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a b s t r a c t

The analysis of multidimensional data has been a topic of continuous research for many years. This type
of data can be found in several different areas of science. A common task while analyzing such data is to
investigate patterns by interacting with spatializations of the data in a visual domain. Understanding the
relation between the underlying dataset characteristics and the technique used to provide its visual
representation is of fundamental importance since it can provide a better intuition on what to expect
from the spatialization. In this paper, we propose the usage of concepts from non-parametric statistics,
namely depth functions, as a quality measure for spatializations. We evaluate the action of multi-
dimensional projection techniques on such estimates. We apply both qualitative and quantitative ana-
lyses on four different multidimensional techniques selected according to the properties they aim to
preserve. We evaluate them with datasets of different characteristics: synthetic, real world, high
dimensional; and contaminated with outliers. As a straightforward application, we propose to use depth
information to guide multidimensional projection techniques which rely on interaction through control
point selection and positioning. Even for techniques which do not intend to preserve any centrality
measure, interesting results can be achieved by separating regions possibly contaminated with outliers.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The importance of data analysis has grown tremendously in the
last years. It has become a challenging task for many different
reasons. First of all nowadays data sources are ubiquitous and are
available for a broader audience, one of the reasons is that high-
definition sensors have become less expensive (e.g., high-
definition cameras, 3D scanners). Secondly, the scalability since
the volume of user generated data in a small scale of time (e.g.,
hours) can easily achieve the range of gigabytes (or terabytes). At
last but not least, the complexity of the data itself is also an
important aspect to be taken into account. Some examples of such
data are collection of images [1] and textual data [2], computa-
tional simulations [3], gene data [4] and so on.

While dealing with multidimensional, possibly high dimen-
sional, data there have been many efforts in the visualization on
providing techniques and tools to allow for data analysis. Common
approaches are visual exploration through linked views [3,5,6] and
multidimensional projections [1,7]. In order to improve the
effectiveness of the analysis, quality metrics can be defined to aid a
particular visualization, which allows for quantifying how much a
particular visual design conveys relevant patterns of the data
(e.g., cluster information). The works by Bertini et al. [8] and more
recently Sedlmair and Aupetit [9] provide a comprehensive and
systematic analysis of such quality metrics.

On the other hand, a common approach for data analysis comes
from machine learning, which automatically generates hypotheses
from the input data [10]. These hypotheses have many different
uses. Commonly they delimit meaningful regions of the input
space (i.e., identifying cluster regions) by defining decision
boundaries between data from different categories or classes.
Although algorithms that perform such operations in an automatic
fashion have proven quite useful, they rely on the definition of a
proper similarity metric among all pairs of the input data.

The idea of proper can vary with the type of data being ana-
lyzed. It is rather complex to define feature extractors, which are
discriminative enough for a broad class of datasets. This is mainly
due for two reasons: the diverse sources of the data (e.g., collection
of images vs car engine design [3]) and because of ambiguities.

Multidimensional scaling techniques play a particularly
important role in the context of such general datasets. They
decrease the complexity of the analysis by reducing the dimen-
sionality of the data. This enables, for instance, projecting the
input data onto a visual space aiming to preserve constraints
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(e.g., pairwise distances) as much as possible. Scatter plots have
been used to effectively convey absolute and relative distances
between points projected into the visual space, and to allow for
interactions within exploratory environments [11].

Reasoning on spatializations through scatter plots involves two
different aspects: the definition of objective quality measures (e.g.,
distance preservation) as well as subjective ones (e.g., user-specific
metrics). One of the main challenges in this process is the possible
mismatch between the objective measures and the user-made
quality judgments [12,13]. As the human perception is highly
based on pattern finding, the design of visual metaphors should
provide ways of handling both aspects without much effort. In the
literature, there are some works aiming to perform a quantitative
analysis of different patterns that can be found on these spatiali-
zations. For example they analyze separation factors of clusters
[12] or more general graph-based measures [14]. Wilkinson et al.
[14] evaluate the presence of outliers as one important property to
characterize scatter plots. They propose to use a minimum span-
ning tree to quantify the appearance of outliers, defined for the
whole scatter plot rather than performing a point-wise analysis.
Moreover, outlier detection itself is an active interdisciplinary area
of research [15].

On the other hand, scalar fields defined over the data are
interesting, because they allow for various types of analysis. For
instance, finding patterns in different dimensions of the data can
be handled by a visual inspection of the scalar field coordinate by
coordinate. Also the scalar field can be analyzed quantitatively by
using topological tools, such as persistent homology [16].

Data depth is a particular interesting scalar field which comes
from order statistics and non-parametric multivariate statistical
analysis. In order statistics no – or as few as possible – assump-
tions from the underlying data distribution are made beforehand
[17,18]. It is tightly related to multivariate median estimation,
since the latter does not have a single generalization from the
unidimensional situation. In the multivariate setting, different
generalizations for the median are provided by data depth func-
tions [17].

Data depth functions convey the notion of centrality concern-
ing the data. They also relate to methods of extreme value analysis
in the outlier detection literature, as outliers can be seen as the
least central points in the data. Such points might contain useful
information about the data such as an abnormal behavior during
their acquisition or synthesis; data with different underlying dis-
tributions mixed together, and abnormal patterns introduced
while processing the data (e.g., multidimensional projection) [19].

Once the data depth distribution is calculated before and after
some processing on the data (e.g., multidimensional projection), a
global analysis through statistical tests could be done. Alter-
natively, a visual analysis provides a qualitative way of under-
standing how the depth distribution is given on the input space
and how it has changed for individual data points. This also allows
for including user knowledge in the process, since the way users
perceive centrality on scatter plots could be taken into account,
although this is out of the scope of this work.

Other statistics measures such as mean and variance, although
widely used, can lead to misleading interpretations of the data
distribution since they are easily influenced by outliers and also by
non-symmetric data distributions [17].

