAs are
released at the exit site (e-site). In Figure 2.3, a tRNA transporting the amino acid
lysine (Lys) is bound on the p-site and another transfer RNA molecule carrying aspartic
acid (Asp) has just entered the a-site by a peptide bond. The ribosome now advances
a distance of one codon. Thus, the amino acids are joined and the transfer RNA from
the p-Site is released at the exit-site. Now a new tRNA, where the anti-codon on the
transfer RNA is matching the codon on the messenger RNA, can access the free a-site.
Translation occurs concurrently to produce multiple copies of the same protein from one
mRNA. The mRNA ring and the ribosome are broken down when they have completed
their roll.

2.3 Cellular Functions of Proteins

Proteins are the chief actors within the cell and are traditionally categorized on the basis
of their individual actions as enzymes, signaling molecules or structural proteins. They
make up half the dry weight of an Escherichia coli cell and can bind to other proteins, so
called protein-protein interactions, as well as to smaller molecular substrates. Due to the

Figure 2.3: The interaction of tRNA and mRNA in protein synthesis. [14]
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2. Biochemistry 101

variety and complexity of interactions between genes, proteins and metabolites, those
processes are best represented by various biological networks. In this section, the two
major rolls of proteins are described.

Enzymes

Enzymes are macromolecular biological catalysts and they accelerate chemical reactions.
Most enzymes are proteins and they speed up the rate of chemical reactions in a cell
without being consumed in the reaction. Without them, many biochemical reactions
of life would not be controllable or would take too long to sustain complex life. For
example, enzymes and catalytic RNA molecules are an important element in transcription
and translation of protein synthesis. Even tough they chemically resemble any catalyst,
enzymes have a much more specific behavior. Other molecules can affect their activity,
which has an impact on the whole cell. While inhibitors decrease the enzymes activity,
activators increase their functionality.

Almost all metabolic processes need enzymes to catalyze biochemical reactions.
Metabolism is the set of all chemical transformations within a cell, which are involved
in maintaining the organism alive. Usually those molecular transformations require
intermediate reaction steps to accomplish. This series of stages is called metabolic
pathway. In general, a pathway can be anabolic or catabolic. Usually, anabolic reactions
require energy input to synthesis new macromolecules while energy is released during the
breakdown of complex molecules via catabolic pathways.

Cell Signaling Molecules

Cellular activities are coordinated through a complex communication system. The process
of a cell perceiving and responding to their microenvironment with chemical signals,
is called cell signaling, whereby proteins are used during both of those cell activities.
When a cell releases a chemical stimulus, an extracellular protein like insulin transmits a
signal from the cell in which it was synthesized to target cells and alters their activity.
Since cells are enclosed within a lipophilic plasma membrane, which has to be crossed by
incoming signals, membrane proteins act as receptors to enable communication. These
receptors bind signaling molecules and induce biochemical responses in the cell to produce
intracellular messengers. A variety of information transfer mechanisms are utilized by
complex diffusion, protein-protein interactions and covalent modifications to stimulate
sensors and effectors that brings a change in cellular responses. Different signaling
pathways are combined and adapted to control a diverse array of cellular processes.

All information described in this chapter were gathered from various sources, including
websites, papers and books [1-16].
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CHAPTER 3
Related Work

Illustration and simulation of molecular interactions received a lot of attention lately. As
a consequence, multiple visualization programs have been already developed. All of them
share the same goal, to enable deeper insights in biochemical reactions inside of a cell
and to offer a tool which improves the communication of knowledge about these complex
processes to a broad audience. In this chapter various tools are examined regarding their
simulation capabilities, visualization techniques and area of deployment.

3.1 Agent-based Simulations in Game-like Environments

CellView

cellView [20] is a real-time visualization tool to illustrate the anatomy of a cell in a
multiscale approach and is based on the techniques presented by Muzic et al. [17]. The
used macromolecular datasets are modeled with cellPACK [21], a tool to generate large
molecular structures. The anatomy of a cell is defined by proteins, whereby the structure
of individual molecules is specified with a PDB[23] file. Acceleration techniques are used
to render scenes containing billions of atoms. The GPU driver overhead is reduced with
a hierarchical Z-buffer occlusion culling technique, as well as a twofold level-of-detail
approach.
Molecular data is stored directly on the GPU to minimize data transfer. The atoms are
rendered via 2D sphere impostors, using the tessellation stage, to decrease the number
of vertices per object. To include depth, the individual molecules are processed in a
fragment shader to mimic a spherical volume. Furthermore, the dynamic generation of
DNA strands on the GPU is supported as well. Although, the main focus of DNA is the
visualization aspect and not biomolecular accuracy, even large nucleic acid strands with
a double helix structure can be rendered.
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3. Related Work

cellView is a powerful cross-plattform illustration tool for large molecular landscapes.
It has been implemented inside of the Unity3D [22] game engine to reduce the development
work-load. But since no molecular dynamics are supported, cellView can not be used to
illustrate the physiology of a cell.

ZigCell3D

ZigCell3D [25] is an agent-based simulation tool to visualize a whole cell and its bio-
chemical reactions. To handle the complexity of those chemical processes, the user can
set various zoom levels and can use multiple illustration techniques to gain a better
understanding of the cell at molecular levels. Since their goal was to support the creation
of new drugs, they are using a very accurate simulation system which is adjusted by an
interactive and game-like 3D environment. The cellular reactions are modeled with a
GUI and are represented as an SBGN [26] network diagram. This enables the user to
create complex processes with simple geometric modules like reaction smart boxes and
multiple reaction arrows. Additionally, a virtual fluorescence microscope is implemented
to benchmark the simulation against real life experimental data. This way the user can
add a fluorescence tag to each species to visually highlight their instantiation. The cell
itself and the molecules are visualized with complete iso-surface models.

Before the simulation starts the defined reaction network is validated. The simulation
can either run with particle-based Brownian dynamics or with the Reaction Diffusion
Master Equation (RDME) approach, whereby the latter has less spatial resolution but
better performance. However, the rendering module does not use GPU programming
and therefore, no real-time processing is possible.

