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Abstract
Until now a lot of visual analytics predominantly delivers qualitative results—based, for example, on a continuous color map
or a detailed spatial encoding. Important target applications, however, such as medical diagnosis and decision making, clearly
benefit from quantitative analysis results. In this paper we propose several specific extensions to the well-established concept of
linking&brushing in order to make the analysis results more quantitative. We structure the brushing space in order to improve
the reproducibility of the brushing operation, e.g., by introducing the percentile grid. We also enhance the linked visualization
with overlaid descriptive statistics to enable a more quantitative reading of the resulting focus+context visualization. Addition-
ally, we introduce two novel brushing techniques: the percentile brush and the Mahalanobis brush. Both use the underlying
data to support statistically meaningful interactions with the data. We illustrate the use of the new techniques in the context of
two case studies, one based on meteorological data and the other one focused on data from the automotive industry where we
evaluate a shaft design in the context of mechanical power transmission in cars.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Interactive visual data exploration and analysis has become an in-
dispensable complement to automatic analysis techniques. Still, we
see quite often that analysts prefer computational techniques for a
few important reasons.

First, focus+context visualization is often only qualitative by na-
ture. As compared to the context, the data subset(s) in focus are
shown in a different color, or in another visualization style [Hau06],
resulting in only approximate readings of such views. In certain
application cases, including decision making, “hard”, quantitative
facts are often useful (think of a “no go”-decision, if the p-value of
a statistical test is above a predefined threshold).

Another reason is that results from interactive procedures, like
most of traditional visual analytics, often seem to lack a sufficiently
good reproducibility. Redoing a visual analytics session, for exam-
ple, where linking&brushing was used, will most likely not result in
exactly the same result. This is due to small variations in the place-
ment of the brushes, for example. A recent study by Kandogan et
al. [KBHP14], based on 34 in-depth interviews, documents this sit-
uation clearly in the context of business intelligence. It seems obvi-
ous that extensions to visual analytics, which enable reproducible

and quantitative results, may become key to a further strengthened
deployment of interactive visualization in analytics applications.

In this paper, we contribute several specific extensions to the
well-established concept of linking&brushing in coordinated, mul-
tiple views. This amounts to the first major collection of techniques
targeted specifically towards reproducible and quantitative visual
analytics.

With respect to brushing, we describe several particular exten-
sions, including percentile brushing and Mahalanobis brushing,
i.e., two new techniques that support reproducibility. In abstract
terms, we discuss the brushing space and how it can be structured
for improved reproducibility.

With respect to linking, we introduce further extensions, in-
cluding the integration of descriptive statistics, which enables a
quantitative reading of linked views with focus+context visualiza-
tion. We also support the user during the visual analysis by re-
ducing the mental load during brushing, for example, by allow-
ing him to record a brush path. The brush can then be animated,
i.e., reproduced repeatedly, and the user can pay all attention to
the linked views. Additionally, we provide animated transitions in
linked views in combination with a descriptive statistics overview.
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We also introduce the relative difference plot as a novel way of
describing the history of linked data statistics.

We illustrate the use of the new techniques in the context of two
case studies, one based on meteorological data and the other one
focused on data from the automotive industry. Further we explain,
in which way our results are reproducible and quantitative. We con-
clude by discussing benefits and limitations of the current approach
and outlining selected ideas for future work.

2. Related Work

The concept of linking&brushing is key to interactive visual analy-
sis (IVA) [WH14, KH13]. It is modeled as an interactive and itera-
tive method to reveal insight into large and multi-faceted datasets.
The term brushing was defined by Becker and Cleveland [BC87]
and different brush shapes were proposed, including rectangles and
circles [CM88]. Martin and Ward researched N-dimensional, multi-
ple, fuzzy, and composite brushes. They employed brushing for the
analysis of multi-dimensional data in the XmdvTool [War94]. The
user configures composite brushes by applying logical operations
and expressions (e.g., with AND, OR, XOR, and NOT) [MW95].
Doleisch et al. [DGH03] introduced a feature definition language
for the specification of multi-dimensional and/or complex fea-
tures, using logical combinations of brushes in coordinated, mul-
tiple views. The concept of compound brushing, developed by
Chen [Che03], helps in describing many existing brushing tech-
niques and it is also useful for exploring new techniques. Animation
is also used in interactive visual applications for helping users to
follow changes in the visualization [HR07, ROC97, BPF14]. How-
ever, animation must be used with caution, since it could lead to
perceptual errors, and can slow down the analysis [RFF∗08].