The usage of the median as a more robust location estimation is
considered an interesting alternative. It has an asymptotic break-
down point of 0.5, which is a robustness estimator. Only if half of
the data were modified the location estimation would become
completely corrupted [20]. To put this into perspective, the mean
has a breakdown point of 0, i.e., a single outlier can completely
modify the estimation. Robust statistical estimates have been
shown to be successfully applied on different research areas out-
side statistics, such as image and geometry processing [21,22].

1.1. Paper outline and contributions

The paper is structured as follows: in Section 2 we discuss the
literature of quality measures for multidimensional projections and
also some approaches using statistics for multivariate analysis. In
Section 3 depth functions are described more formally and the
choice for a particular one is motivated. In Section 4 its use as a
quality measure for multidimensional projections is discussed with
some quantitative and qualitative experiments. Moreover a com-
parison with another quality measure is performed. In Section 5, we
describe how data depth can be applied for control point selection
and we explore some strategies for steering multidimensional pro-
jections. At last, we point out limitations, in Section 6.

Taking what has been previously described into consideration,
the main contributions of this paper are:

� Using order statistics as a quality measure for spatializations of
multidimensional data.

� A qualitative analysis tailored for visually inspecting candidate
regions of multidimensional outliers.

� A quantitative analysis through a quality metric defined by
individual point – data depth – variations.

� A framework for steering multidimensional projection techniques
by different sampling strategies using data depth information.
2. Related work

One of the main challenges in information visualization is to
increase the suitability of multidimensional data representation for
data analysts [23]. Within this context, several quality measures
have been proposed, in order to evaluate patterns in multi-
dimensional data visualization. A common evaluation characteristic
is the ability of the quality measure to identify clusters and relate
that to how humans perceive scatter plots. For a comprehensive
review of such quality measures, we refer to Albuquerque et al. [24]
and to Tatu's thesis [13]. However, the proposed pipeline by Tatu [13]
is rather different from ours, since it uses quality measures, selected
by the user, to steer the multidimensional projection. Afterwards,
appropriate dimensions are selected where the data is then
projected onto.

Different lines of investigation evaluate spatializations by how
much specific quantities are preserved after the projection procedure
[25]. Etemadpour et al. [26] introduce the concept of density-based
motion in order to evaluate the point density of clusters that can be
lost when a multidimensional dataset is projected.

Three common categories of methods for measuring distortions
are distance-based, topology-based (neighborhood), and perception-
based methods.

Some distance-based approaches are not scale-invariant (i.e.,
standard stress measures), meaning that even identical spatiali-
zations might indicate totally different preservation situations.
Moreover, even after a normalization procedure, datasets with
outliers introduce a bias on the analysis. By definition, the distance
of outlying points to non-outlying points is high. This affects how
variations among non-outlying points are perceived, since they
contribute less to the distance deviation measure [7].

Topological approaches mainly investigate the mismatch
between neighborhoods on the input space and neighborhoods on
the visual space [27,28]. This measure might be too strict, since small
perturbations on the neighborhood of a point might considerably
affect its neighborhood topology, although points still remain close.
Some works try to address this problem.
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In order to build a quality criteria for the assessment of
dimensionality reduction, Lee and Verleysen [29] created a unified
framework to represent several ranked-based distances using
K-ary neighborhoods computed in high and low dimensional
spaces. Venna et al. [30] provided a quality measure for an
information-retrieval task called NeRV (neighbor retrieval visuali-
zer), the measure relies on minimizing the cost of a query between
the amount of missed instances and those wrongly retrieved.
Heulot et al. [31] introduced ProxiLens, an interactive framework to
detect and filter out false neighbors when visualizing projected
data by using an adjustable radial neighborhood selection. The
method proposed by Martins et al. [32] tries to alleviate this dis-
continuous behavior of neighborhood comparison by proposing a
multi-scale approach. Moreover, other robust approaches can be
used [16]. Another aspect of topological approaches is that they
rely on the definition of a neighborhood graph, which might affect
considerably the obtained results [33].

Although Aupetit [25] investigates how different multi-
dimensional projection techniques distort the data, his approach
focuses on distortion measures based on geometric entities (e.g.,
points, Delaunay edges). He also proposes a heuristic for analyzing
similarities with respect to a reference point, which is also used by
ProxiLens. On the other hand, in our work we explore a specific
scalar field defined over the data, which is widely used in non-
parametric statistics and outlier detection, namely the data depth.
We also investigate the semantics associated with the distortion of
data depth by a multidimensional projection technique. In the
context of this work, possible spatializations are not limited to
projecting the data onto linear combinations of the original data
dimensions (e.g., as in PCA), but also allows for including non-
linear multidimensional projection techniques.

Perception-based approaches investigate how the choice of a
multidimensional projection affects the user perception and per-
formance when executing typical tasks on visual layouts of the
projected data. Albuquerque et al. [24] proposed a perceptual
quality measure for scatter plots using machine learning. Firstly,
the similarity between scatter plots is identified by the users and
employed to train a multidimensional scaling embedding. Then,
the scatter plots are ranked by the users according to their
assignment to a given task. Etemadpour et al. [34] provided an
approach to organize multidimensional data projection layouts
driven by a user-centric task categorization. Recently, Etemadpour
et al. [35] performed a comparative study to evaluate the user
perception of multidimensional data projection layouts consider-
ing specific tasks related with distance preservation and outlier
detection.

Some works have proposed to analyze multidimensional data
using depth functions [17,36]. To the best of our knowledge, none of
them aim specifically at analyzing how the choice of a particular
multidimensional projection technique can affect the reasoning on
the spatializations of the original data. In this direction, the work of
Rousseeuw et al. [37] generalized the idea of a box plot to a two-
dimensional setting by estimating a depth function based on
convex-hull peeling operations. Initially depth functions have been
proposed for analyzing points, and several approaches have been
used in the statistics literature [17,38]. These statistical measures
have proven quite useful for uncertainty visualization of ensembles
[39–41]. Additionally, Potter et al. [42] propose a visual metaphor for
summaries of different statistical moments, however their approach
does not allow for a connection with spatializations.
3. Depth functions

In the one dimensional case, order statistics are quite important
and have been used for a long time as they allow for computing
important statistical measures (e.g., median, outliers). Its general-
ization to a multivariate setting is not as straightforward as for the
mean. A component-wise median is a rather poor generalization, for
instance [43]. Many different approaches for the multivariate med-
ian have been proposed in the statistics literature [44].

