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Abstract

Tumors are heterogeneous tissues consisting of multiple regions with distinct characteristics. Characterization of
these intra-tumor regions can improve patient diagnosis and enable a better targeted treatment. Ideally, tissue
characterization could be performed non-invasively, using medical imaging data, to derive per voxel a number of
features, indicative of tissue properties. However, the high dimensionality and complexity of this imaging-derived
feature space is prohibiting for easy exploration and analysis - especially when clinical researchers require to
associate observations from the feature space to other reference data, e.g., features derived from histopathological
data. Currently, the exploratory approach used in clinical research consists of juxtaposing these data, visually
comparing them and mentally reconstructing their relationships. This is a time consuming and tedious process,
from which it is difficult to obtain the required insight. We propose a visual tool for: (1) easy exploration and visual
analysis of the feature space of imaging-derived tissue characteristics and (2) knowledge discovery and hypothesis
generation and confirmation, with respect to reference data used in clinical research. We employ, as central view,
a 2D embedding of the imaging-derived features. Multiple linked interactive views provide functionality for the
exploration and analysis of the local structure of the feature space, enabling linking to patient anatomy and
clinical reference data. We performed an initial evaluation with ten clinical researchers. All participants agreed
that, unlike current practice, the proposed visual tool enables them to identify, explore and analyze heterogeneous
intra-tumor regions and particularly, to generate and confirm hypotheses, with respect to clinical reference data.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications—

Applications; J.3 [Computer Applications]: Life and Medical Sciences—Life and Medical Sciences

1. Introduction

Radiotherapy aims at irradiating tumors with a high dose,
while sparing surrounding healthy tissues. However, tumors
are heterogeneous tissues, enclosing multiple regions with
distinct characteristics. Lately, it has been hypothesized that
incorporating tissue characteristics information into radio-
therapy planning can play an important role in tumor diag-
nosis and in designing even more effective treatment strate-
gies, i.e., better targeted planning where distinct intra-tumor
tissues are irradiated with tailored radiation doses.

Currently, intra-tumor tissue heterogeneity is investigated
by studying histopathological data acquired from biopsies.
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To substitute histopathology, clinical researchers need to as-
sociate histopathological findings, such as aggressiveness or
resistance of a part of the tumor, to features derived from
imaging data. For example, Dynamic Contrast Enhanced
(DCE) and Diffusion Weighted (DW) Magnetic Resonance
Imaging (MRI) are employed in tumor analysis to derive,
using mathematical models, per-voxel features indicative of
tissue characteristics. In addition to histopathology, clini-
cal researchers often employ in their analysis supplemen-
tary clinical data that they use as reference, such as maps
that predict high-risk tumor zones or maps depicting tumor
control probability. These data also need to be explored,
in association with the imaging-derived features. Moreover,
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the derivation of tumor tissue characteristics from imaging
data is based on -more or less- complex mathematical mod-
els [SB13]. Different modeling approaches make different
assumptions, resulting in features with different distribu-
tions. A priori, it is not known whether different alternatives
in modeling present significant differences or which option
leads to better results. Additionally, all modeling approaches
introduce model-fitting inaccuracy in the derived features.
Exploring variability and incorporating inaccuracy induced
by different modeling approaches, with respect to anatomi-
cal or clinical reference data, can have significant impact on
the final clinical decision and treatment.

However, the high dimensionality and complexity of the
imaging-derived feature space, along with model-induced
variability and inaccuracy, is prohibiting for easy explo-
ration. The structure of this feature space is also not fully
comprehended and, in the state-of-the-art clinical research
workflow, there is no easy and insightful way to link obser-
vations from histopathology or clinical reference to features
derived from imaging.

In this paper, we introduce a visual analysis tool for tu-
mor tissue characterization. We mainly focus on knowledge
discovery and hypothesis generation and confirmation, by
linking imaging-derived tissue characteristics to anatomical
and clinical reference data. In our approach, we employ as
central view, a 2D embedding to map the feature space of
imaging-derived tissue characteristics into a 2D information
space. Multiple linked interactive views provide functional-
ity for the exploration and analysis of the local structure of
the feature space, enabling the user to retrieve information
on distinct intra-tumor regions and to associate observations
between the feature space and clinical reference data.

The contribution of this paper is the design and imple-
mentation of a visual tool for the exploration of tumor tis-
sue characterization. To the best of our knowledge, there
is no other tool to serve this purpose. The proposed visual
tool incorporates the following components: (C!) It supports
the identification and exploration of intra-tumor regions with
distinct imaging-derived tissue characteristics. (C2) It facili-
tates the exploration and analysis of the feature space struc-
ture, in relation to patient anatomy. (C3) It enables the asso-
ciation of observations from clinical reference information
to the feature space, and vice versa. (C4) It allows the explo-
ration and analysis of model-induced variability and inaccu-
racy of the feature space.

