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Kurzfassung

Moderne Arbeitsabläufe in Architektur und professioneller Gebäudebeleuchtung erfor-
dern physikalisch korrekte Lichtsimulationen für detaillierte und komplexe 3D-Modelle.
Aktuelle Arbeitsabläufe für Leuchten-Entwicklung und Beleuchtungsplanung sind nicht
aufeinander abgestimmt. Bei der Leuchten-Entwicklung werden CAD-Programme ver-
wendet, um 3D-Modelle von Leuchten zu erstellen und Offline-Rendering-Tools, um
die Lichtverteilung dieser Modelle zu visualisieren. Mit Hilfe einer interaktiven Licht-
planungssoftware können während der Beleuchtungsplanung Lichtkonzepte entworfen
werden, indem Modelle von zuvor erstellten Leuchten in einer 3D-Szene platziert werden.
Zu diesem Zeitpunkt ist es nicht mehr möglich, die Lichtverteilung der während der
Leuchten-Entwicklung erstellten Lichtquellen zu modifizieren.

In dieser Diplomarbeit wird ein interaktiver, globaler Beleuchtungs-Algorithmus vorge-
stellt, der die Lichtverteilung einer Leuchte simuliert. Der Algorithmus erzeugt optisch
ansprechende Zwischenresultate bei interaktiven Bildwiederholraten, bevor er zu einer
physikalisch plausiblen Lösung konvergiert. Das Endresultat beschreibt die Lichtausbrei-
tung einer Leuchte und kann als solches direkt in eine Lichtplanungssoftware importiert
werden. Wir kombinieren einen interaktiven, progressiven Photon-Tracing-Algorithmus
mit einem Multi-Resolution Bild-Filter. Unser Algorithmus emittiert Photonen in ei-
ne 3D-Szene eines Leuchten-Modells und verbessert die Ergebnisse mit jeder Iteration.
Wir verwenden Mipmaps, um verschiedene Auflösungen einer Textur zu erzeugen und
integrieren Filter-Techniken, um optisch ansprechende Zwischenergebnisse zu erhalten.

Evaluierungen auf Grundlage objektiver Qualitätsmetriken zeigen, dass der präsentierte
Ansatz die Bildqualität im Vergleich zu ungefilterten Ergebnissen erhöht. Der vorgestellte
Algorithmus ermöglicht eine schnelle Vorschau auf die Endresultate und erlaubt es, Geo-
metrie und Materialeigenschaften einer Leuchte in Echtzeit zu editieren. Dies reduziert
die Zeit zwischen einzelnen Modifikatios-Iterationen und macht Leuchten-Entwicklung
damit zu einem interaktiven Prozess, wodurch die Gesamtproduktionszeit verringert
wird. Darüber hinaus integriert der vorgestellte Ansatz Leuchten-Entwicklung in Be-
leuchtungsplanung und stellt somit eine neue Methode dar, um zwei ehemals getrennte
Arbeitsabläufe zu verbinden.

ix





Abstract

Modern workflows in architectural planning and lighting design require physically reliable
lighting simulations for detailed and complex 3D models. Current workflows for luminaire
design and lighting design are not tailored to each other. During luminaire design, CAD
programs are used to create 3D models of luminaires, and offline rendering tools are
used to visualize the light distribution. In lighting design, light concepts are explored by
placing light sources - previously created during luminaire design - in a 3D scene using
an interactive light-planning software, but it is not possible to modify the light sources
themselves.

This thesis presents an interactive global-illumination algorithm to simulate the light
distribution of a luminaire. The algorithm produces visually pleasing intermediate results
at interactive frame rates, before converging to a physically plausible solution that can
be imported as a representation of a light source into a light-planning software. We
combine an interactive, progressive photon-tracing algorithm with a multi-resolution
image-filtering approach. Our algorithm iteratively emits photons into a 3D scene
containing the model of a luminaire and progressively refines results. We use mipmaps to
create a multi-resolution approach and incorporate image-filtering techniques to obtain
visually pleasing intermediate results.

Evaluations based on objective quality metrics show that the presented image-filtering
approach increases image quality when compared to non-filtered results.

The proposed algorithm provides fast previews and allows interactive modifications of the
geometry and material properties of the luminaire in real time. This reduces time between
modification iterations and therefore turns luminaire design into an interactive process
that reduces overall production time. Furthermore, the presented approach integrates
luminaire design into lighting design and therefore provides a new way to combine two
former decoupled workflows.
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CHAPTER 1
Introduction

1.1 Motivation
Photorealism has become more and more important in modern computer graphics,
for example in industrial applications that rely on high realism and physically correct
simulations. Modern workflows in architectural planning and lighting design require
physically reliable lighting simulations for very detailed and complex 3D models like shown
in Figure 1.1. Therefore, offline rendering is common practice in this area, especially
in luminaire design. Due to the high complexity of offline rendering algorithms, they
are time consuming and thus increase production time and financial cost. Interactive
solutions would make the luminaire and lighting design process more flexible and faster
and so reduce production time.

There has been a lot of research in the area of global illumination and realistic lighting,
and some real-time algorithms to simulate light distributions produce visually convincing
results. However, for physically plausible solutions, only offline rendering algorithms
are sufficiently accurate, which makes the development of an interactive yet physically
plausible lighting solution a challenging task.

1.2 Problem Statement
In architectural planning and lighting design, light concepts are explored by placing light
sources in a 3D scene using an interactive light-planning software. The light sources are
represented by measured light-distribution curves of luminaires and are used as black
boxes that can be positioned in a scene, but not edited in their light-distribution behavior.

The current workflows for luminaire design and lighting design are not tailored to each
other. During the lighting-design process, it is not possible to modify the light sources
themselves.

1



1. Introduction

Figure 1.1: 3D scenes rendered with the light-planning software HILITE

During luminaire design, elaborate interactions of optics and complex materials have to
be considered. The advent of light emitting diodes (LEDs) in industrial lighting solutions
further increased the complexity, amount of LEDs that are built into a single luminaire,
where each should be processed as an individual light source to get precise results for
lighting simulations. 3D representations of luminaires are created using CAD programs
for modeling, and raytracing tools are used to visualize the results. Because these
visualizations have to be very accurate, they are usually slow and can thus be categorized
as offline rendering methods. After each change to the 3D model of a luminaire, it is
necessary to wait for the visualization result in order to see the corresponding effects. So
the iterative development process of a luminaire, consisting of modeling and visualizing,
is a time-consuming, challenging task.

1.3 Contributions

Physically correct lighting and shading is key to photorealistic rendering. As we aim to
achieve more and more photorealism in computer graphics, global illumination gains in
importance and is still an ongoing research topic. This thesis contributes mainly in the
field of interactive global illumination, solving a practical problem for luminaire design
and lighting design applications. The combination of image-filtering techniques that are
used in computer vision, image processing and pattern recognition with state-of-the-art
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1.3. Contributions

rendering methods for global illumination, like photon tracing, unite two main topics of
Visual Computing.

In this thesis we present an interactive global-illumination algorithm that simulates the
light distribution of a light source and produces visually pleasing intermediate results
at interactive frame rates before it converges to a physically correct solution, resulting
in a visualization of the light distribution of a luminaire. To achieve this, we combine
multi-resolution image-filtering techniques with an interactive, progressive photon-tracing
algorithm.

Based on the concept of photon tracing [Jen01], the algorithm emits photons into a 3D
scene containing one or multiple light sources. Using an importance function allows
to direct the photons into directions with a lot of detail, like shadow borders, and use
fewer photons for very homogeneous regions. Results are progressively refined until a
physically accurate outcome is reached. Furthermore, the algorithm utilizes mipmaps
to create a multi-resolution approach where state-of-the-art image-filtering techniques
based on bilateral filtering [TM98] are applied. This gives our algorithm the ability
to upsample image regions that have not yet received enough photons, according to a
pre-defined threshold, and are therefore considered “not stable”. Filtering techniques
are used to interpolate from information on higher mipmap levels to create visually
pleasing intermediate results at low photon counts and interactive frame rates. This
approach is integrated into a light-source design and visualization tool that enables the
user to interactively adapt parameters of the material or the geometry of the model,
change properties of the reflectors or lenses and get the intermediate results rendered at
interactive frame rates. Early results of this rendering process provide a preview of the
light distribution of a specific luminaire and the possibility to instantly change the model
without having to wait for the simulation to finish and converge to the ground truth.
A comparison of our final results to the state of the art for physically correct global
illumination shows that our method achieves comparable results in terms of quality in
less computation time.

With our method we can reduce the development time of new luminaires for light
manufacturers and create possibilities to develop novel workflows for companies that
supply lighting solutions. To that end, our approach transforms the time-consuming,
iterative light-source development into an interactive process. The results of our algorithm
are representations of luminaires, that can directly be imported into and used as virtual
light sources in a light-planning software.

Since our approach offers the possibility to modify light sources parallel to or after
positioning them in a 3D scene, it combines the luminaire design and lighting-design
process.

3



1. Introduction

1.4 Structure of the Work
The following Chapter 2 gives an introduction to lglobal illumination techniques in
computer graphics. Furthermore, the two major concepts, raytracing and radiosity,
are presented, including some more advanced algorithms that build upon these basic
concepts.

In Chapter 3, related work and current state-of-the-art approaches in photon mapping as
well as image filtering are discussed and analyzed and we give an introduction to lighting
design.

Chapter 4 gives an overview of our approach. The basic idea of our algorithm is presented
and we describe the main components of our solution.

The first part of our algortihm is presented in detail in Chapter 5. We explain how
our photon tracer operates and discuss the implemented material model as well as an
importance sampling scheme that we explored.

Chapter 6 describes the multi-resolution image-filtering approach of our algorithm.

In Chapter 7, we explain the architecture of our application. Additionally, implementation
details regarding the used languages, graphic APIs and frameworks are presented.

The results of our approach are shown and discussed in Chapter 8.

Finally, Chapter 9 gives a conclusion based on the presented results and an outlook of
future work.

4



CHAPTER 2
Background

This chapter gives an introduction global-illumination methods and their evolution
in computer graphics. Global illumination in computer graphics has always been a
challenging problem. Numerous different approaches have been explored over the years,
the two most prominent concepts being radiosity and ray tracing [Jen96]. Most of today’s
lighting approaches are based on one of these two concepts.

There have been several enhancements of these methods, some of which will be discussed
in this chapter. In the 1990s researchers started to try to combine these two approaches,
stating that a combination of both would give the best results, but there were some
problems to overcome. Monte Carlo ray tracing, an enhancement to ray tracing, was
considered as time-consuming, while producing noisy results. Radiosity on the other
hand needed a lot of memory and was not capable of rendering specular reflections. Peter
Shirley [Shi90] first presented a method to use ray tracing for shadow rendering as well
as light raytracing for caustics in 1990. In 1991 Chen et al. [CRMT91] published their
multi-pass method for global illumination using path tracing for all diffuse reflections
that are visible from the view point, and radiosity only for rendering soft indirect
illumination. This way, it was possible to get rid of artifacts that usually appeared
when using radiosity. Another improvement shown by Rushmeier et al. [RPJV92] was
a geometric simplification of the model, to reduce memory and speed up the rendering
when using radiosity. Jensen [Jen96] then presented his approach which was to simplify
the representation of the illumination instead of simplifying the geometry by using photon
mapping to optimize the sampling directions, reduce the number of shadow rays, render
caustics, and limit the number of reflections traced. A lot of other methods have been
invented and research in this area is still proceeding. To give an overview about global
illumination we will describe some of the most important models and some enhanced
methods in the following.

5



2. Background

2.1 Radiosity

The calculations for radiosity are based on the interaction between small surface patches
that are assumed to be flat and diffuse [SAS92]. The main idea behind radiosity is to
calculate bounces of light between diffuse surfaces to enable more realistic rendering of
interreflections. Assuming that light bounces around in a scene, each surface is considered
to be a light source, that can cause effects like color bleeding for example. To evaluate
the light transfer between two patches a geometric value, called “form factor”, that has a
range from 0 to 1 is used. This value describes how much light travels directly from one
patch to another. It is affected by the area of the patches, their distance and relative
orientation. If one patch faces away from the other, the form factor is 0. In addition,
a visibility factor is used to describe if two patches have a direct line of sight, or are
blocked by another surface. The radiosity equation can then be expressed as a square
matrix consisting of form factors among all patches in the scene. It is possible to solve
this matrix using Gaussian elimination, which is very time consuming. There has been a
lot of research to simplify the solution of this matrix [AMHH08].

Radiosity is a global solution, that has to be computed only once, because it is view
independent. Furthermore it can simulate color bleeding. That also allows to pre-calculate
it [SAS92].

