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Kurzfassung

Seit die fraktalen Eigenschaften des trabekulären Knochens eines Knies entdeckt wurden,
schenkt man den Methoden zur fraktalen Analyse einer 2D Knochenoberfläche mehr
Beachtung. Das hat zum Teil damit zu tun, dass Röntgenaufnahmen die billigste bild-
gebende Technik im klinischen Routinescreening ist und zum anderen wurde gezeigt,
dass trabekuläre Knochen des arthrotischen Patienten zu Deformierungen führen, lange
bevor der charakteristische Gelenkschwund auftritt. Das ultimative Ziel eines solchen
Algorithmus würde die Differenzierung von gesundem und ungesundem trabekulären
Knochens sein.

Diese Arbeit präsentiert meinen Report über meine Implementierung des „Variance
Orientation Transform“ (VOT) Algorithmus, eine fraktale Methode, welche anders als
vergleichbare Methoden, die Möglichkeit bietet die Knochenstruktur in verschiedenen
Richtungen und über verschiedene Maßstäbe zu quantifizieren. Es basiert auf der Idee,
dass ein einzelner fraktaler Dimensionswert nicht genug für die Beschreibung einer
solch komplexen Struktur wie der eines trabekulären Knochen ist. Aus diesem Grund
berechnet VOT mehr deskriptive fraktale Dimensionen, was man auch als fraktale Signatur
bezeichnet (engl. ‘fractal signatures’, kurz FSs)

Im Kapitel 1 und 2 wird der Leser in den Begriff der Fraktale und deren theoretischen
Hintergründen sowie in den theoretischen Hintergründen des VOT Algorithmus eingeführt.
Im Kapitel 3 werden ähnliche Techniken für die Analyse von trabekulären Knochen
vorgestellt und im Kapitel 4 mein praktischer Versuch der Implementierung des VOT
Algorithmus im Detail erläutert; zudem wird im selben Kapitel der VOT durch die
Benützung von künstlich erzeugten fraktalen Oberflächen überprüft und seine Fähigkeit
zwischen gesunden und ungesunden Knochen zu differenzieren wird untersucht. Das
5. und letzte Kapitel fasst weiter mögliche Ideen zur Verbesserung und Testung des
Algorithmus zusammen.
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Abstract

Since the fractal properties of the knee trabecular bone were discovered, fractal methods
for analyzing bone surface radiographic projections have gained more attention. This
is partly due to the fact that radiography is the cheapest imaging technique in routine
clinical screening and partly due to the fact that it was shown that the trabecular bones
of osteoarthritic patients indicate early deformations, even long before the characteristic
join loss occurs. The ultimate goal of such an algorithm would be to differentiate healthy
from unhealthy trabecular bone.

This paper presents a report of our implementation of the Variance Orientation
Transform (VOT) algorithm, a fractal method, which unlike other similar methods, is able
to quantify bone texture in different directions and over different scales of measurement.
It is based on the idea that a single fractal dimension value is not enough to describe such
a complex structure as the trabecular bone and thus, VOT calculates more descriptive
fractal dimensions called fractal signatures (FSs).

In Chapters 1 and 2 we introduce the notion of fractals and the theoretical back-
ground behind them and the VOT algorithm. In Chapter 3 similar techniques for
analyzing trabecular bone are presented and in Chapter 4 our particular attempt at
implementing VOT is described in detail; moreover, in the same Chapter VOT is validated
using some artificially generated fractal surfaces and the ability of differentiating healthy
and affected bone is also investigated. The last Chapter, Chapter 5, covers further
possible ideas of improving and testing of the algorithm.
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CHAPTER 1
Introduction

The human bone can be formed out of two types of osseous tissue: the cortical bone (also
known as the compact bone) and the cancellous bone (also known as the trabecular bone,
in short, TB or spongy bone — Figure 1.1). The latter is of particular importance to the
present work due to its special characteristics.

Figure 1.1: Cross-Section of a long bone showing the difference
in structure between trabecular and cortical bones. Image cour-
tesy of Wikipedia user Pbroks13, licensed under CC BY 3.0 (http:
//creativecommons.org/licenses/by/3.0/).

Usually a trabecular bone can be found at the end of long bones, such as for example
the tibia. This tissue is significantly less dense than the cortical bone, rendering it less
resistant to fracture and more prone to bone degeneration which happens for example
during the onset of Osteoarthritis (OA). The particular structure of the trabecular tissue
plays an important role in transferring mechanical load from joints along the bone (along
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1. Introduction

the midshaft1). Due to its spatial arrangement, high stress concentrations are avoided,
i.e., the stress is dissipated. This basically means that the greatest ‘strength’ of the bone
is also its greatest weakness. The smallest functional unit within the cancellous bone is
called trabecula (Figure 1.2) and it has recently been shown that the alignment of the
trabecular network is strongly influenced by the mechanical load distribution within the
bone [GMH+14].

Figure 1.2: Cancellous bone under the microscope: the rose chan-
nels represent the trabeculae, while the dark blue stains represent the
bone marrow. Image courtesy of Department of Histology, Jagiel-
lonian University Medical College http://www.histologia.cm-
uj.krakow.pl/index.html.

Already the early stages of OA produce rather significant changes in composition
and organization of the TB. For example, not only the formation of abnormally thick
and vertical trabeculae can be observed, but also an increase in BVF (bone volume
fraction) [KWCZ95, KWCZ]. Usually, OA is strongly linked to articular cartilage loss.
Most detection methods are therefore targeted in detecting cartilage degeneration while
overlooking other possible early indications of OA, which were shown to settle long before
the cartilage even begins to decay [BW04].

To address the matter stated above, Wolski developed some methods that are
capable of assessing the TB roughness and integrity only based on X-ray images of the
knee joint ([WPS09]). Among these methods there is also the most promising one called
Variance Orientation Transform, or simply VOT, which is also the topic of this work.

1midway between the epiphyses of a long bone. Source: http://medical-dictionary.
thefreedictionary.com/
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Even though the method is a bit far from producing the wanted outcome, its results so
far have shown that the idea is clearly on the right track. Wolski himself stated that
once such a tissue-based decision-making system (that can tell the difference between
an affected and a non-affected bone — the ultimate goal) will be mature, ‘it could be
used for clinical studies such as the evaluation of effects of medication, intra-articular
injections, or surgical interventions on the progression of OA’ [WPS09, p. 1].

This work focuses on implementing and last but not least, validating the VOT
algorithm described by Wolski. This is done because the method is very promising and
shows great room for improvements, which shall be introduced and further studied in our
future works. The investigation of the VOT algorithm requires understanding of some
properties that the TB (and its radiographic images) exhibits, properties that also make
the theory behind it applicable in this particular case. Wolski lists these properties in
[PSD+10, p. 1]:

1. TB exhibits fractal properties, i.e., it is (visually) self-similar over a wide range
of scales. Moreover, the TB hides self-similar processes in it. As Lopes and
Betrouni put it [LB09, p. 635], ‘the measured length increases as the scale of
measurement increases. Thus, in fractal geometry, the Euclidean concept of “length”
becomes a process rather than an event, and this process is controlled by a constant
parameter’. The mentioned parameter is the so-called Hurst coefficient, a very
important parameter in the study of self-similar processes in statistics;

2. Radiography is the cheapest and most popular imaging technique used in routine
clinical screening;

3. The radiograph is a 2D projection containing data directly related to the underlying
3D TB structure;

4. TB texture images contain information that is useful for the prediction of knee OA.

Every notion that is still unclear up to this point, such as fractal properties, self-similarity,
scales, Hurst coefficient etc., will be explained in Chapter 2, which covers the entire
theoretical background behind the VOT algorithm.
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CHAPTER 2
Background

2.1 Fractals

In 1983 Benoît Mandelbrot introduced the notion of fractal geometry [Man83]. This
type of geometry differs strongly from the ‘traditional’ Euclidean geometry by being
able to analyze and quantify very complex shapes, signals or structures. In the same
book mentioned above, Mandelbrot defines a fractal as following: "a rough or fragmented
geometric shape that can be split into parts, each of which is (at least approximately)
a reduced-size copy of the whole". The term fractal has been first used by the author
already in the year 1975 in need of characterizing a complex object that lacked integrity
and order. His idea stemmed from the Latin word fractus which translates to broken or
fractured.