2. Clinical Background

Several imaging modalities are used in tumor diagnosis and
analysis. In this paper, we will focus on prostate and cervical
tumor, which are investigated using MRI data, such as DCE
and DW images, but our approach can be easily general-
ized to include other modalities, like Computed Tomography
(CT) or Positron Emission Tomography (PET). DCE-MRI
data are 4D data, i.e., 3D volume+time data, which depict

the absorption and washout of a contrast agent (CA) in tissue
over time. This technique is based on the idea that tumorous
and healthy tissues have different CA uptake properties. Tu-
mors tend to develop new, disorganized and permeable ves-
sels, which have thinner and weaker walls [TTP*10]. Thus,
they absorb and wash out CAs faster than healthy tissue. A
quantitative way of measuring tissue properties from DCE-
MRI data is to use one of the established pharmacokinetic
(PK) models [SB13]. These models are employed to derive
per voxel an output set of features, called PK parameters,
which describe the distribution of the CA inside the tissue
and are indicative of tissue characteristics [SB13]. A priori,
it is not known which is the most suitable modeling approach
and whether there are differences between them. The inaccu-
racy of each approach, i.e., the discrepancy between derived
and expected feature values, also needs to be incorporated
in the analysis. DW is another MRI method that produces in
vivo images of biological tissues based on the random Brow-
nian motion of water molecules within a voxel [SFHBOS]. It
is a powerful technique, used to identify high cellular tissue
like tumors, where the diffusion of water is restricted pri-
marily by cell membrane boundaries. This restriction can be
quantitatively assessed using the apparent diffusion coeffi-
cient (ADC), as a measure of the magnitude of diffusion.

Additionally, clinical researchers require to associate find-
ings in the imaging-derived feature space to observations
from reference data and vice versa. This data might be
anatomical images, such as T2-weighted MRI scans; or de-
rived clinical data, e.g., from linear regression models pre-
dicting high-risk tumor zones [GBM*12]; or histopatholog-
ical data that are obtained invasively from patient biopsies
and can reveal information on tumor aggressiveness or resis-
tance [EAJA*05]. For example, in histopathological images
of prostate tumors, Gleason Scores (GS) are assigned to de-
lineated tumor tissue foci based on their microscopic appear-
ance. High GS tumors are more aggressive and have a worse
prognosis [EAJA*05]. To substitute invasive histopathology,
information such as the GS need to be associated with non-
invasive, imaging-derived features.

In current clinical research, the exploration and analysis
of the feature space of imaging-derived tissue characteristics
is conducted using a simplistic slice-based technique. The
values of each imaging-derived feature are encoded with a
colormap [KHL™*14]. Then, these so-called parameter maps
are juxtaposed, manually inspected slice-by-slice and men-
tally compared and analyzed. The cross-sectional analysis of
the imaging-derived features with clinical reference data is
also done in a similar way. This approach has high memory
demands, as it requires to mentally reconstruct relationships
and patterns in the data and it is sub-optimal in insight.

Clinical researchers require an exploratory tool that al-
lows them to perform the following rasks: (T1) Identify and
explore intra-tumor regions with distinct imaging-derived
tumor tissue characteristics. (72) Analyze and understand
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the structure of each distinct intra-tumor region and, then,
compare these intra-tumor regions. (73) Discover relations
between the feature space of imaging-derived tumor tissue
characteristics and clinical reference data. Also, generate
and confirm hypotheses that can associate these two. (74)
Identify, explore and analyze the impact of variability or in-
accuracy, induced during the derivation of tumor tissue char-
acteristics from imaging data.

3. Related Work

Several systems have been proposed for the exploration and
visual analysis of feature spaces derived from medical imag-
ing. The most similar to our field of application were pro-
posed by Preim et al. [POM*09], Glasser et al. [GPTP10],
Fang et al. [FMHCO07] and Raidou et al. [RvdHvH*14].
However, these papers are mainly focusing on the explo-
ration and analysis of perfusion parameters or on the dis-
tinction of tumors from healthy tissues. None of these appli-
cations addresses intra-tumor tissue characterization based
on imaging-derived features, or cross-analysis with clinical
reference and histopathological data.

Our approach is centered around a dimensionality reduced
view, i.e., a 2D embedding, that preserves local structure in
the feature space and that allows visual analysis of clusters
and their intrinsic feature characteristics. For this reason, we
reviewed also the literature related to these two topics.