The downside is that radiosity algorithms have problems with sharp edges like shadow
borders, and they represent their result in a tessellated representation of the model
[Jen01]. Therefore, disadvantages of radiosity arise in complex scenes due to the trade-off
between scene complexity and speed. Also, there is only one radiosity value calculated
for each patch, so this method only works for perfect diffuse materials [SAS92].

2.1.1 Progressive Refinement

To speed up radiosity, progressive refinement, as described by Smits et al. [SAS92], can
be used. This method shoots energy from light sources into the scene. This energy
is collected at each patch. The patch that received the most energy becomes the new
light emitter and starts shooting energy back into the scene. Then the second brightest
patch shoots. Patches, that have already shot all their energy back into the scene, might
be refilled during the shooting of other patches. This process continues until a certain
threshold is reached. Apart from less form factors, that need to be computed (only for
one column of radiosity equation), a big advantage of this method is that it can produce
preliminary results and then refine the solution over time.

2.1.2 Hierarchical Radiosity

Hierarchical Radiosity Algorithms [SAS92] subdivide patches until their form-factor is
small. A tree-structure is generated and patches in this tree-structure are linked, if they
are on the same level and their form-factor is small. Light transport is then only calculated
between these patches. Radiosity is propagated through the whole tree-structure.

6



2.2. Ray Tracing

2.1.3 Importance-Driven Radiosity

The Algorithm presented by Smits et al. [SAS92] aims to speed up and improve the accu-
racy of radiosity. The authors point out two problems in traditional radiosity algorithms,
they tried to overcome: Surfaces that are not contributing any additional information
to the scene and that are still taken into account slow an algorithm unnecessarily down.
This is over-solving globally. Also, there is the problem of undersolving locally. That
means, that the algorithm has too low resolution to preserve small details in a scene.
Under close inspection there might appear shadowing artifacts or false color bleeding.
This problem exists due to the uniform precision radiosity algorithms usually use. So
there is a trade-off between speed, or environment complexity, and accuracy.

The basic idea of Smits et al. [SAS92] to solve these problems is as follows. First, an
adaptive subdivision scheme is used. Directly visible surfaces are refined in high accuracy,
whereas surfaces that have only indirect effects are calculated in an accuracy based on
their contribution. This whole process is guided not only by radiosity. The authors also
introduce “importance” to guide the refinement steps.

This algorithm is an extension to hierarchical radiosity. It refines interactions, that are
contributing the most to the scene. In order to detect these interactions, importance
functions are used and an importance driven subdivision is performed. One challenge is
to identify which interactions are significant enough. Hanrahan et al. [HSA91] introduced
a brightness-weighted hierarchical radiosity algorithm, to meet this challenge. Their
algorithm approximates insignificant interactions, but is view-independent, which still
makes the calculation for complex scenes slow. To overcome this shortcoming Smits
et al. [SAS92] incorporate a notion of view-dependence. Their algorithm uses visibility
preprocessing, considering all potential interactions, but only computing them to an
appropriate level of accuracy. To determine the level of accuracy needed, the algorithm
uses two strategies, radiosity and importance and solves them simultaneously. The
algorithm refines estimates of the transport equations where radiosity and importance
are highest.

2.2 Ray Tracing

Ray tracing is a rendering method where rays are cast from the view point through the
pixel grid into the scene to determine the visibility and lighting of objects. For the closest
object a ray hits, the intersection point is calculated. To evaluate whether this point
is directly illuminated by a light source or in shadow, so called “shadow rays” are cast
directly to the light source to see if any objects block the light or not. Depending on
the surface, the ray might also be reflected or refracted, in which case the reflected or
refracted ray picks up the color of the next surface it hits and the new intersection point
is again tested for shadows. This process is repeated until the ray hits a diffuse surface
or a pre-defined threshold, that specifies the maximum number of bounces, is reached.
This approach of tracing the rays further into the scene is an enhancement to classical

7



2. Background

ray tracing, called Whitted ray tracing. This method can be used for direct illumination,
but is not capable of rendering glossy and diffuse interreflections [AMHH08].

Ray tracing methods are widely used in offline rendering as they produce physically
accurate results, but take a long time to render.

2.2.1 Monte Carlo Ray Tracing

Monte Carlo ray tracing is another enhancement to classical ray tracing that can also
handle glossy and diffuse interreflections in a scene. A random direction is chosen for
each reflection or refraction ray, influenced by the bidirectional reflectance distribution
function (BRDF) of the surface [AMHH08]. Pure Monte Carlo ray tracing is unbiased,
but very time consuming. The variance of Monte Carlo methods [Jen01], depicted as
noise in the renderings, is reduced by an increasing number of samples. To half the error
it is necessary to quadruple the samples. For standard Monte Carlo methods, best results
are achieved with sampling formulas that yield random directions, which are distributed
proportional to the cosine weighted BRDFs.

Importance Sampling

Another improvement is importance sampling [AMHH08], which weights the random
directions of a monte carlo ray tracer according to their probability. For example, for
a glossy surface, rays are more likely to be reflected in or close to the direct reflection
direction.

Russian Roulette

During photon scattering, it is probabilistically decided if and what way a photon is
reflected or transmitted, based on material properties. Russian Roulette [Jen01] is an
importance sampling technique where the PDF (probability density function) is used to
eliminate unimportant photons and therefore reduce work. The PDF is used to decide if
another radiance estimate is evaluated. A percentage of the photons is reflected with full
power, instead of reflecting all photons with a percentage of the power. The advantage is
that we get photons with similar power in the photon map, but the disadvantage is that
we increases variance, because we only sample reflection and transmission values.

2.2.2 Photon Mapping

Photon Mapping is a two-pass method for global illumination. In the first pass the
photon map is created. The light sources emit packets of photons towards all objects
into the scene. If a photon hits a diffuse surface it is stored in the photon map. If a
photon hits a glossy or specular surface a Monte Carlo method like Russian Roulette is
used to determine if this photon reflects on to another surfaces. The BRDF of a surface
defines the reflection direction of photons. They then reflect further until they hit a
diffuse surface and are stored in the photon map. In the end, a large number of photons

8



2.3. Hybrid Methods

are stored, which gives an approximate representation of light in the scene [Jen96]. In
the second pass the scene is rendered. Rays from the view point are traced through a
pixel into the scene until they hit a surface. Around the intersection point the photon
density is estimated. In classical photon mapping, a nearest neighbor search is performed
to find the n nearest photons. The distance to the nth photon represents the radius of a
sphere centered at the intersection point. The flux evaluated by the sum of the n photons
is then set in relation to the projected area of this sphere, to calculate an approximate
indirect illumination [JC98].

2.3 Hybrid Methods
Bi-Directional Path Tracing

Path Tracing is a global-illumination technique, introduced by Kajiya [Kaj86], that uses
radiosity for indirect illumination and Monte Carlo ray tracing for all other illumination.
Monte Carlo ray tracing is generally slow to converge and entirely dependent on the
viewing point. Ideally, an algorithm should also take the light sources into account on the
same basis as the viewing point. Lafortune and Willems [LW93] presented a bi-directional
path tracing algorithm to fulfill this requirement. The basic idea of their method is to
shoot rays from the viewing point and from the light source at the same time into the
scene. All intersection points are then connected with shadow rays. Using this method
allows to take various lighting contributions and also secondary or tertiary light sources
into account.

2.3.1 Instant Radiosity

Algorithms that are based on final gathering, like Instant Radiosity [Kel97], are alterna-
tives to the photon density estimation. Similar to photon mapping, photons are emitted
into the scene and stored where they hit a diffuse surface, after a couple of bounces. The
difference is the second step, where every photon is treated as a virtual point light (VPL)
and a shadow map or shadow volume is computed for each. Instant radiosity methods
suffer from singularity problems that arise when calculating the contribution of a VPL to
a pixel in the proximity of the VPL. This calculation involves a division by the squared
distance between the VPL and the pixel. While in radiosity, the light transport between
finite areas is calculated, instant radiosity replaces the per-area quantities by infinitely
small points with intensity, so this term becomes unbound. As a solution, the term is
clamped to a small number and therefore the method becomes biased [RDGK12].
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CHAPTER 3
Related Work

In this chapter, we first discuss different photon mapping techniques, to solve global
illumination, second, we present some related work concerning image filtering and third,
we will give an introduction to lighting design at the example of a modern light-planning
software.

3.1 State-of-the-Art Photon Mapping Approaches

According to a survey by Kang et al. [KWXM16], state-of-the-art approaches in photon
mapping, like radiance estimation; photon relaxation; progressive photon mapping; or
adaptive photon tracing, face three major challenges: smoothness of images; feature
preservation; and space-savings in terms of low memory consumption, as shown in
Figure 3.1. In the following we will discuss different approaches to tackle these challenges.

Radiance Estimation

Radiance-estimation methods evaluate the radiance that is reflected at a surface point
by integrating over the hemisphere of incoming directions. Photon-mapping methods use
k nearest neighbors (in the photon map) to estimate the radiance of a point:

Lr(x,−→ω ) ≈ 1
πr2

N∑
p=1

fr(x,−→ω p,
−→ω )∆Φp(x,−→ω p)

The reflected radiance Lr at a point x in outgoing direction −→ω is calculated by summing
up the product of the bidirectional reflectance distribution function (BRDF) fr and the
power Φp of each photon p in an area πr2 around x, that represents the projection of the
hemisphere onto the surface [Jen01].
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Figure 3.1: “Analysis of the optimized methods based on three challenges: (a) ideal
solution; (b) radiance estimation methods; (c) photon relaxation methods; (d) progressive
photon mapping methods; (e) photon tracing methods” Reprinted from [KWXM16].

Typically, improved photon mapping algorithms add a filter to the nearest neighbor
density estimator in order to assign weights to photons according to their distance to
the center point [Jen96] or other properties. The search bandwidth has an important
role in these algorithms, because it balances bias and variance (which is visible as noise
in the resulting images). By crossing boundaries of lighting features during a nearest
neighbor density estimation, the bias is increased. To reduce this problem Jensen et
al. [JC95] introduce differential checking. Other approaches use different shapes of
filter kernels or adaptive kernels for nearest neighbor the density estimation. García et
al. [GHUPS14] analyze common filter kernels for density estimation and present new
estimators with improved filter kernels. Despite all improvements in this area, most
radiance estimate methods still increase the computation time of photon mapping, due
to elaborate computations of the radiance estimate.

Photon Relaxation

Photon-relaxation approaches, like presented by Spencer and Jones [SJ13a, SJ13b], try
to distribute photons uniformly in a local area. Iterative point repulsion is used to move
photons , relative to neighboring photons, and according to a displacement vector that
depends on photon flux and photon direction. During photon relaxation, feature detection
methods preserve high-frequency details in illumination information. It is possible to
reduce noise in the results, by applying photon relaxation after photon tracing and before
the illumination is calculated. Photon relaxation algorithms need only a small number
of photons, and therefore reduce rendering time. However, because feature detection is
difficult, photon relaxation is only used for caustic photon maps, which have very distinct
feature.
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Progressive Photon Mapping

Progressive photon mapping (PPM) was introduced by Hachisuka et al. [HOJ08] in order
to reduce memory consumption when casting a large amount of photons. Even though
billions of photons are cast during many iterations, it is not necessary to store the whole
photonmap. After each photon tracing pass, the contribution of every photon is recorded
by accumulating photons in an small area around each hit point. Then these photons
are discarded. Therefore, the memory consumption is only dependent on the amount of
photons that are cast during one iteration.

Adaptive Photon Tracing

Keller and Wald [KW00] introduce an importance driven algorithm affecting the deposi-
tion of photons by storing them only in areas of high visual importance. This reduces
memory cost and computation time by maintaining the same image quality as in previous
photon tracing approaches. The adaptive importance shooting technique, presented
by Liu and Zheng [LZ14], calculates error values of neighbors in order to construct an
adaptive cumulative distribution function, which is used to reflect photons, upon surface
intersection, into directions of areas of interest.

Summary

A number of global-illumination approaches are based on radiosity; raytracing; or hybrid
methods like instant radiosity. The objective of these methods is to render in real time
or at least at interactive frame rates; under the constraint of image quality and speed.
Therefore, approximations are used instead of physically accurate calculations to achieve
solutions in real-time rendering. In recent years there has also been a lot of research
towards real time photon mapping [MLM13] involving screen space optimizations or
culling.

All of the presented state-of-the-art photon-mapping approaches have advantages and
disadvantages. When using radiance-estimation methods, there is always a trade-off
between bias and variance. Feature detection in photon relaxation is difficult, especially
in sparse textures.Most enhanced adaptive photon tracing methods increase rendering
time and memory consumption, but work well for small parts of illuminated regions
[KWXM16]. Progressive photon mapping is currently the best step towards interactive
frame rates or real-time solutions, but needs thousands of iterations to obtain an accurate
result [KWXM16]. However, many progressive photon-tracing methods have reached
interactive frame rates on the GPU.