Depth functions play an important role in such a context, since
the deepest point of a dataset can be taken as multivariate median.
They can be viewed as a multivariate generalization of the one
dimensional order statistics. The idea is to define a center-outward
ordering of the data, allowing for extracting meaningful statistics
on them, e.g., the multivariate median, as the most central point.
In fact, depth functions provide one way to relate different sta-
tistical methodologies (e.g., order statistics, quantile methods)
using a single non-parametric estimation [18].

Although there is a simple and clear ordering intuition behind
it, from the most central to the least central, the notion of depth
may vary depending on the proposed depth function. Later on in
this section we show how this notion changes on some examples
of symmetric and asymmetric multivariate data distributions.

More formally, let Fn be an empirical distribution of
X ¼ fx1;…; xng, sampled from a probability distribution F in Rm,
mZ1. The data depth is a way of measuring how deep a given
point xARm is w.r.t. the underlying empirical distribution of the
set X.

In general, depth functions should satisfy the following prop-
erties: affine invariance; maximality at the center; monotonicity
relative to the deepest point; vanishing at infinity [45]. We are
going to describe four different depth functions, which theoreti-
cally are able to handle multidimensional datasets.

One of the earliest data depth estimates is the Mahalanobis
depth function (MHD). Its general idea follows the Mahalanobis
distance, which relies on an anisotropic elliptical distribution of
the data, approximated by the covariance of the data samples. It is
defined as

MHDðFn; xÞ ¼ 1þðx�μFn ÞTΣ
�1
Fn ðx�μFn Þ

h i�1
ð1Þ

with μFn and ΣFn being the mean and empirical (sampled) covar-
iance matrix of Fn. Because of its simplicity concerning calculation
and its simple intuition can be thought as an initial approach.
However as it is based on non-robust estimates (e.g., mean and
covariance), it can have a low breakdown point, imposing a serious
limitation while dealing with outlying data, as one might see
in Fig. 1.

An interesting aspect of the Mahalanobis depth estimation is
the possibility of further extensions using kernel methods, which
leads to the kernel mapped Generalized Mahalanobis depth
(kmGMHD) [46]. The construction assumes that the data xiARm is
implicitly mapped into a Hilbert space H in which the data depth
is then computed only by evaluating a kernel function on the input
space data, a procedure known as kernel trick. This data depth
function relies on the computation of nontrivial dot products in
the Hilbert space H. Using the kernel trick, it is possible to com-
pute these dot products in H only in terms of evaluating a kernel
function k on the input data. The intuition is this procedure allows
for capturing possible non-linearities on the data by the action of a
kernel function. The depth is defined as

kmGMHDðxÞ ¼ 1þ
Xr

i ¼ 1

ððk̂ðx;xjÞÞ j ¼ 1;…;nuiÞ2

λ4i

" #�1

ð2Þ

where k̂ðx; xjÞ ¼ kðx; xjÞ�1
n

Pn
l ¼ 1 kðx;xlÞ�1

n

Pn
l ¼ 1 kðxj;xlÞþ 1

n2

Pn
l ¼ 1

kðxj;xlÞ and fλ2i ;uig are the r non-zero eigenpairs of the kernel
matrix kðxk; xlÞ evaluated in all n points.

Kernel functions can be defined for various entities, like points,
texts, image patches, graphs. For a comprehensive review of kernel



Fig. 1. Robustness evaluation in the presence of outliers, color coded by data depth
computed in the two-dimensional input space. The closer to one, the more central a
point is (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 2. Robustness evaluation on the presence of outliers in a two dimensional
space, color coded by data depth using kernels. The closer to one the more central
the point is (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 3. Depth computation on a parabola-shaped dataset. The black circle illustrates
the most central point according to the depth function used.

Table 1
Robustness and asymptotic complexity of different depth functions.

Data depth Outlier robustness Computational complexity

MHD No Oðnþm3Þ
kmGMHD No Oðn3þmÞ
CD No Oðnlog nþn⌊mþ ð1�mmod2Þ

2 cÞ
L1D Yes O(nm)
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functions the reader is referred to Hofmann et al. [47]. In the lit-
erature, commonly used analytic kernel functions are the Gaussian
kernel kðx; yÞ ¼ expð� Jx�yJ2=2σ2Þ and the polynomial kernel
k x; yð Þ ¼ x; y

� �þ1
� �p. There is a well defined machinery for con-

structing new kernel functions from existing ones. This allows for
arbitrarily many kernel combinations and analyses. It is, however,
not clear whether these are still going to define data depths.

We have repeated the same tests shown in Fig. 1 using
kmGMHD. The possibility of changing the behavior of the depth by
changing the kernel function introduces additional flexibility, but
requires the understanding of the effect of the kernel choice. Fig. 2
shows that the kernel choice can significantly modify the depth
distribution. For the polynomial kernel (Poly2) we have chosen
degree p¼2 and we noticed that changing this parameter did not
affect the result considerably. With the Gaussian kernel, the results
were obtained using Silverman's rule of thumb, σ ¼ 1:06σ̂n1=5,
where σ̂ is the standard deviation estimated from the samples
[48]. However, a problem with this estimation is its sensitivity to
outliers, which is not helpful for our goal. In Fig. 3, we show how
good it captures nonlinearities in the data.
Hoffmann [49] reconstruction error is a kernel-based measure
for novelty detection. It is tightly related to the distance of the data
to its estimated PCA plane in Hilbert space H (kernel PCA). While
using Gaussian kernel functions, this measure is tightly related to
Parzen-window estimates, a widely known non-parametric den-
sity estimator.

Among several depth functions studied in the computational
geometry literature, the Convex hull depth (CHD) is rather appeal-
ing because of its simplicity of being understood and computed.
The basic idea is to start computing the convex hull of the input
data. All points lying on the hull define the lowest depth of the
data. All of these points are discarded from the computation and a
new convex hull is computed, defining the next depth contour.
This peeling process is repeated until the innermost layer is found.
Although it is a good depth estimation, as one can see in Table 1, it
can become infeasible in higher dimensions.