A structure, a surface or a shape is thus considered being a fractal when it possesses
a defining set of features, called fractal properties. These properties are put together by
Falconer [Fal04, p. 13]. He says that when F is a fractal, the following properties will
apply most of the cases:

P1. F has a fine structure, that is, detail on arbitrarily small scales.

P2. F is too irregular to be described in traditional geometrical language, both locally
and globally.

P3. Often F has some form of self-similarity, perhaps approximate or statistical.

P4. Usually the fractal dimension of F (defined in some way) is greater than its topological
dimension.

P5. In most cases of interest, F is defined in a very simple way, perhaps recursively.

5



2. Background

(a) Mandelbrot Set at original size (b) 6-fold magnification

(c) 100-fold magnification (d) 2000-fold magnification

Figure 2.1: Mandelbrot Set at different scales. Images licensed under GPL (General
Public License).

Four out of five properties listed above are pretty self-explanatory and thus no
further elaborations are made regarding them. Instead, the fractal example from Figure
2.1, which is also widely-known as the Mandelbrot Set, can very well illustrate those
characteristics. Thus, in all four images, 2.1a, 2.1b, 2.1c and 2.1d, the fragmented state
of the structure can be clearly seen (property P2 ). It is impossible to describe such
structures by making use of just angles and lengths of segments, as it is usually done
with Euclidean geometry. Further, properties P1 and P5 can be observed in 2.1d. There
are infinitely, alike-looking, many elements that compose the structure. Last but not
least, property number 3 can be understood when considering all four images in turn.
It is obvious that there are some elements that keep reappearing when considering the
structure at different scales.

A single property, namely property P4, was omitted in the visual analysis from the
previous paragraph. The reason is that it is impossible to understand the meaning of
it just by comparing or observing the images above. This property also contains two
terms that are of particular significance in the field of fractal geometry and last but
not least in the investigation of the VOT method: fractal dimension (also known as
Hausdorff–Besicovitch dimension) and topological dimension. The meaning of the terms
and of the property as a whole will be clarified in the following sections, as they play an
important role in the present work.
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2.2. Fractals in nature and humans

2.2 Fractals in nature and humans
Usually, such fractal behavior, as described in Section 2.1, can often be observed in the
complicated fabric of nature. The nature with its intricate patterns was actually the
reason why Mandelbrot introduced a whole new way of analyzing these patterns with a
hope of gaining a better understanding of the phenomenon.

A series of examples of how intricate the patterns of nature are can begin with the
fern, an ancient, primitive plant (cf. Figure 2.2a). It can be easily observed that within
the leaves of the fern the same branching pattern repeats itself over and over again,
beginning with the stalk. Another example from the same class of so-called branching
fractals is the basin of a (usually) big river (cf. Figure 2.2b). The same branching
pattern can be observed here as well, at different magnification levels. This interesting

(a) Fern plant with recursively repeat-
ing branching pattern, at different
scales. Photo courtesy of Jonathan
Wolfe.

(b) Self-similar river network from the
Shaanxi province in China. Scale is 300
km across. Colors represent elevation.
Image courtesy of Bruce D. Malamud,
Kings College London.

Figure 2.2: Different fractal behaviour in nature

behavior was studied by Leonardo da Vinci, long before it was all turned into a science.
He observed that all the branches of a tree, taken at a particular height along an arc,
when put together, have the same width as the tree trunk (cf. Figure 2.3). This is also
applies to smaller branches that divide into even smaller twigs. In this situation each
branch acts like the trunk for the smaller branches.

The human anatomy also presents some characteristic fractal patterns. For example
the lung bronchioles indicate branching fractal arrangement (cf. Figure 2.4). The same
behavior can be observed when looking at arteries and veins in Figure 2.5 and 2.6. The
iris of the human eye is also home to some intricate designs (cf. Figure 2.7).

All the examples above can be observed at a macro level, but these designs also
persist in the microarchitecture of different tissues. For example, the neural network
shows a certain degree of irregularity (cf. Figure 2.8). The same is true for the TB, the
test subject of the VOT algorithm, which will be presented later in Chapter 4 (cf. Figure
2.9).

7



2. Background

As stated in Chapter 1, the TB features all fractal properties from P1 to P5 to
be suited to undergo a fractal analysis such as VOT. ‘The main tool used to describe
the fractal geometry and the heterogeneity of irregular shapes’ ([LB09, p. 635]) is called
fractal dimension - FD (fractional, as in Mandelbrot’s early studies - [Wol67]), which
will be explained in the next Section. Therefore, the goal for algorithms like VOT is to
find the best possible approximation for the FD of a fractal surface. Usually, the FD is a
very sought-after parameter in the image analysis in the medical field.

2.3 Fractal dimension vs. topological dimension
In Section 2.1 the properties of fractals were listed and illustrated. However, property P4
was set aside due to the impossibility of explaining it in pictures. This property says
that an object is considered a fractal if (among other) its fractal dimension (also known
as Hausdorff-Besicovitch dimension Dh) is greater than its topological dimension (Dt).
Lopes and Betrouni define the two as following [LB09, p. 635]:

Definition 1 The Hausdorff-Besicovitch dimension Dh is defined as the logarithmic
ratio between the number N of an object’s internal homotheties and the reciprocal of the
common ratio r of this homothety:

Dh = ln(N)
ln(1

r )
(2.1)

Definition 2 The topological dimension Dt of an object corresponds to the number
of independent variables needed to describe it. Thus, a point is 0-dimesional, a curve
is 1-dimensional, a plane is 2-dimensional, and in general an Euclidean space Rn is
n-dimensional.

Definition 2 does not require any further explanations and definition 1 can be easily
understood with the help of a straightforward example: the von Koch snowflake curve, a
simple geometrical fractal.

In Figure 2.10, if we look at the first triangle segment-wise, we see that in the next
iteration each and every segment has turned into 4 smaller segments, each of those being
only 1

3 of the original one. In this case, 4 will be N , the number of internal homotheties
(irregularities) and 1

3 will be the ratio of each homothety to the original parent. This
gives a fractal dimension of Dh = ln(4)

ln( 1
1
3

) ≈ 1.26. This is a non-integer value, while the

topological dimension is always an integer. The non-integer value of 1.26, ‘greater than
one but less than two, reflects the unusual properties of the curve. It somehow fills more
space than a simple line (Dt = 1), but less than an Euclidean area of the plane (Dt = 2)’
[PSB88, p. 28]. In the same manner, to a 2D (in terms of topological dimension) fractal

8



2.3. Fractal dimension vs. topological dimension

Figure 2.3: Sketch from Leonardo da Vinci’s notebooks representing his observations on
the fractal pattern of the tree branches. Source: Google Images.