3.2 State-of-the-Art Image Filtering
There has been a lot research in the field of image processing involving guidance images for
edge-preserving smoothing algorithms that achieve visually promising results. Petschnigg
et al.[PSA+04] present a variety of techniques to enhance images and synthesize new
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images with improved quality from a pair of photographs, one taken with flash to capture
details, and the other one taken without flash to accurately capture ambient illumination.
They introduce a joint bilateral filter for ambient image denoising using the flash image as
guidance image to reduce noies in the no-flash image. He et al. [HST13] use the concept
of this joint bilateral filter to develop a guided image filtering technique that can use
the input image itself as guidance image. Zhang et al. [ZSXJ14] developed a “rolling
guidance filter” to smooth images by using a scale-aware image filter that also takes a
guidance image into account. Their approach works iteratively. First, the input image is
smoothed with a Gaussian filter and then serves as guidance image for a joint bilateral
filter that is applied on the input image. From then on, the result of one iteration is used
as guidance image in the next iteration.

Cho et al. [CLKL14] propose a structure preserving image decomposition operator based
on the bilateral filter, introduced by Tomasi and Manduchi [TM98], incorporating “relative
total variation” (RTV). The authors aim to remove texture, but preserve structure. In
extension to the original bilateral-filtering method, a local patch-based analysis of texture
features is performed in order to obtain a texture description image as input for the range
filter kernel of the bilateral filter. This guidance image substitutes the color or intensity
differences in Tomasi and Manduchi‘s [TM98] formula to construct a joint bilateral filter:

Jp = 1
kp

∑
q∈Ωp

f(||q − p||)g(||Gq −Gp||)Iq

For each pixel, a patch shift operation is done to find a texture patch that contains the
current pixel, is least likely to contain structure and is the best representation for the
texture region containing the pixel. A certain parameter is chosen to specify the patch
size. For each possible and distinct patch that contains the current pixel, a minimum
and maximum intensity is calculated to compute the intensity range of this patch as the
difference of maximum and minimum intensity. From these results, the patch with the
smallest tonal range is chosen, because it has a small likelihood of containing structure
edges. Once this patch is found, its average intensity is used as value in the guidance
image at the position of the pixel, that is currently processed.

A very high tonal range in certain regions can lead to bad results. To target this problem,
the authors suggest using modified relative total variation (mRTV). The algorithm first
computes an average image using a box filter. In the next step the tonal range of each
patch centered on a pixel is calculated.

Then patch shift is used (as described before) to find the patch with minimum tonal
range. For this minimum tonal range patch, a gradient at each pixel covered by this patch,
is calculated and the magnitude of the maximum gradient is selected. This maximum
gradient magnitude is then normalized by the sum of all gradient magnitudes of this
patch and scaled by the tonal range, to obtain the mRTV value, as shown in this formula.
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mRTV (Ωq) = ∆(Ωq)
max
r∈Ωq

|(∂I)r|∑
r∈Ωq
|(∂I)|+ ε

Patch shift can then be used to find the patch with the minimum mRTV value. Because
small mRTV values in very smooth regions may become sensitive to image noise, further
improvements are done. The mRTV value of the patch centered on the current pixel is
compared to the previously computed minimum mRTV value. If these values are similar,
the pixel centered patch is preferred and its corresponding value from the average image
is copied to the guidance image. Otherwise, if the minimum mRTV value is considerably
smaller, the average value corresponding to this patch is used for the guidance image. To
implement this improvement, Cho et al. [CLKL14] suggest blending both average values
together, using the difference in mRTV values as weight.

G′p = αpGp + (1− αp)Bp

where

αp = 2( 1
1 + exp(−σα(mRTV (Ωp)−mRTV (Ωq)))

− 0.5)

Kniefacz and Kropatsch [KK15] introduced a similar approach to reduce noise or unim-
portant details from images by first smoothing the image with a blurring filter and then
restoring edges with a guided edge-aware filter. They propose using a separable Gaussian
range filter or a symmetric nearest neighbor filter as guided filter, to produce faster
results in comparison to the rolling guidance filter [ZSXJ14].

Summary

The presented image-filtering approaches perform very well in noise reduction scenarios.
The proposed smooth and restore method by Kniefacz and Kropatsch [KK15] seems to
be the most promising in terms of image quality and speed. However, since all of the
presented image-filtering techniques require more calculations than a simple bilateral
filter, they also have a higher computation time.

3.3 Lighting Design with HILITE

This master thesis was created in context of “HILITE”, a light-planning software developed
at VRVis. HILITE is modern software tool in this field and considered state of the art in
lighting design.
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Figure 3.2: Complex scene with many light sources, rendered by HILITE.

3.3.1 HILITE - a Light Planning Software

HILITE is “[...] a dynamic, interactive, realistic real-time lighting simulation for complex
architectural environments” [fVRuVFGb]. The software allows light designers to inter-
actively develop a lighting concept for architectural scenes by loading 3D models and
placing and changing light sources in the scene while the illumination is being calculated
and progressively refined. The manipulation of light sources causes the simulation to
restart and yield a physically plausible result in a few seconds. This modifiability not only
allows immediate walk-throughs, it also enables light designers to refine their concepts
interactively, together with their customers.

As a light-planning software, HILITE has to deal with very complex scenes, which include
many light sources, like shown in Figure 3.2, or highly reflective materials, as can be seen
in Figure 3.3. In order to handle such complex scenarios and calculate correct lighting
simulations, HILITE uses light maps.

3.3.2 Global Illumination with Light Maps in HILITE

In order to develop a many-light global-illumination solution, Luksch et al. [LTH+13]
use light maps and virtual polygon lights for a fast light-map computation.

In the context of light planning, it is necessary to provide interactive solutions. To allow
the user to move around in a 3D scene while the light contribution is being refined, the
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Figure 3.3: Scene with highly reflective materials, rendered by HILITE.

simulation has to be view-independent. One way to create a view-independent lighting
solution is to use light maps. Lighting information of surfaces in a scene is pre-calculated
and stored in a texture, called “light map” for later use. The downside is that the
generation of light maps for large scenes is usually slow and has to be performed again
once a light source changes position or light distribution behavior. That is the reason
why light maps are not feasible for frequently changing lighting setups. However, Luksch
et al [LTH+13] managed to speed up the light-map computation by creating virtual
polygon lights.

At first, rays from the primary light sources are traced along their light paths over several
bounces to generate virtual point lights (VPLs) at each intersection point. By using
a RANSAC-based method, planar surfaces are detected in the VPL set, resulting in
connected planar subsets and some remaining VPLs that represent arbitrarily formed
surfaces. To reduce the huge number of VPLs, they are clustered into a smaller number
of higher-order virtual lights using a k-d tree. In 2D, the planar segments are just
split at the median position. In 3D, a bounding box of the VPLs is computed and
split at the median position along the dimension with greatest extent of VPLs. An
improvement to this technique is to not just force a median split, but look for large gaps
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in the VPL distribution and split there. Luksch et al. [LTH+13] optimize the splitting
according to gap size and index of the VPL, relative to the median. After clusters with
approximately equal numbers of VPLs are obtained, a 2D convex hull for each cluster is
computed. To simplify these convex hulls, the authors use polyline vertex reduction. The
simplified versions are then expanded and clipped against the k-d tree. In 3D, clusters
are approximated by sphere lights.

Light Accumulation

To calculate all lighting information, shadow mapping, from the primary lights and all
virtual lights, is performed. With each light bounce a new VPL is created. The simulation
calculates the illumination from each light source and all VPLs consecutively. These
results are accumulated in the light map via additive blending.

3.3.3 Glossy Materials

To extend the so far only diffuse illumination information, stored in light maps, Luksch
et al. [LTM+14] use mipmapped environment maps for glossy material properties and
introduce a regular sampling scheme that produces better results than importance
sampling for a low number of samples. Their material model is based on measured material
data (BRDFs) and supports reflection lobes for glossy materials. One environment map
is created for each glossy scene object, and mipmaps serve as pre-filtered versions of the
glossy reflection and can be sampled according to the BRDF. Because the resulting image
pyramid does not depend on the BRDF, one environment map is sufficient to render an
object with arbitrary materials, reducing the number of necessary updates after material
changes.

HILITE’s Material Model

Scene complexity or interactions limit most approaches that try to deal with glossy
materials. Physically based BRDF models like described by Cook and Torrance [CT82]
have a high evaluation cost. There has been a lot of research around empirical models,
like done by Phong [Pho75], Ward [War92] and Schlick [Sch94]. Kurt et al. [KSKK10]
combine anisotropy and Fresnel effects of Ward [War92] and Schlick [Sch94] to achieve
physically plausible results, and their method was therefore chosen as base for HILITE’s
material model, which is explained in more detail in Section 5.2.
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CHAPTER 4
Overview

This chapter provides a brief overview of the algorithm presented in this thesis. The
algorithm’s line of action is summarized and a list of tasks shows what requirements need
to be fulfilled to reach the defined goals.

The purpose of this project was to create a global illumination algorithm to simulate
the light distribution of luminaires. The application should allow interactive changes
and should be able to display noise-free previews until the final result is simulated. To
achieve this, we designed an algorithm that renders at interactive frame rates, produces

Figure 4.1: Overview of the main components of our application.
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visually pleasing intermediate results, and converges to a physically accurate solution in
the same time or faster than state-of-the-art global-illumination methods do.

The application, as shown in Figure 4.1, consists of two major parts: a rendering stage
and a simulation stage, which are executed in parallel. During the simulation stage, the
light distribution of a luminaire is simulated using photon tracing and filtered to achieve
visually pleasing intermediate results. In the rendering stage, the results of the simulation
stage are displayed and user modifications to the 3D model of a luminaire are handled.

4.1 Simulation Stage
The lighting simulation is an iterative process that calculates the light distribution of
a light source. The simulation’s main components are a photon-tracing process and
a multi-resolution image-filtering method. Both are executed at each iteration. First,
raytracing is performed to cast rays from the light-emitting part of the light source
and reflect them on the light-source geometry. Photons are only stored at intersections
with the surrounding cubemap, which results in a cube-map texture that represents the
light distribution of the luminaire. More information on this photon-tracing method
can be found in Chapter 5. The obtained cube map then functions as input for the
image-filtering procedure. This method is described in detail in Chapter 6.

4.2 Rendering Stage
In the rendering stage, the light-source geometry is rendered as a 3D scene enclosed by a
cub that shows the light distribution. Our algorithm works iteratively, and progressively
refines the result. Between iterations, the user can modify the geometry and material
properties of the luminaire by manipulating the 3D model. After each iteration of the
simulation, a preview of the final result is rendered on the cube and shown in the render
view.

To be able to display previews of the final result, our algorithm produces intermediate
results between simulation iterations as described in the following section.

4.3 Production of Intermediate Results
The most important requirement for our raytracer is interactivity. Traditional workflows
for luminaire design require the user to wait for the whole lighting simulation to finish
(or at least wait for some time to get a smooth image) in order to see the results
of manipulations of the 3D model representing the luminaire. To allow the user to
manipulate the light-source geometry and see the effects at an early stage, fast previews
are necessary, thus turning the luminaire design into an interactive process.

To produce intermediate results that serve as previews, our algorithm has to work
iteratively. In each iteration, a number of random rays are cast into the scene to calculate
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the light distribution. To get visually pleasing and fast previews, the following tasks have
to be performed:

• Guidance for Ray Casting Directions
To avoid artifacts, such as visible patterns caused by a pseudo random number
generator, we integrate forced random sampling as described by Cornel [Cor14]. By
reducing the number of rays that have to be cast, and concentrating them in specific
regions, we try to speed up our photon-tracing process further. Homogeneous regions
can be smoothed during our multi-resolution image-filtering procedure without
losing information. Hence, we should not need a lot of photons in these regions.
In regions that contain more information content, like shadow borders, we need
more lighting information, and therefore more photons, to be able to preserve these
details during image filtering. That’s why the majority of photons should not be
emitted into very homogeneous regions in terms of intensity. Thus, we explore
integrating an importance function into our photon tracer to guide its ray casting
scheme.

• A Multi-Resolution Approach
Nichols and Wyman [NW09] introduced a novel approach to reduce the costs for
reflective shadow map-based indirect illumination. They interactively splat indirect
illumination using a multi-resolution buffer, where only splats near discontinuities
are rendered in high resolution. The parts we can adapt for our method are the
multi-resolution approach together with the interpolation technique the authors
use to remove discretization artifacts when additively blending results.
In order to reduce rendering time further, we need to decrease the number of
necessary rays cast into the scene by adapting the upsampling technique described
by Nichols and Wyman [NW09]. Instead of refining the buffer at some locations,
multiple mipmap levels can be used to store each photon in each mipmap level.
This results in different photon counts per texel on each level, as each texel in a
mipmap level is the sum of the 4 corresponding texels of the level below.
Our multi-resolution image-filtering approach is a scattered-data interpolation
method based on the pull-push algorithm, like described by Kraus [Kra09]. During
the pull phase, an image pyramid of a sparse texture is constructed. This image
pyramid is used in the push phase to re-calculate texel values on all levels, from
coarse to fine. Our approach uses the mentioned mipmaps as levels of the image
pyramid (for our cube map that stores photon counts per texel) and re-calculates
texels that contain less photons than a certain threshold and are therefore classified
as “not stable”. The texels are recalculated by upsampling values from the next
higher mipmap level.

