
Learning Shape Placements by Example

Paul Guerrero∗

KAUST, Vienna University of Technology
Stefan Jeschke†

IST Austria
Michael Wimmer‡

Vienna University of Technology
Peter Wonka§

KAUST

propagate

propagate

Figure 1: New York-style skyscrapers generated by our method: Individual shape placement operations are learned during an example
modeling session. Two of these operations are shown in the top row. New skyscraper variations like the ones in the bottom row can be
generated from the learned model without additional user input.

Abstract

We present a method to learn and propagate shape placements in
2D polygonal scenes from a few examples provided by a user. The
placement of a shape is modeled as an oriented bounding box. Sim-
ple geometric relationships between this bounding box and nearby
scene polygons define a feature set for the placement. The feature
sets of all example placements are then used to learn a probabilistic
model over all possible placements and scenes. With this model,
we can generate a new set of placements with similar geometric
relationships in any given scene. We introduce extensions that en-
able propagation and generation of shapes in 3D scenes, as well as
the application of a learned modeling session to large scenes with-
out additional user interaction. These concepts allow us to generate
complex scenes with thousands of objects with relatively little user
interaction.

∗paul@cg.tuwien.ac.at
†sjeschke@ist.ac.at
‡wimmer@cg.tuwien.ac.at
§pwonka@gmail.com

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: modeling by example, complex model generation

1 Introduction

Recently, the amount of detail that is expected in polygonal scenes
in computer graphics has increased significantly, suggesting the
need for powerful tools for model creation and manipulation. Ex-
isting systems mostly employ rule-based methods or formulate op-
timization problems, where an expert user encodes domain-specific
knowledge as a large set of rules, constraints and/or objective func-
tions. A disadvantage of these tools is that they are very differ-
ent from the commercial modeling software that most modelers are
proficient with. To resolve this discrepancy, example-based model-
ing methods have recently gained interest, since they do not require
a complex pre-encoding of domain knowledge, but mostly work
with familiar modeling operations. One typical option is to provide
one or several complete scenes as examples and to produce “simi-
lar” scenes as output. Unfortunately, the degrees of freedom grow
exponentially with example scene complexity—a typical case of the
“curse of dimensionality”. This means that impractically many ex-
ample scenes are required to disambiguate object relations, which
makes user control fairly limited.

The key problem to tackle is an efficient way to encode what valid

1
ex

am
pl

e
3

ex
am

pl
es

? ? ?

Figure 2: A single example of a mirror placement leaves room for inter-
pretation of the user’s modeling intention, as is illustrated in the top row.
The red lines indicate the matched relations. Should the mirror match the
width of the sink? Should its vertical position match the sink or the wall?
Each interpretation results in a different placement. Providing multiple ex-
amples like the ones in the bottom row disambiguates the user’s intention.

and desirable object relations are, as intended by a user. To reach
this goal, we believe that it is more promising to provide exam-
ples not as complete scenes but at the level of individual editing
operations. In this paper, we propose such a method. Specifi-
cally, a model that captures the placement of a shape is learned
from a few given examples, illustrated in Figure 1. Our input is
a two-dimensional scene, composed of a set of simple polygons
with attached labels that describe scene semantics like “door” or
“window”. A user can now define any number of locations, orien-
tations, widths and heights of a new shape, called example place-
ments. By analyzing the shape’s neighborhood, a model of the in-
tended placement is learned without requiring further user input.
With this model, we can then automatically identify any number
of qualitatively “similar” placements in any given scene such that
the modeling intent of the user is met. In the case of city model-
ing, such a user’s intent may be “20 cm below each window” on a
building façade, or something less precise like “close to a house but
not close to a street” in a city layout. In such contexts, a single ex-
ample placement is often too ambiguous to clearly reveal the user’s
intention, as illustrated in Figure 2. Therefore, one main point of
this work is to analyze multiple input placements of a shape to re-
solve these ambiguities and thus efficiently narrow down the user’s
particular intent. Furthermore, we support varying shape rotation
and per-axis scaling, which is not the case in existing frameworks.
Such a general approach is novel to the best of our knowledge.