Dimensionality  reduction - Traditionally employed
approaches for 2D projection of feature spaces in-
clude the Grand Tour [Asi85], XmdvTool [War94],
WEAVE [GRW*00] and SimVis [ODH*07, Dol07].
These frameworks visualize high-dimensional datasets
through projections, combined with a number of linked
techniques for the visualization of the underlying feature
space. However, they all support 2D projections of the
multidimensional data by the selection of two variables
from the feature space, which does not ensure preservation
of the local structure. None of these systems supports linked
brushing, or selection from a spatial view - the anatomical
or clinical reference space, in our case - to an abstract view.
Cluster analysis visualization is also not possible.

Frameworks to overcome some of these limitations
were proposed by Blaas et al. [BBP07], Steenwijk et
al. [SMB*10], Jeong et al. [JZF*09], Choo et al. [CLKP10],
Ingram et al. [IMI*10] and Poco et al. [PEPM12]. They
all integrate projection techniques with multiple informa-
tion visualization views and bi-directionally linked scientific
visualization views, to enhance data exploration. Neverthe-
less, the previously mentioned work is not fully applicable
to our case. Even if all applications enable to identify clus-
ters and to explore the respective feature space of the data,
none of them supports incorporation of variability and in-
accuracy in their analysis. Especially, they do not enable to
cross-analyze the feature space with clinical reference data
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and histopathology, for knowledge discovery and hypothesis
generation and confirmation.

Visual analysis of clusters - We are mainly interested in visu-
alizing clusters that are present in the multidimensional fea-
ture space of the data, as identified by the user, but also in vi-
sualizing the feature characteristics of each cluster and their
relationship with each other. There are various methods for
visual analysis of clusters, of which the most relevant to our
work are H-BLOB [SBGO00], Narcissus [HDWB95], Small-
Worlds [VHvWO04], but also the frameworks proposed by Seo
and Shneiderman [SS02], Linsen et al. [LVLRO09], Glasser et
al. [GLP14] and Turkay et al. [TPRH11]. However, in some
of these frameworks, the visual complexity of the visualiza-
tions makes them unsuitable for cluster visualization of large
data sets. Also, in all previously mentioned work no infor-
mation is provided about the structure of a cluster and other
metrics, such as the separation of two clusters.

To sum up, there are several different systems that are able
to manage feature spaces similar to ours; others that employ
projections and multiple views in their approaches; and oth-
ers that facilitate visual analysis of clusters. However, to the
best of our knowledge, there is no visual tool incorporating
all the required functionality for our field of application.

4. Visual Analytics for Tumor Tissue Characterization

After data acquisition, tumor tissue characteristics are de-
rived from medical images. However, the dimensionality and
complexity of this imaging-derived feature space is prohibit-
ing for visual exploration and data-driven analysis. The pro-
posed visual tool aims at satisfying the specific exploratory
needs of clinical researchers, working on tumor tissue char-
acterization. Therefore, our design choices are oriented to
fulfill their requirements, as described in Section 2. Our vi-
sual tool consists of three mutually linked components (Fig-
ure 1). A 2D embedding of the feature space forms the cen-
tral view in our visual tool. This view is complemented by
an anatomical view of a clinical reference space and multiple
linked interactive views for the visual analysis of clusters.

The first requirement is the identification and exploration
of distinct intra-tumor regions with similar tissue charac-
teristics (T1). An option could be to employ a scatterplot
matrix to visualize all imaging-derived features. This would
allow only pairwise comparison of the features. However,
the relations between features in the different intra-tumor
regions are expected to be more complex. To incorporate
information from the high dimensional space in one sim-
ple view that enables visual exploration of all features, di-
mensionality reduction is required to map the high dimen-
sional imaging-derived feature space (N-D) to a lower di-
mensional space (2D). This is performed as part of a pre-
processing step and, therefore, different dimensionality re-
duction techniques could be used. In our approach, we
choose to employ t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [VAMHO8]. t-SNE has the ability to map data
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Figure 1: General profile of the proposed visual tool. The core of the tool (pink) consists of three linked components (grey).

from a high dimensional feature space into a 2D embedding
space, preserving the local structure of the initial N-D space.
In this way, the embedding can be represented in a simple
2D scatterplot. The dimensions of the resulting embedding
do not have a direct association to the features: each high di-
mensional data point is embedded in an abstract 2D space,
in such way that the resulting 2D data points plotted nearby
represent N-D data points with similar values in the high di-
mensional feature space. In our case, 2D data points nearby
in the embedding represent volumetric positions with simi-
lar imaging-derived tissue characteristics, while voxels with
dissimilar tissue characteristics are plotted apart. We remark
that the voxel location is not used in the embedding - only
the imaging-derived features.