Molecular Reactions using Omniscient Intelligence and Passive Agents

To enable real-time rendering with billions of molecules in the scene, the necessary
calculations have to be done in parallel using GPGPU programming. Such a visual
explanation tool for difficult biochemical processes inside of a single compartment has
been proposed by Le Muzic et al. [17]. A particle-based simulation system is used
in combination with passive agents and an omniscient intelligence to enable real-time
rendering and interactive exploration of the simulated reactions.
The individual molecules are represented as a three dimensional van der Waals surface
with a given radii and the user can follow any one of them. The molecule structure is
defined in PDB files [23]. Once an element is brought into the focus, the camera follows
the actor and the omniscient intelligence prioritizes the molecule for future reactions.
This way the user is able to force specific reactions at a defined location while being able
to inspect the whole process. Furthermore, the user is able to build a molecular story by
chaining reactions.
The system is designed to simulate multiple reactions simultaneously with a large number
of molecules. Therefore the quantitative simulation engine COPASI [18] is used, which is
working with biological network files in the SBML [28] format. To reduce the calculation
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3.1. Agent-based Simulations in Game-like Environments

time during simulation, the necessary computations are executed in parallel on the GPU,
using CUDA. Additionally, a simple and very limited collision detection is implemented
which is only applied on reaction partners. The reaction is triggered once a collision is
detected. To create the impression of chaotic behavior, the molecular movement during
a reaction is created by interpolating direct motion with Brownian motion.
Because it is not necessary to draw every molecule in full detail, a molecular Level-
of-Detail technique is implemented to decrease the performance requirements during
rendering. The number of rendered atoms depends on the distance from the molecule
to the camera. To keep the basic structure of the molecule constant, the radii of the
remaining atoms are scaled accordingly.

Through the interactive visualization and story-telling structure, the user is able to
generate illustrative visualizations of biochemical processes. However, due to the trivial
collision detection, animation of realistic trajectories of crowded molecules is not possible.

CellUnity

CellUnity [27] is a molecular simulation and visualization tool based on the techniques
proposed by Le Muzic et al. [17] and uses a complete collision detection system to enable
realistic trajectories. The cell is mimicked by a spherical compartment and contains all
participants of the simulation. Molecular structures are defined through a PDB [23]
file and are represented with the van der Waals surface model. To add new molecules,
the specific files can either be imported or directly downloaded from the public PDB
database.
The simulation is implemented entirely on the CPU and is therefore only deployable
for smaller scenes containing a few hundred molecules. An omniscient intelligence is
tightly coupled to the COPASI API [18] which is used to simulate biochemical processes.
Molecules are based on the passive agents principle and are moved per frame through
the compartment. The project is implemented inside of the Unity3D [22] framework.
This allows to use Unity’s built-in physics engine for collision detection. A reaction is
processed when a physical connection is established between all participants. To emulate
the impression of chaotic behavior inside of the compartment, Brownian motion is applied
partially on all molecules.
Reactions are shown in a story-telling manner, while the user has full control over their
spatial locations. The reactions can either be executed randomly or the user can trigger
a specific reaction by selecting a molecule in the scene, whereby the camera follows the
selected actor. Additionally, the visualization and the simulation speed can be changed
by the user to avoid a cluttered visualization in dense scenes.

CellUnity is an easy to use illustration tool for biochemical reactions. The fully applied
collision detection enables realistic simulation while complex chemical processes are told
in a story-telling structure. However, since the project is implemented entirely on the
CPU, only small scenes containing a few hundred molecules can be used for simulation.
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3. Related Work

3.2 Monte Carlo based Simulation Systems

MCell

MCell (Monte Carlo cell) [29] is a program to simulate movements and reactions of
molecules within and between cells. The simulation can contain multiple compartments
and supports molecular interactions of multiple objects, while using realistic 3-D models
of synaptic microphysiology and specialized Monte Carlo algorithms. Molecules are
created form polygonal meshes. They are described together with the general simulation
preferences with the MCell Model Description Language (MDL) and are saved in human-
readable text files. Since meshes have to be modeled by hand, this tool is not suitable
for high density scenes because of the immense initial effort. To increase the execution
speed, spatial partitions and subvolumes are used for collision detection between ligand
molecules and mesh elements. MCell has no initial support of a graphical user interface
and is executed instead form the command line.
All decisions made during the simulation process depend on a seed value. This value
has to be set by the user at the beginning, cannot be changed afterwards and is used to
generate random numbers. As a consequence, no interactive visual steering is supported
and the user can only follow the previously adjusted simulation. This complicates a
storytelling approach extremely, because it is very hard for a user to follow a single
molecule.
Another problem are the fixed timesteps during simulation, which simplifies the program
design considerably but also leads to several computation and visualization problems. An
optimization of the algorithm is proposed by Kerr et al. [30] which extends the system
by a dynamic timestep algorithm and some performance optimizations.

CellBlender [31] is another extension of MCell and enables an easier and faster way to
model and edit the molecule designs of a simulation. It is an addon for Blender 2.6-2.7x
[32] that allows users to create cells and their inner structure with a professional, free
and open-source 3D computer graphics software. While the simulation is still based on
MCell, the results are visualized in Blender. Although, the simulation settings can be
changed directly in Blender, still no interactive storytelling approach can be used to
present the outcomes.

Illustrative Timelapse

Another tool which is attending to the problem of fixed timesteps during simulation
was proposed by Le Muzic et al. [33]. Illustrative timelapse is a system to create
illustrative mesoscale visualizations automatically while the user is being able to move
freely through the scene and to explore the simulation on multiple temporal scales.
Since many biochemical reactions take only a few nanoseconds to accomplish, different
visualization techniques have to be used to allow the user to follow individual elements
and their story. Therefore, a combination of temporal zooming and visual abstraction is
used. This allows the user to change the temporal resolution interactively, which also
has a direct impact on the particle speed. Additionally, the participants of important
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reactions are emphasized for a limited duration and a lens effect is implemented to
preserve a more realistic way of molecule motion.

MCell is used to model and simulate biochemical processes while the visualization
part is implemented in Unity3D. Because computations in MCell are quite slow, real-time
rendering was implemented based on the technique proposed by Le Muzic et al. [17].

Illustrative timelapse is a cross-platform simulation tool with the focus on multi-scale
temporal illustrative visualization techniques. Even though no collision detection between
molecules is taken into account, the user is still able to follow a story.

3.3 Molecular Rendering Systems

MegaMol

MegaMol [34] is a visualization software for large generic particle datasets. Their goal
was to create an easily extensible and therefore very flexible visualization software which
is able to render millions of particles and can be adopted to fit special requirements in
various areas. The visualizations in general are defined through module graphs generated
with the MegaMol-Configurator. Due to the flexible architecture and data flow, interactive
image-based post-processing steps can be implemented and added to the project. By
default, the OpenGL graphics API is used for rendering, but the project can easily be
adopted to use Direct3D instead. MegaMol does not contain a user interface, but several
specialized front ends exist. Because the core library is published as a slim C API, it
can easily be included in other languages like C# and Java. Therefore, multiple UI
technologies like Windows Forms [35] or Qt [36] can be used.

MegaMol is a powerful visualization tool which supports multiple file formats like
PDB [23] to define the molecular structure. The system is freely available, open source
and runs on Microsoft Windows and Linux, both in 32 bit and 64 bit.