Technically, our model of the user’s supposed intent is built on a
kernel regression method for which we introduce a new distance
metric between shape placements. It is specifically designed to
work for different numbers and types of scene elements in the ex-
ample shape’s neighborhood. We prove that the kernel based on this
distance metric fulfills the validity requirements for kernel regres-
sion. We also show how the 2D placement method can be extended
to 3D scenes using extrusion and Boolean operators. The appli-
cation of our method in different domains is presented, including
placing elements in city layouts, on building façades, and on inte-
rior floorplans, demonstrating the capabilities of our method where
previous methods fail. By recording edit operations, introducing
random variations and applying them to larger scenes, our example-
based shape-placement method can be used to generate both com-
plex and unique models in large quantities.

2 Related Work

Most closely related to the work described here are analysis-and-
edit approaches and scene modeling-by-example methods. Simi-
lar to this paper, these existing approaches exploit relationships be-
tween objects or object parts to help designers populate or modify
complex models or scenes in a meaningful way.

One line of research concentrates on analyzing and editing individ-
ual objects [Gal et al. 2009; Zheng et al. 2011; Bokeloh et al. 2012].
The general idea is to derive geometric relationships between dif-
ferent object parts, such as one-dimensional feature lines [Gal et al.
2009] or other meaningful components [Zheng et al. 2011; Bokeloh
et al. 2012]. Local edit operations are then propagated to similar
object parts using these relationships. If a model database with nu-
merous examples within an object class is available, new models
can be synthesized as combinations of object parts found in this
database [Funkhouser et al. 2004; Chaudhuri et al. 2011; Kaloger-
akis et al. 2012]. Here the challenge is to automatically identify
model parts and their mutual relations, which are learned from the
database [Chaudhuri et al. 2011; Kalogerakis et al. 2012]. Con-
ceptually, the aforementioned body of work aims at finding sets of
existing model parts that can be modified and recombined to gener-
ate reasonable new variants of objects. The model parts are placed
either manually or using predefined placement points. In contrast,
in this work, we learn where to place new shapes. Additionally, we
can learn shape placements anywhere in a scene; the shapes need
not be connected to each other.

Instead of studying the structure of object parts, modeling-by-
example approaches focus on complex, three-dimensional scenes
(mostly indoors) [Xu et al. 2002] by studying individual objects
and their spatial, structural, semantic, and functional relationships.
Related questions include how to efficiently retrieve relevant 3D
objects from a database such that they fit in a given scene con-
text with high probability [Fisher and Hanrahan 2010; Fisher et al.
2011]. New scenes can be synthesized after learning object rela-
tionships from a database of example scenes [Fisher et al. 2012; Yu
et al. 2011; Yeh et al. 2012]. The proposed mathematical models in-
clude probabilistic models based on Bayesian networks and Gaus-
sian mixtures [Fisher et al. 2012] and specialized probability dis-
tributions together with constraints encoded as factor graphs [Yeh
et al. 2012]. The space spanned by these models is then appropri-
ately sampled to derive plausible scenes. Alternatively, a cost func-
tion can be formulated whose optimization yields realistic furniture
arrangements [Yu et al. 2011]. For some indoor scenes, synthesis
can be based on special design guidelines [Merrell et al. 2011] that
include functional and visual criteria apart from purely geometric
relationships. While these methods have a broader scope than our
work (e.g., they also need to pick the right type and number of
objects), their placement models are limited compared with our ap-
proach. In Section 5, we compare our approach to one of the recent
methods [Fisher et al. 2012]. Additionally, our approach to provide
examples at the level of individual operations has some advantages
compared with using complete scenes as examples. First, there is
more user control: the modeler can decide which operations to ap-
ply next based on feedback from the previous operation. Second,
each individual operation has far fewer degrees of freedom, which
means that fewer examples are necessary to communicate the user’s
modeling intent clearly. Finally, the modeling session includes in-
formation that is not available in the final model, e.g., which indi-
vidual operations were used to create the model? More information
to work with means better results; that is, a better estimation of the
user’s intent.

Recently, Guerrero et al. [2014] proposed an example-based editing
system that propagates an example object with a particular orienta-
tion (called a pose) to locations in a two-dimensional polygonal

a b

c
d

p q
r s

t u
w
x x

p p

u u

s s

w w
(a) examples P1,P2 (b) propagated points (c) candidate placements C1,..,Cn (d) final placements O1,O2

...

...
......

......

...

.........
...... ...

...

ϕ(t)

model y ab

model y cd

ϕ(c) ϕ(d) model y

Φ(P)1 Φ(P)2

...

...

...

...

sink dist.
wall distance

sink local x

a

...