Figure 2.4: Branching fractal pattern in the bronchial tree. Photo courtesy Ewald Weibel,
Institute of Anantomy, University of Berne.

Figure 2.5: Branching fractal pattern in the vessels within the human retina. Image
courtesy of Paul van der Meer.
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Figure 2.6: Branching fractal pattern in the vessels within the human hand. Source:
Google Images.

Figure 2.7: Human eye iris showing peculiar arrangement of the stroma. Source: Google
Images.
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2.3. Fractal dimension vs. topological dimension

Figure 2.8: Hippocampal neurons. Scale approximately 700 microns. Image courtesy of
Paul de Koninck, Universite Laval.

Figure 2.9: Subchondral trabecular bone - microarchitecture. Source: Science Photo
Library (www.sciencephoto.com).

surface, a fractal dimension between 2 and 3 will be attributed. This is the case of the
TB, as we will see in Chapter 4.

To summarize the message of this section, the fractal dimension ‘allows capturing
what is lost in traditional geometrical representation of shapes. In Euclidean geometry,
topological dimensions (Dt) of shapes remain constant and do not provide detail about
the irregularities attached. For instance, in (only) 1D, Dt is unable to distinguish a
straight line and a crooked line’ [LB09, p. 635]. At the same time, a 2D system would be

11



2. Background

Figure 2.10: The first four iterations of the von Koch Snowflake

too much to describe it, so there must be something in-between; that ‘in-between’ is the
fractal dimension of a certain object and it is a measure of how irregular that object is.

Usually, in medical image analysis, the fractal dimension of a surface is not directly
calculated, but a (or more in case of VOT) so-called Hurst coefficient is found first, which
is directly related to the sought fractal dimension, as it will be shown in the following
sections.

2.4 Hurst coefficient
The Hurst coefficient (also known as Hurst exponent) is a very important parameter in
the study of fractal geometry. The idea behind it stems from another interesting field of
study, namely hydrology. This term came into being while Harold Edwin Hurst, as a lead
researcher, was studying the optimum dam sizing for the Nile river [Hur51] [HBS65]. The
rain and drought cycles around the river basin were exhibiting some sort of randomness or
‘chaotic’ behavior, meaning that they could not be efficiently and consistently predicted.
Thus, the Hurst exponent was introduced and it tried to bring some ‘order into chaos’.

Statistically, the Hurst coefficient is a measure of long-range dependency1 of time
series2 (the radiograph of a TB can be seen as a 2D time series with different intensities
at different points ‘in time’). Therefore, the Hurst exponent is a global property of a

1also known as long-range memory, long memory or long-range persitency - a term that arises when
studying the decay of statistical dependency (autocorrelation) of two or more measurments with increasing
time between the measurements

2a sequence of data points that come out of successive measurements at different but equally-spaced
time intervals

12
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process, while the fractal dimension is only a local property. For self-similar processes
(applicable for TB, as already presented in Chapter 1), ‘the local properties are reflected
in the global ones, resulting in the celebrated relationship’ [GS01, p. 1]:

D = n+ 1−H (2.2)

where n is the topological dimension of the surface in discussion. This means that in the
case of the TB:

D = 3−H (2.3)

where n was replaced by 2.

The H parameter was first introduced to the field of fractal geometry by Mandelbrot
[MWC68], who was inspired by the studies of Hurst. It was shown to indicate a ‘mild’
(positive correlation between measurements at different time points in a process) or ‘wild’
(negative correlation) randomness [MH05], depending on its value. As the H parameter
can take values between 0 and 1, a value smaller than 0.5 represents a ‘wild’ randomness
and a value bigger than 0.5 represents a ‘mild’ randomness. This makes sense when
checking the statements with equation 2.3: a value of H closer to 0 would mean an
overall D with a value very close to 3, meaning that the surface is so complex that there
are almost 3 dimensions required to describe it. The surface is said to be ‘rough’. On the
other hand, when the H is closer to 1, the D would get closer to 2, meaning that the
fractal surface is not very fragmented and 2 dimensions would suffice to describe it, i.e.
the surface is said to be ‘smooth’ in this case.

When applying the observations above to the 2D projection of TB, a ‘mild’ ran-
domness (H between 0.5 and 1) corresponds to a healthy bone, whilst a ‘wild’ one (H
between 0 and 0.5) would correspond to a more damaged/rougher bone. The latter is
perhaps due to the early effects of the OA within the TB.

The goal of the VOT algorithm is to find this so-called Hurst coefficient and together
with it also the fractal dimension of the TB projection. VOT belongs to the class of
fractal methods when speaking of medical image analysis, because it makes use of all
the principles and properties of fractals presented in previous sections. There are also
non-fractal methods that produce fair results. The difference between the two will
be illustrated in the next Chapter. In the same Chapter state-of-the-art methods for
assessing TB and grading of OA will be presented as well.
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CHAPTER 3
State-of-the-art and similar

approaches

Normally, in daily clinical practice, the OA within the knee is found and assessed by
calculating JSN (joint space narrowing — Figure 3.1) and by observing the development
of osseous cysts (Figure 3.2) and osteophytes (Figure 3.1) on the surface of the bone
within the joint. This information is extracted from knee plain radiograph since it is the
cheapest imaging technique. Other strong indicators of OA, which can also be seen in
the radiographs include: increased density of the subchondral bone (sclerosis — Figure
3.1) and bony remodeling (due to the attempt of the bone to repair itself). All the
above-mentioned parameters can either be visually quantified by a specialist or there
exist special decision support systems that do an automated quantification and return a
human-readable report.

Figure 3.1: Reduced medial JSN, sclerosis and osteophyte formation due
to OA. Source: http://stemcelldoc.wordpress.com/2011/11/16/knee-
osteoarthritis-grading-limitations-of-x-rays/.
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3. State-of-the-art and similar approaches

Figure 3.2: Bone cyst formation due to OA. Source: Google Images.

Once the possible indicators of OA are assessed, a grading of the affection is decided
based on the so-called K-L system (Kellgren–Lawrence grading scale) [KL57]:

Grade Description
0 No radiographic features of osteoarthritis.
1 Possible joint space narrowing and osteo-

phyte formation.
2 Definite osteophyte formation with possi-

ble joint space narrowing.
3 Multiple osteophytes, definite joint space

narrowing, sclerosis and possible bony de-
formity.

4 Large osteophytes, marked joint space nar-
rowing, severe sclerosis and definite bony
deformity.

Table 3.1: Different grades of OA after KL scale.

Even though the mentioned method for discovering and grading of OA was proven
to be consistent over a very long period of time, it has been criticized for not being
accurate enough to discover the early impacts of OA on the TB, such as the thickening
and tendency for vertical alignment of the trabeculae.

In the field of medical image analysis there have been several methods developed
that take radiographs as input and return different meaningful texture parameters. Most
of the methods are also applied to the TB. There are non-fractal, as well as fractal
approaches (such as VOT) being used, investigated and further improved at the time of
writing this work.
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3.1. Non-fractal methods

3.1 Non-fractal methods

This class of methods analyze a radiograph by extracting other possibly interesting bone
surface features, in a lot different manners.

3.1.1 Co-occurence matrix

A co-occurrence matrix can be computed for each and every possible image of size n×m
after the following formula:

C∆x,∆y(i, j) =
n∑
p=0

m∑
q=0

{
1, if I(p, q) = i and I(p+ ∆x, q + ∆y) = j

0, otherwise
(3.1)

where C(i, j) is the (i, j)th entry in the co-occurence matrix, p and q are spatial coordinates
in the image and I(p, q) is the intensity of the pixel found at position (p, q) in the image.
∆x and ∆y are given offsets for x and y coordinates which depend on a direction and on
a distance. C is a square matrix having its dimension the number of intensities found in
an image.