Illustrative Molecular Rendering

Hermosilla et al. [37] proposed a illustrative visualization tool for all-atom simulations,
which is able to render even very large molecules with more than a million atoms in
real-time. The goal of the work was to enable accurate simulation of the reactions between
a complex protein and a simpler molecule. This especially helps in Pharmacology to
understand protein interactions to develop improved drugs for healthcare.
To implement their objectives they had to use accurate data for the molecule’s behavior.
Therefore, all participants are moving along actual calculated positions during the
molecular dynamics simulation. Through the simulation an occupancy pyramid, a
hierarchical data structure, is generated on-the-fly on the GPU and is used to create
high and low frequency ambient occlusion shadows as well as halos for the highlight
visualization and is stored as a three-dimensional texture with different mipmap levels.
To help the user identify the ligand and to seperate it form the protein, an object-space
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halo surrounds either the protein or the ligand. Furthermore, temporal halos capture the
evolution of the interaction. This way the ligand’s positions in the last 10 seconds are
highlighted and fade out gradually. Additionally, the user can stop the simulation at any
time and move the camera around in the scene to get a better view on interesting areas
during the reaction.
The software supports three different pure structural molecular representation modes.
The user can choose between the van der Waals surface, ball-and-stick and the more
abstract licorice illustration.

At about the same time Staib et al. [38] presented an extension of their system using
the same approach but with a different implementation. However, their system does
not include visual effects like halo rings and only support the van der Waals surface
representation.

This software gives very accurate insights into the interaction of a protein and a
drug-molecule. An all-atom simulation can be rendered in real-time for even very large
molecule structures. However, the system is unsuitable for large scale scenes with many
molecules and multiple simultaneous reaction.
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CHAPTER 4
Conceptual Overview

Presented algorithm consists of three basic elements, which are shown in Figure 4.1. The
first element, a two-parted data structure is used to store object properties and has been
implemented to enable efficient data access and to minimize the needed amount of storage.
The simulation system is responsible to move reactants, process collisions and to perform
molecular reactions. The last part, the visualization system, uses three techniques to
communicate the proceedings during the simulation to the user. A conceptual overview
of CellPathway and the three main elements are described in this chapter.

4.1 System Overview
Since the manipulation of the properties from individual objects per frame is crucial
for the functionality of both, the simulation and the visualization, the system overview
is given in respect of the data change during runtime. The three main parts of the
abstracted program structure regarding the information flow are shown in Figure 4.1:
data initiation, simulation and visualization.

Since this project is based on the visualization system proposed by Le Muzic et al.
[20], the used data structure is inherited and extended. Instead of using spherical meshes
to represent molecules, the data is stored in a generated texture buffer and only one
vertex per molecule is used as an input during rendering, while the object is constructed
on the fly using the tessellation stage [20].
However, Data objects are stored in a two-parted data structure to enable efficient
data access and to minimize the needed amount of storage. Passive data contains all
information needed to render molecules and is uploaded to the GPU when a scene is
loaded and when the reactants are placed. Structural details of the molecular types, such
as the atom count, the position of single atoms and the color, as well as the position and
rotation of every single molecule, are stored as passive data. On the other hand, active
data stores additional properties for every participant of the simulation process, such as
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Figure 4.1: The abstracted program structure regarding the information flow with the
three main parts: data initiation, simulation and visualization.

reference IDs and flags to manage the mutual coherence of individual objects. Since this
information is only needed during simulation, active data is gathered and uploaded to
the GPU when a simulation is started. A detailed description of active data is given in
Section 6.1.2.

While the data initiation, which corresponds to an object creation and initialization
step, is only executed when needed, simulation and visualization are done every frame.
To increase the performance and to enable a large scale simulation, the CPU to GPU
traffic has to be minimized. Therefore, the reaction system and the collision detection
is processed directly on the GPU. This way, no data transfer per frame between the
processing units is needed.
To simulate biochemical networks and their dynamics, the COPASI API [18] is integrated
and runs in parallel on the CPU. While COPASI indicates, which reactions in which
quantity should be initiated, the simulator is responsible to execute programs on the
GPU, so called shaders, to apply the required actions on the objects. Additionally,

18



4.2. Simulation

the simulator moves all simulation participants each frame and executes the collision
detection system.

Since no meshes are used, the render pipeline in Unity3D returns an empty scene.
Instead the rendering is done in a post-processing step, as described by Le Muzic et
al. [20]. The renderer is responsible to synthesise the scene and to visualize the three
illustrative effects, real-time glow, cone clipping and reaction tree. A detailed description
of the real-time glow technique is given in Chapter 5.4. With cone clipping, the user is
able to remove occluding objects between the camera and the simulation center. Reaction
tree is a technique to visualize biological networks in cells, where based on reactions, an
interactive tree structure is created. This way, the temporal impact of one reaction on
the entire simulation is illustrated.

4.2 Simulation
The simulation process is one of the main parts of this work and consists of a molecular
reaction system and a collision detection algorithm. To control the simulation process
and to enable the user to interact with the system, a graphical user interface has been
implemented as well, which is based on the GUI proposed in CellUnity [27]. The molecular
type and the quantity of the reactants, as well as the processes reactions are defined
with the UI. Structural information about molecules are stored in PDB [23] files and can
be imported. Every reaction can be linked with a protein. Thus, the reactants need a
random protein to perform the specific reaction.

The molecular reaction system is based on the technique proposed by Le Muzic et al.
[17]. While the individual molecules who are participating in the simulation process are
implemented as passive agents, an omniscient intelligence (OI) is used to control molecular
interactions. Passive agents are unable to start reactions autonomously, instead they can
only receive reaction orders from an OI, which is tightly coupled with the quantitative
simulation [17]. The system uses the COPASI API [18] as simulation engine, which runs
in parallel [17].

To minimize the CPU to GPU traffic, simulation steps manipulating object data
are executed on the GPU using the DirectCompute technology [43]. While the OI is
responsible to initiate new reactions, the simulator executes those initiation orders by
manipulating object data accordingly. Furthermore, the simulator moves all reactants
which are included in the simulation system and processes collision between objects.
Since this requires to execute many calculations per frame, the workload on the GPU
is significant. To enable simulation in scenes with thousands of reactants, the reaction
system does not include all molecules. Instead, the simulation area is reduced to a
spherical compartment. Only reactants inside of the compartment are included in the
simulation process, while the others are moved by random walk. While the center of
the sphere is set by selecting an arbitrary protein inside of the scene, the compartment
radius is set in the UI. This way, the user can adjust the workload of the simulation to
the available resources.

19



4. Conceptual Overview

4.3 Visualization

Illustrative tools are used to communicate knowledge of complex biochemical processes in
cells. With various visualization techniques, the user is able to get insights in molecular
interactions and biological networks. While the technique to represent molecules in
a level-of-detail manner proposed by Le Muzic et al.[17] is inherited, three additional
visualization techniques, called real-time glow, cone clipping and reaction tree, are
implemented to improve the way the user perceives information of biochemical processes.