Φ(C)1 Φ(C)2

train

train

train eval.
at

select
best

ϕ(u)ϕ(w)
ϕ(c)

ϕ(a)ϕ(b)

ϕ(a)

ϕ(d)

ϕ(b)

ϕ(p)ϕ(q)ϕ(s)

ϕ(p)

ϕ(u) ϕ(w)

ϕ(s)

(e) feature sets (f) point placement model (g) shape placement model

sample grid,
find modes

t

sample grid,
find modes

Figure 3: Main steps of the proposed method: Given a set of example placements (outlined in red in (a)), our method sparsely samples the bounding box of
each placement with two sample points (red and green dots; in our implementation we use 5 sample points). For each sample point, relationships to surrounding
scene elements as shown in (e) are combined into a feature set. Based on this feature set, we train a statistical point-placement model (f) and extract promising
sample-point positions on a dense grid, shown as heat map in (b). In this sub figure, the lower half of the heat map corresponds to the lower-left sample point,
and the upper half to the upper-right sample point. The candidate placements in (c) are constructed from combinations of the extracted heat-map maxima and
evaluated with a combined statistical shape-placement model in (g). Finally, the best candidate placements are selected as the final propagated shapes, shown
in (d).

scene that exhibit a similar set of geometric relations to the sur-
rounding geometry. In that system, a user can provide only a single
example, which is often not enough to uniquely specify the desired
placement properties. As is illustrated in Figure 2, a single exam-
ple is ambiguous when transferring a shape from a large rectangle
to a small one: should the shape scale with the rectangle or retain
its size? Should it retain the same distance to an edge of the rect-
angle or to its center? Specifying multiple examples in rectangles
of different sizes disambiguates the placement. Furthermore, repre-
senting shapes by a single point limits the class of relations that can
be captured. For example, a user may want to place a balcony on a
facade above a door and in front of two windows. In this placement,
different parts of the balcony are constrained by different relations:
the bottom part of the balcony needs to be close to a door, while
the sides need to be close to two different windows. Placements of
this type cannot be captured when representing shapes with a sin-
gle point. Finally, Guerrero et al. only considered strictly 2D layout
problems.

In this paper, we use multiple placements to solve ambiguous cases
that are inherent in any placement process. More importantly, we do
not just spatially position objects; we adjust them in width, height
and orientation to automatically fit a learned local neighborhood,
which is not possible with existing approaches to the best of our
knowledge. Finally, because our mathematical model is based on
the more general concept of object relationship functions, it gener-
ally provides higher synthesis quality than previous work based on
binary relations.

3 Placement Learning and Propagation

3.1 Overview

The input of our method is one or multiple example scenes
S1, . . . , Sn, each composed of simple 2D polygons. All polygons
have labels describing semantics, like “door” or “window”. For a
polygonal input shape to be propagated, the user provides a set of
example placements P1, . . . , Pn, where a placement P is given as
an oriented bounding box defined by five parameters: the center
position, width, height and orientation. Given these example shape

placements and a query scene S, our intuitive goal is to automat-
ically find placements O1, . . . , Om in S that are “similar” to the
example placements. The following sections provide four concep-
tual building blocks that formalize this process.

Placement descriptors In Section 3.2 we introduce the notion
of a placement descriptor. To capture user intent, such as “place
a flower box 20 cm below a window” on a building façade, we
describe a placement using a feature set Φ(P, S), which is com-
posed of simple geometric relationships between the placement P
and nearby elements of the scene S, such as the distance to a poly-
gon boundary or the coordinates with respect to the local frame of
a polygon.

Placement similarity measure Having a formal placement de-
scription, the next key concept is an adequate measure of similar-
ity between any two given shape placements. The challenge here
is that two placement descriptors typically contain different num-
bers and types of features. Additionally, the number of features
is usually large, but only some of them are relevant for determin-
ing the similarity. In Section 3.3, we introduce the SL0 kernel
k(Φ(P1, S1),Φ(P2, S2)), defined on the placement’s feature sets,
which is well suited to address these challenges.

Statistical placement model As noted above, one main goal of
this work is to exploit the information implicitly encoded in multi-
ple input placements in order to resolve potential placement ambi-
guities. For this, we define the similarity of a placement to a set of
example placements by a kernel regression model y(Φ(P, S)) over
the space of feature sets, using the similarity k as a kernel. This
model is trained on all example placements Φ(Pi, Si), as described
in detail in Section 3.4.