To provide context from the embedding map to the
anatomical space, we apply a 2D colormap, from a vast col-
lection of colormaps [Bre94], to the points of the embedding,
based on the position that they have in the 2D scatterplot.
Then, this 2D colormap is propagated in the form of an over-
lay on the anatomical images (Figure 2). The 2D embedding
map also supports interactive selection of regions of points,
i.e., visual clusters (Figure 2). However, in some cases, Vvi-
sual clusters in the 2D embedding are not well-defined, or
overlapping points may give a misleading representation of
the space. For these reasons, we introduce a dual-view in
the scatterplot, to depict also the point density (Figure 2).
Hereby, the exploration can be guided by the density peaks,
which might reflect the location of densely populated visual
clusters. To intuitively depict high density regions versus
low density, we employ the heated body colormap [Bre94].
When one visual cluster is selected, a color is assigned to it

orange fo purple -
seldefion 1y

"

selection

luminance

anatomical space

2D embedding of the feature space density plot

Figure 2: Visualizations used for the identification and ex-
ploration of distinct intra-tumor regions with similar tissue
characteristics (T1).

and this color is used coherently in all views to represent it.
To visualize the selections, we did not employ transparency
in the points for F+C, because the visualization of the whole
space is equally important, throughout the whole exploratory
process. We use color, instead, to enable multiple selections.
The association between the two spaces, i.e., linking, pro-
vides also an evaluation of the localization of the visual clus-
ters selected in the embedding space.

The embedding provides a view on a reduced abstract 2D
space. The dimensions of the embedding do not have a di-
rect relation to the imaging-derived features. Yet, clinical re-
searchers need to be able to link back to this feature space
and analyze the underlying high dimensional feature struc-
ture of the identified intra-tumor regions (T2). This part is
achieved with several linked interactive views, which hold
complementary data information and are interactively up-
dated when the user selects one or more visual clusters in
the embedding. Two interesting aspects of the underlying
data are the distributions of the features of the selected re-
gions and the pairwise correlations among these features,
which we visualize respectively with boxplots and a simpli-
fied color-coded scatterplot matrix (SPLOM) [CL87]. These
representations are intuitive and well-known to the intended
clinical users (Figure 3). For a simplified correlation view,
we abstract the SPLOM, by calculating and visualizing di-
rectly Pearson’s correlation (Pearson’s p), instead of all the
points. We color-code the calculated correlation value to the
divergent red-to-blue colormap [Bre94], to show the whole
range from p=-1 (red) to p=+1 (blue)(Figure 3). To identify
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Figure 3: Visualizations used to analyze the underlying

structure of the features of the each intra-tumor region (T2).
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relations that go beyond two dimensions of the selected vi-
sual clusters, we additionally use parallel coordinate plots
(PCPs) [Ins85] (Figure 3). PCPs are versatile in representing
multiple dimensions in a single view and are commonly used
to easily detect patterns, trends and outliers. In our design,
PCPs can be either straight or curved polylines, rendered
with low opacity for clutter reduction and improved read-
ability. They also support bi-directional brushing and link-
ing to the embedding, to establish connection with the high
dimensional space. As a common way to link observations
from different windows, colors are used coherently to denote
in all views the same visual cluster.

For the easy comparison and assessment of the feature
characteristics of distinct intra-tumor regions, we employ an
additional view on the selected visual clusters. In this view,
we provide information on the validity of each visual cluster,
visualizing three commonly used internal validity measures:
cohesion, separation and the average silhouette coefficient
[TSKO5]. Cohesion (WSS) is a measure of how closely ob-
jects are related within a visual cluster and is measured by
the within sum of square distances to the mean feature vec-
tor: WSS = Yyec(x— m)?, where C is the selected visual
cluster, m the mean feature vector of the visual cluster and x
a feature vector element of the visual cluster [TSK05]. Sep-
aration (BSS) reflects how distinct or well-separated a vi-
sual cluster is from another, using the between visual clus-
ters sum of square distances: BSS = ¥;|C;|(m —m;)?, where
C; are the selected visual clusters, m; their respective mean
feature vectors, |C;| the size of visual clusters and m is the
overall mean feature vector [TSKOS]. The average silhouette
coefficient (s) combines the notion of cohesion and separa-
tion: s = %. It ranges between 0 and 1, but it is
usually interpreted in an ordinal way, i.e., 0-0.25 bad-defined
visual cluster, 0.26-0.5 weak, 0.51-0.75 reasonable and 0.76-
1 excellent [TSKO5]. An initial option for the visualization
of these indices would be a table, which would, however,
need sequential analysis and be time-consuming, especially
for the comparison of more than two clusters. For this rea-
son, we abstract these numbers to glyph attributes in a 2D