The multivariate L1-median (geometric median, spatial median)
is the theoretical solution of the Fermat–Weber location problem.
Given the samples X (as before), and weights for the samples
W ¼ w1;…;wnf g, the task is to find a point y, which minimizes the
weighted sum of the distances between y and the samples.
Namely y is found as

y¼ argmin
x

Xn
i ¼ 1

wi Jx�xi J2 ð3Þ

In the general case, a numerical solution is estimated by a simple
iterative method, i.e., the Weiszfeld algorithm. Vardi and Zhang [50]
proposed an improvement in the cases in which the estimated
median is sufficiently close to one of the samples. Moreover, they
define a depth function based on the proposed optimization pro-
cedure, named L1-Depth (L1D).

The intuition of L1D comes from the fact that y is the geometric
median, so it can be considered as the most central point based on
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the samples, and it minimizes Eq. (3). Vardi and Zhang [50] have
exploited the fact that the minimization function for Eq. (3) is
continuous in x. They use its direction of minimization, such that
with given X and W the L1D is defined as follows:

L1DðxÞ ¼ 1�max rðxÞ�wðxÞ;0ð ÞPn
i ¼ 1 wi

ð4Þ

where

rðxÞ ¼
X
xi ax

wi
xi�x

‖xi�x‖

�����
�����
2

�����
����� ð5Þ

and

wðxÞ ¼ wk if x¼ xk; k¼ 1…n
0 otherwise

�
ð6Þ

Although the weights introduce a flexibility in adjusting the
importance of the points, in this paper we use wk ¼ 1; k¼ 1…n, i.e.,
giving all points the same weight.

In Fig. 1 we introduced outliers in order to assess how this affects
data-depth distributions for non-robust depth estimates (e.g., MHD)
compared to a robust one (i.e., L1D). This shows that even after the
addition of 20% of outliers, the depth distribution using L1D is almost
unchanged. Also, CHD does perform well under the presence of
outliers.

In Fig. 3 five data depth function estimates are employed,
illustrating their behavior in a two dimensional scenario, on a
manifold-like point distribution.

The complexity of computing depth functions increases with the
dimensionality of the input space. This imposes a serious limitation
on the applicability of many depth functions for high-dimensional
datasets. For instance, convex hull computations become computa-
tionally prohibitive already for datasets with 200 points in a ten-
dimensional space, which is quite restrictive. Additionally, for most
of the analyzed datasets, the covariance matrix estimated for the
Mahalanobis depth has either shown to be not invertible or with an
ill-conditioned behavior, and it seems to require a regularization
procedure [51]. Kernel-based depth scales well with the dimension
of the data, since its complexity only depends on the number of
instances, making it suitable for datasets where the dimension m⪢n
(e.g., datasets of images). However, it involves the selection of a
kernel function and parameter tuning procedure. Furthermore, for
general multidimensional datasets it is not immediately apparent
how this kernel choice affects the depth and it requires a more in-
depth investigation. Some heuristics approaches already used for
parameter tuning, like Silverman's [48], can be a good starting point
for such an analysis.

In this work we focus our analysis on the L1 data depth. Its
computational complexity allows for practical computations and it
locally preserves the data-depth distribution, even if the dataset is
contaminated by a high number of outlier points (see Fig. 1).

Although it is not the primary focus of this work, other statis-
tical quantities (e.g., kurtosis) can be derived from the data depth
estimation. It has been shown that taking into account some of
these data-distribution inherent characteristics while performing
a multidimensional projection can significantly modify the result
in the visual space and its understanding [17,52].
4. Depth as a quality measure

In order to describe the usage of data depth as a quality mea-
sure, we have set up some questions to motive our design choices
for the analysis. More specifically these are:

Q1: How to visualize data depth in multidimensional datasets?
It is possible to find in the literature lots of works which make
usage of depth functions to visualize entities in both 2D and 3D
spaces (e.g., depictions of ensembles) [41] and also on graphs [53].
However, no visual metaphor aims specifically at visualizing data
depth defined over points in a multidimensional space with a
dimension higher than three.

We decided to address this problem by a simple approach of
color coding the data depth field, namely Dm, computed on the
input space Rm and directly depicted in the spatialization. Never-
theless we use a multi-hue, monotonically varying luminance
color map from ColorBrewer [54], with the goal to continuously
vary the perceived data depth values. The color mapping ranges
from dark blue for the highest depth value (most central point),
passing through light green for intermediate values, and going to
light yellow for the least central value. The color map refers to the
depth computed on the input space Rm.

The experiments using such a strategy are described in Section
4.1 and the results can be seen in Figs. 4–7.

Q2: How do Multidimensional Projection (MP) techniques modify
depth after the spatialization?

Once we have computed the data depth on the original space,
we repeat the process for the data projected into the visual space
R2, which gives the scalar field D2. This defines two scalar fields
over the data, both with ranges in the interval 0;1½ �.

A simple approach to investigate how the centrality values
changed during the multidimensional projection process is to
calculate point-wise differences between both scalar fields, as
there is a one-to-one relation between them. This produces a
difference scalar field Dd with range on �1;1½ �.

The values in this range have an interesting associated
semantic. If we define the difference scalar field

Dd ¼Dm�D2; ð7Þ
the extreme values of Dd are going to convey the following behavior:
a value closer to 1 (orange) indicates that a central point in the
original space has been moved towards a peripheral region (i.e., low
depth value) in the visual space. Such behavior defines a False Per-
ipheral Point (FPP), since it is peripheral only in the visual space.
Conversely, the closer the value is to �1 (purple), implies a per-
ipheral point in the original space has been moved towards a central
region (i.e., high depth value) in the visual space. We call such a point
a False Central Point (FCP). Points that did not change their depth are
going to have a neutral color, conveying their neutral behavior.