Basically, equation 3.1 says that each entry in the co-occurrence matrix will be
occupied by the number of pixel pairs from the original image for which the following are
true (number of co-occurring intensities at a given offset):

1. The intensity of the first pixel from the pair is equal to i, i.e., the number of the
current row in the co-occurence matrix.

2. The intensity of the second pixel from the pair is equal to j, i.e., the number of the
current column in the co-occurence matrix.

3. The two pixels have a certain given distance between them.

4. A line passing through the pair of pixels makes a given angle with a horizontal
reference line.

As an example [V12, p. 153], for the following RGB image, consisting of intensities
with values 0, 1, 2, 3:

R =

0 0 1
0 1 2
0 2 3

 , G =

1 2 3
0 2 3
0 1 2

 and B =

1 3 0
0 3 1
3 2 1


the co-occurrence matrix would have the following form when computed for the given
direction of 0 degree (i.e. horizontal direction) and distance of 1:
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C =


1 3 2 1
0 0 3 1
0 1 0 3
1 1 1 0


This means that for example there is only 1 (C(0, 0) = 1) pair of pixels of intensities
0 (i = 0) and 0 (j = 0) which are neighbors (distance 1) and which lie horizontally to
one another (direction 0 degree). This is true, the only such pair being in matrix R on
positions (0, 0) and (0, 1).

The co-occurence matrix is a measure of texture and it is often used in medical
image analysis. Usually because these matrices are extremely big and therefore sparse
(meaning that they contain relevant information only in pathces, since, for example, a 16
bit deep gray level image will generate co-occurence matrices of sizes 216 × 216), certain
metrics of the matrices are often extracted that lead to a more useful, describing set of
features for the texture. These features are referred to as Haralick features (also known
as statistical measures) and among them are [HSD73, p. 619]:

Measure Description
Contrast A measure of local variations in the original

image.
Correlation Measures the joint probability occurrence

of the specified pixel pairs.
Energy Equal to the sum of the squared elements

in the co-occurence matrix. It is also called
uniformity or angular second moment

Homogenity Measures the distribution of elements in
the co-occurence matrix to the main diag-
onal.

Entropy Measures the degree of randomness in the
signal.

Table 3.2: Some Haralick features.

3.1.2 Line Fraction Deviation (LFD)

LFD is a texture algorithm that was designed to find main orientation within struc-
tures. Given the particular construction of the TB, with trabeculae oriented after stress
distribution within bone, the algorithm is generally used to assess the dominating orien-
tation of the trabeculae inside the TB, as it can be a strong indication of different bone
deformations.

For the assessment, radiographs of TB are acquired. Over each radiograph’s center
a mask will be placed. Because this mask needs to be rotated to find a so-called LFD
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index for different directions, the mask needs to be smaller than the original radiograph.
This is to guarantee that during the rotation the mask remains within the boundaries of
the radiograph. Usually the selected region of interest (ROI) from the radiograph is of
size 256× 256 and the mask is chosen to be 180× 180. This means that the said mask
will consist of 180 adjacent lines, each of them consisting in turn of 180 pixels. At first,
the grid is placed with its edges parallel to ROI’s edges and for each line within the grid,
the ratio of bright pixels to the dark pixels is saved. After all lines are analyzed, there
will be 180 ratios saved. Out of these ratios a SD (standard deviation) is calculated,
which is the needed LFD index. At the end the grid is rotated and the calculations are
repeated to yield LFD indexes in different direction. For a simple illustration of the
process, see Figure 3.3. At the very end, after every desired direction is analyzed, a rose
plot of orientation is drawn, its peaks indicating the dominant orientation of the bone
structure.

The algorithm was developed as a replacement for an older one, called mean intercept
length(MLI), which works in a very similar way, but instead of calculating ratios, it only
stores the number of intersection of the mask’s lines with bright and/or dark pixels. The
area of the ROI is divided through the obtained number and the result is the MIL. The
MIL usually produces elliptical plots with not much information regarding the texture,
while LFD appears to be sensitive to anisotropy and thus much more useful.

A possible problem with this algorithm is that even though it is able to work directly
on radiographs, for good accuracy the image has to be binarized, which can lead to some
degree of information loss.

3.2 Fractal methods

Since it has been proven that the TB exhibits clear fractal properties [FP96], the fractal
methods for describing TB texture have gained more attention lately. In the following
subsections some popular fractal methods will be described shortly. The disadvantages
of those methods that led to the development of VOT will also be pointed out.

3.2.1 Box-counting Method(BC)

There are three main variations of the box-counting algorithm, but they all work under
the same principle with some slight modifications and adaptions.

The simple box-counting method lays, in turn, square boxes of different sizes r
over a ROI and counts how many boxes are needed to cover the entire signal. Usually r
is chosen as small as computationally possible and every reiteration is decreased even
more (cf. Figure 3.4). After a given number of reiterations is completed, the values
that represent the number of boxes are plotted versus the different corresponding box
sizes. A linear regression is fitted on these data points and the slope of the line will be a
approximation of the FD (fractal dimension) of the TB surface.
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Figure 3.3: Illustration of LFD algorithm. Figure and explanations taken from [Ger98,
p.384]
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The main drawback of this method is that it can only work with binarized signal
[LB09]. As a consequence, information loss is almost always imminent.

Figure 3.4: Illustration of how the BC algorithm is chosing smaller and smaller boxes.
Image courtesy of Wikipedia Creating User ‘Akarpe’: https://en.wikipedia.org/
wiki/Box_counting#/media/File:32_segment_fractal.jpg.

3.2.2 Differential Box-counting Method(DBC)

In contrast to BC method, DBC is able to work with untouched, unprocessed radiographs
of the TB. Therefore, binarization is not needed anymore and the information loss can
be avoided, the analysis being thus possible directly on the gray scale image.

The difference from the original BC method lies only in the different partitioning
of the image. Here, the entire image is partitioned in blocks of a given size r and on
each such block, 3D columns composed of boxes of sizes r × r × r′ are laid, where r′ is
the height of each box which depends on the number of total gray levels present in the
image. The height of the column also depends on the number of intensities available in
the radiograph. Each box in the column is numbered and the boxes where the minimum
and maximum intensities lie are found. This is possible if one imagines that the image
would have a third dimension which represents the intensity levels and which can be
imagined to be parallel to the box columns, upwards (cf. Figure 3.5 as an example with
boxes with size 3× 3× 3 and underlying blocks of size 3× 3). The difference between
the maximum and the minimum are computed and stored for each block. For example,
in Figure 3.5, the minimum is within Box 1 and the maximum is within Box 3, meaning
that the difference will be 3− 1 = 2 in this case.
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After all the differences are available, they are summed together and then the size
of the block is reduced/increased and the calculations are reiterated a desired number of
times. With different sums of intensity differences and different block sizes, a plot similar
to the one in Section 3.2.1 is drawn, a linear regression is computed and the slope of that
line is the FD of the surface. Even if this method is one step in front of the last one, it is
still faulty for it was proven that it usually underestimates the FD. [LCW+14].

3.2.3 Extended-counting Method(XC)

In this case, the entire image is divided into further subsets for which the algorithm from
Section 3.2.1 is applied, the only difference being that for every subset, only two different
box sizes are used. This will produce a FD for each subset and the maximum FD among
the subsets is chosen as the general FD of the surface. Other than being able to run
only on skeletonized (binarized) images, this method was found to overestimate the FD
[LB09, p. 636].

