
Masterstudium:
Visual Computing

Diplomarbeitspräsentation

An Adaptive, Hybrid Data Structure for
Sparse Volume Data on the GPU

Matthias Labschütz

Technische Universität Wien
Institut für Informationssysteme

Arbeitsbereich: Computergraphik
BetreuerIn: Ao.Univ.-Prof. Dr. M. Eduard Gröller

Mitwirkung: Dipl.-Ing. Dr.techn. Peter Rautek

Motivation
Dealing with large, sparse, volume data on the GPU is a necessity in many applications such as volume rendering, processing or simulation.
The limited memory budget of modern GPUs restricts users from uploading large volume data sets entirely. Fortunately, sparse data, i.e., data
containing large empty regions, can be represented more efficiently compared to a common dense array. Our approach proposes an efficient
representation for volume data that decreases the memory requirement for sparse data sets while maintaining high access performance. The
concept of the JiTTree was presented in the journal paper JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure [1], and was
presented at the IEEE Visualization Conference 2015, Chicago, USA.

Hybrid Volume Bricking
We extend the concept of traditional volume bricking to
support four different brick types with varying properties.
We implement dense volume, octree, voxel list and
empty bricks.

This makes it possible to better fit most data sets, which
reduces the memory requirement of sparse volume data
on the GPU. Our approach can be extended to support
additional brick types. The drawback of this hybrid repre-
sentation is that it reduces the access performance. To
improve the access performance we introduce JiTTree.

Results & Future Work
We additionally compare 15 test data sets. Hybrid brick-
ing reduces the memory requirement significantly for
all of them. JiTTree increases the access performance
for certain access patters such as the stencil access in
mean filtering. For mean filtering, we achieve an average
performance gain of 1.29.
We have presented two promising ideas. The first was
the introduction of a hybrid data structure, which was de-
duced from a modular data structure. We believe that
a more general modular data structure could eventually
lead to a variety of high performing data structures which
are not known or widely used today. The second con-
cept was to use data dependent code specialization on
the GPU. We suspect that other GPU based applications
could benefit from data dependent code specialization. A
further investigation could lead to new insight about the
benefits and drawbacks in a more general setting.

JiTTree
JiTTree replaces hybrid bricking with a kd tree of bricks. A data-aware compilation
step transforms general kd tree traversal code into specialized OpenCL kernel code.
Since data sets are typically loaded at the run-time of the program and we construct
JiTTree afterwards, we call our data structure just-in-time compiled tree.

Traditional kd tree traversal:
1int get(int[] pos, Node node)
2{
3 if (node.type != LEAF) { // recursion
4 if (pos[node.axis] < node.key)
5 get(pos, node.leftChild);
6 else
7 get(pos, node.rightChild);
8 } // type checks for every leaf node
9 else if (node.type == OCTREE)

10 return getOctree(...);
11 else if (node.type == VLIST)
12 return getVList(...);
13 else if (node.type == DENSE)
14 return getDense(...);
15 else return EMPTY;
16}

	

JiTTree traversal:
1int get(int x, int y, int z)
2{
3 if (x < 192) {
4 return getOctree(...);
5 } else {
6 if (z < 384) {
7 if (x < 384)
8 return getVList(...);
9 } else {

10 if (y >= 192)
11 return getDense(...);
12 }
13 }
14 return EMPTY;
15}

Global memory fetches into the node data structure are transformed to instruction
fetches. JiTTree directly writes the boundary values of the kd tree to their correspond-
ing conditions and it is not necessary to keep track of the splitting axis direction. The
kd tree of bricks implicitly handles type routing. Each node of the kd tree can directly
execute its type specific traversal code.

Memory Consumption & Performance
The Figure shows the memory and performance characteristics of mean filtering a
data set with 1024×1024×1024 voxels. Traditional dense bricking with varying
brick size is compared to octree bricking and hybrid bricking. The JiTTree results
provide a higher performance with the lowest memory requirement.

Results: Optimized for Memory Consumption

Hybrid 32 Hybrid 64
Hybrid 128

Hybrid 256JIT 128
JIT 256

JIT 64

JIT 32

Dense 32

Dense 64

Dense 128

Dense 256

Octree 32

Octree 64 Octree 128 Octree 256

600

800

1000

1200

1400

1600

1000 1500 2000 2500 3000 3500 4000

m
e
g

a
b

y
te

s

ms

References
[1] Labschütz, M., Bruckner, S., Gröller, M. E., Hadwiger, M., and Rautek, P. (2016). JiTTree: A

just-in-time compiled sparse GPU volume data structure. IEEE Transactions on Visualization and
Computer Graphics, 22(1):1025–1034.

Kontakt: labschuetz@gmail.com