Brushing techniques are commonly categorized into three
groups, according to the space in which the selection is being
performed: screen, data and structure brushes [FWR00]. While
screen-space techniques traditionally limit the shape of a brush
to two dimensions, data-space techniques permit brushes with di-
mensionality greater than two. For example, the N-dimensional
brush [War94] provides insight into a spatial relationship over N
dimensions. The third group extends the brush metaphor to struc-
tures. It encompasses structure-space techniques [FWR00] which
are based on structural relationships between data points, such
as clusterings, orderings, groupings, etc. Structure-space brushing
techniques are particularly useful for datasets with natural and im-
posed structures. In this paper, we introduce the Mahalanobis brush
as a new structure-based brushing technique. It takes the under-
lying data distribution into account, while specifying the brush in
screen space. Traditionally, brushing has been performed uncon-
strained – brushes can be created anywhere in the view and the
analyst can move or resize them freely. As an addition to the free
(unconstrained) brushing, and to support reproducibility, we now
introduce an alternative mode that we term constrained brushing.

Visual analytics, especially the field of analytic provenance, has
been interested in reproducible methods for several years. Exam-
ples include the work of Gotz et al. [GWL∗10] on history keeping
in the Harvest system and the work of Silva et al. [SFSA10] on
provenance support in the VisTrails system. This application sys-
tematically maintains provenance in the data exploration process by

capturing all the steps which have been taken during an interactive
visualization session. Yang et al. [YXRW07] developed the Nugget
Management System (NMS) for the housekeeping of user findings,
called “nuggets”, which they organize in an intuitive manner. These
approaches focus on the reproducibility of the whole analysis ses-
sion. In our work we primarily focus on the reproducibility of the
brushing operation itself, being an important part of the overall in-
teractive visual analysis.

Up to now, not much related work is available on quantitative vi-
sual analytics. Chen [Che03] showed how to enable analytical fil-
tering through the addition of the quantile range-filter for one vari-
able to validate or filter data selections. In our work, we contribute
constrained brushing using a percentile-derived grid as a related
extension. This supports analytical tasks that are ranking-based (in-
stead of value-based). Kehrer et al. [KFH10] integrated statistical
aggregates along selected, independent data dimensions in a frame-
work of coordinated, multiple views. Brushing particular statistics,
the analyst can investigate data characteristics such as trends and
outliers. Haslett et al. [HBC∗91] introduced the ability to show the
average of the points that are currently selected by the brush. Based
on this idea, summarizations of the data are commonly used as a
representative information for clusters in hierarchically organized
large datasets [Shn92, FWR00]. We also use summarizations, in
the context of brushing, and show several descriptive statistics in
linked views, in a table, as overlay or in combination with traces
from brushing.

3. Quantitative and Reproducible Linking&Brushing

In the following, we first discuss in which way standard link-
ing&brushing is qualitative (as opposed to quantitative analytics)
and why there are challenges with reproducibility. Then, we pro-
vide a detailed description of our contributions. In order to illustrate
the new techniques, we visualize meteorological data from about
300 weather stations in California [NOA14]. This dataset contains
geographic information and temperature and precipitation values.

The qualitative character is, in fact, a critical strength of visual
analytics, since it naturally harmonizes with the integration of the
human in the analysis. After spotting a data subset of interest in
the visualization, interactive brushing is used to mark up this data
subset directly and interactively in the view. All linked views get
updated immediately and a consistent focus+context visualization
is generated. While very useful as such—in terms of a flexible and
swift analysis of the data—this standard way of linking&brushing
does not really deliver quantitative results and neither is fully re-
producible.

Firstly, the brushed data subset is visually highlighted, while
the rest of the dataset is shown as context (differently colored,
smaller, accumulated, etc.). This results in only approximate read-
ings of such views. A typical result is something like “Using link-
ing&brushing, we see that low values of dimension x [as brushed in
view A] are correlated with high values of dimension y as apparent
in the linked focus+context visualization [view B].” The meaning
of “low” and “high” remains vague/relative. A computational data
analysis would usually put a number on such a relation—maybe
a Pearson correlation coefficient. Clearly, the brushed and linked
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Brush Anchoring Brush Extent Brush Movement
Unconstrained The user initiates the brush anywhere in the

view, for example, on a scatterplot by
specifying the top-left corner of a
rectangular brush at an arbitrary position.

Any extent of the brush is possible and
brush boundaries can be modified
freely.

The brush can be moved
freely.

Constrained A “snap-to-grid" functionality is used to
constrain the anchoring of brushes to grid
vertices.

The size of the brush can be adapted
in discrete, predefined steps only.

If moved, the brush assumes
only grid-aligned positions.

Automatic The user specifies a particular brush
parameter, for example, a data-related
property, and the brush is positioned
automatically.