Figure 3.5: Sketch of DBC selecting blocks and boxes [LDS09].

3.2.4 Triangular Prism Method(TPM)

This particular method of finding the FD of a fractal set/surface is different from the
fractal methods mentioned before in that it uses so-called intensity area measurements
to find an approximation for the FD.

At first, a square mask of given size r is placed over the signal. The four corners of
the mask will fall on certain pixels of certain known intensities. These points are viewed
as terrain elevation. The center of the square will also have an attributed elevation
(intensity), which will be the mean of the surrounding elevations. All the corners will
be connected to this mean elevation and thus triangles of different inclinations will be
formed. The entire structure in a prism (cf. Figure 3.6).
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(a) Prism viewed from the side. (b) Prism seen from above.

Figure 3.6: Created prism after connecting terrain elevations [Cla86].

Next, using Heron’s formula the entire surface area (the sum area of all the triangles
formed) of the prism is calculated.

At the end, the process is reiterated by increasing/decreasing the base size r and
after a given number of iterations, the obtained total surface areas are plotted against the
base sizes. The data is fitted with the best fitting line based on least squares principle
and the slope of this line corresponds directly to the FD of the fractal set [SFQ97]. Even
though the method was found to be the fastest in its class of area calculation methods,
it was also proven that it underestimates the FD and it is very sensitive to noise and
extreme grey-level values [LB09, p. 637].
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CHAPTER 4
Variance Orientation Transform

4.1 Motivation

As stated in Chapter 3, most of the methods intended for the analysis of TB surface that
were developed prior to VOT only calculate a single FD as the representative value for
the entire bone surface. This was proven to be just a limited indicator of the complexity
of the TB, compared to how much information the 2D radiograph holds in reality.

In 2001, Keaveny et. al. [KMNY01] showed that the TB is of anisotropic nature,
meaning that its characteristics are changing with the direction in which the signal is
analyzed. This observation rendered the previous fractal methods obsolete, when applied
to TB. Moreover, in Section 2.2 it was already mentioned that the TB indicates strong
fractal properties. This fact is of crucial importance since ‘a fundamental characteristic
of fractal objects is that their measured metric properties, such as length or area, are
a function of the scale of measurement’ [LB09, p. 634]. Indeed, it was shown that TB
changes not only with direction, but also with the scale [PF00, MKA+98].

There are at least two attempts to cover the shortcomings of the already available
algorithms: fractal signature analysis (FSA)[MWTBW05] and Augmented Hurst Orienta-
tion Transform (AHOT) [PLDS08]. The problem is that these two methods only calculate
fractal signatures (i.e. FD over individual scales) in horizontal and vertical direction,
i.e. 0◦ and 90◦. In 2008 Wolski proposed a fix for this problem — Variance Orientation
Transform [WPS09]. VOT is able to find more FDs, over a wide range of scales, along
every possible direction. In the following sections our attempt at implementing of VOT
will be described in more detail.
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4.2 Surface representation
First, a number of mathematical notations must be introduced. A 2D bone radiograph is
saved in digital format in form of pixels, each having a different intensity value attached
to it. Thus, an image is digitally represented by a matrix of size Nx ×Ny, where Nx and
Ny are the number of pixels in the horizontal and vertical directions respectively (i.e., the
numbers of columns and rows of the matrix). This means that the spatial coordinates x
and y can take following values: x ∈ {0, 1, ..., Nx} and y ∈ {0, 1, ..., Ny} with any pair
(x, y) coding for a position in image. Note that since this attempt at implementing
VOT was first done in Matlab R2013b, the indexing begins at 0. Further, because the
intensities of each pixels must also be coded somehow, another set, the data value range,
must be introduced: z ∈ {0, 1, ..., Nz} with Nz being the maximum number of intensities
that can be represented within a particular image. For example, in case of a 16 bit pixel
encoding, each pixel can have an intensity between 0 and 216−1. In short, as Wolski says
[WPS09, p. 212], the image can be seen as ‘a function which assigns a brightness value z
to a pixel location (x, y), i.e. z = I(x, y)’.

4.3 Preprocessing
As with every data acquisition technique, radiography is prone to many type of noises
which can stem from different sources Almost every element of the system can be a noise
generator [SH00]. It is thus important to reduce any noise as much as possible because
otherwise the calculations within the algorithm can be affected and the end result could
vary too much from reality. In the present approach at implementing the VOT algorithm,
two methods were investigated for filtering out the unwanted noise.

First method was proposed by Podsiadlo et al. [PSD+10, p. 324]. This method
removes high and low frequency noise in the following manner: the high frequency noise
is reduced by applying a 5 × 5 median filter; the low frequencies are diminished by a
technique called background image subtraction, as follows. First, an average filter is
applied in order to obtain a smooth, low-frequency image. Second, this newly-created
low-frequency image is subtracted pixelwise from the original image (the one that the
median filter has already been applied to).

With this work we propose our own method for filtering which involves eliminating
all pixels that lie outside a certain number of SDs (standard deviations) in the intensity
distribution of the image. To achieve this, first a blurred image is obtained by applying a
median filter. Second, the blurred image is subtracted pixelwise from the original image
and the SD is calculated for the result image. Third, the pixels in the image where the
difference is bigger than 6× SD are marked as ‘hot’ or ‘cold’ pixels (depending on which
side of the distribution they appear). Finally, all the intensities of all the marked pixels
are replaced by the corresponding values (from the same spatial coordinates) from the
blurred image.

Normally, the appropriate filter does not affect the features of the image we are
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interested in. Thus, the output of consecutive filtering should be the same as the original
image in case there is no noise. Judging by this criterion, the second method has proven
to be better, as the results only differ in the order of 10−3 in terms of calculated FD,
whereas when applying the first method, the results indicate considerable changes in the
order of 10−1, which can have a serious effect on the interpretation of the results. This is
because the calculated Hurst coefficient lies in interval (0, 1), with the first decimal point
being the most meaningful; the decision whether the image is smoother or rougher is
drawn after the first decimal point (greater or smaller than 0.5).

An example of a noisy image can be seen in Figure 4.2. This ROI was extracted
from a knee radiograph from within the medial part of the TB (cf. Figure 4.1). In Figure
4.3 one can see the image after the proposed filter was applied. It is clearly visible that
many ‘hot’ (white) or ‘cold’ (black) pixels that are present in the original image, can no
longer be observed after the operation is done. This kind of filtering can not only be
used with TB, but with any radiograph that is susceptible to noises such as salt and
pepper noise.

Figure 4.1: Knee radiograph with markings for to-be-extracted ROIs.
The left box is placed within the lateral TB (one can deduce that
because of the presence of the fibula in the lower left corner) and the
right box within the medial. Image taken from [PSD+10, p. 325]

After the filtering is done, the image is ready to be processed with the VOT
algorithm.
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Figure 4.2: Noisy image of medial TB

Figure 4.3: Filtered image of the same medial TB. The clarity of the
image seems slightly distorted (blurred) to the human eye but the
structure (the position and orientation of the trabeculae — green) is
not affected.

4.4 The Algorithm

This Section covers the detailed description of our attempt at implementing the VOT
algorithm, which was first described by Wolski [WPS09]. For a better overview of the
entire process a simplified sketch can be seen in Figure 4.7.