These definitions are closely related to the notion of False-
Neighbors and Tears, by Lespinats and Aupetit [28] using the data
depth instead of neighborhood information. False neighbors are
points not in the same neighborhood in the input space, but
neighbors after the multidimensional projection. Conversely, tears
are points which are neighbors only in the input space.

The occurrence of FPPs and FCPs is of great importance, since it
can indicate whether possible outlier points from the input space
have been mixed together with non-outlier points after the mul-
tidimensional projection. To the best of our knowledge, none of
the proposed techniques in the literature address this question
directly. In order to assess how this strategy conveys such beha-
vior, it has been applied for data with outliers, as described in
Section 4.1, together with approaches to avoid clutter as proposed
in Section 4.3. Some results are given in Fig. 9a, b and c.

Q3: In which regions does one find good candidate points for
steering a MP?

Once the centrality values have been computed, they can be
used for subsampling the dataset in the original space, according
to its depth distribution. This process defines control points with
an associated semantic (i.e., its centrality in the data), which
allows for steering multidimensional projection techniques that



Fig. 5. L1D depth computed on the Stamps dataset with four multidimensional projection techniques. The data depth values are color coded with outliers highlighted in red
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 6. L1D depth computed on the Hepatitis dataset with four multidimensional projection techniques. The data depth values are color coded with outliers highlighted in
red (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. L1D depth computed on the Parkinson dataset with four multidimensional projection techniques. The data depth values are color coded with outliers highlighted in
red (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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rely on control point selections. In Section 5 we propose different
strategies for this sampling process.
4.1. Experiments – qualitative evaluation

DD-plots have been used by statisticians to compare one data
depth distribution against another one [17]. It is defined by a two-
dimensional scatterplot where each point coordinate is its depth
value in one of the distributions. This means that for two identical
distributions, all points in a DD-plot lie on the line y¼x, similar to
the visual stress comparison shown in Joia et al. [1], and widely
used in the information visualization literature. Although the
analysis of depth changes becomes straightforward, as it consists
of checking whether a point lies above or below the line y¼x, it
lacks an association with the spatializations of the original data. In
contrast, our qualitative analysis relies on the strategies described
together with the questions Q1 and Q2, where the depth changes
are associated with color variations in the spatialization.

Since there is no multidimensional projection technique avail-
able, which aims to explicitly preserve centrality measures, we
have decided to vary the choice of technique depending on the
underlying assumptions on the data.

The first technique we have chosen is the Principal Component
Analysis (PCA), since it has been most frequently used by practi-
tioners [55]. It relies on finding the directions of maximal variance
among the data, which is another statistical estimate. The second
technique is Sammon mapping [56], which minimizes the inter-
point distances in a non-linear fashion. The third one is the Inde-
pendent Component Analysis (ICA) [57], which is targeted at non-
Gaussian distributions of the data. The last one is t-SNE [52], which is
based on probabilities defined on the points. It minimizes the dif-
ference between probability distributions in the original space and
the visual space, and tends to preserve the local structure of the data.



Fig. 7. L1D computed on five different datasets with four multidimensional projection techniques (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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Note that any multidimensional projection technique which
does not rely on control point selection could be used in this step.

4.1.1. Data with outliers

We have conducted experiments with three different datasets
contaminated with outliers, which have been defined by domain
experts for evaluating the performance of outlier detection tech-
niques [15]. The datasets were chosen according to the increasing
complexity of having their outliers detected. The datasets Parkin-
son, Stamps and Hepatitis were taken from the database provided
by Campos et al. [15].

The Parkinson dataset is composed of medical data from 53
persons, each of the data instances with 22 dimensions.
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People suffering from Parkinson's disease, i.e., 5 entries, are
marked as outliers, which amounts to 10% of the dataset. Fig. 4
illustrates the behavior of the chosen multidimensional projection
techniques on this dataset. In all techniques the outliers, high-
lighted in red, have a relatively low depth. Even in a rather simple
dataset, regarding outlier detection, MP techniques still mix out-
liers with points with high depth values, after the projection.

The second dataset, Stamps, is composed of 325 color stamps
classified as genuine stamps or forged ones (e.g., photocopied
ones). The latter are considered to be outliers of the dataset and
they make up around 5% of the dataset, which means 16 outliers.
Data points are characterized by 9 different geometrical and color
features, such as minimum bounding box, aspect ratio and pixel
density. Fig. 5 shows that the outliers have low depth values,
according to the L1D. Similar to the previous experiment, they
were mixed with points with high depth values after the multi-
dimensional projection, with PCA and ICA producing the worst
results.

The third dataset consists of 74 patients suffering from Hepa-
titis, and their corresponding predictions whether they are going
to survive or going to die (i.e., outliers). This dataset has 19 attri-
butes and 7 outliers (10%). From the three datasets, this is the most
complex one to have its outliers detected. Fig. 6 also reflects these
characteristics since outlier points do not necessarily have the
lowest depth values.

We have performed other experiments aiming to check how
the MP techniques perform on different kinds of datasets. The less
central regions might contain outliers, although with no ground
truth as used in this experiment.

4.1.2. Normally distributed data

The artificial dataset AD10, which is depicted in the first row of
Fig. 7, is constructed as follows: fifteen clusters are generated
following a Normal distribution N ð0;1Þ, and are placed at random
vertices of a hypercube in a ten-dimensional space. The main
purpose of this experiment is to assess how data depth and mul-
tidimensional projection techniques perform on several different
clusters with a well known structure (i.e., being normally
distributed).

Although t-SNE produces more compact clusters, it does not
avoid mixing together points with quite different values of cen-
trality, inside each cluster. The depth distribution in the Sammon
mapping result preserves better than this distribution in com-
parison with the other techniques. This visual analysis is con-
firmed by the quantitative evaluation, as shown in Table 2.

4.1.3. Non-Gaussian data

Although a common assumption is to rely on Gaussianity of a
data distribution, this might not be its underlying characteristics.
Table 2
Data-depth distortion measured from Dd. The lower the value, the higher the depth
preservation by the multidimensional projection technique (best results are shown
in bold). Rows are grouped according to the assumptions on the dataset.