The brush resizes itself automatically
due to certain constrains, for example,
maintaining that a certain number of
data points is selected.

The brush moves automat-
ically, for example, follow-
ing a user-defined animation
procedure.

Table 1: Structuring the brushing space into unconstrained, constrained, and automatic aspects.

visualization also provides additional information about the rela-
tion between x and y. It indicates if the relation is linear or not, for
example, and this is highly useful. For decision making, however,
“hard”, quantitative facts are often very valuable (for example, in
addition to a useful, qualitative visualization).

Secondly, it is typical in brushing that users select freely what
they deem interesting. Considering a rectangular brush on a scat-
terplot as an example, the user chooses an arbitrary point as the
top-left corner of the brush and then extends the brush-rectangle
to the desired size. Due to the high resolution of the visualization,
and the corresponding interface technology it is highly improba-
ble that an attempt to exactly recreate such a brush will succeed.
This results in challenges with respect to the reproducibility of ex-
ploratory visualizations. Up to now, a possible way for repeating
an exploratory task was to save the complete history, by using a
provenance management system such as VisTrails [SFSA10]. In
our work, we think about the reproduction of IVA results after
they have been documented, e.g., in a report. A typical example
would be the following “We look at the screenshot of view B and
we see that the highlighted data are linearly correlated. From the
given textual description we know that the 25% lowest values of di-
mension x were selected in view A. After an update of the dataset
(with additional data points, for example), we wish to swiftly re-
produce the reported analysis, i.e., to brush the 25% lowest values
of dimension x in view A and compare the updated linked view
B with the screenshot in the report.” With standard IVA, this is
only approximatively possible. Most automated, computational ap-
proaches, however, will score very well on reproducibility.

In the following we describe how we structure the brushing space
in order to make brushing more reproducible. Then we describe
how we support the interpretation of linked views by integrating
descriptive statistics.

3.1. Structured Brushing

In addition to standard brushing, which we call unconstrained (un-
structured), we suggest as a complement constrained and automatic
brushing. The brushing space is structured with respect to the an-
choring of the brush, its extent, and the movement of the brush.
Table 1 describes examples of possible solutions for (partially)
constrained and (semi-)automatic brushing. Furthermore, two new

brushes, the percentile brush and the Mahalanobis brush, are two
concrete suggestions of how to realize an advanced brush, based on
the structured/informed brushing space (see below).

Snap-to-Grid Brush. As in drawing programs, we can intro-
duce a snap-to-grid option for brushing. This functionality is a use-
ful mechanism to confine brushing to reproducible shapes that also
can be interpreted quantitatively. A regular grid and the snap-to-
grid functionality also works for categorical data. We can require
that brushes are anchored at grid points and we can confine the
extent of brushes to correspond to grid cells. For example, if we
define a regular 4× 4 grid, and we create a brush in the bottom-
left grid cell, then we instantly know, quantitatively, that we have
selected the [0%,25%] interval on the x axis, and the [0%,25%] in-
terval on the y axis (Figure 1, brush (a)). If we constrain also the
movement of the brush to allow only a vertical movement and ac-
tivate the snap-to-grid functionality, only predefined intervals will
be taken by the moving brush, as shown in Figure 1 (A). Even an
imprecise interaction in the brushed view will result in an exact,
quantitative brush movement. This allows the user to concentrate
on the linked view, knowing exactly which intervals are selected,
without the need to paying attention to value-accurate brushing.

Percentile Grid Brush. With the help of descriptive statistics, it
is usual in (computational) data analysis to either do a value-based
analysis, or a rank-based analysis. The latter could, e.g., be enabled
through quantile filters [Che03] or statistical estimators [KFH10].
Hence, we suggest to also provide brushing opportunities which
match these analytics approaches. Using a regular grid corresponds
to a value-oriented perspective. Often a rank-based perspective is
also very useful. An example would be to compute the Spearman
correlation [Spe87]. Instead of selecting all items that correspond
to a certain range of values, we are interested in a certain number of
data items, e.g., the top 10% of all data items. If we define the grid
so that each division on an axis separates a certain percentage of
the items, we create a percentile grid. Each vertical and each hori-
zontal strip of the scatterplot in Figure 1 (B), e.g., contains exactly
25% of the data. Brushing in the snap-to-grid mode has a different
meaning. Brushing all left-most cells, snapped to a 25% percentile
grid, we know, again quantitatively, that we have selected the 25%
lowest values with respect to the dimension that is mapped to the
horizontal axis (Figure 1, brush (b)). Moving the brush along the
grid from left to right, then, would accordingly select consecutive
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Figure 1: Overview of the extensions for structured brushing. A: A scatterplot with a regular 4× 4 grid (value-based). The constrained
brush (a) is moved vertically across 4 predefined intervals. The initial position and all consequent positions (dashed brushes) are shown.
B: A scatterplot with a percentile 4×4 grid (rank-based). C: Parallel coordinates with a one-dimensional “quartile grid” enabled for both
axes. The brush (c) is placed over the first strip of the grid (compare (c) with the brush (b)). D: A scatterplot with three percentile brushes
with respect to the horizontal dimension. E: The two percentile brushes are combined using a logical AND operation. The user can grab the
intersection and move both brushes.