Placement propagation method Finally, given the trained
model y and a query scene S, we show how to identify placements
with high similarity y(Φ(P, S)) to the example placements in Sec-
tion 3.5. Unfortunately, an exhaustive search of all possible place-
ments P in S is prohibitively expensive. Instead, we evaluate y

only for a set of candidate placements C. To find these candidates,
we first decompose the high-dimensional search space into several
2D subspaces and separately find point locations with high similar-
ity in each subspace. Candidate placements C are then formed as
combinations of three point locations coming from different sub-
spaces. We output candidates with high similarity y(Φ(P, S)) as
output placements Om.

Figure 3 illustrates the concepts described above. In Section 4, we
present several application-dependent filters to select output place-
ments, as well as extensions to allow the generation of 3D scenes
from example modeling sessions. Finally, we show applications
like mass modeling, interior modeling and façade modeling. We
also provide comparisons to existing work and detailed quantitative
evaluations in Section 5.

3.2 Placement Descriptors

In this section, we describe a placement by a feature set, based on
the geometric relationship between the placement and the surround-
ing scene geometry. To make the notion of such a geometric rela-
tionship tractable, our first step is to decompose the scene geometry
into simple parts, called scene elements, as detailed below. In addi-
tion, we start our exposition by describing geometric relationships
between individual points and scene elements with so-called rela-
tionship functions, and then extend this concept to placements. The
value of a relationship function will be called feature tuple, and the
set of tuples for all nearby elements is the feature set of a placement.

Scene elements Similar to Guerrero et al. [2014], all scene poly-
gons are decomposed into “smooth” segments, which are com-
prised of edges with no sharp angles, and sharp corners, which
connect the smooth segments. This gives us elements of type poly-
gon, segment, and corner, which are more formally defined in Ap-
pendix A.1.

Feature tuples A relationship function ψ expresses multiple ge-
ometric relationships between a point and a scene element numer-
ically, such as the boundary distance and the corner ratio. They
are more formally defined in Appendix A.2. The function ψ maps
a point and a scene element to a tuple (v1, v2, ..., v|ψ|) ∈ R|ψ|
of geometric relationship values vi, called a feature tuple. Each
element type has a specific set of |ψ| relationships, defined in Ap-
pendix A.2. For example, for a point p and corner c, the feature
tuple ψ(p, c) = (v1, v2) consists of the relationship values for the
corner distance v1 and corner ratio v2. Note that unlike the rela-
tionship definition in Guerrero et al. [2014], we use points instead
of poses, i.e., we discard directional information.

Point placement descriptors We call the set of all feature tu-
ples of a point p in scene S the per-point feature set φ(p, S) =
{ψ(p, e)|e ∈ S}, which is a descriptor of the point’s relationship
to all surrounding scene elements.

Shape placement descriptors Now we extend the placement
descriptor from points to shapes. Recall that we defined the place-
ment of a shape by position, orientation, width, and height of the
shape’s bounding box. To describe the shape’s relationship to
neighboring scene elements, we sample its bounding box with a
fixed set of points (five in our implementation: the bounding box
corners and center). The descriptor of a shape placement is then
simply a combination of the descriptors of its sample points. More
specifically, for each scene element e, we describe the relationships
between placement and element with a compound tuple by concate-
nating the feature tuples ψ(p, e) of all sample points for that ele-

ment in a defined order (e.g., point 1, 2, ...). The set of all compound
feature tuples is the per-shape feature set Φ(P, S), called a shape
placement descriptor. As will become clear in the next section, this
definition allows us to conveniently compare shape placements.

3.3 Similarity Measures

In this section, we first develop a measure of similarity between
individual feature tuples. Then we extend this measure to point
placements and finally to shape placements.

Feature tuples Assume that we are given two points, each with
a feature tuple that encodes the relationship to some neighboring
scene element. We can compare the placement of the two points
with respect to the surrounding scene elements with a similarity
measure s between two feature tuples. Three main observations
guide us in the design of s. First, such a comparison is only useful
for scene elements with the same label and of the same type, such
that the tuple size (i.e., the number of tuple elements) is identical
and their entries are comparable. Otherwise, we will define s to be
zero. Second, we are interested in whether two tuple values “agree”
(given a certain tolerance range) or not. For example, when com-
paring two distances, it is irrelevant if they differ by 10 or 100 times
the tolerance range. Finally, to successfully capture various user’s
intents, we use a large set of tuples. For a given input placement,
this set of tuples typically over-represents the user’s intent such that
two similar placements agree on only a small subset of the features.
Therefore, a single unmatched element should only have a limited
influence on the overall similarity. With these observations, we de-
fine a SL0 similarity measure s(ψ1, ψ2) 1 between two feature tu-
ples ψ1 and ψ2 based on the smoothed `0 (SL0) distance [Oxvig
et al. 2012; Cui et al. 2010] as

s(ψ1, ψ2) =


|ψ1|∑
i=1

G(ψi1 − ψi2|0, σ), if type(ψ1) = type(ψ2)