Since the reactions are distributed throughout the compartment and can occur simul-
taneously, it is difficult for the user to realize when and where a reaction is completed.
The purpose of the glow effect is to draw the user’s attention to areas where reactions
are processed during the simulation. Every created product of a completed reaction is
highlighted for approximately one second. In addition, proteins, which are included in a
reaction, are highlighted as well. This enables the user to recognize ongoing reactions
easily, while observing the simulation compartment. The real-time glow technique is
described in more detail in Section 5.4.

When illustrating dense scenes with millions of atoms placed near each other, reaction
processes are easily covered by larger protein structures. With the cone clipping method,
the user is able to remove disturbing molecular structures to get a better view of the
ongoing reactions and molecular interactions during simulation. Since the reactants,
consisting of only a few atoms, are much smaller than the proteins, they are not removed.
Proteins, which are located between the camera and the center of the simulation com-
partment are clipped away. To allow the user to change the amount of clipped objects,
the cone angle can be set interactively to a value between 1 and 89 degrees.
While increasing the visibility of simulation participants is the main goal of this visu-
alization technique, the three dimensional spatial depth impression should be retained.
Therefore, a semi-transparent area is used to create a continuous transition between the
clipped area inside of the cone and the shown objects outside of it. Thus, a second cone
is implemented and placed at the same position as the clipping cone, whereby the angle
of the second cone is twice as large as the angle of the clipping cone. Objects located
between the inner and outer cone are represented partially transparent. To create a
continuous transition between the clipped area and the opaque objects, the amount of
transparency for a specific object depends on the location. While molecules located next
to opaque objects are rendered with less transparency, the value increases when located
closer to the clipping cone. Although, semi-transparency is faster to calculate than a
real transparent effect, artifacts can occur when no opaque objects are located behind a
transparent molecule. In this case, the objects color is interpolated with the background
color black and objects with a larger alpha value are darker than more opaque objects.

In this project, a hierarchical structure is used to illustrate biological networks created
by complex interactions between different molecules and proteins in a particular time
span. Starting with only one reaction, a tree structure is build by illustrating the path of
the reaction products with lines. When those molecules are included in another reaction,
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a node at the location of the reaction is included in the structure, while the outgoing
branches are connected with the new products. Therefore, the tree structure is growing
over time, showing the influence of the starting reaction on the whole simulation.
To increase the visibility of the hierarchical structure, the user can switch between two
representations. By default, the color of individual branches corresponds to the color of
the respective molecule. Since the molecule’s color depends on the molecular type, the
user is able to determine, which reactions where performed. Alternatively, an arbitrary
line color can be used to optimize the contrast between the reaction tree and the scene.
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CHAPTER 5
Methodology

During the creation of this project, several algorithms and techniques have been used to
create visual effects and to enable molecular interactions. Since both, the visualization
and the simulation are running in real-time, performance is an important factor. In
particular, because simulation of more than 1000 molecules is desired to run at least
with 30 frames per second. But components like the collision detection system, which is
working at the level of single atoms, require many calculations per frame. Additionally,
information such as molecular interactions, biological networks and chemical reactions
are illustrated. Therefore, several methods have been implemented to reduce the number
of overall calculations and to create visualization effects in a dynamic system.
In this chapter, four implemented techniques used during simulation and visualization
are introduced.

5.1 Spatial Subdivision

Spatial subdivision is an approach where objects in a three dimensional space are ordered
by their position. This improves the speed of further processes, which are using the
spatial relation of individual objects, immensely. The space is partitioned in a uniform
grid, such that a cell is at least as large as the largest object [40].

During the first step, the number of cells has to be calculated, which only has to be
executed once at the beginning. Since the cell size corresponds to the size of the largest
object, the number of cells is determined by dividing the measurements of the space by
the size of one cell. Afterwards, the objects can be sorted by using the counting sort
algorithm described in section 5.1. Additionally, an array called Bin-Counter is used
to keep track of the number of objects inside of every single cell. The Bin-Counter in
combination with the list of ordered objects allows to identify all objects contained in a
specific cell by the cell index.
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5.2 Counting Sort

(a) (b) (c)

(d) (e) (f)

Figure 5.1: The operation of the counting sort algorithm on an input array A[1-8], where
each element of A is a non-negative integer no larger than k = 5 [39].

With spatial subdivision it is possible to find all molecules, which are assigned to
a specific cell. To enable efficient data access all objects are sorted by their cell index,
using the counting sort algorithm.
Counting sort is a method for sorting a collection of objects based on keys in a specific
range. Each of the n input elements is a non-negative integer with a value between 0
and k. The algorithm has a running time of Θ(k) and is effective when the number of
objects is significantly greater than the number of possible input values.

The sorting process is split into multiple steps. During the procedure, three arrays are
used to store information. Figure 5.1 illustrates an example of the algorithm’s procedure
on 8 unsorted integer values. Array A contains the input values while the resulting values,
sorted in ascending order, are stored in array B. Both have the same length n = 8. C is
an auxiliary array to store temporary data, is initialized with 0 and has the length k = 5.
The first step is shown in Figure 5.1(a), where the number of appearances of each value
is counted and stored in the auxiliary array. Then subsequently, the single values in C
are summed up so that each index represents the last position of each value in the sorted
array. The resulting content is shown in Figure 5.1(b).
During the last step, each element in A is placed into its correct position in the output
array B [39]. It is started with the last element in A, in this example with the value 3
stored at position 8. The element’s new position is contained in C, while the element’s
value corresponds with the specific index. Since C[3] = 7, the element is copied into B at
index 7. Afterwards, the counter value in C[3] is decreased by one. The resulting array
content is shown in Figure 5.1(c). The procedure of the last step is repeated with the
next element in A, until all elements are processed.
Figure 5.1(d) and (e) shows the results after processing the next to values, while the
sorted input values are shown in (f).
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An important property of counting sort is that it is stable: numbers with the same
value appear in the output array in the same order as they do in the input array [39].

5.3 Fast Fixed-Radius Nearest Neighbors

Fast fixed-radius nearest neighbors (NNS) is an algorithm to find all objects inside of a
sphere with the radius R, centered at the position of a specific object. Since the time
complexity of a brute force attempt to find all neighbors of all objects is O = (n2), the
spatial partitioning method, described in Section 5.2, is applied first. To minimize the
number of cells who are overlapping with the sphere without having too many objects
per cell, an additional requirement is established, which states that the minimum cell
size during spacial partitioning has to be at least as large as the radius R. This way, only
objects in neighboring cells have to be searched, which reduces the average complexity to
O(n ∗ log(n)) [41]. Those objects can easily be found by combining the spatially sorted
objects and the Bin-Counter values.