• Upsampling using Intelligent and Fast Image Filters
As first step in the development of a suitable interpolation technique for upsampling,
we explore bilinear interpolation. This is a standard interpolation technique that is
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fast to calculate and easy to implement and to test, but also slightly blurs edges
between regions of different intensity and can produce artifacts. To achieve a high
visual quality, we have to preserve shadow borders as best as possible. We therefore
introduced an edge-aware image filter that can be used to interpolate texels that
do not satisfy our threshold from the next higher mipmap level. We chose bilateral
filtering as base for the interpolation technique of our algorithm.
Our bilateral interpolation scheme uses a Gaussian distribution as described by
Tomasi and Manduchi [TM98], which causes less artifacts than pure bilinear inter-
polation, while still consisting of fairly simple calculations and therefore performing
very well in terms of rendering times. The bilateral filter is a combination of
a domain filter, using a closeness function based on Euclidean distance, and a
range filter, applying a photometric similarity function dependent on the intensity
difference of texels.
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CHAPTER 5
Interactive, Progressive Photon

Tracing

The algorithm presented in this thesis mainly consist of two parts, a photon-tracing
method and an image-filtering step. This chapter describes the first part of our developed
algorithm, the interactive, progressive photon tracing as highlighted in Figure 5.1. The
underlying concept of the lighting simulation is presented as well as the implemented
material model. Furthermore, we explain in what respect our method is interactive

Figure 5.1: Overview of the main components of our application.
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Figure 5.2: Light-source geometry enclosed by a cube.

and how to guide the photon tracer in order to achieve interactive frame rates. For the
development of our interactive, progressive photon tracing approach, we built upon a
photon tracer, developed at VRVis, that already provides functionalities to intersect rays
with geometry, calculate intersection points and store photons in a specific data structure
(which we call “photon store”).

5.1 Photon Tracing
In our application, the 3D scene that is displayed in the render view consists of a 3D
model of a luminaire with a light emitting part and a surrounding cube, as shown in
Figure 5.2. Our algorithm is based on the concept of photon tracing. Rays are cast from
the light-emitting part of the light-source geometry into the scene. Our algorithm uses
an OpenCL buffer, called “photon storage”, which stores all photons, that are produced
during one iteration (with attributes like power, origin and direction), and a cube-map
texture that only stores the total number of photons per texel (over all iterations). We
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refer to this cube map, which surrounds the light-source geometry, as “intensity map”.
This intensity map is used throughout our whole algorithm. The photon storage is
only necessary for incorporating adaptive photon-tracing methods like the importance
sampling scheme, which we described in Section 5.4.1.

When a ray hits the cube, the photon count at the corresponding position in the intensity
map is updated, and a photon is added to the photon storage. At each intersection with
a surface, a reflection direction is calculated according to the surface material properties.
For perfect mirrors, there is only one reflection direction. For other reflective or diffuse
surfaces, we need to sample the reflection directions. For this sampling, we use an
importance-sampled bidirectional reflectance distribution function (BRDF) as described
in Section 5.2, based on Monte Carlo integration [Jen01]. Pure Monte Carlo ray tracing
is unbiased, but very time consuming. The variance of Monte Carlo methods, depicted
as noise in the renderings, is reduced by an increasing number of samples. Reducing the
error to zero is not possible, because this would require casting an infinite number of rays,
and following the reflection path of each ray (regardless of the number of reflections with
the geometry) until it hits the surrounding cube. Therefore, we restrict our algorithm
to a user defined amount of rays and maximum number of reflections per iteration. We
then progressively refine the results by adding new photons to the photon storage (and
increasing the photon count in the intensity map respectively) in each iteration.

In contrast to standard photon-tracing algorithms, we do not use a radiance density
estimate or final-gathering step, since this yields only approximated solutions where
fine details might get lost. Instead, our multi-resolution image-filtering technique, as
described in Section 6, is used to smooth the image and preserve fine details. This way,
our algorithm is able to show smooth previews in the render view while simulating in
parallel, and converge to a physically plausible solution as will be shown in the Results
and Discussion section.

Our photon tracer creates rays, processes them in groups, and intersects them with the
scene. Upon intersection with the light-source geometry, new reflected rays are created. If
a ray hits the surrounding cube, a photon is stored in the photon storage. Simultaneously,
the intensity map, containing only the numbers of photons that hit a certain texel, is
updated. This intensity map serves as representation of the light distribution of the
luminaire for our multi-resolution image-filtering approach. We use a texture atlas
to allow for efficient memory usage and access of the intensity map. A texture atlas
is one large texture containing a number of sub-textures. (A detailed description of
texture atlases can be found in NVIDIA’s SDK White Paper [NVI04].) Our border
handling scheme for the texture atlas, including textures with several mipmap levels,
is described in section 7.3. Furthermore, we use shader programs built with “CoSMo”
(Intent-based composition of shader modules), as presented by Haaser et al. [HSM+14], to
add functionalities for processing material properties, and implemented single scattering,
like described by Luksch et al. [LTM+14], for our photon tracer.
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5.2 Material Model
In order to obtain new reflection directions for our photon tracer at each bounce, we
implemented HILITE’s material model [LTM+14], which is based on the anisotropic BRDF
model developed by Kurt et al. [KSKK10]. This model allows to generate physically
plausible results. To achieve this, the simulation has to fulfill energy conservation laws
as well as the Helmholtz reciprocity, which basically means that incoming and outgoing
directions can be exchanged.

For standard Monte Carlo methods, best results are achieved with sampling formulas that
yield random directions that are distributed proportional to the cosine-weighted BRDFs.
Kurt et al. [KSKK10] build upon the Beckmann distribution as a normalized microfacet
distribution. Cook and Torrance [CT81] already developed an effective microfacet-
based BRDF model. However, this model does not support anisotropic materials, nor
importance sampling. Ward’s [War92] BRDF model is not normalized and therefore
not physically plausible. Kurt et al. [KSKK10] proposed a physically plausible BRDF
model for anisotropic materials, which also works for isotropic materials and uses Ward’s
importance sampling formulas to incorporate importance sampling of the BRDF.

Kurt et al. [KSKK10] use the following physically plausible normalized microfacet
distribution function:

D(h) = 1
πmxmycos4(θh)q(h)

q(h) = e

−tan2(θh)

(
cos2(Φh)
m2
x

+
sin2(Φh)
m2
y

)

with roughness parameters mx and my. For isotropic materials, these parameters are
equal, which results in the standard Beckmann distribution function:

D(h) = 1
πmxmycos4(θh)e

−tan2(θh)
m2

The implemented BRDF model consists of a diffuse and a specular term:

f(ωi, ωo) = kd
π

+ ksF (ωo · h)D(h)
4(ωo · h)((ωi · n)(ωo · n))α

The Lambertian term kd
π

represents the diffuse illumination and the second term represents
the specular reflection lobe with ks as specular reflectivity and F (ωo ·h) as Fresnel function,
that can be approximated by Schlick’s [Sch94] formula:
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F (ωo · h) = f0 + (1− f0)(1− (ωo · h))5

with f0 being the reflection coefficient at normal incidence.

Kurt et al. [KSKK10] also support the use of multiple reflection lobes, enabling the
simulation of very complex materials. Furthermore, the method matches measured
BRDFs more accurately than other existing models and was therefore chosen for our
implementation.

Scattering Photons According to the BRDF

For a given incident vector i, we need to calculate a corresponding outgoing reflection
direction vector o that closely matches the BRDF.

We use two uniform random variables u and v and use the importance transformation
presented by Walter [Wal05] to obtain an outgoing reflection direction for Kurt et al.’s
BRDF . Since Ward [War92] originally omitted an arctangent in his calculations, we use
the following formula presented by Walter:

Θh = arctan


√√√√√√ − log(u)
cos2(Φh)
m2
x

+ sin2(Φh)
m2
y


Φh = arctan

(
my

mx
tan(2πv)

)

and can use Θh and Φh to calculate a halfway vector h:

h = [sin(Θh)cos(Φh), sin(Θh)sin(Φh), cos(Θh)]

With this halfway vector we are now able to find a sampling direction o using the following
reflection formula:

o = 2(i · h)h− i

5.3 Interactive Changes
By designing our algorithm in an iterative manner, we enable the user to interactively
make modifications to the scene, which take effect as soon as the next iteration of the
light simulation starts. We integrated a set of editing functionality to translate, rotate or
scale parts of the geometry as shown in Figure 5.3. Furthermore, we provide the user
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Figure 5.3: editing geometry Figure 5.4: HILITE’s Material Editor

with the possibility to directly specify which part of the 3D model is the light-emitting
geometry, and assign pre-calculated or measured light-distribution curves to it.

Apart from geometrical alterations, it is also possible to assign materials and interactively
change material properties like diffuse or specular reflection or translucency, refraction or
perfect reflection, or provide parameters like the Fresnel term for our material model via
HILITE’s material editor. Materials with similar reflection properties as mirrors or glass,
as well as diffuse materials, can be reproduced and are then processed by our photon
tracer as described in Section 5.2.

The great benefit of allowing this editing functionality in parallel to the simulation is that
it can speed up the light-source design workflow, because the light-source engineer does
not have to wait for the final results of a lighting simulation anymore. Our application
enables users to change parameters of the model after getting the first previews of the
simulation. Furthermore, each modification of the geometry or the material properties
instantly restarts the simulation to show the new results, which turns the light source
design from an iterative into an interactive process.

5.4 Guided Photon Tracing
In order to increase illumination information around edges or fine details, we want to
guide our photon tracer to cast photons into specifically interesting directions. Note that
this affects only the emittance of photons and does not influence the BRDF, which is used
to calculate reflectance directions upon surface intersections. First, we have to define
in which directions to cast photons from the light emitter. The most accurate results
can be achieved by loading and assigning a light-distribution curve to each illuminant (a
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light-emitting device inside electric light fixtures, e.g., light bulb or LED). This light-
distribution curve serves as emission profile to limit possible ray directions according
to the light-distribution behavior of the illuminant. Pre-calculated distributions like
an omni-directional light-distribution curve can be imported to approximate the light
distribution of an illuminant. In the range of possible ray directions, defined by the
emission profile, random directions have to be chosen. To avoid artifacts, such as visible
patterns caused by a pseudo random number generator, we integrate forced random
sampling as described by Cornel [Cor14] to generate our random ray directions for each
iteration. By concentrating rays in specific regions, we should be able to reduce the
number of rays that have to be cast, which would improve the performance of our
application regarding rendering time. Homogeneous regions can be smoothed during our
multi-resolution image-filtering procedure without losing information. Hence, we should
not need a lot of photons in these regions. In regions that contain more information
content, like shadow borders, we need more lighting information, and therefore more
photons, to be able to preserve these details during image filtering. That’s why the
majority of photons should not be emitted into very homogeneous regions in terms of
intensity. Thus, we enable our photon tracer to take an importance function as input,
which can guide the photon tracer’s ray-casting scheme.

5.4.1 Importance Function

The goal of using an importance function is to get more photons in regions that contain
details like borders of intensity regions (homogeneous regions in terms of intensity).
Photons that result from randomly choosing ray directions, as described in Section 5.4,
are stored with similar energy (e.g.: with an energy of one). If we now want to cast rays
not just according to the emission profile, but also guided by an importance function, we
have to adapt the energy of the photons to this importance function. When increasing
the amount of photons that are cast into a certain direction, the energy of each of these
photons has to decrease.

As Jensen et al. [Jen01] describe, integrating a function f(x) using Monte Carlo integration
is done by multiplying the mean of the function (calculated as an average of uniformly
distributed random numbers ξi in the interval) by the length of the interval, which results
in an estimate Im of the integral I:

I =
∫ b
a f(x)dx

Im = (b− a) 1
N

N∑
i=1

f(ξi)

Importance sampling improves the quality of this estimate by concentrating samples
in important parts of the function. For this purpose, the uniform random samples ψi
are scaled by the probability density function (pdf) p(x), and we obtain the following
estimator for the integral:
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Imi = 1
N

N∑
i=1

f(ψi)
p(ψi)

Hence, when casting a ray into a direction that has a certain importance, we set the
energy of the resulting photon to a value inversely proportional to the importance of the
chosen ray direction.