Step I. A circular, or rather a ring mask is defined as the search region of the
algorithm. This ring has the inner radius of four pixels and the outer radius of 16 pixels.
The search region is forced to be completely inside the image by skipping the pixels that
are too close to the borders. This is to make sure that the bottom half of the search region
is within the limits of the imagen and thus the calculations remain consistent. Using a
predefined set of directions (in this case 24 directions, i.e. every 7.5◦ in range [0, π)),
differences between intensities of each pixel along each direction and the center of the
search region are calculated and saved (the pixels along each direction are discovered by
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means of the Bresenham’s algorithm). Along with these differences, Euclidean distances
of all pairs are also calculated and stored in an appropriate matrix R where the columns
represent increasing Euclidean distances (image sizes) from the center of the search region
and the rows represent different directions. Note that the pairing with the center of the
search region is done only for pixels that lie between the two defined radii (cf. Figure
4.4).

Figure 4.4: VOT search region. Only the pixels that lie in the grey
region will be considered for the calculations.

Step II. The algorithm checks if along every considered direction, the maximum
possible number of pixels was discovered (i.e. the number of pixels in the horizontal
direction or 0◦, which is 16−4+1 = 13 pixels, because the pixels lying on the inner radius
are excluded, but the ones lying on the outer radius are included). If there are directions
along which less than 13 pixels were discovered, a second attempt at ‘completing’ these
directions is made as follows:

1. A direction that was found to not have 13 pixels is selected.

2. A line is drawn along that certain direction.
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3. The line is equally spaced obtaining 13 different points with real coordinates
(a1, b1), (a2, b2), ..., (a13, b13) (cf. Figure 4.5). These points represent the locations
of possible pixel candidates. The candidates are found as follows:

3.1. The first point P1 of coordinates (a1, b1) is selected and its ‘host’ pixel C is
found by rounding its coordinates.

3.2. Around the host pixel a 3× 3 neighborhood is considered.

3.3. All the pixels in the neighborhood are sorted in ascending order by their
Euclidean distance to point P1.

3.4. Every pixel is taken in turn and it is checked whether it has been previously
found to belong to the current direction or to any other direction.

3.5. If a pixel is found to be valid (not member of any other direction yet) its
information (intensity difference with the center of the search region and the
Euclidean distance to the center of the search region) is added to the current
direction in the set R.

3.6. The process is repeated with the rest of the real points until the required
number of valid pixels (13) is found or until reaching the end of the equally-
spaced line with not enough pixels. If the latter is the case, the direction is
discarded from further calculations.

4. The entire process is repeated until there are no directions left.

It is important that along all directions (after discarding the invalid ones) the number of
pixels is the same, otherwise the simulation of scales would not be possible later in the
algorithm. The reason why in Step I the angle between adjacent directions was chosen to
be 7.5◦ is because before starting the algorithm it is not known how high is the maximum
number ‘valid’ (with 13 pixels) independent directions. Therefore, the assumption that
the minimum angle between two independent directions is 7.5◦ is made and through
the pixel inclusion or direction selection process presented in Step II, ‘invalid’ directions
are discarded from any further calculation. This way the maximum possible number of
independent beams (directions), for a search region of dimensions presented in Step I, is
forced.

Step III. The search region moves one pixel to the right and steps I and II are
repeated. The whole process is repeated until the search region reaches the end of the
image (bottom-right corner). Note that the search region only stops on pixels where its
lower half is completely inside the image. The calculations are only done for the lower
half of the search region because the other directions are equivalent (270◦ is the same
as 90◦, 0◦ is the same as 180◦ and so on). While the search region analyzes the whole
image, the newly-found differences between center and each pixel within the region are
stored together with the older ones.
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Figure 4.5: (a) set of pixels that are found along some directions before
the enrichment step. (b) lines drawn along the directions with a view
of finding candidates to complete the needed number of pixels (13). (c)
the complete set of pixels that contain both the originally-found and
newly-found pixels. Sketch taken from [WPS09, p. 215]

Step IV. All calculated differences and Euclidean distances are saved in form of a
matrix as follows:

R =


r(d11, θ1) r(d12, θ1) . . . r(d1,13, θ1)
r(d21, θ2) r(d22, θ2) . . . r(d2,13, θ2)

...
... . . . ...

r(dNd1, θNd
) r(dNd2, θNd

) . . . r(dNd13, θNd
)

 ,

where Nd is stands for the number of directions that were found to be able to have
13 pixels, d stands for Euclidean distance and θ stands for direction. Thus, as already
mentioned in Step I, each row in the above matrix corresponds to a direction and each
column to a image size (13 pixels along each direction, i.e. 13 Euclidean distances to
each of them, i.e. 13 image sizes). The value r(d11, θ1) represents, for example, the first
position (pixel) along the first considered direction (0◦). At the end, after the search
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region is done moving, this entry (and the other as well) contains the Euclidean distance
to the first position along the first direction and all differences of intensities between
the first position along the first direction and the center of the search region of all the
search regions. The differences can be stored in the form of sum of differences, as the
region moves across. Variances of all possible differences stored in all entries are then
calculated. To achieve this, the usual variance formula has to be manipulated a bit,
since in its popular form, σ2 =

∑n

i=1(xi−µ)2

n , all the data is needed before being able to
compute it. For speed optimizations reasons, it is faster to find a way of building the
variance iteratively and not save all the differences:∑n

i=1(xi − x)2

n
= 1
n

n∑
i=1

(xi −
n∑
j=1

xj)2

= 1
n

n∑
i=1

x2
i −

n

n
( 1
n

n∑
j=1

xj)2

= 1
n

n∑
i=1

x2
i − x2

(4.1)

Equation 4.1 shows that the variance can indeed be computed iteratively. This means that
along with the set of differences, a second set of squares of differences must be saved at
each pass of the algorithm. At the end of this step, a new matrix of the same dimensions
as set R will be obtained with each entry indicating the variance of all differences that
were saved for that position in the past. Another trick for speed optimization could
lie in calculating Euclidean distances between pairs only once at the beginning of the
algorithm. This can be done because the relative distances to the center of the ring will
be always the same as it moves around. Out of the same reasons, pixel enrichment can
also be done only once, because it is computationally intensive. Instead of doing it for
each region position, it can be done only for the very first region found to be within the
image borders. Later, the pixel coordinates (as well as the euclidean distances) can be
adjusted as the region moves across (i.e. x+ 1 if the region goes to the right and y + 1 if
the search region switches a row downwards, considering that position (0, 0) in image is
in the top-left corner).

Step V. After the variances for each position relative to the center of the search
region are calculated and stored in the matrix, each row of the matrix will be selected in
turn. Each row corresponds to a direction and it contains 13 entries (for each pixel along
the direction). These 13 entries will be decomposed in 9 subsets, each consisting of 5
entries. The neighboring subsets are shifted with one entry, meaning that two neighboring
subsets will have four entries in common. The Euclidean distance to the 3rd position of
each subset is recorded and it corresponds to a spatial scale (also known as image size
[WPS09]). If the pixel size of the image is known, then the scales can easily be calculated
in millimeters. Thus, each direction will be split up into nine scales of measurement. Each
subset is plotted in a log-log plot of variances versus Euclidean distances. This is done
because it is assumed that the intensities in the image are generated by a fractal Brownian
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function, meaning that the variances of differences V AR[|I(x + ∆x) − I(x)|] ∝ ∆x2H ,
where I(x) is the pixel intensity at the center of the search region, I(x+ ∆x) is the pixel
intensity at a distance ∆x from the center and H is the Hurst coefficient [WPS14, p.
4]. If this relation is logarithmized, the 2H becomes the slope of a straight line that
has that equation (cf. Figure 4.6). Finally, a line is fitted to the plot by means of least
squares principle. The half of the slope of the fitted line represents a Hurst coefficient
in a particular direction, over an individual scale. All calculated Hurst coefficients are
saved in a matrix of this form:

H =


H11 H12 . . . H19
H21 H22 . . . H29
...