A two dimensional example of the fast fixed-radius NNS including spatial partitioning
is shown in Figure 5.2. As can be seen, no matter where the selected object is located
inside of the cell, only the adjacent cells have to be searched to find the neighbors. When
the object’s position inside of the cell is ignored, 9 cells and their corresponding objects
have to be checked. This applies to the three dimensional approach also, in which case 27
instead of 9 cells have to be tested. This reduces the number of overall tests immensely.

Figure 5.2: Shows an example of the fast fixed-radius NNS method in a 2D space with
spatial partitioning [41].
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5.4 Real-Time Glow
Glow, also called bloom, is an effect where an artifact of a real-world camera is reproduced
to create the illusion of extremely bright areas. There are several different approaches to
create a glow effect. However, in this project a post-processing method of a 2D rendering
of the scene is used [42].

The rendered image is passed to a shader and processed on the GPU, where all objects
which should be highlighted are copied in a separate texture. This way, when a glowing
object is covered fully or partially by another object, only the visible areas are copied
into the glow texture.
In the second step, the glow effect is created by blurring the rendered object. This is done
with a compute shader using a two-step operation called a separable convolution [42].
The technique of separable convolution splits the two-dimensional convolution kernel in
two separate one-dimensional convolutions, one in each axis, which greatly reduces the
computation costs [42]. To perform the blurring convolution operation, the color of each
pixel in the separated texture is spread amongst the local neighborhood of pixels. This is
done first along the horizontal axis and then along the vertical axis.
The blurring process is shown in Figure 5.3. While the original image is shown in Figure
5.3(a), the result of horizontal blurring is shown in Figure 5.3(b). The color of a single
pixel is spread out on the neighboring pixels to create a continuous transition. This effect
is enhanced by repeating the operation along the vertical axis. The final result is shown
in Figure 5.3(c).

Finally, the original texture and the blurred texture are combined. This is done by
simply summing up the two pixel values on every position.

The range of the glow effect can be increased or decreased by changing the convolution
kernel size respectively. On the other hand, the glow intensity depends on the kernel
weight. To create a bright glow effect, a convolution kernel with a weight larger than one
is used.
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(a) (b) (c)

Figure 5.3: The Two-Step Separable Approach for Creating Blurs Efficiently [42].
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CHAPTER 6
Implementation

CellPathway is implemented seamlessly in the Unity3D game engine. Since Unity3D
supports advanced GPU programming, most parts of the simulation system as well as
the entire collision detection algorithm, have been implemented with compute shader
programs. This enables to manipulate object data directly on the GPU, which eliminates
data transfer from the CPU to the GPU per frame. In this chapter, a detailed description
of the implementation of the simulation system and the collision detection algorithm is
given.

6.1 Simulation

The implemented simulation system consists of two parts: preparation and simulation
step. Since object data is stored exclusively in texture buffers on the graphics card, all
parts of the simulation system which are manipulating object data are implemented with
general-purpose GPU programming, using multiple compute shaders. In this section,
both parts are explained in detail.

6.1.1 Preparation

The preparation phase of the simulation only needs to be executed once, at the beginning
of every simulation. The main purpose of this stage is to identify all participants of
the simulation. Since the information about the objects in the scene is located on the
GPU, the entire preparation phase is executed with shaders. The simulation system
distinguishes between proteins and reactants. While reactants are consumed in the
course of a reaction, proteins are used to illustrate the structure of a cell and are not
changed by a chemical reaction. Both, the reactants and the proteins are checked, if
they are inside of the compartment sphere or not. A molecule is considered to be inside
of the compartment, when part of a molecule’s bounding sphere intersects with the
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compartment sphere. Because reactants and proteins have to be handled differently, the
simulation preparation is implemented in two compute shader kernels, which are executed
consecutively.

For every reactant inside of the compartment, a molecule object, consisting of flags
and reference IDs to store information about coherence between objects, is created. With
the reference IDs a molecule can be assigned to a specific reaction, a collision and the
reaction tree structure. On the other hand, the protein objects, which are created for
every protein participating in the simulation, contain only a reference to the passive
protein data. Additionally, a counter keeps track of the number of reactants and proteins
inside of the compartment, as well as the number of reactants per molecular type. The
determined values are sent subsequently to the CPU. This way, the exact number of
needed work groups of each compute shader kernel call during a simulation step can be
specified.

6.1.2 Simulation Step

A simulation step contains all processes which are done once per frame during simulation.
Since the effectiveness of a single step is crucial for the overall performance, special
methods are used to increase the processing speed. This section describes the single
procedures of a simulation step.

Reaction Generation

Reactions are initiated by the omniscient intelligence. In regular time intervals, the OI
calls the simulator to initiate multiple reactions. The length of the time intervals can
be set by the user. Since each reaction has to be processed separately on the GPU, the
number of created reactions per frame is limited to 20 to increase the performance. If
more reactions are supposed to be initiated, the remaining reactions are queued. The
simulator checks every frame if the reaction limit is already reached and initiates queued
reactions if possible.

For every initiated reaction, a shader searches for appropriate reactants which are not
already included in an open reaction. The selection of molecules is partially randomized.
While the first reactant is picked randomly, all other molecules of the specific reaction
are selected by their distance to the first molecule. Only the molecules closest to the first
reactant are assigned to the reaction. When all required molecules could be found, a
reaction object is created. A reaction object contains the following information:

• Reactants and products: The reaction stores the number of needed reactants and
products, the molecular type of the products and a reference to the included
reactants. This allows bidirectional access between the molecules and the reactions,
which is needed in the further simulation steps.

• Position: The position where the reaction will take place is needed during the
molecular movement step and when the products are created. The position is
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calculated by adding up the selected reactant’s position and dividing the sum by
the number of reactants. Additionally, the reaction position is controlled with the
collision detection system to avoid a location inside of an arbitrary protein.

• Reaction protein: The user is able to assign proteins to a specific reaction type.
This way, every reaction of this type needs an arbitrary protein to be carried out.
Therefore, the reaction object stores a reference to a randomly chosen protein inside
of the compartment if a protein has to be included. Additionally, the reaction
position is moved to the center of the respective protein.

• Reaction Tree: When a reaction tree is initialized or when one or more reactants
of the reaction are already part of the reaction tree, a flag is set in the reaction
object. After the reaction is executed and the flag is set, the products are added to
the visualization tree.

So called critical reactions can be regarded as a special case and additional steps are
needed to prevent errors. All reaction, having more products than reactants, are called
critical reactions. Normally, during the creation of products, the reactants consumed by
the reaction are simply overwritten. However, the excess products in critical reactions
have to be appended to the compute buffer. Therefore, the number of reactants inside of
the compartment has to be increased when a critical reaction is processed. Otherwise,
the created products are ignored in the movement and reaction system.