Figure 2: Overview of the extensions for structured brushing. A: A scatterplot with the three circular percentile brushes. B: Mahalanobis
brushes (l, m, and n) select the same number of data points like the brushes (i), (j), and (k) in A, respectively. Note that usually a Mahalanobis
brush changes its shape when moved. C: Outliers from the distribution are not selected by the Mahalanobis brush. D: An animated brush
is defined, and the animation is started (changes are observed in the linked views, for example, in Figures 3 and 6). More examples are
provided in the accompanying video.

portions in the size of 25% of all items. Additionally the shown
grid also reveals some insight into the data distribution—the ana-
lyst may benefit from the grid even if the constrained brushing is
not enabled. The grid can, e.g., assist the navigation of the brush
over the presented data as shown in Figure 1 (C).

Percentile Brush. The percentile brush constrains the extent so
that the brush always contains a predefined number of items, like
10%. The brush can be moved freely, or snapped to a conventional
grid, or to a percentile grid, also. When moved, the extent of the
brush is adapted continuously so that it always selects a predefined
number of items. In a scatterplot, we suggest two standard shapes
for realizing percentile brushes, i.e., a rectangular and a circular
percentile brush. The rectangular brush is easy to interpret in the
scatterplot. When creating the brush, the user can decide whether
the brush considers the data distribution in the horizontal or in the
vertical dimension. Figure 1 (D) shows two 25% percentile brushes
(c and d) and one 5% percentile brush (e) created over the horizon-
tal dimension. The brush (b) in Figure 1 (B) selects the lowest 25%
using the snap-to-grid option, which is equivalent to the brush (d)
in this case. Note, however, that the brush (d) can be moved freely
in the horizontal dimension, while the brush (b) can be moved

only between grid positions. The circular percentile brush selects
a specified number of items in the vicinity of a user-specified point,
i.e., from the center of the brush, see Figure 2 (A) and brushes (i),
(j), and (k). When a snapped circular percentile brush is moved, it
jumps from one grid vertex to another one (with the center always
snapped to a grid vertex). In a parallel coordinates plot we use only
a one dimensional percentile brush over individual axes.

Mahalanobis Brush. The percentile brush changes its extent,
but keeps its shape, the circular brush changes its radius but remains
circular. Dependent on the data distribution, this is sometimes not
the most useful behavior. The Mahalanobis distance [Mah36] is a
metric, which takes the data distribution into account. The Maha-
lanobis distance for two points~x and~y, both from the same distribu-
tion with covariance matrix C, is given by ((~x−~y)TC−1(~x−~y))

1
2 .

In a two-dimensional case (as in the scatterplot), equidistant lines
around a point (with respect to the Mahalanobis distance) are usu-
ally ellipses with axes corresponding to the principal component
directions of the data. If we compute the percentile brush using the
Mahalanobis distance we get the Mahalanobis brush and the brush
accommodates itself to the underlying data distribution.

Depending on the user preferences, the data distribution is cal-
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Data: all data in the horizontal and vertical dimension,
~p: mouse position, percentage n: of all points to be
brushed, percentage md : all points forming the basis for
computing C, vector ~d: data points closest to point ~p

Result: ~m: all brushed data points
/* Step 1: Computing the local

Mahalanobis metric. */
while percentage of points in the subset D < md do

increase size of subset D by adding nearby points;
end
C←ComputeCovarianceMatrix(D);
~d←ComputeMahalanobisDistances(~p,D,C,n) ;
/* Step 2: Aspect ratio and rotation of

the brush ellipse according to an
eigen-analysis of ~d. */

while percentage of points selected by the brush < n do
increase the magnitude of the ellipse depending on the
variance of md and associate the contained data items
with ~m;

end
Algorithm 1: Mahalanobis brush.

culated from the whole dataset or from a local data subset D. The
size of this reference subset is given as the percentage of data
points from the whole data set, i.e., parameter md . Depending on
this value, the Mahalanobis brush will be more or less sensitive to
the distribution of the data near the selected position ~p. We use
a rectangle-shaped or circle-shaped area for selecting the refer-
ence data subset D. The initial size of the area varies depending
on the distribution around ~p. The main steps for computing the
Mahalanobis brush are shown in Algorithm 1. Figure 2 (B) shows
three Mahalanobis brushes (l, m, and n). Note that the shape usu-
ally adapts to the data distribution as the brush is moved. We de-
sign the Mahalanobis brush as a rank-based brush, selecting always
a predefined number of points. Alternatively, we could transform
the data space instead and use the previously explained percentile
brush. Such an approach, however, would make the data interpreta-
tion more difficult.