After the first iteration of casting rays and storing photons, the importance function
is calculated. To direct more photons to regions where more lighting information is
needed (e.g., borders of intensity regions), we need to identify ray directions, as seen from
the light source, that resulted in photons stored near regions of interest, and assign a
higher importance to these ray directions. Ray directions are calculated by constructing
a vector from the light-source origin through a texel in the emission profile. Photons
that are stored in the photon storage contain information about their photon energy and
the position of the target texel in the emission profile that was used to calculate their
ray-casting direction. This enables us to connect each photon in the photon storage to
the ray direction that was used to cast it. That means even after a photon has been
reflected multiple times, we know its corresponding original ray direction from the light
source. So we can back-project photons from the photon storage to the emission profile.

In order to identify photons in regions of interest, we use the intensity map, containing
the photon count of each texel, and the photon storage. To extract regions of interest,
we can simply apply an edge-detection filter, like the discrete Laplacian operator, to the
intensity-map image. The discrete Laplacian is an approximation of the sum of second
derivatives. It is calculated by summing up the differences of the four nearest neighbors
(N1 to N4) to a texel T

4∑
i=1

(f(Ni)− f(T )) = f(N1) + f(N2) + f(N3) + f(N4)− 4f(T )

and can also be interpreted as filter kernel in 2D:

L =

0 1 0
1 −4 1
0 1 0


Because we only cast a certain number of photons each iteration, not all texel values in
the intensity map change in one iteration, and we do not need to calculate this sum of
derivatives for texel values that did not change. Hence, we only take photons that have
been added to the photon storage during the current iteration, look at their corresponding
position in the intensity map and apply the Laplacian operator to these texels. This
yields information about where regions of interest are located. However, we do not just
want to cast photons in these directions, regardless of how many photons are already
stored at these locations. If we have already stored a large amount of photons at the
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Figure 5.5: Example of an importance image corresponding to the 3D
scene shown in Figure 5.2.

border of intensity region, so the areas in this region are smooth and the edges between
the regions are well defined, we do not want to still direct a high amount of photons in
this direction. That is why we calculate our importance imp(T ) as the value obtained
from applying the Laplacian operator, relative to the value already stored at the exact
same position in the intensity map:

imp(T ) = |L(f(T ))|
f(T )

Finally, we add these calculated importance values to the emission profile at the positions
belonging to the ray directions that resulted in the photons which we processed in this
iteration. We update the importance, and thereby the emission profile, as described
in this section, in each iteration. Furthermore, we calculate mipmaps of the updated
emission profile and apply our multi-resolution image-filtering approach to it, in the
same way as described for the intensity map in Section 6. This yields a smooth image,
as shown in Figure 5.5, that can be used as importance function to guide ray-casting
directions.

However, evaluations revealed that using the presented importance function increases
variance in smooth image regions and is therefore not beneficial. Problems that arise
from this importance sampling scheme will be elaborated in Section 8.
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CHAPTER 6
Multi-Resolution Image Filtering

This chapter describes the second part of our algorithm, the multi-resolution image-
filtering step indicated in Figure 6.1, and explains our design decisions for the algorithm.
In Section 6.1, we give a high-level overview and Section 6.2 describes the workflow
of our multi-resolution image filtering as shown in Figure 6.4. Furthermore, details of
our upsampling procedure are discussed, and we investigate problems that arise from
using bilinear interpolation during upsampling and how we improve results with bilateral
interpolation.

Figure 6.1: Overview of the main components of our application.
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6.1 High-Level Overview

Our lighting simulation works iteratively and consists of two parts: a photon-tracing
procedure and a multi-resolution image-filtering step. The simulation uses a 3D model
of a luminaire and a cube surrounding the light-source geometry to calculate the light
distribution of the luminaire. Our photon-tracing algorithm, presented in Section 5, casts
rays from the light-emitting part of the geometry and reflects them on the geometry of
the luminaire until the maximum number of allowed bounces per ray is reached or a ray
hits the surrounding cube. Our algorithm uses a cube-map texture that stores the total
number of photons per texel. We refer to this cube map as “intensity map”. If a ray
from the light emitter hits the surrounding cube, the photon count at the corresponding
position in the intensity map is updated.The light distribution of a luminaire is represented
by the photon count in the intensity map. A high photon count in an area means that
this area has high illumination, whereas small photon counts indicate that a region is
in shadow. During each iteration, additional photons are cast and photon counts in
the intensity map are increased. The intensity map represents the light distribution of
a luminaire. Each photons transports a percentage of the total emission power of the
light source. In order to provide a visualization of the distribution represented by the
intensity map, we apply a simple variant of linear tone mapping using the number of
iterations as scaling factor. Since we only use uniform omni-directional emission profiles
to approximate the light distribution of LEDs, all emitted photons have the same energy
(unless we incorporate an importance-sampling scheme). When calculating reflection
directions, upon surface intersection, according to the BRDF, Russian Roulette [Jen01]is
used. This means that the photon tracer reflects a high amount of photons with the
same energy into directions specified as important by the BRDF, instead of the same
amount of photons (as in every other direction) with high energy. Therefore, we are only
dealing with photons with equal power and are only interested in the number of photons
per texel in the intensity map during our multi-resolution image-filtering approach.

Our goal is to obtain a high-resolution intensity map image that has not only sharp
edges at borders of intensity regions, but also a low variance in homogeneous regions
and therefore looks smooth. Regarding homogeneous regions, we can see that during
the first few iterations of photon tracing, photons will only hit some texels, while other
texels will be reached by none or fewer photons than their neighbors. It takes a certain
overall amount of photons and rendering time to get an even photon distribution in image
regions that are supposed to be smooth. To still get images that show previews of the
light distribution rather than just random noise at an early stage, we want to smooth
these regions. Texels that have a significantly lower photon count than their neighbors
show up as noise in the image. To eliminate this noise, we need to replace these low
photon counts by values that more accurately represent the illumination in this region.
To distinguish between texels whose values should be replaced, and texels whose values
should not be modified, we categorize them as “stable” or “not stable”, depending on their
photon count. Because the photon distribution depends on the light-source geometry and
material properties, this categorization has to be done by manually choosing a threshold.
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6.1. High-Level Overview

Figure 6.2: 2D pull-push. At higher resolutions the gaps, corresponding
to regions with low values that need to be upsampled, are bigger.
Reprinted from [GGSC96].

We implemented a pull-push algorithm for our multi-resolution image-filtering approach,
similar to the pull-push algorithm developed by Gortler et al. [GGSC96] for their Lumi-
graph system. Different resolutions of the same texture are used, as shown in Figure 6.2.
During the pull phase, values of the higher resolution textures are summed up to get
approximations for lower resolutions. In the push phase, lower resolution values are used
to upsample values on higher resolutions, and fill in regions at higher resolutions that do
not have sufficiently high values.

One of the fundamental concepts of our multi-resolution image-filtering approach is an
image pyramid. Our algorithm operates on different resolutions of the same image, so we
need to calculate mipmaps to build up an image pyramid. The term “mip” originates
from the Latin phrase “multum in parvo”, meaning “much in little”. A mipmap is an
array of pre-calculated texture maps, subsequently reduced in resolution by the power of
two. Each level of this image pyramid is constructed by blending four samples of the
texture on the lower level together, creating an average, as shown in Figure 6.3. The
largest texture is referred to as “level 0”, smaller textures are numbered sequentially
[Len12].

In contrast to the standard mipmap creation process, in which texels are averaged, we
just sum up texels to create multiple resolutions of the intensity map. We did this
because of implementation details of the photon tracer we built upon. We compare the
total sum of photons per texel to the user-defined global threshold and identify texels
with low photon counts. Texels on high mipmap levels are more likely to have higher
values than the threshold and will therefore not be altered.
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Figure 6.3: Mipmap hierarchy with texture T0 being the original reso-
lution. Reprinted from [Hec86].

On lower mipmap levels, more texels will have lower values than the threshold, and will
hence be considered not stable. To replace the values of texels that are classified as
not stable, we calculate a new value from the next higher mipmap level. We locate the
position of the currently processed texel on the next higher mipmap level and look up the
four texel values in proximity of this location. Then we interpolate between these four
values to obtain a new value that we use to replace the photon count of the currently
processed texel. Since each texel on one of our mipmap levels is the sum of four texels
on a lower level, we have to divide this value by four before we can overwrite the original
value of a texel by the interpolated value. This process of looking up texel values from a
higher mipmap level and interpolating between them to obtain a replacement value is
called “upsampling” and is explained in more detail in Section 6.4.

6.2 Workflow

Figure 6.4 shows the workflow of our multi-resolution image-filtering approach. Our
algorithm starts its push phase by processing texels at a user-defined mipmap level
and works its way downwards through the image pyramid until level zero (the highest
resolution of the intensity map) is reached. For each texel, we look up the photon
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Figure 6.4: Multi-Resolution Image Filtering Workflow.

count in the intensity map. This value is compared to the threshold defined by the
user. Depending on whether the photon count is higher or lower than the threshold, we
either keep the texel or we investigate its neighborhood as explained in Section 6.4.2. If
the photon count is lower than the threshold, and the texel is not directly located at a
“shadow border” (a border of a high-intensity region), we upsample it as described in
Section 6.4. In general, we want to upsample all texels that have a low photon count, but
by excluding texels at shadow borders on higher mipmap levels from this upsampling
step, we are able to reduce artifacts due to intensity leaks as described in Section 6.4.3.
In the case that a texel is located at a shadow border, we do not upsample it if the the
mipmap level currently processed is higher than level 1. Only for level 0 and level 1, we
also upsample texels that have a lower photon count than the threshold and are located
directly at a shadow border. We treat the first two mipmap levels differently to avoid
pixelated shadow borders in the final image.

6.3 Basic Concept

The concept of our multi-resolution image-filtering approach is based on work by Nicolas
and Wyman [NW09]. They introduce a novel approach to reduce the costs for reflective
shadow map-based indirect illumination by interactively splatting indirect illumination
using a multi-resolution buffer where only splats near discontinuities are rendered in
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high resolution. For our application, the interesting part of this method is the multi-
resolution approach together with the interpolation technique the authors use to avoid
discretization artifacts. When splats are rendered into the multi-resolution buffer, a
min-max mipmap is used to define areas of discontinuity. Instead of storing average values
of texels of lower mipmap levels, min-max mipmaps store the minimum and maximum
value of the corresponding texels. If the results of the min-max mipmap (e.g., differences
of min and max values of the four corresponding texels on the next lower level) are
greater than a certain threshold, a discontinuity is detected and the region is refined.
To blend texel values coming from different levels without getting blocky artifacts or
strange multi-resolution haloing Nicholas and Wyman use a unique upsampling scheme:
They progress from highest to lowest level of the multi-resolution buffer, subsequently
increasing the resolution. Texels that already contain some illumination information are
bilinearly interpolated with their neighbors of the same resolution to obtain values for
the corresponding texels on the next lower level. The output of this upsampling pass are
texels of higher resolution on the next lower level of the multi-resolution buffer.

Our approach is slightly different from the original technique proposed by Nicholas and
Wyman [NW09]. Instead of refining the buffer at some locations, we use multiple mipmap
levels and store the number of photons that hit the area of a texel in each mipmap level.
We therefore get different photon counts per texel on each level, since each texel in a
mipmap level is the sum of the four corresponding texels of the level below. The basic
idea of this approach is replace the value of each texel that does not have more photons
than a certain threshold (by upsampling from the next higher mipmap level), and keep
the ones that do. Instead of processing one level to output values for the next lower
level, like described by Nicolas and Wyman [NW09], our algorithm processes a level and
makes lookups in the next higher mipmap level (the lower resolution) if a texel needs
to be upsampled. The user choses the number of mipmap level that should be taken
into account and we start our multi-resolution image filtering at the second highest of
these mipmap levels. If a texel does not contain enough photons, it is considered as “not
stable” and upsampled by interpolating the values from its corresponding texels on the
next higher mipmap level.

6.4 Upsampling
During multi-resolution image filtering, we identify texels that are not stable (due to
their low photon count) on each mipmap level and execute our upsampling procedure
for such texels. In that case we calculate its corresponding position on the next higher
mipmap level, look up the texel values of the four texels in proximity of this position and
interpolate between them.

6.4.1 Upsampling Texels with Low Photon Counts

Nicholas and Wyman suggest no upsampling of pixels with zero energy (in our case
“shadow texels”) and excluding texels with zero energy from the interpolation. As we
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usually don’t have pure black shadows, but instead darker and lighter shadows, this total
lack of upsampling preserves shadow borders, but produces noisy results in dark areas.
We therefore also want to upsample texels in shadow regions and have to take texels in
the same region on the next higher mipmap level into account for the interpolation.