Movement and Collision

Molecules in the scene are moved in three steps. First, Brownian motion is applied to all
reactants and proteins. This is important to create the impression of frantic interactions
and chaos in the scene. While this step is done independently of the simulation, the next
steps are part of the reaction system.

Since chaotic interactions are also desirable during reactions, the new molecule locations
calculated previously are further processed. Reactants included in a reaction have to
reach a specific location. Otherwise, no reaction can be carried out. Therefore, the actual
trajectory is calculated by blending the reaction steering force with Brownian motion.
This prevents linear pathways and enables the simulation of molecular trajectories more
realistically. Since a collision detection system is included in the movement procedure,
the calculated locations are stored as movement vectors to enable further processing.
Whenever a reactant’s new position is located outside of the compartment sphere, the
movement vector is reversed instead.

The actual movement of the reactants inside of the compartment is done in the third
step. In this step, collision detection is also included. First, the molecule’s position,
rotation and movement vector are passed to the collision detection algorithm, to find a
collision with a protein. Since proteins are much larger than the reactants, a collision
has no influence on their movement. On the other hand, the movement vector of a
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reactant is shorten in case of a collision. When a reactant needs to enter a specific protein
to perform a reaction, collision between the protein and the reactant is ignored. The
collision detection system is described in Section 6.2 in more detail.
Afterwards, collision between reactants is checked. Since reactants can interfere with
each other, a collision affects both participants. Therefore, a collision object is created,
which stores the two reactants of a collision, their movement vectors and the ratio of the
movement vectors, calculated by the collision detection method. When no collision was
found, the location of the molecule is updated.
In a further step, the collision objects are processed and the reactants are moved until
they collide. When the collided molecules are assigned to the same reaction, a flag is
set in both molecule objects to indicate that they are ready for execution. When all
molecules included in a reaction are ready, a perform-reaction object is created.

Reaction Execution

The last step of the simulation system is the reaction execution step, where perform-
reaction objects are processed. Since every reaction stores information about the partici-
pants, the involved reactants can be accessed easily. During the first step, the reactants
are deleted. To minimize the number of molecules stored in a compute buffer, the buffer
positions of deleted molecules are saved. This way, whenever a product is created, deleted
molecules can be overwritten.
In the second step, new products are created. The collision detection algorithm is used
to find a free position in the scene, as close as possible at the reaction position, for each
product. Additionally, a flag to enable the glow visualization effect is set for each product
and the included protein.

6.2 Collision Detection

Collision detection among many 3D objects is an important component of physics
simulation and most efficient implementations are structured in a two-phase approach: a
broad phase followed by a narrow phase [40]. During the broad phase, collision between
objects is determined by using basic bounding volumes, like minimal bounding spheres.
Those tests are fast and cheap to calculate. However, since approximated bounding
volumes are too imprecise for more complex shapes, errors occur in the collision tests.
Therefore, further processing with the precise shape of objects is necessary, which is
done in the narrow phase. Since those tests are much more costly and require more
calculations per collision test, they are only executed for potentially colliding objects,
found during the broad phase.

In this project, collisions between molecules are calculated. Since each molecule
consists of multiple atoms, which are represented as spheres, and each object is enclosed
by a spherical bounding volume, the same collision algorithm is used during the broad
and narrow phase. The only difference between the two phases is that the collision test
is executed once per object during the broad phase and once per atom during the narrow
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phase.
Due to the difference in size between reactants and proteins, two steps have to be executed
during collision detection. Since the number of reactants inside of the simulation compart-
ment is much larger than the number of included proteins, the fast fixed-radius nearest
neighbor algorithm combined with the spatial subdivision technique, both introduced in
Chapter 5, are used to minimize the amount of collision test between reactants. On the
other hand, proteins are excluded of those optimization methods and collision between
reactants and proteins is calculated by brute force. Each spatial cell is as least as large as
the biggest participant. Since proteins are excluded, the cell size is much smaller, which
results in less required collision tests per object.

In the first step, collision between proteins and reactants is tested. Since proteins
are much larger and heavier than reactants, the collision has no impact on a proteins
movement. On the other hand, the movement vector of the reactant has to be adjusted.
Therefore, each reactant is tested for collision with each protein inside of the simulation
compartment. Whenever a collision is found, a new movement vector for the reactant is
calculated.
During the second step, collision between reactants is tested, whereby collision for a
specific object is only tested with reactants in neighboring cells. The moved reactant is
tested in a broad phase manner first, followed by the precise collision tests during the
narrow phase.

Since precise collision detection requires many calculations and is costly to compute
on a per frame basis, a second collision detection algorithm has been implemented.
Since molecules are moving fast and a chaotic interaction is simulated, exact collision
calculation is not always necessary. In many cases, an approximated approach is sufficient
for the simulation purpose. Therefore, the user can decide if the exact or the simplified
collision detection algorithm should be used during the simulation process. During the
approximated approach, the narrow phase is not executed. This increases the overall
performance immensely.

Description of the Collision Detection Algorithm

The collision detection algorithm returns a new movement vector if a collision was
detected. The returned vector has the same direction as the original movement vector
but its length is reduced to the maximum possible length the object can move without
colliding. How this new movement vector is created is shown in Algorithm 6.1. The
mathematical approach is based on the concept proposed by Heuvel and Jackson [44]

The spatial difference between two objects, measured from their center, the original
movement vector and the sum of the object’s radii are passed to the algorithm. It should
be noticed, that the algorithm can be used for either partially static or dynamic collision
tests. In a partially static collision test, the reactant is moving while the protein is seen as
stationary object and the movement vector corresponds to the movement of the reactant.
Whereas in a dynamic collision test, both participants are moving and both movements
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have to be used. In this case, the movement vector corresponds to the movement of one
reactant in relation to the movement of the second reactant, as shown in equation 6.1.

realtiveMovement = movement1−movement2. (6.1)

In Line 3 of the Algorithm 6.1, the closest distance cd to the second reactant is
calculated. If this value is not larger than zero, then the objects are moving in different
directions. This early escape test is done in line 4.
The squared distance from cd to the center of the second sphere is calculated in line
7 and is called f . This value is needed for the second escape test. When the closest
distance between the spheres during the movement, which is stored in the variable f , is
larger than the sum of their radii, no collision can occur. This test is done in line 12.
At this point it is certain that the two spheres will collide. Therefore, the movement
vector has to be shortened. The amount of adoption is calculated in line 15 and is stored
in t. The new movement length can be calculated by using the Pythagorean theorem,
which is done in line 16. Finally, the shortened length of the shortened movement vector
is returned.