Animated Brush. Once the user knows, how the brush should
be moved in order to analyze the data, an animated brush can
be defined. For example, when the user is interested in observing
changes in several linked views, the brush has to be moved over the
same path repeatedly in order to study possible correlations. The
animated brush can save a lot of time in this case.

We enable path storing for different brushing techniques. This in-
cludes constrained and unconstrained brushing. Two types of path
recordings are considered in this paper. Firstly, the user can freely
draw a brush path. As an example, the user creates a constrained
brush, snapped to the first cell in the horizontal dimension of a 10%
percentile grid. While the brush is moved horizontally across all
adjacent grid cells, the positions of the brush and the brushed data
points are saved in each step. Secondly, the user defines the start
and the end position for an unconstrained brush, and the number
of frames to be generated in-between. The brush is then interpo-
lated linearly. The user can also insert additional key frames and

Figure 3: Path of the brush (r), which was moved in Figure 2
(D), is analyzed in a linked scatterplot. Left: The Trace View re-
veals differences between the values of the three center points. One
point (red rectangle) is selected for additional inspection. Right:
The cross-hair is placed at the position selected in the Trace View.
It shows the one standard deviation spread from the mean in both
directions. The values show the difference to the bounding box of
the brushed data; the high difference (1.5) towards the top is the
reason for the skewness in the midrange path at this position.

the brush is linearly animated between those. This is a complemen-
tary solution, when compared to completely free brushing.

The brushing session can be automatically replayed, following
exactly the same positions, extents, and brushed data. This allows
the user to solely focus on the linked view(s). The scatterplot in
Figure 2 (D) shows three key frames of the recorded animation. The
start key frame and the end key frame are represented with dashed
lines. This brush updates its position and moves along the created
path as the animation proceeds. The user can pause the animation
and move the brush away from the defined path and/or continue the
animation from the paused position.

The psychologist Barbara Tversky [TMB02] found from review-
ing nearly 100 studies of animation and visualization, that rich
static diagrams are outperforming animations. Following this, we
provide the additional possibility to analyze the paths showing
them in the linked view as a static overlay, as shown in Figure 3.

3.2. Quantitative Linked Views

Interactive visual analysis is highly effective, if information about
relevant relations between different aspects of the data have to
be revealed flexibly and quickly. Qualitative insight by link-
ing&brushing, however, is not always sufficient. Also, if the re-
lations are complex, it is usually not easy to understand trends and
patterns. Even if we pay full attention to the linked view(s), we still
need other methods to support understanding and to quantify the
analysis results. With a better understanding of what is happening
on the brushing side (cf. extensions as described in section 3.1), we
also aim at a better understanding of the linked side. As analysts
need quantitative results, and statistics can provide these, a logi-
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Figure 4: The mean value for the brushed data is shown in parallel
coordinates. The table below the view shows additional statistics.

cal step is to enhance the linked views with additional descriptive
statistics about the brushed data.

The center of the data is certainly the most commonly used sta-
tistical measure in data analysis. However, there are several ways
how the center can be estimated, and depending on the analysis task
at hand, different values are appropriate. We compute three differ-
ent center points: the median, the mean (average), and the midrange
(the value exactly between the minimum and the maximum). Ad-
ditionally, we determine the total spread and the spread based on
the standard deviation. Estimating the center and spread, we al-
ready have a first useful summarization of the data. Depending on
the task, the user configures what is displayed in a view, i.e., she
configures the descriptive statistics overview.

One of the first ideas to support IVA with statistics from the
brushed data comes from Haslett et al. [HBC∗91]. They computed
the average on a local basis and showed the result as “moving aver-
age” point added to the Trace in the Trace View. In addition to the
Trace from a “moving average”, we show traces for other common
statistics, as shown in Figure 3 (left). Traces shown in the Trace
View are computed for a selected dimension only, i.e., in the case
of a scatterplot either for the horizontal or the vertical dimension.
The statistics are computed as the brush moves and new points are
added to the trace on each position change. This can result in over-
plotting if unconstrained brushes are used. Optionally, we can add
a new point to the trace only if its value is different to the previ-
ously saved value. Additionally the user can configure the size for
the trace buffer.