However, simply upsampling a texel with a too low photon count, regardless of the
intensity differences between texels in this area, yields problems when using a lot of
mipmap levels together with a high threshold. This combination results in several
mipmap levels where a large amount or all texels are upsampled, because none of them
satisfies the threshold. As a consequence, sharp edges get blurred. For example, bilinearly
interpolating over a shadow border not only blurs the border, but also creates a small
intensity leak from a light pixel into the shadow area. This intensity leak increases with
each upsampled mipmap level. The intuitive solution to this problem is to upsample all
texels that have too few photons, except texels that are directly on a border to a region
with higher intensity. In order to exclude shadow borders from the upsampling pass, we
first need to detect these “shadow borders”.

6.4.2 Shadow Borders

Following the approach of Nicolas and Wyman [NW09], we compare the number of
photons a texel has stored to a user-defined global threshold. If the detected photon
count is higher than the threshold, we consider it stable. Otherwise, we add it up with
the photon count of one of its eight neighboring texels. If the sum of these photon counts
is at least twice as much as the predefined threshold, the neighboring texel is considered
stable. If this is given for three to six of the neighboring texels, we recognize the texel
that has the lower photon count as belonging to a shadow border, and therefore do not
interpolate it. Texels with more than six stable neighbors are not classified as belonging
to a shadow border, but instead considered as isolated pixels that have not been reached
by enough photons yet and have to be interpolated. Done iteratively on every mipmap
level, this technique can preserve shadow borders of dark shadows, because we avoid
energy bleeding from bright to dark areas. However, borders might look pixelated due
to the fact that the texels next to shadow borders are not upsampled on any mipmap
level. To avoid this pixelation, we only do these checks for higher mipmap levels and
interpolate every texel that does not satisfy the threshold on level 1 and 0. There are
still cases where intensity leaks can occur right next to a shadow border and grow with
each mipmap level. Figures 6.5 to 6.7 illustrate the reason for the mentioned intensity
leak that can occur while upsampling shadow texels, even if we do not upsample the
shadow border texels.

6.4.3 Intensity Leaks Near Shadow Borders

The approach we discussed so far can produce artifacts in some regions, which we
identified as “intensity leaks”. We will now present an example to explain why these
intensity leaks occur and discuss how we can reduce them by using bilateral interpolation.
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Figure 6.5: Example of a shadow border with
highlighted texel (in pink), which is going to
be interpolated.

(a) (b)

Figure 6.6: Four texels framed in blue (a) are summed up to one texel on the next higher
mipmap level (b).

(a) bilinear interpolation (b) intensity leak

Figure 6.7: A bilinear interpolation (a) near a shadow border can produce intensity leaks
(b).
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Assuming we are looking at a shadow border as displayed in Figure 6.5. The texels that
are in shadow have a photon count of 0, the other illuminated texels next to the shadow
border have a photon count of 200 each. In this example, we are currently processing the
texel highlighted in pink. It does not satisfy our threshold and it is not directly located at
a shadow border, so according to the method we developed so far, it should be upsampled.
Figure 6.6b shows the next higher mipmap level at the exact same location. Each texel
on the higher mipmap level is the sum of the corresponding four texels (framed in blue in
Figure 6.6a) of the lower level. We now take the four texels of the higher mipmap level
and do a bilinear interpolation as shown in Figure 6.7a and the following calculations.

Assuming that distances of texel centers are exactly at a value of 1, or normalized
respectively, we calculate the horizontal distances α of our target point P = (x, y) to
the center of the left upper texel H1 = (x1, y1), as well as the vertical distance β to H1.
These values also correspond to the horizontal distance to the left lower texel center
H2 = (x2, y1) or the vertical distance to the center of the right upper texel H3 = (x1, y2)
respectively.

α = |y − y1| , β = |x− x1|

We can now use α as weight for a linear horizontal interpolation and obtain intermediate
results

f(x1) = f(H1)(1− α) + f(H3)α

and

f(x2) = f(H2)(1− α) + f(H4)α.

Another linear interpolation between these intermediate results, using the vertical distance
β as interpolation factor yields the following result:

f(x, y) = f(x1)(1− β) + f(x2)β

This is standard bilinear interpolation. By inserting the values of the presented example
into these equations, we get a value of 100. Because each texel on the higher mipmap
level is a sum of four texels of the lower level, we then have to divide the calculated
value by four. As final result we get a value of 25 for our currently processed texel. The
resulting intensity leak for this whole region is shown in Figure 6.7b. The shadow texels
next to the border are not upsampled in this example, because they are identified as a
shadow border.

Even though shadows seem smooth, the example above shows that we might get artifacts
at some shadow borders. In addition, at this point we do not take care of the bright
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Figure 6.8: Result of bilateral interpolation.

texels near intensity discontinuities on a mipmap level where even some bright texels
do not satisfy the threshold. These bright texels might still be darkened by upsampling
them and bilinearly interpolating between bright texels and shadow texels of the next
higher mipmap level. Our implemented bilateral interpolation, shown in Section 6.4.4,
significantly reduces these problems. A bilaterally interpolated result of our presented
example, yielding a much smaller intensity leak than bilinear interpolation, is shown in
Figure 6.8.

6.4.4 Bilateral Interpolation

To preserve shadow borders as best as possible even if we upsample them, bilateral
filtering using a Gaussian distribution as described by Tomasi and Manduchi [TM98]
was integrated into our approach to interpolate texels. It consists of a combination of
a domain filter, using a closeness function based on Euclidian distance in the spatial
domain, and a range filter, applying a photometric similarity function dependent on the
intensity difference of texels.

If we want to upsample texel P = (x, y) and apply a bilateral interpolation, we first
calculate the Euclidian distance of our target texel P to all 4 texel centers H1 = (x1, y1),
H2 = (x2, y1), H3 = (x1, y2) and H4 = (x2, y2) in the proximity of P ’s location on the
next higher mipmap level. Then we use these distances di to construct a Gaussian filter
in the spatial domain as closeness function ci for each texel Hi:

ci = e
− 1

2

(
di
σd

)2

where e is the Euler Constant and σd the chosen standard deviation of the Gaussian
filter. Analogous to ci, we now want to calculate the similarity functions si, by using
the intensity difference of P to a texel Hi on the higher mipmap level. This calculation
requires knowledge of the intensity value stored at P . So this can be calculated when
applying a bilateral filter to an image, but for our case the intensity f(P ) is what we want
to interpolate and therefore unknown. To solve this issue, we use the bilinear interpolated
intensity value f̃(P ) as approximate value for f(P ).
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si = e
− 1

2

(
δ(f̃(P ),f(Hi))

σr

)2

We can now combine the closeness functions and similarity functions for each texel Hi

and use it as weighting factors for the final interpolation and normalize by the sum of
these weights. We also divide by four to account for the lack of normalization in our
mipmap pyramid.

f(P ) =

4∑
i=1

f(Hi)cisi

4
4∑
i=1

cisi

6.5 Problems and Considerations
The choice of a good threshold is crucial and difficult. The most significant effect of the
chosen value for the threshold can be seen on the mipmap level on which shadow texels
have less and all other texels have more photons than the chosen threshold. No filtering
has to be performed for levels that contain only values above the threshold. However, on
levels where all texels are below the threshold, the whole texture is re-computed. Hence,
a too high threshold can lead to multiple levels that are re-computed by upsampling all
texels from the next higher mipmap level. Even with an edge-aware image filter for the
interpolation during the upsampling step, this would yield an over-blurred final result.
Furthermore, it proved to be difficult to find a fitting value for the standard deviation σ
of the domain filter and the range filter of the bilateral interpolation method. Whether
or not the chosen values for σd and σr produce good results depends on the threshold
and the intensity map image itself. It is possible to adjust the standard deviations to the
threshold, but the distribution of photons (stored as photon counts in the intensity map)
is what changes the quality of the results. In regions with a higher number of photons,
but which is still below the threshold (resulting in upsampling the texels in this region),
different values for σ produce good results, as compared to regions with a low photon
count. During a series of tests, we chose σd = 0.5 and σr = 0.2, because this combination
produced the best results for varying thresholds.
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CHAPTER 7
Implementation Details

This chapter provides implementation-specific details of our prototype. Apart from
programming languages and frameworks that we used, we also discuss the program
architecture and the data flow of our application.

7.1 Languages and Frameworks

Our prototype is implemented in C#, using the Aardvark framework, developed at
VRVis. Aardvark [fVRuVFGa] is a rendering framework for industrial 3D applications.
Its library of software tools include mesh manipulation and rendering tools, visualization
and interaction tools, parsers for 3D file-formats as well as caching and streaming
methods. Shadow maps and light-map pre-computation are also integrated in the
framework. Additionally, Aardvark’s vast math library is tailored to computer graphics
applications.

In order to calculate our simulation while at the same time rendering a 3D view of a
luminaire, and allowing interactive modifications, we make use of C#’s task parallel library.
For parallel calculations on the GPU, we chose the Open Computing Language (OpenCL)
as framework for our shader programs. An OpenCL integration for C#, implemented in
Aardvark, provided utility functions for tasks like setting kernel arguments, enqueuing,
or calling an OpenCL kernel.

Furthermore, we implemented the material-model functionality for our application in
CoSMo [HSM+14] (intent-based composition of shader modules), which allowed us to
use C# syntax to write shader code, and combine multiple shader programs that are
executed on the GPU at runtime.
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7.2 Program Architecture

The most important components of our implemented prototype are listed below:

• Rendering Application (operates the 3D render view and processes user input)

• Photon Simulator (coordinates the whole simulation and the data flow between the
photon tracer and the upsampler)

• Upsampler (executes the mulit-resolution image filtering)

• Photon Tracer (casts rays and processes photon hits)

• GUI (Graphic User Interface; allows user input to modify simulation parameters)

7.2.1 The Rendering Application

The rendering application is the core of our implemented prototype and responsible for
creating the main render task, scene and light-source geometry, the GUI and the photon
simulator. It initiates the rendering of the GUI and the scene graph in the render view,
and starts the photon simulator’s simulation in parallel, using C#’s task parallel library.

7.2.2 The Photon Simulator

The photon simulator first creates the OpenCL context and handles creation and disposal
of OpenCl buffers as well as the usage of the underlying photon tracer. The initial
amount of photons, that are cast from the light emitter, equals half the resolution of the
targeted cube map, with a user defined maximum of bounces for each photon. However,
it is not possible to predict the absolute number of rays, that will be produced in one
iteration, due to the usage of a dither matrix for forced random sampling. Dithering
and forced random sampling , which is explained in great detail by Cornel[Cor14], create
randomly distributed as well as evenly spread rays. All rays are created by calculating
ray directions from the light emitter through a pixel in the emission profile. These rays
are cast and intersected with the light-source geometry. The resulting photons are stored
in the photon store and the intensity map (an OpenCL buffer, that contains the photon
counts per texel) is updated accordingly. The photon simulator then passes the intensity
map to the upsampler, for further processing.

After applying multi-resolution image filtering on the intensity map, an (optional)
importance function can be updated for the next iteration of creating and processing rays,
storing photons and image-filtering. At the end of each iteration, the photon simulator
provides the intermediate result to the rendering application, so the 3D render view can
be updated with the new image.
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7.2.3 The Upsampler

The upsampler handles the whole multi-resolution image-filtering procedure, which is
described in detail in Section 6. It has a dedicated OpenCL shader program and handles
kernel calls, as well as refreshing the shared texture between OpenCL and SlimDX, that
is needed by the rendering application for immediate displaying of intermediate results.
We implemented an iterative method, which means that the upsampler is activated after
each time the photon tracer has cast a new wave of photons and updated the texels in
the intensity map, that correspond to the hit positions.

The upsampler starts by compiling the necessary OpenCL kernels and calling the first
kernel that performs the actual image-filtering. This kernel is called for each mipmap
level individually. It takes the intensity map and a second OpenCL buffer, containing a
copy of the intensity map (along with a few parameters) as input. The image-filtering is
performed on the second buffer. With only read access to the original intensity map, we
make sure that its values are not altered. This is important, because the intensity map
is progressively refined by adding more photons in each iteration. If the intensity map
would be filtered in each iteration, errors that are caused by a very coarse interpolation
of sparse values would remain in the final image.

Texels are filtered in parallel, but as the mipmap levels are processed sequentially from
the highest to the lowest level, we do not need another separate output buffer. The higher
mipmap levels serve as input information and we can store the results of the current
kernel directly in the OpenCL buffer at the location reserved for the currently processed
mipmap level. Lookups of neighboring texel values (e.g. to identify if the currently
processed texel is located at a shadow border) are done in the original intensity map.
After all mipmap levels have undergone the image-filtering procedure another OpenCL
kernel extracts the final cube map from the image-filtered buffer and stores it in highest
resolution and without mipmaps in another buffer.