Dataset (DS) n m PCA Sammon ICA t-SNE

DS1: Parkinson 53 22 1.59 1.51 2.10 2.05
DS2: Stamps 325 9 3.09 1.58 3.95 2.84
DS3: Hepatitis 74 19 1.13 0.85 1.59 1.71
DS4: Ad10 1499 10 8.22 7.39 7.81 7.71
DS5: LogNormal 999 5 5.76 4.22 5.46 4.59
DS6: Ionosphere 349 34 3.62 1.76 3.34 3.17
DS7: USPS 1457 256 9.20 6.89 9.11 8.64
DS8: Faces 697 4096 4.94 4.35 5.83 5.48
Examples of skewed data distributions (e.g., log-normal ones) can be
found in many different fields in science: geology, human medicine,
microbiology, atmospheric sciences, social sciences, and economics
[58]. In order to evaluate the behavior of Non-Gaussian distributed
data we have created a synthetic LogNormal distributed dataset,
following a ln N ð2000;0:7Þ distribution, in a five-dimensional space.

As becomes apparent in the second row of Fig. 7, ICA performs
quite well for this type of data, preserving the overall structure of
the points. Is expected it to outperform other techniques, as is
suited for such kind of datasets (i.e., non-Gaussian). However, it
does not avoid mixing points with low and high depth values,
illustrated in the region containing most central points. The results
obtained using Sammon mapping technique still produces the best
result regarding data depth preservation, while keeping the point
distribution similarly.

4.1.4. Real-world data

The Ionosphere results from radar data of free electrons in the
ionosphere. It is composed of two values per pulse of the pro-
cessed electromagnetic signals, with 17 different pulses, i.e., giving
a 34-dimensional dataset. The goal is to seek for evidence of some
structure in the signals, classified as good or bad accordingly [59].

As can be seen in Fig. 7, the preservation of depth is nearly the
same for all techniques, with Sammon and t-SNE technique pro-
ducing the two best results (see Table 2).

4.1.5. High-dimensional data

The first high-dimensional data experiment, illustrated in
Fig. 7, is the US Postal Service (USPS) digits dataset [59]. It is
composed of images of digits with 10 different classes, from 0 to 9.

The second experiment, i.e., with the Faces dataset, illustrated
in Fig. 7 is defined by 697 instances of 64�64 grayscale images of
faces with different poses and lighting conditions [60]. Each image
is represented by its vector form defining points in a 4096-
dimensional space.

Although in this experiment PCA does preserve the notion of
centrality, Sammon mapping produces the best results as com-
pared to the other techniques. t-SNE still retains the continuous
variation of the depth, defined on the input data. This is clearly not
the case for ICA, which mixes together central points with per-
ipheral points of the input space.
4.2. Experiments – quantitative evaluation

The difference scalar field Dd, defined for visually inspecting the
behavior of the data depth, straightforwardly specifies a measure
of data depth preservation. We construct a vector s of n entries
defined by the Dd difference scalar field evaluated at each point xi
from the dataset, as follows

s¼ Ddðx1Þ; Ddðx2Þ; …; DdðxnÞ
� 	

ð8Þ

and we define the data-depth distortion as the L2 norm of the
vector s, such that the closer to zero the lower the distortion on
the depth. Also an upper bound for the depth distortion is

ffiffiffi
n

p
,

since the maximum absolute change in depth for a single point is
not greater than one. The upper bound would be reached in the
hypothetical situation where there would be a maximal depth
change at each of the n points of the dataset. Table 2 quantifies the
data-depth distortion for the various experiments. An interesting
result is the overall very good performance of Sammon mapping in
all the experiments.
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We have implemented the data depth L1D using MATLAB
s

. All
experiments have been performed on an Intel Core i5-5200 CPU
with 8 GB of RAM. Table 3 shows the computational timings for Dm

using L1D.
4.3. Clutter avoidance

In order to avoid cluttering in visualizations, as given in Fig. 7,
one could use a strategy similar to Aupetit [25]. Their approach is
based on partitioning the 2D space by a Voronoi diagram of the
projected point set. Fig. 8 shows that regions with a higher density of
points produce more Voronoi cells with smaller areas. Nevertheless,
the approach is still well suited for analyzing the data-depth pre-
servation. High density regions with color discontinuities, as illu-
strated in Fig. 8a, indicate an undesired behavior, in which points
with quite different depth values were mixed together. Conversely,
the continuity, as illustrated in Fig. 8b, shows that the projection has
been able to locally preserve the data-depth distribution.

A possible drawback of such an approach is that the size of the
cells might convey a misleading notion of importance, as com-
pared to color discontinuities. Additionally, as shown in Fig. 8c and
d, the impact of FPP and FCP becomes region-based instead of
point-based, which could benefit projections with only few points.
4.4. CheckViz comparison

In general, as shown in Fig. 9, the results obtained using our
approach are quite promising to convey data-depth preservation.
There are interesting connections with the CheckViz approach
Table 3
Computational timings in seconds for computing Dm using L1D.

Dataset DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
Time (s) 0.009 0.14 0.013 2.78 1.23 0.17 6.41 11.06

Fig. 8. Clutter reduction by constructing Voronoi diagrams of spatializations of the
USPS dataset.
[28], such as that regions of high distortion in our approach are
also regions of high distortion in the CheckViz approach.

During the experiments the CheckViz scaling parameter σ has
been selected as the average distance between each point and its
fifth neighbor in the input space, a rule of thumb suggested by the
authors.

The behavior of our approach is that outlying points, high-
lighted with red circles, are either kept in peripheral regions after
the projection, which will produce gray Voronoi cells, or they are
moved towards central regions, which will define purple FCP
Voronoi cells. This makes both types of cells candidates for con-
taining outliers, which can be confirmed in Fig. 9a and b. However,
the same does not hold for some cells in Fig. 9c, which implies that
the estimated depth value in the original space was moderate, not
corresponding to what is expected from an extreme value outlier
data. This is not a limitation of the proposed technique but of the
chosen depth function to properly identify outliers as points with
low depth values.