We also provide an option to draw the paths of the center points
in a scatterplot. The two paths in Figure 3 on the right are cre-
ated by connecting the center points of each frame of the anima-
tion. The blue squares indicate the mean points and the brown cir-
cles indicate the midrange points. To support the comprehension
of a position change of the moving brush, we encode the direction
in the paths from center points, too. To further support perception
and cognition, we overlay a cross-hair, depicting the spread in the
linked scatterplot. Depending on the user preferences, the path is
extended as the animation evolves, or the complete path is shown

Figure 5: The cross-hair shows the one standard deviation spread.
It moved form the last position (dashed cross-hair). The animation
helps in perceiving the transition.

and the cross-hair moves along the path. In this way, the user can
focus on all points, which helps to study intrinsic data characteris-
tics.

In order to quantify changes of center points and spreads with
respect to a moving brush, we depict them numerically, as well.
We display the values for the current brush in a table. As the brush
moves, the descriptive statistics overview and the table with the
numerical values update accordingly. This is done also for parallel
coordinates, as shown in Figure 4.

As the path of the mean point in Figure 5 shows, the center points
change significantly between the frames in the linked view. Such
a change causes sudden jumps in the linked view, and distracts
the user. This distraction exacerbates the mental image creation.
In combination with the animated brush we propose to animate the
crosshair transition in the linked view in order to prevent a distrac-
tion of the user. The cross-hair stays at a brush position for some
predefined time, then it smoothly animates to a new position. This
visualization of the transition does not only help in eliminating dis-
traction, it also actively amplifies cognition of the trend evolution.
A case study would be needed, however, to quantify the impact.

We also suggest improvements, focusing on the change of the
center and the spread. We propose the relative difference plot in or-
der to support the comprehension of data changes in a linked view
(emphasizing relative changes on top of absolute deviations). As
we have an animated brush that moves linearly in the brush space,
we establish a reference brush path as a linear path between the
first and the last brush in the linked space. We interpolate center
positions and horizontal and vertical spread values. These values
represent the reference (the black path in Figure 6 left). Now, for
each brush we compute the linked data center point and spread val-
ues and depict them relative to the reference values. Figure 6 on the
right shows the main idea. The relative difference plot gives clear
information about how average precipitation is related non-linearly
to the analyzed country region.
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Figure 6: Left: The actual midrange path in brown and the ref-
erence path in black. Right: The relative difference plot shows the
relative difference between actual (red) and reference (black) cen-
ter and spread. The relative difference plot is shown for several
selected animation frames.

4. Demonstration

The newly proposed techniques are evaluated in the context of a car
simulation model which is representing a four wheel drive (4WD)
power transmission vehicle. The model respresents the engine, a
manual gear box, the central differential, the front and rear shafts,
the front and rear differential, and the axles. The transmission shafts
are modelled as elastic components with different stiffness and
damping parameters for each shaft. The stiffness and damping of
the shafts are varied through a wider range. Additionally, the cen-
tral differential split ratio, representing the distribution of torque
between the front and the rear axle, is varied from 0 (rear wheel
drive, RWD) through 0.5 (4WD) to 1 (front wheel drive, FWD).
The simulation is done for a full load acceleration test, where the
maximum acceleration performance is checked. Under such con-
ditions, power transmission elements are maximally stressed. Due
to the elasticity of the power transmission elements, oscillations in
the power transmission can occur. If they are large and at a low
frequency, discomfort is caused. The target of the analysis is to
check how performance and comfort parameters are sensitive to
the stiffness and damping values of the shafts in the modelled vehi-
cle for various torque split regimes. The variability of stiffness and
damping is influenced in a narrow range by imperfections in man-
ufacturing, assembly, and material. The differences in oscillations
can impact comfort (increased amplitude and frequency in vehicle
acceleration), and cause performance issues apparent in fuel con-
sumption and acceleration. A data ensemble was computed, vary-
ing differential split ratio in the range 0 to 1, as well as damping
and stiffness of front and rear shafts (in the range ±30% of the
nominal value). 2000 calculations were performed with five input
variables varied as a Sobol sequence. In each case, we studied fuel
consumption, the maximum torque reached for specific gears, ve-
hicle longitudinal acceleration, and maximum torques on front and
rear shafts.