silhouette coefficient (-3.7,5.34, -3.75, 3.97, -0.86)
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Figure 4: Cluster analysis view for comparison and assess-
ment of two distinct intra-tumor regions (T2).
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view (Figure 4, left). First, we abstract each visual cluster to
a sphere, which is an intuitive encoding for a group notion.
The color of each sphere is used for the easy distinction of
multiple visual clusters and is the same as the color used in
all other views, for each visual cluster. Cohesion is mapped
to the area and opacity of each sphere (Figure 4, bottom left):
small and opaque spheres depict firm and coherent visual
clusters, while large and transparent spheres depict incoher-
ent, cloudy-like visual clusters. Transparency is needed to
avoid occlusion and to emphasize the coherent visual clus-
ters. Hereby, to preserve context despite the combined use of
size and transparency, we force a minimum limit in both vi-
sual encodings. For the separation between two visual clus-
ters, we considered two alternatives: encoding its value to
the distance of the spheres or using an additional glyph in-
between the spheres. The first option results in a cluttered
view, where small spheres were often included or even hid-
den by the larger ones. Thus, we position among each pair
of spheres a double-ended arrow glyph, whose thickness en-
codes the separation of the two visual clusters. Thin arrows
depict well-separated visual clusters giving the illusion of
distance, while thick arrows depict badly-separated visual
clusters (Figure 4, bottom left). We also force a minimum
limit in the arrow thickness. The choice of the double-ended
arrow allows the incorporation of the silhouette coefficient
in the visualization: each end belongs to one visual cluster
of the pair and the color encodes the value of the coefficient,
using a luminance colorscale (Figure 4, bottom left).

For a more detailed comparison of the visual clusters
in the feature space, it is also necessary to show the most
prominent features that differentiate them. At this point, we
perform Linear Discriminant Analysis (LDA) [Bis06] be-
tween each pair of visual clusters, to calculate the vector
that maximizes the linear separation between the means of
these clusters, while minimizes the variance within each
cluster. For each pair of clusters, we also obtain the sepa-
ration histograms resulting from the projection of the high
dimensional feature space of the visual clusters on the sep-
aration vector. We initially overlay the separation vector as
text over the separation arrows of the visual cluster validity
representation (Figure 4, upper left). A more intuitive and
faster-to-perceive choice is to visualize it in a separate view
as a stacked bar (Figure 4, right), to show which feature or
combination of features contributes more to the separation.
As we also want to show how good this separation is for
each visual cluster pair, we use a matrix-like configuration
to additionally show the distribution and the pairwise cluster
projected histograms. This view can help identify whether
and which multiple features contribute to the separation of
clusters, as depicted in the right side of Figure 4. The colors
in the histograms are used for visual cluster distinction and
are consistent to the colors employed in all views, while the
colors in the stacked bar are used for features distinction.

The association of the feature space with the anatomi-
cal or clinical reference space and vice versa (T3) is one
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of the most important aspects for clinical users. Without the
clinical reference context, users would not able to generate
and confirm hypotheses. For anatomical inspection, the vi-
sual tool provides functionality to slice through any kind of
volumetric imaging data, and a linked 3D view of the organ
where the tumor is located (Figure 5). To enable simultane-
ous inspection of clinical reference data, we need another
2D slice-based view (Figure 5). The anatomical and clini-
cal reference views are bi-directionally linked to the embed-
ding space, i.e., selections in one space are reflected in the
other. Linking the feature space to the anatomical or refer-
ence space is performed as described in (77). Linking the
clinical reference space to the feature space is possible in
two ways: by brushing or color-encoding. First, specific re-
gions of interest can be interactively brushed in the reference
space and linked to the other views (Figure 5, up). Second,
the entire discretized regions of the reference data can be
reflected on the embedding, with the use of a qualitative col-
ormap [Bre94] to match each distinct region of the reference
to the respective embedding points (Figure 5, bottom).

Finally, easy exploration of the effect of modeling-induced
variability and incorporation of measurements of model-
induced inaccuracy (T4) are also required. For variability,
the visual tool enables side-by-side visualization of multiple
linked 2D embedding maps, i.e., one per feature space. Dif-
ferent models result in different feature spaces and embed-
dings. Therefore, direct comparison of embedding spaces
based on positions is not meaningful. To preserve context
across multiple embedding maps and to link the points of the
embedding map to their volumetric position in the anatom-
ical space, we decided to use a simple visualization. For
example, visualizations which would require to trace lines
across maps, would be too complex and clutter the view. In
our design, one map is used as reference. Then, the position-
based 2D colormap discussed in (7'7), is used to retain the in-
formation of the 2D position of each point across the multi-
ple embedding spaces (Figure 6). All interactions in one map
or in the anatomy are reflected on all maps, to strengthen the
link between the different spaces. For inaccuracy, clinical
researchers are interested either in exploring regions with
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Figure 5: Linking the anatomical/clinical reference to the
feature space (T3). The reverse linking is shown in Figure 2.

low accuracy to explain why inaccuracy occurs, or in re-
stricting their analysis in regions with high accuracy. To sim-
plify this, we employ a double slider that allows to selec-
tively visualize accuracy ranges in the embedding. To en-
hance the visualization, points of the embedding map within
the selected accuracy range are visualized as firm, opaque
and with well-defined edges, if they have high accuracy,
while lower accuracy points are transparent and with blurry
edges (Figure 6).