Algorithm 6.1: Collision Detection
Input: Two float3 named diff and movement, and a float value called sumRadii.
Output: The new vector length or −1.

1 float movementLength = length(movement);
2 float dist = length(diff);
3 float cd = dot(normalize(movement), diff);
/* Early escape test */

4 if cd <= 0 then
5 return −1;
6 end
7 float f = dist * dist - cd * cd;
/* Eliminate precision errors */

8 if f < 0.0001 then
9 return f = 0.0f ;

10 end
11 float sumRadiiSquared = sumRadii * sumRadii;

/* Early escape test */
12 if f >= sumRadiiSquared then
13 return −1;
14 end
15 float t = sumRadiiSquared - f;
16 float newMovementLength = cd - sqrt(t);
17 return newMovementLength;
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CHAPTER 7
Results

A reaction system and a collision detection algorithm have been implemented to simulate
biochemical reaction networks. Additionally, three visualization techniques, a real-time
glow effect, cone clipping and a reaction tree are used in order to communicate the
happening during the simulation. In a real cell, biological networks are created by
multiple complex biochemical reactions, which consist of a large number of reactants. To
simulate those processes and to illustrate large hierarchical structures, it is required to
include many reactants in the reaction procedure. But the overall number of calculations
executed during the simulation process increases with every additional reactant taking
part in the reaction process. Therefore, the single steps of the simulation system must
be performance efficient to enable the simulation of life inside of a whole cell.
In this chapter, the visualization of the described reaction system, the collision detection
and the three visualization methods are demonstrated. Furthermore, the performance
analysis of the simulation process is discussed.

7.1 Simulation and Visualization
The simulation system is tested with a dataset created with the cellPACK [21] modeling
tool, showing a human blood serum surrounding HIV virus. Additionally, 50000 reactants
of five different molecular types have been placed throughout the scene. By using a
compartment radius of 300, abut 350 reactants have been included in the reaction system,
processing four reaction types.

Figure 7.1 shows snapshots from the reaction process of the type:

A + A→ B + C (7.1)

In Figure 7.1(a) the two reactants of type A, which are included in the reaction, are
moving to the calculated reaction location. The collision of the molecules is shown in
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(a) (b) (c)

Figure 7.1: Snapshots from the processed reaction A+A→ B +C. (a) The two reactants
approach each other. (b) The objects are colliding and the reaction is processed. (c) The
reactants have been removed and the products are placed.

Figure 7.1(b). Since reactions are triggered by contact, the reaction system removes
both reactants and creates the products B and C. Figure 7.1(c) shows the placement
of the newly created products. To avoid overlapping molecules, the collision detection
algorithm is used to find free areas around the reaction location.
Furthermore, it can be seen in Figure 7.1 that every molecular type has a separate color.
This allows the users to imply the reactants and the ongoing reaction without considering
the molecular structure.

A screenshot from the reaction tree visualization technique where the reactants are
processed by four reaction types is shown in Figure 7.2. After initiating the starting
reaction it took approximately 20 seconds of the simulation time until the tree structure
has reached the illustrated size. It can be seen that created products are included in
further reactions, which are initiated afterwards. By using the color of a molecular type
for single lines it is possible for the user to determine which reaction has been processed
at a specific location and which products have been included.

Screenshots of the last two implemented visualization techniques are shown in Figure
7.3. An example of the real-time glow effect is given in Figure 7.3(a). The camera is
positioned in such a way that the entire compartment is shown. By highlighting the
created products, the user is able to determine when and where a reaction is processed
during the simulation. In Figure 7.3(b), a close-up of individual glowing molecules is
shown. By comparing the glow radius in Figure 7.3(a) and (b), it can be seen that the
size of the glowing effect depends on the distance of the camera to the specific object.
When the camera is close to the highlighted product, the size of the glow effect around
the molecule is reduced to avoid superposition of molecular structures.
A screenshot of the cone clipping effect is given in Figure 7.3(c). In this example, a
clipping cone with a 15◦ angle is used to remove interfering proteins, which are located
between the selected protein and the camera. A simplified transparency effect is applied
on molecules around the clipping cone to prevent losing the impression of depth in
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Figure 7.2: Snapshots from a reaction tree structure while simulating four different
reaction types with approximately 350 reactants.

the scene. The color of a translucent object is combined with the color of concealed
opaque objects or the background color, but not with other transparent object. Although,
excluding translucent objects during the alpha blending process increases the rendering
performance, artifacts are created when molecules are located at the edge of the scene.
An example of those artifacts is shown in the top right corner of Figure 7.3(c). When
no opaque objects are located behind a transparent protein, the object color is mixed
with the background color black. This leads to a wrong perception of depth, because
transparent objects which are located closer to the clipping cone are shown darker than
the objects behind it, which are positioned further away.

7.2 Performance Analysis

Since the performance of the simulation system depends on the number of reactants
participating in the reaction process, two performance tests with different numbers of
reactants are discussed. The performance of both tests were measured on an Intel Core
i7-3930 CPU 3.20 GHz coupled with a GeForce GTX Titan X graphics card using the
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Unity3D profiler. Because the implemented visualization techniques have only a minor
impact of approximately 1ms on the overall performance, the performance analysis
discussed in this section concentrates on the single steps of the reaction system.

Simulation Steps Test 1 [ms] Test 2 [ms]

Reaction Generation 3 12
Movement 13 33

Reaction Execution 1 7

Table 7.1: Average performance results of the single steps of the reaction system during
approximately 130 frames. The first test included 322 reactants and was executed at 45
frames per second, while the second test contained 1138 reactants and was performed at
18 frames per second.

Table 7.1 shows the performance results of the three main steps of the reaction system
in two tests containing 322 and 1138 reactants. While reactions are generated and
executed when needed, only the movement step is processed per frame. Therefore, the
average processing time during approximately 130 frames was measured in both tests to
give a more realistic representation of the overall processing time.
This time interval of about 130 frames corresponds with the adjusted reaction cycle of the
COPASI API, in which new reactions are initiated. Since the reaction system stores the
list of new reactions given by COPASI and processes them over time by initiating only 20
reactions per frame, the processing time of the reaction generation step fluctuates between
0ms and approximately 160ms. While the processing time of the movement step was
consistent in both tests, the reaction execution step fluctuated as well. During the first
test the performance to execute completed reactions was in a range between 0ms and 2ms.
Since more reactions have to be executed over time with an increased number of reactants
participating in the simulation system, the processing time of the reaction execution
step increased and fluctuated between 0ms and 15ms during the second test. Those
immense fluctuations of the processing time during reaction generation and execution
lead to non-stable frame rates and possible stuttering during the simulation.