0, otherwise,
(1)

where |ψ| is the tuple size of ψ and ψi indicates the i-th element
in tuple ψ. G(x|µ, σ) is a Gaussian with mean µ and variance σ
(defined further below). The function type(ψ) gives the type and
label of the scene element used to compute the tuple ψ. The mea-
sure in Equation (1) counts the number of comparable relationship
functions with similar values, which can intuitively be understood
as accumulating “evidence” that the two relationships are similar.

Point placements Now we extend the above similarity defini-
tion from a single scene element to multiple elements per point.
The feature sets φ1 and φ2 for any two points (see Section 3.2)
will now be used to compute a placement similarity between these
points. Of course, the tuples in the two feature sets generally differ
because each point is surrounded by a different number of scene
elements of different type. Therefore, we establish a bijective map-
ping M : φ1 → φ2 from tuples in φ1 to tuples in φ2. To match the
size of the two feature sets, we fill the smaller one with NIL tuples,
which will give zero similarity s. M tells us which scene elements
to compare, so that we can apply s(ψ1, ψ2) to the corresponding
tuple pairs ψ1 and ψ2 and accumulate the results. This gives us a
measure of placement similarity for two points:

k(φ1, φ2) =
∑
ψ∈φ1

s(ψ,M(ψ)). (2)

1See the supplementary material for a proof that this similarity can be
used as a valid kernel for regression.

Given the above setup, our goal is to find a mapping M that maxi-
mizes k(φ1, φ2), i.e., M = arg maxM k(φ1, φ2). In other words,
we seek an assignment between scene elements that maximizes our
similarity measure. This assignment problem is well studied in
graph theory and we solve it efficiently using the Hungarian al-
gorithm [Kuhn 1955]. We further improve the efficiency of the
assignment by using the fact that s is zero for elements of differ-
ent type. Consequently, we only compute the assignment for tu-
ple sets with the same element type. Note that since k(φ1, φ2) is
a sum over SL0 similarities s(ψ1, ψ2), k(φ1, φ2) is again a SL0
similarity. Maximizing k(φ1, φ2) therefore corresponds to finding
the mapping M with the maximum SL0 similarity. The resulting
value of k(φ1, φ2) is a good measurement of how similar two point
placements are with respect to the scene elements surrounding each
point.

Shape placements Finally, we extend the placement similarity
k from single points to placed shapes. This extension is a straight-
forward replacement of the point placement descriptors in (2) with
the shape placement descriptors Φ introduced in Section 3.2:

k(Φ1,Φ2) =
∑
ψ∈Φ1

s(ψ,M(ψ)), (3)

where ψ are now compound tuples. This naturally extends our sim-
ilarity measure from individual points to placed shapes, where all
above arguments still hold.

3.4 The Statistical Placement Model

To take multiple example placements into account, we need to eval-
uate how well a candidate placement corresponds to a set of given
example placements, based on the similarity k between two place-
ments. Since we use feature sets as placement descriptors, we need
to operate in feature space, i.e., the space of all possible per-shape
feature sets.

The input is a set of per-shape feature sets Q = {Φ1, . . . ,Φn}
corresponding to the example placements, and a feature set x cor-
responding to a new candidate placement. While we could create
a measure based on the similarities of x to the elements of Q (for
example using kernel density estimation), this would give prefer-
ence to placements that are provided more often by a user. Instead,
the user assigns a target value t (0 ≤ t ≤ 1) to all Φ ∈ Q,
which are then used to predict the target value of x. Note that t
also gives users some freedom to specify preferences for particu-
lar placements. Consequently, given Q and t = (t1, . . . , tn)T, we
have to learn a function yQ,t(x), in short y(x). If no target values
are given, we set all ti = 1.

In machine learning, kernel regression is a method for learning
functions that has several advantages for our setting. First, it uses no
fixed set of basis functions that need to completely cover the space
of possible functions; instead, it adapts to the given data points.
Second, it can be expressed using a kernel function quantifying the
similarity between two input elements. The kernel function can
be chosen freely under some validity constraints and can therefore
be applied directly to our feature sets. The disadvantage of kernel
methods is that the evaluation can be slow because all input ele-
ments are used to represent the target function. Fortunately, this
is no problem in our case as the number of example placements is
comparably low.