On the other hand, the expected behavior of the CheckViz
approach is that the outlier points are either kept in peripheral
regions, defining white Voronoi cells, or they are mixed together
with more central points, defining false neighbors and producing
purple Voronoi cells. In the same sense as our technique, both
types of cells are candidates to contain outliers, and this behavior
can be seen in Fig. 9e and f. However, Fig. 9d shows that outliers
can also be classified as tears, making more difficult to analyze
their behavior by using CheckViz approach.

Another interesting aspect can be seen in Fig. 9b and e,
exposing an important distinction on the kind of performed ana-
lysis. More specifically, our analysis focuses on two regions A :

½�0:01;0:05� � ½0:03;0:10� and B : ½0;0:07� � ½0:10;0:16�. CheckViz
visually indicates almost the same distortion by the mapping in
both regions A and B. Our approach reveals they have quite dif-
ferent behaviors: (a) region A contains peripheral points from the
input space which are still peripheral after the projection, visually
encoded with a neutral cell color; (b) region B contains central
points from the input space which are now peripheral after the
projection, according to the data depth estimation, which pro-
duces cells with orange colors.

These two different behaviors may have a direct impact on
understanding the effect of the projection on the data. For
instance, using our approach, one could spot regions with possible
outliers by identifying less central cells with neutral colors, while
the same cannot be provided by the CheckViz approach. User
studies would be interesting to investigate the impact of such an
encoding on the analyst's perception of the projection.
5. Steering multidimensional projections

Some multidimensional projection techniques rely on the
selection of some points in the original space (i.e., control points)
and to position them in the visual space, guiding the projection
process to a certain extent. It allows the user to steer the projec-
tion by selecting points with an associated semantic (e.g., centroid
of a cluster, outliers) and by carefully positioning them in the
visual space. The goal is that the overall projection follows the
control points as much as possible. The process of selecting
appropriate control points and properly positioning them is highly
dependent on the desired task. For instance, one could use class
information to position points of different classes in distinct
regions, aiming to improve the inter-class separation of the data.

Since computing depth functions defines a scalar field on the
input data, in which the sorted values describe a notion of center-
outwards ordering, one can use this information to steer the
multidimensional projection. The centrality information can be



Fig. 9. On top row, the FPP (orange) and FCP (purple) regions, defined in Section 4. At bottom row, CheckViz tears (green) and false neighbors (purple) (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 4
Quantitative analysis of the stress function and data depth distortion using differ-
ent sampling strategies, the lower the better (best results are shown in bold).

Dataset RS UDS NUDS

Parkinson (stress) 3.42 (72.55) 0.31 (70.04) 0.27 (70.06)
Parkinson (depth distortion) 2.34 (70.18) 1.88 (70.05) 1.81 (70.23)
Stamps (stress) 3.58 (70.69) 0.24 (70.08) 0.20 (70.04)
Stamps (depth distortion) 5.24 (70.39) 3.85 (70.51) 3.81 (70.33)
Hepatitis (stress) 3.79 (71.8) 0.22 (70.06) 0.14 (70.05)
Hepatitis (depth distortion) 2.62 (70.30) 1.94 (70.31) 1.87 (70.13)
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used, so that after the projection outliers lie in distinct regions
than points with large depth values.

In order to explore the centrality information, we have imple-
mented two strategies for sampling the input space and for posi-
tioning control points in the visual space. We compared them to a
randomly control point selection and placement. Both strategies
aim to preserve data depth by sampling the visual space in a radial
fashion, because of its known data depth distribution.

Many multidimensional projection techniques rely on mini-
mizing distance distortions between input and visual spaces.
Therefore, we calculate how incorporating depth information in
the control point selection affects such measure, defined as the
stress:

stress¼
P

ijðdij�dijÞ2P
ijd

2
ij

ð9Þ

where dij and dij are the distances between points xi and xj in the
original space and in the visual space, respectively.

The performance of each strategy is shown in Table 4, com-
paring its stress measure and the data-depth distortion, defined in
Section 4.2, evaluated on five random experiments each. More-
over, for projecting in the visual space, we have chosen the Local
Affine Multidimensional Projection (LAMP) technique [1] because
of its effectiveness on preserving distances locally.

In order to minimize the effect of scale differences on the
stress, the control points are mapped to the visual space inside a
2D-disk of diameter dmax, where dmax corresponds to the max-
imum distance between two points on the original space.

5.1. Random sampling (RS)

A straightforward sampling strategy is to randomly select
points in the original space and place them at a random position
inside the 2D-disk of diameter dmax. The idea behind this strategy
is to investigate how the LAMP technique performs if the control
points are chosen at random, without taking into account any
further information about the data (e.g., data depth). In Fig. 10
projections obtained for the Stamps dataset are shown, varying
the number of control points.

Although it is a possible strategy for selecting control points to
project the data into the visual space, the randomness of control
point selection and positioning lacks a more informative semantic,
specially regarding the depth. This strategy just spreads out ran-
domly the selected control points on the plane. However, the
distance deviations of each projected point with respect to the
control points is locally minimized, which is a characteristic of the
LAMP technique.

5.2. Uniform depth sampling (UDS)

In order to take into account the depth, we sample the com-
puted depth values either uniformly or non-uniformly in the ½0;1�
depth range. Non-uniform sampling happens according to the
depth distribution in the input space.

The first approach selects the control point in the original space
by uniformly sampling its data depth. Afterwards the control
points are positioned in the visual space again inside a disk with a
diameter dmax. A control point with low depth value in the input



Fig. 10. Random sampling strategy applied to the Stamps dataset. Black marks
depict the control points and red circles the outliers (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 11. Uniform depth sampling of the Stamps dataset.

Fig. 12. Non-uniform depth sampling of the Stamps dataset.
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space is positioned close to the disk center, whereas a control
point with high depth value in the input space is positioned close
do the disk perimeter.

Our formulation uses polar coordinates ðρ;θÞ, since with these
coordinates our placement strategy is easy to specify. For the
general position of the control points, the θ parameter is generated
randomly following a uniform distribution in the ½0;2π� range. We
sort the control points according to their depth values in
descending order and map them to the radius ρ, uniformly sam-
pled from 0; dmax

2

h i
. The number of samples equals the number of

control points. In Fig. 11 this strategy is illustrated with the Stamps
dataset. Even using only 13 control points (4% of points), the
projection was able to preserve the notion of continuity of the
depth measure.

