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1 Theoretical Background

In this document we provide a brief summary of the theory behind
the mass moments, the Divergence Theorem, and the analytic ob-
jective function gradient. It is intended to help the reader to more
easily follow the paper with consistent notation. Similar consider-
ations, including pseudo-codes, have been also provided by others
(e.g., [Marsden and Tromba 2003; Mirtich 1996; Eberly 2010]).

1.1 Mass Properties

Mass Moments. The response of a rigid body to external forces
and its dynamic behavior are given by its physical mass moment. Of
special interest are the moments of order zero (mass), one (center
of mass), and two (moments of inertia). They are further denoted
as Mµ and can be expressed as integrals over the volume V of the
given object:

Mµ(Vρ) =

∫
V

ρ(x,y, z) µ(x,y, z) dV , (1)

where dV = dx dy dz is the infinitesimal volumetric unit. The func-
tion ρ expresses the mass density, i.e., the mass per a unit volume.
The functions µn correspond to particular moments at an infinites-
imally small unit mass particle and are defined as:

µp,q,r = x
pyqzr , 0 6 p,q, r 6 2 ,

with n = p + q + r as the order of the actual moment. We are
interested in the first 10 monomials of order n 6 2 that reduce due
to symmetry (i.e., xy = yx) to the following terms:

µ =
[

1 x y z x2 y2 z2 xy yz zx
]

.

In the case of a solid rigid body in 3d space, these 10 elementary
functions need to be integrated over the entire volume V. For a
constant mass density ρ, the mass, which corresponds to the zeroth-
order moment, can be computed as

M1 = ρ‖V‖L1 = ρ

∫
V

1 dV .

Similarly, all 10 interesting moments can be computed respectively
by substituting µ with particular monomials from the vector µ, re-
sulting in:

M =
[
M1 Mx My Mz Mx2 My2 Mz2 Mxy Myz Mzx

]T .

The actual properties of an object, in particular massm, and center
of mass c are finally given as

m =M1 , c = 1
M1

[
Mx My Mz

]T ,

and the tensor of inertia as

I ′ =

My2 +Mz2 −Mxy −Myz

−Mxy Mx2 +Mz2 −Mzx

−Myz −Mzx My2 +Mx2

 .

Parallel Axis Theorem. In order to make the tensor of inertia
relative to the center of mass of the object, we can apply the parallel
axis theorem [Mirtich 1996] as

I = I ′ −M1

 c2
y + c

2
z cxcy cycz

cxcy c2
x + c

2
z czcx

cycz czcx c2
y + c

2
x

 =

 Ixx Ixy IxzIxy Iyy Izy
Ixz Izy Izz

 .

Mass Properties. In correspondence with the moments M, we
can collect these quantities to arrive at the mass properties

P =
[
m cx cy cz Ixx Iyy Izz Ixy Iyz Izx

]T . (2)

Note that the moments M of an object made out of different parts
with momentsMi can be obtained by their sum, i.e.,M =

∑
iMi.

The corresponding mass properties have to be weighted by their
respective masses however.

1.2 Divergence Theorem

An interesting application of our method is efficient computation
of the moments Mn of arbitrary freeform surfaces represented as
triangular meshes. The idea behind this approach is to reduce the
volume integrals as presented in Equation (1) to surface integrals
using Gauss’s Divergence Theorem [Marsden and Tromba 2003].
The theorem reveals the interesting relation that an integral of the
divergence ∇· of a vector field φ over the volume V is equal to the
integral of the unit normal vectors n over its bounding surface ∂V:∫

V

∇ · φ dV =

∫
S

n · φ dS ,

where S = ∂V is the surface of the object and dS is the infinitesimal
surface area unit. If we assume a constant mass density (i.e. ρ = 1
without loss of generality), we can represent the moment monomi-
als µn as divergences of suitable vector fields, i.e., ∇ · φn = µn.
This representation is not unique and we employ the functions as
suggested by Mirtich [1996], which have also been used by others
[Eberly 2010; Bächer et al. 2014] and combine them to the matrix:

φ =

 x x2

2 0 0 x3

3 0 0 x2y
2 0 0

0 0 y2

2 0 0 y3

3 0 0 y2z
2 0

0 0 0 z2

2 0 0 z3

3 0 0 z2x
2

 .