... . . . ...
HNd1 HNd1 . . . HNd9

 ,
with Nd being the number of directions just as with matrix R of differences/variances.

Figure 4.6: Schematic illustration of (a) the difference I(x+ ∆x)− I(x)
and the distance ∆x, and (b) the log-log plot of variances agains
distances with the line fitted and the Hurst coefficient H [WPS14, p.
4].

Step VI. Considering the same splitting technique as in Step V, each row of the H
matrix is split into nine subsets. The subsets are grouped with the other corresponding
subsets along other directions. For example, first 5 entries of each row are grouped
together to form a matrix of Hurst coefficients for the first scale and so on. For each
scale matrix a rose plot of orientation is drawn which indicates the anisotropy and the
roughness of the surface. At the end there will be nine rose plots of orientation for each
image size. To each plot an ellipse is fitted by the principles of least squares. Out of the
ellipse three important parameters can be extracted [WPS09, p.220]:

1. The texture minor axis Sta - a parameter describing the most significant roughness
component of a surface. It is defined as half of the length of the minor axis of the
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Figure 4.7: A schematic illustration of the VOT method: (a) a search
region that moves across the image, (b) values calculated for a pair of
pixels within the region, (c) a log-log plot, (d) lines fitted to the plot,
(e) a rse plot of Hurst coefficients and (f) texture parameters calculated
from the ellipse fitted. Sketch taken from [WPS10, p. 2204]

.

ellipse fitted. The Sta parameter is used to calculate the FD using the formula
FD = 3−Sta. Note that in Section 2.4 the FD was defined as FD = 3−H, but in
this case, Sta is equivalent to a Hurst coefficient in the direction of the minor axis
of the ellipse. This direction is used to calculate the most interesting FD because
across the small axis the Hurst coefficient is the smallest and as it was presented in
the current section, a small coefficient (that goes towards 0) indicates a rougher
surface, a wilder, more random signal (together, the pixel intensities can be viewed
as a discrete signal).

2. The texture major axis Stb - a parameter describing the most significant smoothness
component of a surface. It is an important parameter that holds information about
the integrity of the trabeculae in the bone. This parameter was introduced in this
list by us as we consider it of particular importance.

3. The texture aspect ratio Str measures texture anisotropy. It is defined as the ratio
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of the minor axis to the major axis of the ellipse.

4. The texture direction (orientation) Std indicates the dominating direction of the
trabeculae of a surface. It is defined as the angle between a line parallel to the
horizontal axis of the image and the major axis of the ellipse.

At the end there are nine values for each mentioned parameter, each holding
information for a particular scale of measurement. There can be of course more parameters
extracted. For example, a FD can be calculated in each and every direction, over each
and every scale, just by subtracting the corresponding Hurst coefficient from 3 dimensions.
This would yield the FSs (fractal signatures), but not all of them usually hold important
information. Characteristic for the fractal surface is the largest FD that can be found,
meaning that in that particular direction the structure is more complex than anywhere
else in the image. The largest FD is where the Hurst coefficient is the smallest and that
is always indicated by the minor axis of the fitted ellipse.

4.5 Proof-of-concept

It would be ideal if there would be some degree of certainty that the algorithm works
as supposed. Fortunately, there exist techniques of generating 2D fractal isotropic and
anisotropic surfaces with a given fractal dimension.

For generating isotropic fractal surfaces, a so-called fractal synthesis technique is
used. This algorithm was developed by Saupe [PFS+12, p. 108]. As a first example, a
2D fractal surface with theoretical FDt = 2.7 (i.e. a Hurst coefficient of 0.3) was first
generated. The theoretical FD (FDt) is the FD which the artificial surface was generated
with (cf. Figure 4.8). The FDt is considered as the target FD that a correctly-working
algorithm should come to. Thus, in the end, FDc, which is the calculated FD, must
come as close as possible to FDt. In Figure 4.9 it is visible that over most of the scales
the rose plots look circular, which is an indication of the structure being isotropic, i.e.
it changes the same regardless of the direction considered. It is also obvious that over
scales 1-3 the calculated FDc is approximately 2.7, close to the theoretical FDt. Over
scales 4-6 the surface doesn’t seem as isotropic anymore, the value of 2.7 being detected
only in certain directions, but there is still a tendency of circular plots. Over scales 7-9
the plots are not circular anymore and the FDc varies too much from the expected FDt.
The reason why over larger scales this can happen may be that the algorithm generating
the fractal surface makes use of a random number and therefore the generated structure
depends on this random number. This number is responsible for how the structures of
similar intensities are distributed across the entire image and this distribution may be
detected by the VOT algorithm over bigger scales, since the bigger the scale, the more
structure is caught up in one calculation.

The same behavior as described above can be seen when looking at Figure 4.10
(4.11 respectively) and Figure4.12 (4.13 respectively). The first Figure relates to a fractal
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Figure 4.8: Generated isotropic 2D fractal surface with theoretical FDt = 2.7.

Figure 4.9: Rose plots of orientation (blue) of the Hurst coefficients for each scale and
ellipses fitted (red) for surface from Figure 4.8.
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Figure 4.10: Generated isotropic 2D fractal surface with theoretical FDt = 2.5.

Figure 4.11: Rose plots of orientation (blue) of the Hurst coefficients for each scale and
ellipses fitted (red) for surface from Figure 4.10.
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Figure 4.12: Generated isotropic 2D fractal surface with theoretical FDt = 2.3.

Figure 4.13: Rose plots of orientation (blue) of the Hurst coefficients for each scale and
ellipses fitted (red) for surface from Figure 4.12.
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Figure 4.14: Generated anisotropic 2D fractal surface with theoretical FDt = 2.6 in 30
degree direction and FDt = 2.2 in 120 degree direction [WPS10, p. 2205].

Figure 4.15: Rose plots of orientation (blue) of the Hurst coefficients for each scale and
ellipses fitted (red) for surface from Figure 4.14.
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Figure 4.16: Generated anisotropic 2D fractal surface with theoretical FDt = 2.6 in 120
degree direction and FDt = 2.2 in 30 degree direction [WPS14, p. 7].

Figure 4.17: Rose plots of orientation (blue) of the Hurst coefficients for each scale and
ellipses fitted (red) for surface from Figure 4.16.
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surface with FDt = 2.5, while the second relates to a generated fractal surface with
FDt = 2.3. As a possible conclusion, the small image sizes (i.e. scales 1-3) alone give a
better insight into the complexity of the structure.

In the case of the anisotropic surfaces, an algorithm based on the inverse Fourier
Transform can be used to generate 2D fractal surfaces with a known FDt in a particular
direction. However, we did not manage to have access to the algorithm in discussion and
as a consequence we used reprinted versions of the images generated by Wolski [WPS14,
p. 7], [WPS10, p. 2205].