More precisely, we follow the definition of Bishop [2006] of kernel
regression, where the target function is calculated as

y(x) = k(x)(K + λI)−1t. (4)

Here, λ is a regularization factor to avoid overfitting, and k(x) =
(k(Φ1,x), . . . , k(Φn,x)), where k(x,y) is the kernel function de-
fined in Equation (3). Similarly, K is the gram matrix of the kernel

Kij = k(Φi,Φj). (5)

We choose a kernel size σ proportional to the size of the placement.
A more detailed discussion is provided in Section 5. We prove in
the supplementary material that this is a valid kernel function. Note
also that the methodology described in this section can be applied
to per-point feature sets, and we will use this fact to simplify shape
placement propagation in Section 3.5.

3.5 Shape Placement Propagation

Propagating a shape in a scene S can be described as finding five-
parameter transformations (2D translation, 2D scaling, and rota-
tion) that lead to “good” placements. Given the learned model
y(x), the quality of any given candidate placement P can be com-
puted from its feature set x = Φ(P, S). Unfortunately, exhaus-
tively searching the five-dimensional space of possible placements
to find good ones seems computationally impractical. Instead, our
idea is to take advantage of the special problem structure to extract
an approximate set of local maxima of y(x).

Point propagation First, we decompose the space of placements
into five two-dimensional subspaces, one (spatial) subspace for
each bounding-box sample point (the bounding box center and cor-
ners, see Section 3.3). For each such sample point pi, i ∈ {1, .., 5},
we learn an individual statistical model yi(x) from all input place-
ments using the methodology described in Section 3.4. Then, each
yi(x) is sampled on a dense grid spanning the given spatial domain,
shown as heat map in Figure 4(b). In this grid, we extract point
sets P̂i at local maxima by non-maximum suppression with a small
fixed radius [Kitchen and Rosenfeld 1982]. Intuitively, these max-
ima represent propagations of the sample point pi to positions that
are locally optimal in the statistical model yi. To improve computa-
tional efficiency, we discard positions at local maxima below 10%
of the global maximum.

Candidate placements We now derive a set of potentially good
shape placements. Recall that a placement has five degrees of free-
dom. Therefore, it is uniquely defined by a triplet of three lo-
cally optimal point positions (p̂i ∈ P̂i, p̂k ∈ P̂k, p̂l ∈ P̂l) with
i 6= k 6= l, except for triplets with collinear points (which leave
too many degrees of freedom). We call each such triplet a candi-
date placement. Figure 4 (c),(d) shows an example of candidate
placements on a façade.

Candidate rating Given the statistical model y learned from the
example placements (Section 3.4), we now evaluate the generated
candidate placements using their full per-shape descriptors (based
on the compound tuples) x. Then y(x) gives us the similarity be-
tween a candidate placement and the given example set. Note that
the combined statistical model y better encodes the intuition behind
a placement compared with simply taking the sum of the target val-
ues yi of all five sample points. This is illustrated in Figure 4(c) and
(d). One reason is that only placements that are consistent across
all sample points get a high score. In the given example, this en-
sures that each placement’s lower left and upper left corners have
relations to the same window, which avoids many unsound balcony
placements.

(a) (b) (c) (d) (e)

Figure 4: Candidate placements and ranking: Given are two façades with one red example balcony placement each, shown in (a). The candidate placements
in (b) are identified using individual sample points; the quality score for the lower left corner is shown as heat map. In (c) the ranking of these candidates is
based on the sum of all individual sample-point scores, with the highest score in red and the lowest score in blue. One can observe that this results in undesirable
placements, which are marked by red arrows. The proposed combined model used in (d) includes sufficient information about the entire placement’s intuition,
and the combined score gives better results. A user can adjust a score threshold so that only the placements most similar to the examples remain, shown in (e).

Geometric deformations The statistical model y(x) considers
geometric relations to neighboring scene elements, but not geomet-
ric deformations of the placed shapes themselves. We penalize such
deformations based on the change of aspect ratio and area of the
shape. More precisely, let we,he,Ae be the average width, height
and area, respectively, of all example-placement bounding boxes.
Furthermore, letw, h,A be the width, height and area, respectively,
of a particular candidate placement x. The tolerance to deviations
in these measures is then modeled as Gaussians with user-specified
variance σwh and σA, which modify y(x) to get y′(x):

y′(x) = y(x)G(log
(
w he
h we

)
|0, σwh)G(log

(
A
Ae

)
|0, σA). (6)

Note that we employ only this basic form of shape matching since
our focus lies on matching the relations between shapes and neigh-
boring scene elements, rather than the geometric properties of the
placed shapes themselves.