By comparing both tests it can be seen, that the movement step needs the most
processing time. With 13ms in the first tests and 33ms in the second test, approximately
60% of the overall processing time is consumed by moving the reactants and applying
the collision detection algorithm. This shows the importance of including optimization
methods, such as the spatial subdivision and fast fixed-radius nearest neighbor algorithm,
to decrease the overall number of calculations per frame.
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(a) The glow effect during simulation. (b) Close up of the highlighted reactants.

(c) Cone clipping with a 15◦ angle.

Figure 7.3: Snapshots of the visualization techniques real-time glow effect and cone
clipping.

39





CHAPTER 8
Conclusion and Future Work

I have introduced a tool to simulate and visualize biochemical reactions and biological
networks in a large and complex multiscale structural model. Due to the collision detection
algorithm, which is able to work at the level of single atoms, the implemented reaction
system is able to simulate molecular interactions in a realistic way. For load balancing,
advanced GPU programming was used for data manipulation as well as optimization
algorithms to minimize the number of calculations per frame and to enable simulation
with more than 1000 reactants participating in the reaction process. Due to the size and
complexity of cells and their inner life, containing billions of atoms, it is necessary to
visually communicate the proceedings during the simulation to the user. Therefore, three
visualization techniques have been implemented. A real-time glow effect in combination
with a conical clipping object are used to point out interesting areas where reactions
occur. The third implemented visualization technique, a hierarchical structure called
reaction tree, is used to illustrate a biological network, by illustrating the impact of one
reaction on the entire reaction system.

Although this reaction system is able simulate more realistic molecular behavior it also
encloses some limitations: Firstly, due to the complexity and large amount of calculations
per frame, the simulation process is reduced to a spherical compartment. To increase
the maximum number of reactants included in the reaction process, further optimization
algorithms for movement and collision detection could be implemented. The second
limitation refers to the limited reaction animation, which are triggered by contact and do
not include the spatial position of single atoms. In future work, molecular structure of
the participants could be broken apart in real-time to illustrate how atoms dock together
and how new bonds are created at the correct spatial position. Another limitation is
about the simplicity of the reaction process. In CellPathway, an arbitrary protein can
be assigned to single reactions. Thus, the reaction position is moved to the location of
the specific protein, whereby the molecular type of the protein is not taken into account.
Furthermore, proteins are not synthesized or broken apart during the reaction process.
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In further versions, a more advanced reaction system could be implemented to simulate
changes of the cell structure. Finally, the explanatory visualization of biochemical
processes is limited by the overall amount of ongoing reactions during the simulation.
Currently, it is not possible that the user can follow a specific molecule during the reaction
process. Therefore, a combination of a leaded camera and a slow motion technique could
be implemented to improve the way how the processing of individual reactions are
communicated to the user. Furthermore, this approach would allow the user to follow a
specific molecule through out the scene and to illustrate the molecule’s reaction pathway.
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APPENDIX A
Download and Installation

1. Download the current version of Unity3D from the webpage https://unity3d.
com/get-unity/download?ref=personal and install the program.

2. Clone the git repository from https://github.com/UnityDevTeam/CellPathway.
Alternatively, you can download the ZIP-file with a browser of your choice and
extract the package afterwards.

3. Start Unity3D and open the project by accessing its root folder.

4. Open the scene "hiv+blood" located in "Assets/Scenes".

5. If the graphical user interface is not already open, click on "Windows → CellPath-
way". CellPathway is now ready to use.
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APPENDIX B
Configure and Run a Simulation

1. Import and Place Molecules: First, molecule species have to be imported. This
is done with the Molecular Species Editor shown in Figure B.1(a). By clicking
the button "From PDB File", a window opens and a file describing the molecular
structure must be selected. A new PDB-file can be downloaded from the RCSB
protein data bank [23] or a existing file can be used, which are located in the folder
"TestMolecules". All imported molecules are displayed in the Editor. Next, the
quantity of the molecular species must be set, since the default quantity is 0. After
all desired molecules have been set and customized, they can be placed inside of
the scene.

2. Set Reactions: All reactions which should be processed during the simulation
must be defined in the Reaction Editor shown in Figure B.1(B). By clicking on the
button "Add Reaction", a new empty reaction is added to the system. The reactants
are defined through the listboxes on the left side of the arrow while the products
are defined with the listboxes on the right. To include a random protein into the
reaction process, the checkbox "React on Protein" must be activated. Optionally, a
reaction name can be set.

3. Simulation and Visualization: The simulation can only be performed in the
Unity3D playmode. To enable the playmode, the arrow-button in the toolbar must
be pressed. Since the simulation is only performed inside of the compartment sphere,
a protein must be selected by pressing the right mouse button. This places the center
of the compartment at the proteins location. The selected protein is highlighted
for visual feedback. Simulation settings can be changed in the Visualization and
Simulation Editor shown in Figure B.1(c). The following settings can be changed:

• Fast Collision Detection: When the fast collision detection is enabled, the
narrow phase of the collision detection algorithm is not executed during the
simulation. This increases the frame rate significantly.

45



B. Configure and Run a Simulation

• Show Copasi Output: When enabled, the initiation orders send by the COPASI
API are shown in the Unity3D console.
• Compartment Checks: Defines the time interval when the simulation system
should check if new molecules have been moved inside of the compartment.
Those molecules are included in the reaction process as well.
• Compartment-Radius: Defines the radius of the compartment sphere.
• Speed: Sets the speed of the reactants during simulation.
• Volume: Defines the volume of the simulation compartment. Is needed by the

COPASI API when a new simulation is started.
• Simulation Steps: Sets the real time interval of a simulation step in the

COPASI API [27].
• Visualization Steps: Sets the real time interval of a visualization step in the

COPASI API [27].

When the simulation settings are adjusted, the simulation process can be started
by pressing the "Start Simulation" button and afterwards stopped by pressing the
"Stop Simulation" button.
Two visualization settings can be changed: Cone-Angle and Fixed-Color. The cone
angle defines the angle of the clipping cone, while fixed-color sets a static color for
the reaction tree.

4. Reaction Tree: The Reaction Tree Editor is shown in Figure B.1(d). This window
is only displayed when a simulation has been started and is located at the left
corner in the Unity3D game view. The type of the initiating reaction can be set by
selecting a reaction in the "Reactions" section. The linecolor of the reaction tree
can either be set to the molecular color type or to a fixed color. By clicking on
the "Initialize" button, the simulation is paused and the tree structure is initialized.
After one click, the button text changes to "Play". By pressing the button again,
the simulation process is resumed and the reaction tree is created over time. The
"Pause" button allows to pause the simulation process at any time.
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(a) Molecular Species Editor. (b) Reaction Editor.

(c) Visualization and Simulation Editor. (d) Reaction Tree Editor.

Figure B.1: Shows the graphical user interface.
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