The design of the visual tool at this point requires a large
number of windows, each one of which is needed to show
a specific complementary data aspect. The interface cannot
be simplified drastically, given all the tasks that we want to
accommodate. Yet, we enable users to selectively manipu-
late the profile of the tool and to selectively show the most
useful representations for their specific exploratory tasks.
We implemented the visual tool in Python as a DeVIDE
module [BP08], employing the Visualization Toolkit (VTK),
matplotlib and scikit-learn.

5. Evaluation

In order to assess the value of our visual tool, we performed
an evaluation, inspired by the paper of Lam et al. [LBI*12].
The evaluation was performed with ten domain experts from
three different institutions, three women and seven men. The
group of participants included two research physicists, three
medical physicists, four biomedical engineers and one com-
puter scientist, who works on the automatic classification of
tumor tissue. All participants have normal vision, five with
and five without glasses, and nobody is colorblind. They
ranked their computer expertise as intermediate to high and
all have a high expertise in tumor tissue characterization.
Four of the participants were already familiar with the vi-
sual tool, as they were actively involved in its design.

Before the evaluation, we gave an introduction to the vi-
sual tool, where we explained basic notions and main com-
ponents. We simulated the visual environment for the explo-
ration and analysis of the high dimensional feature space of
tumor tissue characteristics, as the clinical researchers would
do in real-life cases. At this point, the visual tool was initially
operated by the first author, while the clinical researchers
observed the demonstration of the individual components.
Nevertheless, they could also operate the visual tool them-
selves anytime to understand better the functionality.

The first part of the evaluation included two case stud-
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Figure 7: Case study of a prostate tumor patient.

ies, which required hands-on exploration of the data, aiming
at analyzing the actual meaning of the insight provided by
the visual tool, as it would occur in real clinical research set-
tings. Each of the four tasks of Section 2 was performed with
the "thinking-out-loud" method, as the clinical researchers
explained and reasoned on the findings in the data. In the
second part, the participants filled a questionnaire.

5.1. Evaluation: Case studies

In this section, we present part of the analysis performed by
the evaluation participants, during the case studies.

Case study: Prostate tumor - In this case, data from a pa-
tient with advanced prostate tumor were employed. DCE-
MRI and DW data were acquired. From these, five pharma-
cokinetic parameters maps (K", Kep, Ve, Vp) [SB13] and
the ADC map with a b-value of 1000, were respectively de-
rived. Afterwards, t-SNE was applied to obtain a 2D embed-
ding of the six-dimensional feature space. This case consists
of two subcases, where two different clinical reference data
were used: (1) a linear regression model [GBM™ 12] predict-
ing the prostate risk zones and (2) Gleason Scores (GS) re-
trieved from histopathological data that reflect the aggres-
siveness of the tumor foci based on their microscopic ap-
pearance. To obtain the latter, the patient was scanned and
then, the prostate was resected and histopathological slices
were prepared and registered to the imaging data.

In the first subcase (Figure 7, left), two distant, well-
separated regions of points were initially identified in the
embedding map for further exploration (Figure 7-a). Link-
ing to the clinical reference data shows that region 1 corre-
sponds to part of the high risk zone of the prostate, while
region 2 corresponds to part of the low risk zone (Figure 7-
b). Using the cluster analysis view (Figure 7-c), the abstrac-
tion of region 1 shows that it is more coherent than region
2, but also that the two regions are well separated from each
other. The joint histogram of the two regions also shows this
separation (Figure 7-d, upper right), which is mainly due to a
combined effect of three parameters (kep, K™ and ve), as it
results from the vector of linear separation (Figure 7-d, lower
left). This is also confirmed by the different patterns and re-
lationships between the imaging-derived features of the two
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regions, as shown by the parallel coordinates (Figure 7-e)
and the correlation matrix view (Figure 7-f). The evaluation
participants commented that the findings of this part of the
analysis correspond to their theoretical knowledge [SB13].