First we checked how stiffness and damping influences the con-
sumption and longitudinal acceleration. The test has been split into
two parts. First, a stiffness check has been done by changing the

Figure 7: Brushed view (green border): The view shows a scat-
terplot with a percentile 1x10 grid, and the current brush position.
Linked view: The spread for the y-dimension is 1.5829 as shown in
the statistical table.

front-shaft stiffness. The results showed that there is no significant
influence on longitudinal acceleration and fuel consumption. By
changing the stiffness of the rear shaft, it is found that a lower stiff-
ness reduces longitudinal acceleration. In both cases, the spread in
consumption is large when varying stiffness. So the consumption
seems to be sensitive to variations in stiffness due to the manufac-
turing process, but only within a narrow range of less than 0.1% of
the absolute value. The percentile grid proved very useful to accu-
rately move the brush across the input data space. At each step the
brush accommodates 10% of the observed data points for the stiff-
ness of the rear shaft as shown in Figure 7 (brushed view), as this
is the expected maximum variation due to errors in manufacturing
and material. The calculated performance parameters are investi-
gated concerning mean value and distribution. The target is to find
a brush position with the smallest distribution range. This brush po-
sition specifies a nominal damping and stiffness that will, in case of
a manufacturing/material error, cause the smallest effect on perfor-
mance/comfort. The goal looks like precisely defined, and we could
calculate results automatically, but actually it is not that simple to
automate this before establishing the analysis. IVA, supported with
the new extensions for linking&brushing, was of great help in find-
ing and defining the relevant analysis steps, as one of the domain
experts stated. We did this by moving the brush across the entire
rear-shaft stiffness-range in ten steps (with the snap-to-grid option
enabled), and reading the spread value from the statistics table. In
this way it was easy to move the brush forth and back, knowing that
at each position change, the brush will select the next 10% of the
data. We also used the “select and highlight” option in the brush
path, after the path was created. This was done to easily select the
point of interest, for example, the point with the lowest value for
accumulated consumption, see Figure 7 (brush path in the linked
view). The relevant components are cross-referenced, including the
brush and the brushed points in the brushed view, which is updated
according to the selected position in the trace. The cross-hair was
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Figure 8: A screenshot from the analysis of the main shafts, torques and stiffness parameters.

useful as a qualitative indicator for spread change but we needed
a quantitative value to confirm the visual insight, especially if the
cross-hair changes its size only slightly.

Next, we checked the dependency of the maximal torques in dif-
ferent gears for various stiffness parameters. We used a 10×10 per-
centile grid which provides a visual assistance for brushing the low-
est and highest 10% of stiffnesses values for the front and rear shaft.
At these extremal positions, respectively, we set the start and the
end frame for the animation. We used eight interpolated frames, as
this constrains the brush to move uniformly across the data space.
In this case, we prefered to use animation instead of moving the
brush with the mouse. Albeit the snap-to-grid option works great,
moving the brush always diagonally while concentrating on sev-
eral linked views is mentally demanding. While the animation is
played in the brushed view, the linked scatterplots show changes
for the first three gears. Due to space constraints we show only two
linked views here (Figure 8). Contrary to our expectation, the maxi-
mal values of torque rise with higher stiffness only for the first gear.
The distribution of results shows that for example maximum torque
of the 2ndgear can fluctuate significantly with changes in stiffness.
However we see from the absolute numerical values that the fluctu-
ation is in a range of less than one percent. This makes the selected
stiffness range “robust” concerning manufacturing imperfections.

We also made good use of the Mahalanobis brush. We moved the
brush along the two separated clusters (Figure 9), which are parallel
to each other and include always 10% of all data items in the brush.
Such an exploration would be very complicated to do using conven-
tional brushing only. In our case it was a success right at the first
attempt. It is very interesting to see, as shown in Figure 9 (linked
view (brush 1)), how the linked parameter space splits. But, this
happens only for the upper path, the one with constantly slightly
higher front drive shaft values.

The last check is performed for maximum torques in different
gears, for different driving regimes: FWD, RWD or 4WD. Paral-
lel coordinates are used to show six data dimensions at once, and
statistics for the center points are enabled in the view (Figure 10).
The first axis shows differential split ratio, and gears are mapped to
the successive axes. We used a 10% percentile brush for selecting
the differential split ratio at three different positions. The analysis
shows that the maximum torques in gear two and four have rela-
tively higher mean values than the torques in the other gears for

Figure 9: Using the Mahalanobis brush to highlight structured
data. Note how this would be impossible/highly inconvenient with
a conventional, screen space techniques.

three transmission cases. This is a hard to find design phenomenon
which is determined by coupling an engine with its power charac-
teristics and used gearbox.