The third and final step for the upsampler is to copy the extracted result to the previously
mentioned shared texture for the 3D render view. Depending on the user input, it will
copy either the image-filtered result or the pure photon count (from the intensity map)
to the shared texture for display. This allows the user to switch the view between pure
photon counts and image-filtered intensity map. During this process it also adjusts the
brightness of the result to account for the increasing number of photons. Note that our
current implementation does not correct the result by applying tone mapping to the
image.

7.2.4 The Ray Tracer

One of the most important elements of our application is an OpenCL photon tracer that
provides functionality for creating and intersecting rays as well as processing hits and
storing photons in mipmaps. The photon tracer is created once and updated if needed,
i.e. if the geometry in the scene is changed. For each light emitter in the scene, the
photon tracer is activated separately. It operates in 3 stages as shown in Figure 7.1:
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Figure 7.1: Photon Tracer Workflow

Create Rays

First of all, the photon tracer allocates memory for the number of rays that should
be cast at each iteration. Because it is not possible to predict the absolute amount of
rays that will be created by using forced random sampling with a dither matrix, one
third more than necessary is allocated to make sure that the photon tracer will not run
out of memory. A lookup in the dither matrix provides the “dither threshold” for each
target texel as seen from the light source. This dither threshold in combination with the
emission profile of the light emitter (which might not be uniform in each direction), and
an optional importance function, determines which texels are valid targets for creating
rays in these directions. The indices of these valid target texels are then used to create
so called “ClTasks”, that represent rays with origin, direction, and weight, and are stored
in the “task buffer”.
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Process ClTasks

Rays are processed in small packages on the GPU, by taking groups of rays from a
sub buffer of the task buffer. Rays are cast and intersected with a k-d tree, that holds
the light-source geometry. The resulting hits are then again processed in groups by
an OpenCL kernel. If a ray hits the cube, that surrounds the light-source geometry, a
photon is stored in the photon store and the intensity map is updated. At each hit on the
geometry, a reflection ray is calculated according to the material model (see Section 5.2),
specified by the CoSMo [HSM+14] shader program. These reflection rays are the new
CLTasks, which will be intersected with the geometry again. A maximum number of
bounces determines how often a ray can be reflected. This processing of ClTasks is done
recursively.

Store Photons

Finally, all new photons that have been produced during one iteration of ray tracing,
are stored in a global photon store and the intensity map is updated. Mipmaps of the
intensity map are created by simply adding up the corresponding photon counts of a
texel without normalizing texel values.

7.2.5 The Graphic User Interface

The graphical user interface (GUI) allows the user to adjust input parameters and
therefore influence the simulation and rendering of our application. Most of these
parameters are OpenCL-kernel parameters. To avoid inconsistencies, the changes do not
take effect immediately, but after the current simulation iteration has finished. The next
iteration is then rendered with the new parameters. A progress bar shows the advance
of the simulation. It is possible to pause the rendering (after the current iteration has
finished), change parameters, and then resume or restart the simulation. Changing the
cube-map face size prohibits resuming and forces the simulation to restart. This is due
to the fact that new OpenCL buffers, with the now updated size, have to be created and
passed to the shader program. Furthermore, we cannot take the current intensity map as
input for the next iteration if it has a different resolution than the new output buffer.

7.3 Cube Maps and Border Handling
Our whole image-filtering method operates on 2D textures. However, we need to filter a
cube map since that is the data structure we use for our intensity map, to represent the
light distribution of a luminaire. Figure 7.2 shows the implemented cube-map layout.
The faces are stored one after another in our OpenCL buffer as can be seen in Figure 7.3.

During the described image-filtering process, we need to check at each texel if it is at
a shadow border or not. Therefore, we also need to access all 8 neighbor texels of the
current texel. If our current texel is located at the border of a cub-map face, a border
handling method is required to access the correct neighbors. Furthermore, if we need
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Figure 7.2: cube-map layout

Figure 7.3: Cubemap faces stored in the texture atlas (in an
OpenCL buffer).
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Figure 7.4: Neighbor relations of face number
3.

to upsample a texel next to a cube-map face border, we also need to access the correct
neighbor texels on the next higher mipmap level. Only processing one cube map face at
a time would lead to visual artifacts at cube map-face borders or darkened corners.

If we look at face number 3 for example, we can see in Figure 7.4 the orientation of the
neighboring faces according to the cube-map layout. In this example, the above neighbor
of the top left texel in face 3, corresponds to the bottom left texel in face 4. This means
we have to do the texture lookup for the bottom left pixel in face 4 at the correct location
in the buffer. Additionally, each face also contains all generated mipmap levels of that
face, like shown in Figure 7.3. This leads to complex calculations in order to get the
correct coordinates for neighbor texels at the borders, because we have to do the texture
lookup in the correct face and on a specific mipmap level. So not only the offset and
orientation of the face itself have to be considered, we also have to take into account the
offset of the specific mipmap level, we are currently processing, relative to its face origin.
To calculate the correct coordinates at borders, we use constant arrays (in the shader
program), which define the neighbors for every face and specify the transformation that
is necessary to get the right texel, once we have calculated the correct face, in which we
have to do the lookup.
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CHAPTER 8
Results and Discussion

In this chapter we will evaluate our new method for interactive luminaire simulation. The
intensity maps that result from our simulation are evaluated in terms of image quality
and performance (the time it takes to generate them). First, our test scene is described.
Then we explain the calculation of our reference image. Different error metrics are used to
compare our results to this reference image. We discuss the performance and limitations
of our algorithm and our results with respect to state-of-the-art global-illumination and
image-filtering algorithms.

8.1 Evaluation
As quality measures for the results, produced with our approach, we calculate the Peak
Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR) and the Root Mean Squared
Error (RMSE) between our results and the reference image.

The intensity maps, that are compared to each other, in our evaluation, store the total
amount of photons per texel instead of the integral over all photons. So we have to
make the following adjustment to be able to compare them. Because each iteration of
simulation increases the total number of photons in the image, we need to scale two
different output images, so their values are in the same range, before we can calculate
the PSNR, SNR or RMSE between them. Due to the randomly chosen ray directions,
multiple photons can hit the same spot, and the brightest pixels in the images might be
outliers. Therefore, maximum values are not suitable as scaling factors. Instead, we use
the mean of an image to scale it before we calculate any error values.

8.1.1 Test Scene

We chose a bell-shaped luminaire, shown in Figure 8.1, and modified its material properties
to make it reflective and translucent at the same time (these are material properties that
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8. Results and Discussion

Figure 8.1: 3D model of the luminaire in our test scene.

you might expect from opal glass or translucent glass). That way, photons are widely
spread along the surrounding cube, thus creating a worst case for any photon-tracing
algorithm. We assigned an omni-directional light-distribution curve to the luminant (the
light-emitting part of the luminaire) to get a uniform light emission profile. This means
our photon tracer casts rays from the luminant outwards into every direction with the
same probability. According to our chosen material properties, 60 percent of photons that
hit the light-source geometry are transmitted, another 30 percent are diffusely reflected
and the last 10 percent are perfectly reflected. Our luminaire is not perfectly round
inside, and its inner structure shows as reflections on the bottom face of the cube in our
test scene.

8.1.2 Reference Image

To evaluate our results, we first generate a reference image by pure random photon
tracing. Rays are cast from the light-emitting part of the light geometry and reflected on
the geometry. The resulting photons are stored in the photon storage, and photon counts
in the intensity map are increased at positions corresponding to the photon hits on the the
cube, that surrounds the 3D model of the luminaire. We only use the light-distribution
curve assigned to the light emitter as emission profile without any importance function.
No image filtering is performed. Because of limited resources on the GPU, a certain
number of photons have to be cast for several iterations to reach a sufficient total number
of photons that yields a smooth image. By pure random photon tracing, we can store
about 13 172 300 photons in our photon storage (and increase photons counts in the
intensity map respectively) in each iteration.
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Figure 8.2: This plot shows the PSNR and SNR values of two consecutive iterations
of pure random photon tracing in order to find a suitable image as reference image for
further evaluations.

Figure 8.3: Reference image with cube-map layout.
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Figure 8.4: Each face of the reference image has a resolution of 10242 pixels. This figure
shows face number 5.
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8.1. Evaluation

Figure 8.5: closeup of face 5

Figure 8.2 shows the PSNR and the SNR between two consecutive iterations for iteration
0 to 1000. The PSNR is increasing for each iteration, even after any increase in visual
quality can be detected by the human eye. As reference image regarding image quality,
we choose iteration result number 5000, with almost 66 billion (65 897 624 872) photons,
obtained after about 12.5 hours of rendering time. The whole image has a resolution of
2048 × 3072, with 10242 pixels for each cube map face. The reference image with the
implemented cube-map layout can be seen in Figure 8.3, and a closeup of face number 5
is displayed in Figure 8.5.

8.1.3 Error Evaluation of Intermediate Results

First we calculate the PSNR, SNR and RMSE between the reference image and our
32-bit-data values, stored in the intensity maps. These error metrics are calculated for
intensity maps of subsequent iterations (with increasing photon count). The results in
Figure 8.6 show a RMSE that vastly decreases during the first few iterations, until a
certain amount of photons is reached, and does not change significantly afterwards. Our
calculations also yield a RMSE of 0.0138 between our reference image and a second
reference image calculated in the same time and with the approximate same amount
of photons (except for slight differences due to fluctuations of the amount of photons
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Figure 8.6: This plot shows RMSE values with respect to the reference image. The RMSE
between the reference image and our image-filtered intensity maps, using thresholds from
50 to 300 is compared to the RMSE between the reference image and photon images
without multi-resolution image filtering. Rendering time: ∼3.6 seconds per iteration for
the image-filtered results and ∼3.3 seconds for images without filtering.

per iteration, caused by the random number generator, that is used to calculate ray
directions for photons).

Figure 8.7 shows PSNR values between our image-filtered results and the reference image.
Depending on the chosen threshold, results differ over time. During the first few iterations,
a low threshold (e.g., 50) is more beneficial, while higher thresholds (e.g. 150-250) yield
better results after more iterations. It can also be seen that our image-filtered results
have significantly better PSNR values than a pure photon image without applying an
image-filtering method to it.

Figure 8.8 and 8.6 show that our approach also achieves better SNR values and a
lower RMSE than images without filtering. We obtained each image-filtered result in
approximately 3.5 to 3.7 seconds, of which about 0.3 seconds were consumed by the
multi-resolution image filtering and the remaining time was used by our photon-tracing
method. Since our approach is integrated into an interactive tool, the first few iterations
are the most interesting. Depending on user preferences, we can get even faster results
at the cost of image quality by lowering the number of rays cast from the light emitter
into the scene per iteration.

58



8.1. Evaluation

−10

0

10

20

1 10 100
Iteration

P
S

N
R

Threshold

50

80

100

150

200

250

300

No filtering

Figure 8.7: This plot shows PSNR values with respect to the reference image. The PSNR
between the reference image and our image with filtered intensity maps, using thresholds
from 50 to 300, is compared to the PSNR between the reference image and photon images
without multi-resolution image filtering. Rendering time: ∼3.6 seconds per iteration for
the image-filtered results and ∼3.3 seconds for images without filtering.
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Figure 8.8: This plot shows SNR values with respect to the reference image. The SNR
between the reference image and our image with filtered intensity maps, using thresholds
from 50 to 300, is compared to the SNR between the reference image and photon images
without multi-resolution image filtering. Rendering time: ∼3.6 seconds per iteration for
the image-filtered results and ∼3.3 seconds for images without filtering. 59



8. Results and Discussion

Rendering at Interactive Frame Rates

Figures 8.9 to 8.16 show iterations 0, 5, 10, 15, 20, 25, 30 and 100 of our simulation for
the test scene (Figure 8.1) presented in Section 8.1.1. The left parts of the figures show
the unfiltered intensity maps, as displayed in the render view, and the right parts show
the same intensity maps after applying our multi-resolution image-filtering approach. We
configured our application to cast 500 000 rays per iteration to fill an intensity texture of
size 2048 × 3072 texels (10242 per cube map face). A global threshold of 100 was used
for the multi-resolution image filtering. During this simulation, each iteration took about
one second to render in the 3D view. Finally, Figure 8.17 shows our reference image in
the 3D view. The side-by-side views show that apart from the evaluation with objective
error metrics, our multi-resolution image-filtering approach significantly enhances the
visual quality of our intermediate results. We also evaluated only visually perceivable
errors in Section 8.1.4 by calculating PSNR, SNR and RMSE values.

Figure 8.9: Iteration 0. Left: unfiltered intensity map. Right: filtered preview. Rendering
time: ∼1 second.
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Figure 8.10: Iteration 5. Left: unfiltered intensity map. Right: filtered preview. Render-
ing time: ∼6 seconds (∼1 second per iteration).