One general assumption we make is that the surface we deal with
is a closed and oriented 2-manifold embedded in 3d space S =



(X,T); in practice represented as a piecewise linear triangle mesh
composed of vertices x ∈ X and triangles T, with unit triangle
normalsnT . In such a case, the parameterization and the integration
of the surface can be performed for each triangle T separately∫

S

n · φ dS =
∑
T∈S

∫
T

nT · φ dS .

For the entire surface S with mass density ρ, all 10 moments equal
to:

M(Sρ) = ρ
∑
T∈S

∫
T

φTnT dS . (3)

Parameterization. We can define a piecewise parameterization
x : U ⊂ R2 → S ⊂ R3 for each triangle T with vertices p0 =
(x0,y0, z0), p1 = (x1,y1, z1), and p2 = (x2,y2, z2) as

x(u, v) = p0 + u(p1 − p0) + v(p2 − p0) ,

with (u, v) ∈ U. The derivatives w.r.t. U are

xu = ∂x/∂u = p1 − p0 ,
xv = ∂x/∂v = p2 − p0 ,

and the unnormalized normal vector ñ is the cross product

ñ = xu × xv .

With the parameterization U we can apply the change of variables
theorem [Marsden and Tromba 2003] and obtain:∫

S

dS =

∫
U

|ñ| du dv ,

where the infinitesimal unit of the area in U is the normalization
factor of the triangle normal. Finally, the particular integrals per
triangle reduce to

nT

∫
T

φ dS = ñT

∫
U

φ (x(u, v)) du dv .

In practice, we only need to multiply the integral with the coordi-
nate of ñT that corresponds to the respective non-zero component
of the function φ. Due to their simplicity, these integrals can be
evaluated analytically, e.g., Eberly [2010] and Bächer et al. [2014]
provide pseudo-code for an efficient implementation.

1.3 Derivatives

Through the use of offset surfaces, we are able to utilize continu-
ous optimization in our method to control the mass properties of
objects. Furthermore, we can analytically compute the gradient of
the objective function without relying on finite difference method-
ologies. Being significantly more precise this improves both the
accuracy and speed of the optimization computations.

Analytic Gradient. In our setting, we have objective func-
tions f(P) taking the mass properties P as arguments. Through the
use the Divergence Theorem and assuming constant mass density
for the constituent parts of the object, they are fully determined by
the 3n coordinates X of the n mesh vertices X. The vertices, in
turn, are shifted along the displacement directions by the displace-
ment values δ. We achieve a significant reduction of the problem’s
dimensionality by representing the n displacement values with k
manifold harmonics modes weighted by the coefficients α. In sum-
mary, our objective function is given as f(α) = f(P(X(δ(α)))).

We can compute an analytic gradient of the objective function f by
applying the chain rule:

∂f

∂α︸︷︷︸
〈1×k〉

=
∂f

∂P︸︷︷︸
〈1×10〉

∂P

∂X︸︷︷︸
〈10×3n〉

∂X

∂δ︸︷︷︸
〈3n×n〉

∂δ

∂α︸︷︷︸
〈n×k〉

,

where X =
[
x1 y1 z1 x2 y2 z2 . . . xn yn zn

]T are the n vertices
of the original surface concatenated into a 〈3n× 1〉 vector.

The partial derivatives ∂P/∂X of the ten properties P w.r.t. surface
vertices X result in a 〈10× 3n〉 matrix. Note that P’s are functions
of the integrals Mµ from Eq. (1). The derivatives of ∂X/∂δ are a
sparse matrix of the size 〈3n× n〉 that contains in each column one
displacement vector v, i.e, for v:

∂X

∂δ
=


vx1

vy1
vz1

0 0 0 · · · 0 0 0
0 0 0 vx2

vy2
vz2
· · · 0 0 0

...
. . .

...
0 0 0 0 0 0 · · · vxn vyn vzn


T

.

Finally, the derivatives ∂δ/∂αw.r.t. the coefficientsα are the first k
manifold harmonics basis vectors Γk themselves.

Double-Sided Offset. The sizes given above account for only
one-sided offset surface. However, double-sided offset can be per-
formed in one step by extending the matrices appropriately.

The differences start at the term ∂P/∂X, where the derivatives need
to be computed with respect to vertex positions. If the starting point
of displacement in both directions is the same surface both the in-
nerX and outer verticesX are in practice the same (both justX)1. If
two distinct surfaces are taken as initial values, their vertices need
to be taken into account:

∂P/∂X =
[
∂P/∂X ∂P/∂X

]
〈10×6n〉 ,

∂X

∂δ
=

[
∂X/∂δ 0

0 ∂X/∂δ

]
〈6n×2n〉

,

and
∂δ

∂α
=

[
Γk 0
0 Γk

]
〈2n×2k〉

.