As can be seen in Table 4, the UDS approach improves the stress
preservation compared to RS. Also it reduces the depth distortion,
as can be expected from its radial construction, in which more
central points on the input space are positioned on the 2D-disk
center.

5.3. Non-uniform depth sampling (NUDS)

Our second step towards assessing the influence of sampling
strategy is to use the data-depth distribution information to adapt
the sampling. We use the empirical distribution function of the Dm

to randomly generate a depth value vi. For point selection, we pick
the point with its data depth closest to vi in the original space and
use it as a control point for the projection. This process is done for
the desired number of control points. For positioning the points on
the visual space, their θ coordinates are generated identically to
UDS case and their ρ coordinates are defined as their depth value
in the original space.

The intuition of such weighting scheme is to mimic the depth
distribution after the projection. In Fig. 12 this approach is com-
pared against the uniform one.

As it can be seen in Table 4, it also improves upon RS both on
stress and also on depth preservation, as expected. However, most
of the results do not change considerably. While comparing results
shown in Figs. 11 and 12, a slightly more regular distribution for
intermediate depth values can be seen on the latter, for all tested
number of control points.

5.4. Task-specific control point positioning

The UDS and NUDS sampling strategies use depth information
to guide the projection process. While trying to preserve depth,
general sampling strategies allow for other task-specific control-
point layouts. We have performed an experiment, illustrated in
Fig. 13, in which points with lowest depth values in the input space
are placed as control points on the left side of the visual space,



Fig. 13. Sampling of Stamps dataset with extrema depth values as control points.

Fig. 14. Data depth computed for the Hepatitis dataset projected using Sammon
mapping.
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while points with the highest depth values are placed on the
right side.

The control points with the lowest depth values coincide with
outliers, moving basically all the outliers towards the left side,
even with as few as 12 control points (�4%). The main idea, of
enforcing a placement of the data according to extrema depth
values, is to explore the possibility of defining regions that are less
likely of being contaminated with outliers. The experiment shows
how increasing the number of control points impacts the outcome.
The average stress achieved for this experiment is 0.22 (70.041)
and the average data-depth distortion is 4.11 (70.73).
6. Discussion and limitations

For all datasets, Sammon mapping best preserved the data
depth. The reason for this behavior is not clear yet.

While analyzing the different sampling strategies, two topics
can be discussed: (a) the depth field opens possibilities for user
interaction through different control-point layouts. The user could
employ interactive tools, for specifying in which regions points
with the extrema depth values should be placed, for instance.
(b) Although the stress and the depth distortion originate from
different motivations, in all performed experiments using control
points they both showed a correlated behavior, i.e., both averages
decreased simultaneously, on different scales though. While the
stress value has been reduced by about 90%, the depth distortion
has been reduced by about 30%, as compared to the random
sampling strategy.

Fig. 6 indicates that using L1D might produce poor results for
complex datasets. In order to improve this result, we intend to
explore more closely the Random Tukey depth [61], which uses
subspaces to compute the depth in the input space. Initial results
in Fig. 14 show that the Random Tukey depth is outperforming
L1D, as outliers have low depth values. This might be an interesting
direction of further research.

Regarding the sampling strategies, there are not many differ-
ences between UDS and NUDS. Using the UDS strategy might be a
better choice, since it is simpler. However, a scheme, non-linearly
emphasizing depths close to the extremal values, might be inter-
esting to explore. This could enforce a depth-based separation in
the plane, similar to the experiment discussed in Section 5.4, but
with even a better preservation of the depth distribution.

To the best of our knowledge, there is nothing specific in the
literature to measure deviations of data depth. This has motivated
the analysis with other measures like the stress and a neighborhood-
based approach. Although they belong to a different class of distor-
tion measures, their usage has been motivated by the possibility to
explore relations with data depth preservation.

One interesting aspect of evaluating these three different
strategies is that although LAMP does not explicitly intend to
preserve on the projection any measure other than the distances
locally, data depth preservation can be achieved by exploring
control point layouts, even with few control points. The proposed
strategies are ad hoc experiments in this direction, which can be
improved by applying more refined optimizations.

One limitation of using data depth is that it does not support
the analysis of clusters separately among the data, as well as class
information, if available beforehand. However, the behavior of
kmGMHD using Gaussian kernel in interesting, as a moderate
depth value was distributed among different clusters, as seen in
Fig. 2, which could lead to cluster analysis by properly interacting
with the Hilbert space associated with the kernel.

Additionally, for multidimensional projection techniques based
on kernel methods [62,63] the only available depth estimation
tailored for such a scenario is the kmGMHD.
7. Conclusion and future works

In this paper we have proposed a novel approach for using
order statistics as a quality measure for spatialization of multi-
dimensional data. The computation of the data depth in the input
space and in the visual space, after the data has been projected by
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a MP technique, allow for evaluating centrality and depth
preservation.

As pointed out by Tatu [13], there are few works investigating the
relation of user perception and quality metrics. Within this context,
user studies could be carried out in order to assess how centrality
through data depth measures relate to human perception on scatter
plots and multidimensional projections [9,24,34,35].

The global behavior of the data-depth distribution can be
analyzed by using persistent homology with the framework pro-
posed by Rieck and Leitte [16]. By doing so, one is able to explore
in-depth differences between different depth functions (e.g., L1D
and Random Tukey depth). Additionally, the relation between
depth functions and the co-ranking approach by Lee and Verleysen
[29] is an interesting direction of investigation.

Recently, Pezzotti et al. [64] have proposed a hierarchical var-
iation of SNE outlining an interesting direction of investigation on
how it preserves the notion of data depth.

One important aspect, which can be further analyzed, is how
central regions relate dimension-wise. In this work we did not
address this problem. However, using linked-views of scatter plots
and parallel coordinates might be a good starting point for such an
analysis and would also allow for a better user interaction in the
process.
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