When the analysis is done by color-coding the points in
the projection maps based on the four discrete risk zones
(Figure 7-g), the low risk cluster 1 is partially separated from
the rest, but it is incoherent. Also, the two highest risk clus-
ters 3 and 4 are reasonably coherent, despite some dispersion
in the map, but not well-separated from each other. The em-
ployed risk prediction statistical model is built based on the
same feature space as the one employed in the current anal-
ysis. Thus, the results from the analysis should be matching
the model, but they do not. This can be an indication that
the model is not able to detect potential subclusters in the
high risk zones. To cross-check that this is not caused by
inaccuracies during the derivation procedure of the features
from the imaging data, high values of the goodness of fit,
i.e., model accuracy, were selected.

In the second subcase (Figure 7, right), the analysis
was done using the GS retrieved microscopically from the
histopathology. In this case, the analysis was performed by
going from the reference data to the embedding space. There
are two regions in the histological data: GS3 and GS4, where
higher GS corresponds to more aggressive tumor. We color-
code the points of the embedding map with respect to the
GS region that they correspond. The points of the two GS
regions did not correspond to well-defined, separated visual
clusters in the embedding space, which is an indication that
the specific feature space is not able to reflect the GS system.
However, the visual tool could be used to detect additional
imaging-derived features that reflect GSs in a better way.

Case study: Cervical tumor - In this case, data from a
patient with advanced cervix tumor were employed. Three
different modeling approaches were used to derive pharma-
cokinetic parameters from DCE-MRI data. The employed
pharmacokinetic models were the Tofts model (TM), the
Extended Tofts model (ETM) and the 2-Compartment Ex-
change Model (2CXM) [SB13]. The first model results in
two features (K" and ve); the second, in three (K",
ve and vp); and the third in five (K™, ve, vp, Fp and
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Figure 8: Case study of a cervical tumor patient.

PS) [SB13]. The Akaike information criterion (AIC;) that
relates to the quality of fit of each model, i.e., low values
of AIC. mean high relative quality, is included as an extra
dimension in each feature space. For each one of the de-
rived feature spaces, we compute a 2D embedding map. As
clinical reference, we used segmented data that depict the
three regions of the tumor: the periphery, the center and the
in-between region. In literature [KHL*14], it has been hy-
pothesized that different models perform better in different
tumor regions and our visual tool was used for validation.

To begin with, the three embedding maps need to be com-
pared. By colorcoding the points based on the TM, it appears
that the 2CXM behaves differently than the other two models
(Figure 8-a). For example, the region denoted in the red box
is consistent in the ETM and TM, despite the fact that the
cluster position is different across maps (Figure 8-a). How-
ever, in the 2CXM map, this visual cluster does not exist, as
the points are spread. This is a confirmation to the theory that
the 2CXM in some cases is unnecessarily complex and, thus,
produces inaccurate results. Then, two regions were selected
(Figure 8-b). From the anatomy, based on the theoretical hy-
pothesis [KHL*14], region 1 represents the areas where the
simplest model, the TM, should fit better. On the other hand,
region 2 represents areas where the ETM model fits better.
For region 1, this is supported by the ETM embedding map:
the corresponding visual cluster presents a split (Figure 8-b).
Similar observations can be drawn for the points of region 2
that also form a well-defined region in the ETM map, but
present a bigger spread in the TM map. These observations
are also validated by the parallel coordinates, visualizing the
values of the features (Figure 8-c). To compare the underly-
ing structure of these two regions, we use the cluster analy-
sis view (Figure 8-d), from which we identify that the visual
clusters are well-separated from each other in both ETM and
TM maps, but the coherence is better in the map of better fit,
i.e., region 1 in TM and region 2 in ETM.

5.2. Evaluation: Interviews

After the case studies, the participants were asked to com-
plete a questionnaire. First, we asked four questions, related

to the four main tasks of Section 2. Each question required
an open answer, but also grading using Likert scales (1-5)
for the perceived effectiveness, perceived efficiency and per-
ceived satisfaction. In order not to compromise the results,
we separate in our statistical analysis the four people in-
volved in the design and the other six who were not involved.
It resulted that the two groups had in most cases compara-
ble results. The measured variables received high scores, as
summarized in Table 5.1 and in Figure 9. The scores of the
variability and inaccuracy incorporation tasks were slightly
lower than the other three, as some of the participants noted
that they would like to use the inaccuracy component more,
before giving a conclusive answer. One participant graded
the efficiency of the second task lower, because he stated
that the interpretation of the cluster analysis view takes time
when the user is not familiar with the employed representa-
tions. The others considered that the representations adopted
in the multiple views of the visual tool were intuitive.