The composite partial derivatives ∂P/∂α of all mass properties P
w.r.t. α thus reduce to a 〈10× 2k〉 sized matrix.

2 Fabrication Comparison

The smooth surfaces of the inner voids that our method generates
have a considerable impact on the fabrication process when using
FMD 3d printing. In comparison to the voxelized interiors of pre-
vious works we need roughly half the support material and half
the print time (see Table 1). This can be explained by the fact that
the sharp voxel boundaries produce many horizontal overhangs that
need to be supported throughout the model. Both the speed of the
print head and its traveled distance generally larger when drawing
voxel boundaries in comparison with smooth curves.

3 Optimization Parameters

The settings and quantitative results of our examples are given in
Table 2.

1For better readability we drop the upper/lower lines, such that X = X.



Models of Figure 6 Model material [cm3] Support material [cm3] Duration [hh:mm]

Ours 26.98 8.28 2:24
[Prévost et al. 2013] 15.55 8.25 2:23
Platform ours 4.00 0:14
Platform [Prévost et al. 2013] 3.04 0:10

Ours without Platform 26.98 4.28 2:10
[Prévost et al. 2013] without Platform 15.55 5.21 2:13

Relative material [%] Relative duration [hh:mm cm−3]

Ours without Platform 16.7 0:05
[Prévost et al. 2013] without Platform 35.7 0:09

Table 1: Comparison of the print requirements for the models shown in Figure 6 of the paper. We give the material requirements and print
duration on a Dimension uPrint Plus FDM printer where we subtract the build process of a platform out of support material, which is required
by the printer. Since the models exhibit significantly different sizes due to the respective deformation models used by the optimization, we
normalize both support material and duration by the volume of the actual object. We observe that in comparison to Prévost et al. [2013], we
need only half the support material and printing time.
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Figure fmin m cx cy cz Ix2 Iy2 Iz2 Ixy Iyz Izx

1.1 8.8464 1.0272 3.0363 36.3237 0 13.7833 -13.7636 42.7504 0.0002 2.6353 0.0001
1.2 2.947 11.5255 0.7236 0 2.4233 40.6745 47.4858 15.6111 -14.9261 0 0.0001
1.3 5.9109 22.1134 0.5548 -0.0003 2.3156 61.4414 69.9063 25.6067 -20.5774 -0.0014 -0.0045
6.1 5.3066 109.7995 -0.05 0.05 5.3016 1174.715 1158.521 1144.931 191.5154 186.5148 14.9104
6.2 3.8319 11.7715 -1 -0.0009 2.8319 66.5334 106.5635 44.8086 38.2834 -0.0891 0.2135
6.3 10.1585 16.3968 0.0002 0 6.3376 143.4909 203.9611 87.0337 55.7939 -0.5091 13.3837
7 0.8223 2.2567 0 0 0.8223 1.46 1.4411 1.0268 -0.0003 0.0014 0.0066
8 0.9129 0.4259 0 0 0.3799 0.207 0.1987 0.3504 0 0.0168 0
9 -0.0505 2.1874 -0.1003 0.0006 -0.0567 0.5125 1.4401 1.2397 0.0374 0.008 0.0022
12 2.5188 21.777 0.6262 0.0013 2.1266 65.7607 100.038 66.7332 -33.5538 -0.1162 0.0289
13 11.4486 1.0741 -0.0002 -0.0001 1.1313 0.3541 0.4104 0.5206 0 0 0

14.1 3.7702 6.7607 0.4423 -0.1484 3.5526 45.2525 47.2934 9.7826 -2.296 0.2528 -6.7172
14.2 6.1278 15.1399 0.1 0.0273 5.1857 112.2568 117.6003 28.6029 5.3453 1.8889 -16.5581

Figure vertices iter tsolve [s] tprep [s] objective offsets k

1.1 12160 0 9.2191 0.0409 - inner -
1.2 12160 7 2.9204 0.3766 (5) inner 4
1.3 12160 11 11.2086 0.435 (6) both 10
6.1 6161 35 16.3654 0.6336 (5) inner 42
6.2 4663 11 2.5614 0.4407 (5) inner 32
6.3 85793 22 227.3832 3.2361 (5) both 36
7 2316 25 4.0786 0.0975 (7) inner 36
8 20438 14 54.4084 1.1668 (8) both 48
9 8926 27 101.2219 0.296 (9) both 36
12 6022 30 4.8376 0.1741 (5) inner 26
13 9178 15 3.4449 0.2525 (8) inner 24