Overlapping shapes In our model, we focus on learning rele-
vant relationships of a single shape to the surrounding geometry, but
we do not consider the relationships between candidate placements
of the same propagation. Therefore, a set of candidates with high
scores may contain overlapping shapes, which may not be desirable
in some applications. As a simple solution, we optionally remove
placements that overlap with a “better” candidate placement with
respect to y′.

Finally, we are left with a list of reasonably good candidate place-
ments ordered by y′. Depending on the application, we provide
visualizations (like the color coding in Figure 4) and selection tools
to let a user select final placements. As a simple example, a slider
might be used as a selection tool to threshold placement quality y′.

4 Applications

The proposed method can be used directly for 2D modeling appli-
cations, like shape placement on a façade given as a set of labeled
polygons, or shape placement in parcels. A large scene can be pop-
ulated by providing few example placements. In this section, we
introduce several extensions to improve modeling efficiency for cer-
tain types of applications and to implement several steps in a 3D city
modeling pipeline using our method, including building placement
in parcels, mass modeling, façade modeling, and furniture place-
ment. We also show how to record a modeling session in an opera-
tions tree that can be applied to new scenes to automatically create
complex and varied models. Results for these applications will be
shown in Section 5.

4.1 Extensions

Polygon hierarchy Complex layouts such as façades or street
plans can often be naturally divided into several disjoint areas
where the elements are placed independently; for example, if there
is little influence between the layouts of adjacent parcels. Similar
to Guerrero et al. [2014], we create a hierarchy of polygons to gen-
eralize this notion to arbitrary polygonal scenes. A polygon Ap is
parent of a polygon Ac if it contains Ac or if the polygons intersect
and Ap has a larger area. The parent polygon of a placed shape P
is defined similarly, while the parent of a point p is defined as the
smallest polygon containing the point. When computing the feature
set Φ or φ, only relationships to elements that have the same parent
as P or p are considered. Additionally, each polygon has a main
orientation and we optionally constrain all placements to share the
orientation of their parent. Finally, we can filter out placed shapes
that intersect polygons with labels that were not intersected by any
example placement.

Distance importance Elements close to a placed shape are typ-
ically considered to be more important than elements farther away.
To take this into account, we can add a weight to the tuple similarity
defined in Equation (1), based on the distance to a scene element:

s′(ψ1, ψ2) = w1w2 s(ψ1, ψ2), (7)

wherewi = G(di|0, σ) is a Gaussian of the distance di between the
point or placement and the scene element of tuple ψi. The standard
deviation

√
σ of this Gaussian is set to a multiple of the placement’s

bounding box diagonal (2 in our case).

Shape arrays Instead of stretching a shape to fit the placement
bounding box, we can repeat the shape with a fixed size inside the
bounding box, resulting in a 1D or 2D array of shapes (e.g., win-
dows). The supplementary material provides details.

3D extensions Since our method operates on two-dimensional
domains, we cannot apply it directly to three-dimensional city mod-
els. Instead, we apply it to parametrized planar surfaces in a 3D
scene. Each planar surface forms a separate 2D scene, and 3D
shapes placed on this surface are represented by the outline of their
2D projection onto this surface. To allow for mass modeling, we
introduce extrusions of 2D shapes, including a simple roof genera-
tor, and Boolean operations on 3D shapes. For example, a building
footprint might be extruded to form a house, which is merged in a
Boolean union with the extruded footprint of a garage. We refer to
the supplementary material for more details of these extensions.

(a) (b)

Figure 5: Typical operations performed in our editor: In a placement
operation (a), an element is dragged from the element repository (light blue)
to surfaces in the scene and optionally resized. This is repeated for every
example element. (b) shows results of the propagation to several buildings.