First, in Figures 4.14 and 4.15 one can see an anisotropic fractal surface and the
results returned by the VOT algorithm after analyzing it. The surface was generated
with a given FDt of 2.6 (or Hurst coefficient of 0.4) in direction 30◦ and a given FDt of
2.2 (or Hurst coefficient of 0.8) in direction 120◦. The values on the rose plots and the
form of the plots suggest that this implementation of VOT is indeed sensitive to surface
orientation, correctly detecting the tilt of the ‘artificial trabeculae’. At the moment of
writing this paper the degree of similarity between the artificially-generated surfaces and
real trabecular surfaces is not known to us.

A second example can be seen in Figures 4.16 and 4.17. This surface has a
completely other main orientation compared to the previous surface, featuring a FDt

of 2.6 in direction 120◦ and a FDt of 2.2 in direction 30◦ (or Hurst coefficients of 0.4
and 0.8 respectively). The orientation and the theoretical FDt-s seem to be detected
correctly in this case as well.

In both cases there are obviously scales that overestimate or underestimate the
FDs. This can happen because of the same reasons as with the isotropic surfaces: the
higher the measurement scale, the more structure gets caught into calculations, the more
affected are the results. The other way around also applies: the smaller the measurement
scale, the less structure is considered into calculations, the less are the results affected by
the structure.

4.6 Results
As mentioned earlier, the ultimate goal of an algorithm like VOT is differentiate OA-
affected from non-affected TB in different stages of OA progression. Once that the
algorithm was tested in Section 4.5, it can be applied to real bone surfaces of controls
(patients without radiographic OA) and cases (patients with radiographic OA) with a
hope of finding a significant difference between the two classes.

First, a ROI from the lateral part of the TB, extracted from a radiograph of a
patient diagnosed with OA, was directly compared to a ROI extracted from a radiograph
of a person with healthy knee TB. The results can be seen in Figures 4.18 and 4.19 for the
osteoarthritic bone and in Figures 4.20 and 4.21 for the fine bone. At a first glance, the
VOT is correctly detecting the orientation of the surface (i.e. of the trabeculae segments)
in both cases. There is an important difference though, namely that in the case of the
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OA bone, the main orientation seems to be distorted on the right side of the ROI (Figure
4.18), while in the case of the healthy bone, the main orientation is more pronounced.
The disconnected trabeculae on the right side are a clear indication of OA. There is clearly
no main orientation at high magnifications, thus the damage being mainly detected by
the smaller scales (1-3). These tend to indicate isotropy, which is uncharacteristic for a
healthy bone. Moreover, in the rose plots one can see that in the case of OA bone, the
fitted ellipses show an alternating behavior, switching their deviation as the measurement
scale grows, while in the case of the healthy bone, the deviations of the ellipses seem to
be consistent over all nine scales. Another important aspect which can be derived from
the plots is that in the case of OA bone, the Stb parameter (the half of the length of the
major axis), which is also directly related to the FD or FSs in the vertical direction, stays
around the value of 0.25, while the same parameter in the case of the healthy bone goes
above 0.5 over most of the scales. This observation also supports the statement made
above, that the OA bone is damaged (i.e. the trabeculae are disconnected and there is
no general orientation in the structure): the value of 0.25, which is lower than 0.5 (see
Section 2.4) and is thus indicating a ‘wild’ or a rougher surface, which in other words
means a distorted structure. Considering that Stb is measured along the direction of the
greatest smoothness, the Sta (which describes the greatest roughness in the surface) is
even smaller, indicating a possibly severely damaged TB.

The vertical and horizontal direction are of particular importance in the study of TB
due to the compressive stress that permanently acts along the bone (vertical direction),
determining expansion in the horizontal direction as well. The presence of forces inside
the bone is normal, because otherwise the locomotion would not be possible, but if the
bone is damaged or deformed in some way, these forces can act abnormally, affecting the
orientation of trabeculae inside the TB.

Second, the algorithm was used on the radiograph from Figure 4.22, which belongs
to a person with radiographic OA and valgus deformation (meaning that the foot is
bent outwards and as a consequence the joint space narrowing is reduced in the lateral
compartment of the TB). As a consequence, it is interesting to analyze both sides of the
bone to see if the valgus deformation produces some changes in the corresponding TB
compartment. The extracted ROI and its VOT report from the lateral compartment
can be seen in Figures 4.23 and 4.24, while the ones from the medial compartment are
illustrated in Figures 4.25 and 4.26. Again, as in the first example, the orientations
are correctly detected in both compartments, but the trabeculae within the lateral part
are damaged because of to the pressure of bone-on-bone contact due to narrowing of
joint space. This statement can be supported by scales 7-9 which show more than one
dominant direction in the structure, whereas scales 1-6 show only one. This can also
be observed with the naked eye. In the lateral compartment there is no much structure
left and many holes can be seen, whereas in the medial compartment the trabeculae
compartments are visible. From the Hurst coefficients’ point of view, the same applies
as in the first example: lower values for the damaged compartments and higher for the
healthy ones.
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Figure 4.18: OA bone surface. Disconnected (red) and continous trabeculae (green).

Figure 4.19: VOT report on image from Figure 4.18.
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Figure 4.20: Healthy bone surface with countinous trabeculae (green)

Figure 4.21: VOT report on image from Figure 4.20.
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Figure 4.22: Bone with valgus deformation and radiographic OA. Medial and lateral
compartments are marked in yellow.
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Figure 4.23: ROI from lateral compartment extracted from 4.22. The holes that indicate
a poor, damaged structure are marked in red.

Figure 4.24: VOT report on image from Figure 4.23
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Figure 4.25: ROI from medial compartment extracted from 4.22. The continous trabeculae
are marked (green).

Figure 4.26: VOT report on image from Figure 4.25
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CHAPTER 5
Conclusion and Future Work

The images presented in Section 4.6 as examples for testing the VOT method on real
TB were carefully selected so their features are visible to the eye, as well as ‘numerically’
detectable by the algorithm. However, OA and non-OA TB may indicate small differences
as well. In this case, the algorithm, in its original form, performs not as good as expected.

A series of system-dependant factors such as different types of noise, contrast shift,
blur, exposure (different mAs values), pixel resolution and projection angle can influence
the results of the VOT algorithm. Therefore, these influences must be investigated in
future works. Aside from system-dependent factors there are human-dependent factors
which must be taken into account when testing the accuracy of VOT. For example, as
shown in Chapter 3, there can be different grades of OA after the KL scoring system. Thus,
different grades of JSW (joint space width), sclerosis, bone deformity and osteophytes
can have different impacts on the FD of the bone surface. It is very hard to find
enough patients of the same age, gender and same bone affections to build a reliable
statistical model and to know if VOT is indeed accurate or not. Once the relation of
all the mentioned factors to the FD of the surface is discovered, the calibration of VOT
algorithm becomes possible, making it able to correctly analyze all kinds of surfaces,
regardless of conditions.

The VOT method has been recently proven to not be able to characterize very small
texture regions due to its limitations that stem from the fact that the search region is of
fixed size and features. As an improvement Wolski developed a flexible version of VOT
called AVOT (augmented-VOT)[WPS14, p. 5]. In our next studies we will investigate
this method and possible improvements to it as well.

This work has presented a way of analyzing and describing the complex structure
of the trabecular bone using the VOT method. There exist a lot of ways of analyzing
different types of fractals, of different forms, complexities and in different fields VOT
being just one approach applicable to fractals in medical image analysis. This gives
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an idea of how complicated to describe fractal surfaces can be. In the future there the
approaches may also be differentiated after each tissue type. In 2006 during the Nobel
Prize Ceremony, Mandelbrot held his 24/7 Lecture on fractals calling them: ‘beautiful,
damn hard, increasingly useful. That’s fractals!’.
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