Constrained brushing is an invaluable feature in a teamwork, if
team members work on the same types of datasets and need to
(re)build an analysis step by step. With this feature, brushing be-
comes accurately defined, and it is easy to step back in the analy-
sis and try a different path, preserving all what has been done up
to that point. Constrained brushing makes analysis steps recordable
and easy to communicate. Our linking&brushing extensions proved
to be useful for data analysis in the presented case. Linking quan-
titative and statistical parameters extended the boundaries of what
can be recognized from raw data. One request that followed from
this case study is to depict also the ’Spread’ as a graph, next to
mean, median, midrange, in the statistical overview. Certainly, this
is easily possible if needed.
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Figure 10: Three different views of the same parallel coordinates
plot, each showing the 10% percentile brush placed at different
positions of the differential split ratio.

5. Discussion

In this paper we propose the use of constrained brushing, as an
addition to the traditional (unconstrained) brushing, supporting the
reproducibility of the analysis results. Specifically, our aim was to
simplify the way how the user can repeatedly select the same data
subset of interest, without the need to record an entire workflow.

We show how to control the brushing interaction by introducing
the concept of a structured brushing space, based on anchoring the
brush, the extent of the brush, and the movement of the brush. The
user can decide how to combine these constraints, for example, she
can snap to a conventional grid for moving the brush and use a
percentile brush for the brush extent. Although we exemplify the
newly proposed techniques for scatterplot and parallel coordinates
only, it is straightforward to extend them also to other views with
quantitative axes.

Constrained brush movements provide benefits when doing a
rank-based analysis, since at each step we can better control and in-
terpret the brush. Extensions like the percentile grid and percentile
brushes are powerful options for doing rank-based analyses. The
results can be reproduced later very easily, for example, based on
a textual description of the brushed data. The constrained brushing
can help the user to stay in the ’flow of analysis’, while also pro-
viding quantitative precision. The user can quantitatively interpret
the brush while moving it along the constrained direction.

The analyst can benefit from the structured visualization space
even if constrained brushing is not enabled. An example is to depict
the grid which assists to navigate the brush over the presented data.

Indirect manipulation, e.g., through off-screen widgets, such as
sliders, can compromise the user’s focus on direct interaction to a
certain degree. An example of indirect manipulation would be the
Mahalanobis brush. The user sets with a slider the percentage of
the points that should be selected by the brush. The brush adapts
its size and shape automatically depending on the underlying data

distribution. An alternative option could be to use a clustering al-
gorithm to automatically calculate a meaningful percentage for the
size of the Mahalanobis brush.

Grids proved to be very useful for structuring the brushing space.
We provide some meaningful default values for the grid size, e.g.,
we divide the data space into four quartiles, but we also allow the
user to specify non-uniform grids. We also consider possibilities
to use automatic methods for exploring the data space and divide
the grid according to the data distribution. For now the user can
manually set the grid, e.g., task driven, either rank-based or value-
based.

Summarized statistics shown in linked views, in a table, or as
an overview, present a natural way for adding quantitative infor-
mation about the brushed data to other dimensions. Those can be
added also for views which do not have quantitative axes. However
quantitative extensions to show descriptive statistics for categorical
data are not covered in our current work.

Paths from brushing can be used for analyzing data at different
path positions. To follow the principles of IVA this should be in-
teractive and cross-linked with other views. If a point on the path
is selected, the brush in the brushed view should also be updated.
This way the user can go back to some point of the analysis and
maybe explore a different direction.

Obviously, the extensions that we present here are only a first
step and we expect substantial future research towards quantitative
and reproducible visual analytics.

6. Conclusions and Future Work

In this paper, we address two important limitations in current vi-
sual analytics, namely the lack of reproducibility and quantitative
results. We present extensions to the well-established concept of
linking&brushing including constrained brushing, animated brush-
ing and percentile brushing. They can improve the reproducibility
of visual analytics and provide the user with quantitative results.

We discuss a possible structuring of the brushing space that is
oriented towards an improved reproducibility of interactive brush-
ing. The Mahalanobis brush takes the local data distribution into
account and selects a predefined number of points. This brush is
especially useful in areas with an elongated data distribution. Com-
pared to the circular percentile brush and the standard rectangular
brush it does not select outliers from the underlying data distribu-
tion.

An advantage of integrating descriptive statistics is that it helps
in creating a better mental image of changes in the linked views
while the brush is moving. Animation is an example of how to
structure the brushing space, such that in the brush view the selec-
tions remain simple and easy, while the user is free to concentrate
on the interpretation of the linked view(s). As an addition to the an-
imation, the relative difference plot adds to the comprehension of
data changes in the linked view(s).

In general, and in order to conquer important new application
fields, we conclude that there is a need for visual analytics to (also)
provide reproducible and quantitative results.
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