The participants were also asked to compare the visual
tool to what they are currently using and to evaluate the vi-
sual tool, as a whole, by discussing its suitability, strengths,
limitations and missing features. In comparison to the cur-
rently employed approach, they commented: "It is a much
more elegant approach than what 1 am currently using. It
is very intuitive and versatile.","l can learn more about the
data and discover more about it, than with the current ap-
proach.”, "I think the tool can help us to explore the feature
space better.", "The information provided by this tool is very
interesting and once collected for a wider population, it can
be used to train a model based on more relevant features that
provide a better separation of tissues."

All participants agreed that the visual tool is overall un-
derstandable and easy to learn. They also agreed that the
suitability of the visual tool was mainly for data exploration,
knowledge discovery and hypothesis validation or genera-
tion. Suitability for decision making might come as a result
of the previous, after better familiarization with the visual
tool. The strong features of the visual tool - and also what
the evaluators liked more about it - are the multiple inter-
active linked views on the data, the link between anatomy
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Table 1: Evaluation results for each of the perceived variables (effectiveness: E, efficiency: e and satisfaction: s) for each one
of the tasks (T1, T2, T3, T4) of Section 2, as performed with the use of the proposed visual tool. We show the mean grade (u),
the standard deviation (c) and the 95% Confidence Interval (0.95 CI), separately for the group involved in the design and the
group not involved in the design. With bold, we denote cases where the second group graded the visual tool lower than the first.

TI-E Tl-e Tl-s T2-E T2-e T2-s T3-E T3-e T3-s T4-E T4-e T4-s
All uto 4.60+0.52 4.10+0.57 4.404+0.52 4.304+0.48 4.30+0.95 4.60+0.52 4.404+0.52 4.20+0.42 4.50+0.53 4.10+0.99 4.10+0.88 4.00+0.82
0.95CI [4.28,4.92] | [3.75,4.45] | [4.08,4.72] [4.00,4.60] | [3.71,4.89] | [4.28,4.92] [4.08,4.72] | [3.94,4.72] | [4.17,4.46] [3.48,4.83] | [3.56,4.64] | [3.49,4.51]
Inv. u+c 4.50+£0.58 4.50+0.58 4.25+0.50 4.00£0.00 4.50+£0.58 4.25+0.50 4.75+£0.50 | 4.254+0.50 | 4.25£0.50 4.50£1.00 | 4.25+0.96 4.00£1.15
Not Inv. y+c 4.67+0.52 3.83+0.41 4.50+0.55 4.50+0.55 4.17+1.17 4.83+0.41 4.17+0.41 4.17+£0.41 4.67+0.52 3.83+£0.98 4.00£0.89 4.00+0.63
5.0 5.0 — 150 |:| 5.0 = - —
as a3 as 43| |:|
; g _uBggu - m .. __b0_uBoi. _ L
D Al
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Figure 9: Schematic representation of the evaluation results of Table 5.1, for each one of the tasks of Section 2.

and feature space and the incorporation of inaccuracy in the
analysis, even if the latter received a lower mean grade (Ta-
ble 5.1). According to the evaluation participants, a missing
feature or limitation of the visual tool is that it currently does
not provide functionality for viewing simultaneously the PK
parameter maps in a supplementary slice-based view, which
is still important for clinical users, due to familiarity. Finally,
some of the users commented that the areas of interest do not
always correspond with descriptive density variation areas in
the 2D embedding. Therefore, it is not always obvious how
to define the selection boundaries in the embedding.

6. Conclusions and Future Work

The current exploratory approach for tumor tissue character-
ization based on imaging is time consuming, making it diffi-
cult to obtain the required insight. We propose a visual tool
that enables clinical researchers to perform easy exploration
and visual analysis of the feature space of imaging-derived
tissue characteristics, and to discover new knowledge, with
respect to reference data used in clinical research. We em-
ploy, as central view, a 2D embedding of the feature space,
linked to multiple interactive views. These views provide
information concerning the structure of the feature space,
e.g., visual clusters and relations to anatomical and clini-
cal reference information. We performed an initial evalua-
tion with ten clinical researchers, who confirmed the use-
fulness of the visual tool in their analysis, as it opens new
possibilities in the exploration of the feature space and pro-
vides access to new insight in the data. We illustrated this
with two case studies performed during the evaluation. A
direction for future work includes the extension of the appli-
cation to allow meaningful follow-up or inter-patient analy-
sis. It would also be interesting to extend the visual tool or to
generalize its functionality for other applications, where also
a higher number of features is involved. Finally, the incor-
poration of embedding precision information in the analysis
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would also lead to more reliable observations. The proposed
visual tool is a promising basis for clinical researchers to
identify, explore and analyze heterogeneous intra-tumor re-
gions and particularly, to generate and confirm hypotheses,
with respect to clinical reference.
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