14.1 43183 45 12.4185 1.8768 (5) inner 96
14.2 43183 39 681.4396 1.8283 (5) both 96

Table 2: Settings and quantitative results of our example. The number of iterations of our non-linear solver are given together with the
solution, the solution time ( tsolve), and the preprocessing time ( tsolve, includes Laplcaian and eigs computation, not the skeleton), the
number k of utilized manifold harmonics modes.

exitflag k iter time fmin m cx cy cz I
x2 I

y2 I
z2 Ixy Iyz Izx

5 - 7 86.6995 11.2798 0.768 0 0 0.8168 0.1316 0.1792 0.2154 0.0001 0 0

-2 10 2 0.0518 16.3126 0.4468 0.0016 0 0.8237 0.1068 0.1393 0.139 0.0084 0 0
-2 14 4 0.1146 16.2742 0.4671 -0.0006 0 0.821 0.1128 0.1395 0.1423 0.0054 0 0
-2 18 4 0.1467 15.7559 0.5088 0.0008 0 0.8226 0.1181 0.1506 0.1546 0.0047 -0.0002 0
-2 22 4 0.1889 15.5082 0.5054 0.0004 0 0.8176 0.1169 0.1494 0.1544 0.0048 -0.0004 0
-2 26 9 0.5487 16.4028 0.5514 0.0002 0 0.8187 0.1091 0.1641 0.156 0.0009 0 0
-2 30 10 0.7054 16.2094 0.5454 -0.0005 0 0.8225 0.1077 0.1632 0.1557 0.001 0 0
5 34 7 0.4368 14.5884 0.6211 0 0 0.8153 0.1267 0.1602 0.1721 0 0 0
5 38 11 0.5901 13.9134 0.6413 0 0 0.814 0.1262 0.1653 0.1797 0 0 0
5 42 22 1.4623 13.5241 0.6457 0 0 0.8173 0.1272 0.1667 0.1839 0 0.0002 0
5 46 9 0.9293 13.4684 0.6426 0 0 0.8184 0.1264 0.1666 0.1838 0 0 0
5 50 19 2.2558 13.3824 0.6237 0 0 0.8207 0.1214 0.1663 0.1815 0 0.0002 0
5 54 15 1.4985 13.3653 0.6413 0 0 0.8206 0.1245 0.1677 0.1843 0 0 0
5 58 8 0.7569 13.089 0.6324 0 0 0.8168 0.1226 0.167 0.1848 0 0.0001 0
5 62 7 0.9368 12.8216 0.6319 0 0 0.8188 0.1205 0.1688 0.187 0 0 0
5 66 4 1.1524 12.8103 0.6357 0.0006 0 0.8169 0.1213 0.1692 0.1878 0 0 0
5 70 9 1.6226 12.7835 0.6376 0 0 0.8234 0.1233 0.1676 0.1879 0 0 0
5 74 7 2.0703 12.626 0.675 0 0 0.824 0.1279 0.172 0.1951 0 0.0001 0
5 78 10 2.9215 12.2553 0.6783 0 0 0.8173 0.1284 0.1719 0.1984 0 0.0002 0
5 82 9 3.0327 12.1865 0.6926 0.0001 0 0.8209 0.1284 0.1738 0.2005 0 -0.0002 0
5 86 9 2.8716 12.0956 0.7084 0 0 0.8163 0.1325 0.1737 0.2036 0 0.0002 0
5 90 9 3.2759 12.018 0.7184 0.0001 0 0.8167 0.1336 0.1733 0.2046 0 -0.0001 0
5 94 8 4.389 12.0315 0.7161 0 0 0.8168 0.1331 0.1737 0.2045 0 -0.0001 0
5 98 8 4.2123 12.0314 0.7171 0 0 0.8158 0.1333 0.1737 0.2047 0 -0.0001 0

5 750 18 92.9968 11.2725 0.7691 0 0 0.8165 0.1308 0.1781 0.2141 0 0 0

Table 3: Numbers of the test presented in Figures 10 and 11 in the paper with a small top with n = 750 vertices. First row shows the results
of full optimization without the usage of order-reductions, and the last row shows the results of a full-basis optimization (k=n).