Figure 8.11: Iteration 10. Left: unfiltered intensity map. Right: filtered preview.
Rendering time: ∼11 seconds (∼1 second per iteration).
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Figure 8.12: Iteration 15. Left: unfiltered intensity map. Right: filtered preview.
Rendering time: ∼16 seconds (∼1 second per iteration)

Figure 8.13: Iteration 20. Left: unfiltered intensity map. Right: filtered preview.
Rendering time: ∼21 seconds (∼1 second per iteration).
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Figure 8.14: Iteration 25. Left: unfiltered intensity map. Right: filtered preview.
Rendering time: ∼26 seconds (∼1 second per iteration).

Figure 8.15: Iteration 30. Left: unfiltered intensity map. Right: filtered preview.
Rendering time: ∼31 seconds (∼1 second per iteration).
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Figure 8.16: Iteration 100. Left: unfiltered intensity map. Right: filtered preview.
Rendering time: ∼101 seconds (∼1 second per iteration).

Figure 8.17: Reference image in 3D view. (unfiltered) Rendering time: ∼12.5 hours.
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8.1.4 Visually Perceivable Errors

For most computers, the luminance intensity resolution is 256, meaning 256 different
luminance intensities can be displayed on the screen. To that end, users can at most
recognize differences in luminance of pixels on the screen in the range of 0 to 255. Each
difference that we can perceive between our test images and the reference image is
considered an error. To measure the visually perceivable error, we transform the image
values to integer values in the range [0 255], clamping some of the brightest pixels, which
are considered as outliers. After this transformation, we calculate the PSNR, SNR
and RMSE between our test images and the reference image. The results, shown in
Figures 8.18, 8.19 and 8.20, are similar to the evaluation results of the original data
values as presented in Section 8.1.3. Future work would be to do this evaluations on
tone-mapped images in order to account for the logarithmic luminance perception of the
human eye.
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Figure 8.18: This plot shows PSNR values with respect to the reference image. The
PSNR between the reference image and our image with filtered intensity maps, using
thresholds from 50 to 300, is compared to the PSNR between the reference image and
photon images without multi-resolution image filtering. Rendering time: ∼3.6 seconds
per iteration for the image-filtered results and ∼3.3 seconds for images without filtering.
Values are in the range [0 255].
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Figure 8.19: This plot shows SNR values with respect to the reference image. The SNR
between the reference image and our image with filtered intensity maps, using thresholds
from 50 to 300, is compared to the SNR of photon images without our multi-resolution
upsampling. Rendering time: ∼3.6 seconds per iteration for the image-filtered results
and ∼3.3 seconds for images without filtering. Values are in the range [0 255].

8.2 Performance

Image quality as well as performance, in terms of rendering time, of our algorithm
are highly dependent on the simulation parameters adjusted by the user. A very high
threshold can increase computation time for the multi-resolution image-filtering, since
this results in a lot of texels that have a photon count below the threshold and need to
be upsampled. The maximum number of reflections allowed for one ray can also have an
impact on performance, especially in very complex scenes, where rays are likely to be
reflected on the luminaire geometry for multiple times. However, the biggest influence
on the performance by far, is the number of rays that are cast, to emit photons into
the scene. Reducing the resolution of the intensity-map faces also reduces the number
of necessary photons to obtain visually pleasing results. Depending on the simulation
parameters, rendering times for one iteration can range from 0.1 seconds to 10 seconds.
Figure 8.21 shows a result obtained after 100 iterations of casting 100 000 rays to fill an
intensity map with a cube-map face size of 5122. Each iteration was rendered in about
0.3 seconds with an overall simulation time of 31.329 seconds (including exporting the
final intensity map). Another example is shown in Figure 8.22. This result was obtained
after 100 iterations with a total rendering time of just 12.109 seconds.
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Figure 8.20: This plot shows RMSE values with respect to the reference image. The
RMSE between the reference image and our image with filtered intensity maps, using
thresholds from 50 to 300 is compared to the RMSE of photon images without our multi-
resolution upsampling. Rendering time: ∼3.6 seconds per iteration for the image-filtered
results and ∼3.3 seconds for images without filtering. Values are in the range [0 255].

Figure 8.21: Result after 100 itera-
tions, with 100 000 rays cast during
each iteration and a threshold of 80
for a resolution of 5122 per cube
map face. Rendering time: 31.329
seconds

Figure 8.22: Result after 100 itera-
tions, with 100 000 rays cast during
each iteration and a threshold of 70
for a resolution of 1282 per cube
map face. Rendering time: 12.109
seconds.
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8.3 Limitations
Our method excels in scenes with complex light-source geometry and complex material
properties, which result in a large distribution of photons in all directions. Luminaires
that concentrate their light distribution in a very distinguished, small area (like spotlights
do) can benefit very little from our algorithm. Pure random photon tracing is already
sufficient to get high-quality results for cases like this in just a few iterations.

The approach presented in this thesis is restricted by a trade-off between image quality and
speed, both regarding the interactive previews. It is possible to decrease the number of
rays cast per iteration and therefore also decrease the simulation time of the photon tracer.
As a consequence, the intensity maps contain less information and our multi-resolution
image-filtering approach will produce inferior results when processing them.

Because the main parts of our algorithm (the photon simulation and the image-filtering)
run on the GPU and we use huge buffers for our photon storage and intensity map, the
performance of the whole algorithm is highly dependent on the graphics card and its
memory capacity. At the moment the implementation of our prototype is tailored to the
NVIDIA GeForce GTX 970.

8.4 Discussion
State-of-the-art global-illumination algorithms that render visually pleasing images in
real time are often view dependent or image space techniques, or use either some kind of
averaging or approximations to calculate the illumination in a scene. They do not achieve
physically correct results. Offline algorithms (like most photon mapping algorithms) on
the other hand, which converge to a physically correct solution, are very time consuming
and therefore not feasible for interactive applications.

Recent research ([KD13, GKDS12]) in the field of photon mapping showed that most
improvements can be achieved using progressive photon mapping and parallel photon
mapping implemented on the GPU. A key part in progressive photon mapping is radiance
estimation, which we dismissed for our approach due to its trade-off between variance
and bias. Furthermore, by calculating a radiance estimation on sparse textures, such
as the lowest mipmap level of our intensity map (during the first few iterations of our
simulation), high-frequency details might get lost. Future work could be to combine
radiance estimation with our multi-resolution image-filtering approach.

Our algorithm combines advantages of both real-time global-illumination algorithms and
offline rendering. We are not able to render in real time, but we achieve interactive frame
rates, which allow the usage of our algorithm in an interactive editing tool. Even though
the intermediate results of our algorithm are image-filtered and not physically correct,
it converges to a physically plausible solution with a small overhead in computation
time (caused by the multi-resolution image filtering). This additional time depends on
the desired resolution of the resulting image and the chosen parameters for the image
filtering, like the threshold or the number of mipmap levels.
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Since our multi-resolution image-filtering approach has to produce smooth images of,
sometimes, very sparse textures during the first few iterations, most image-filtering
techniques that are not based on a multi-resolution technique, cannot produce smooth
results. Other state-of-the-art image-filtering or noise-reduction techniques, like the
edge-preserving smoothing model by Kniefacz and Kropatsch [KK15], or the structure-
preserving image decomposition operator based on the bilateral filter, presented by Cho et
al. [CLKL14], have to be adapted to serve as an interpolation technique. Both approaches
need more textures, more computations and more texture lookups than our implemented
bilateral interpolation (as explained in Section 6.4.4). Therefore, such techniques would
increase the overall computation time of our algorithm. Note that our algorithm allows
to easily exchange the implemented interpolation technique to increase image quality.
However, the evaluation on how much computation time increases and image quality can
be improved, by integrating such advanced techniques is future work.

The implementation of our bilateral interpolation minimizes artifacts caused by intensity
leaks. However, our multi-resolution image-filtering method is still not able to produce
perfect intermediate results as compared to the reference image. When constructing
the mipmap image pyramid, we sum up four texels to get one value for the next higher
mipmap level. This calculation causes a loss of information about the exact location
of the values that are added together, which introduces an error to our upsampling
procedure. To reduce this error it is necessary to implement more sophisticated methods
of constructing an image pyramid.

Our evaluation shows that different thresholds produce different image qualities depending
on the photon distribution in the intensity map. Because this photon distribution is hard
to predict, the threshold has to be adjusted by the user in our current implementation.

An open issue of our algorithm is importance sampling. The goal of using an importance
function is to increase the photon count in regions that contain details such as borders
of intensity regions. Photons that result from randomly choosing ray directions, as
described in Section 5.4, are stored with an energy of one. In order to to cast rays not
just according to the emission profile, but also guided by an importance function, it is
necessary to adapt the energy of the photons to this importance function. When casting
a ray into a direction that has a certain importance, we set the energy of the resulting
photon to a value inversely proportional to the importance of the chosen ray direction.
As a consequence we get many photons with low energy in regions of interest, which is
the desired result for these regions. Ray directions that cast photons into areas that are
already quite smooth have a low importance. Hence, only very few photons are emitted
in these directions, but these few photons have a very high energy, which accounts for the
low importance of these ray directions. High-energy photons that are added in smooth
areas therefore increase variance in these areas and are visible as noise. On the one hand,
we get more photons in regions of interest, but on the other hand we introduce noise to
already smooth regions. Since our goal is to produce smooth results, we have to conclude
that the usage of an importance function, like presented in Section 5.4.1, is not beneficial,
and was therefore deactivated in our final prototype.
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CHAPTER 9
Conclusion and Future Work

We presented an interactive global-illumination algorithm that simulates the light distri-
bution of a light source and produces visually pleasing intermediate results at interactive
frame rates before it converges to a physically plausible solution, resulting in a visualiza-
tion of the light distribution of a luminaire.

We combined an interactive, progressive photon tracing algorithm, using forced random
sampling as described by Cornel [Cor14], with a multi-resolution image-filtering approach,
based on the upsampling technique described by Nicholas and Wyman [NW09]. Our
algorithm significantly enhances the output when compared to non-filtered textures. This
allows us to display a visually pleasing preview after each iteration.

We compared the intermediate results, generated at each iteration with different thresholds,
to a physically plausible reference image (obtained after several hours of rendering time),
using objective quality metrics. The evaluation showed that our image-filtering approach
is able to increase image quality (as compared to non-filtered results), especially during
the first few iterations, which are most important for an interactive tool.

A luminaire editor, as shown in Figure 9.1 was developed at VRVis, as extension to the
HILITE software. By providing fast previews, it allows the user to edit the geometry or
material of the luminaire in real time. The editor provides a multitude of parameters
(for transformation of the geometry, modification of material properties, adaptation of
rendering speed and image quality,..) and shows the progress of the simulation. By
developing a tool, that provides visually pleasing previews at interactive frame rates, we
turned the very time-consuming iterative luminaire design into an interactive process.
Furthermore, since our editor can be used during lighting design to directly edit the
light distribution of luminaires, we provided a new way to combine two former totally
decoupled workflows for luminaire design and lighting design.
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Figure 9.1: Luminaire editor.

9.1 Future Work

Adaptive Threshold

During our multi-resolution image filtering, we use a user-defined global threshold to
specify what number of photons is sufficient to categorize a texel as stable. Texels that
have a lower photon count are upsampled using bilateral interpolation. Texels on high
mipmap levels are more likely to have higher values than the threshold and will therefore
not be altered. On lower mipmap levels, more texels will have lower values than the
threshold, and will hence be considered not stable. Finding a good threshold that will
result in homogeneous regions being smoothed and high intensity details being kept
unaltered is difficult. As our evaluation showed, different thresholds yield a different
quality of results, depending on the amount of photons in a region. In our current
implementation, the threshold has to be defined and adapted by the user. So future work
could be calculating an optimal threshold for the whole image or separate thresholds for
different image regions, as well as automatically adjusting the threshold in each iteration
according to the new amount of photons that is added per iteration.
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Importance Sampling

The importance-sampling scheme we presented introduced additional noise in previously
homogeneous regions and was therefore neglected for the final prototype. In future work,
other importance-sampling schemes, which direct more photons into regions of interest
without casting a few high-intensity photons into directions of smooth regions, could be
explored.

Advanced Image Filtering

Since most of the rendering time of our algorithm is consumed by photon tracing, future
work could be to introduce an an image filter that can produce smooth images from very
sparse textures, so we can reduce the number of photons that is necessary to produce
visually pleasing results. Note that our bilateral interpolation can be exchanged by any
fast edge-aware image interpolation method or image filter, which can be adapted for
interpolating texel values. Most advanced image filtering techniques need more texture
lookups and computation time than a bilateral interpolation. In order to include advance
interpolation techniques (like the bilateral texture-filtering method presented by Cho et
al. [CLKL14]), it is necessary to investigate if the gain in image quality outweighs the
performance loss, or if the improved image quality allows the photon tracer to reduce the
amount of necessary photons and simulation time, to account for the increased time of
the image-filtering approach. A combination of radiance-estimation techniques with our
multi-resolution image-filtering approach might also be beneficial.
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