Operations tree Each modeling operation is recorded in an op-
erations tree. A recorded modeling session can then be applied to a
different scene without further user interaction. Examples include
applying a specific style to a given basic building shape (an example
might be a saloon or a run-down hotel) or creating a small, diverse
city section from a given set of parcels. Each node in this tree is
an operation that is limited in scope to the output of its parent op-
eration. Operations applied to the entire scene are root nodes. The
output of a node can be split randomly into multiple disjoint sets,
and different operations may be applied to each set, creating alter-
native branches in the operations tree and increasing variation in
the resulting scene. Nodes in the tree are operations such as shape
placement, extrusion, Boolean operations, deletion and selection,
where elements with a given label are selected, for example. A
more detailed description is provided in the supplementary mate-
rial.

4.2 Workflow

We created a prototype application that implements our method and
the extensions described above. This application handles a number
of different scenarios. In particular, it handles several steps of an
urban modeling pipeline: object placements in parcels, mass mod-
eling of buildings, façade generation, and interior modeling.

To generate a complex scene, a user models a small but representa-
tive example scene, where each performed operation is recorded in
an operations tree. By default, the scope of each operation is lim-
ited to the output of the previous operation. However, the user may
also click on any scene element to define the output of a previous
operation as the current scope. This effectively chooses a particu-
lar parent node in the operations tree. Alternatively, the operation
can be applied to the entire scene, which makes the operation a root
node. After the operation is performed, the user may choose to split
the output randomly into several disjoint groups. All subsequent
operations can then be applied to these groups separately.

For a shape placement, the user typically provides 2-5 represen-
tative examples by dragging shapes from a shape repository to a
planar surface. The examples are propagated to all active surfaces
(defined by the parent node as described above, or the entire scene
for root nodes), taking all elements on these surfaces into account,
including previously propagated shapes. Note that for satisfactory
results, these examples should all represent the same modeling in-
tention (as illustrated in Figure 2). While it is possible to provide
examples for several different modeling intentions in a single oper-
ation, like “above a door OR right of a window”, such an operation
would require more examples to clearly disambiguate each of the
modeling intentions. In this case, the statistical model described in
Section 3.4 would have maxima for each of the modeling intentions.
However, there is no need to specify multiple intentions in a single
operation, as they can be propagated separately in different consec-

1

9

10

11

12

13

23

4

5

6
7

8

Figure 6: Mass model creation of a skyscraper: The mass model shown
above is created with several edit operations in the order indicated in the
red circles. In each operation, the red shape is placed and extruded along
the red arrow. In steps 1-8, 12 and 13, this is followed by a Boolean union
with the parent surface. In steps 9-11, a Boolean subtraction is used instead.
Steps 7 and 8 cap the extruded mesh with a roof.

utive operations, thus requiring fewer examples per operation. An
example of a placement operation is shown in Figure 5, where four
examples of a window placement are propagated to all surfaces in
the scene. Figure 6 illustrates how combining shape placements
with extrusions and Boolean operations allows for mass modeling.

Since shape placements require an existing scene, modeling typi-
cally starts with a rough 2D layout of the desired scene, such as the
parcel layout in a city scene or the basic room layout for interior
scenes, but existing complex 3D scenes can also be used as starting
points. After an example modeling session, the resulting operations
tree can be applied to new 2D layouts or 3D scenes to generate new
models without additional user interaction.

5 Results

Example scenes We demonstrate our method on four example
scenes modeled in our Matlab® prototype implementation. The
scenes show various steps of a city modeling pipeline. For each
scene, we create an operations tree in a small example modeling
session by propagating each operation using typically between 2
and 5 example placements. An optional quality score threshold can
then manually be adjusted to balance a large number of placed ob-
jects (like the balconies in Figure 4d) versus similarity to the ex-
ample placements (like in Figure 4e). The resulting placements are
not manually changed in any way; in fact, there is no way to store
manual changes in the operations tree. The operations tree is then
applied to a much larger scene or to multiple different scenes to
create the results described in this section. Although we did not ex-
plicitly time the modeling sessions, we give the approximate time
needed to create each example scene (including creative tasks like
experimenting with different shapes and layouts), as well as the
number of required operations. A discussion of the computational
complexity of our method follows thereafter.

Figure 7 shows a large city scene, where we populate the parcels
in a street layout of Tempe, AZ, with three types of buildings. All
parcels have an orientation that points towards the street-facing side
and are labeled either ‘house’ or ‘apartment building’, correspond-
ing to the type of building placed into the parcel. Three types of

Figure 7: Given a set of labeled parcels, large city areas can be generated by our method without further user interaction. Three different types of houses
(condominium building, two-story house and one-story house) were generated in three editing sessions. The resulting operations tree was applied to four city
maps shown in the inset on the left. The left image is taken from the lower-right tile, the right image from the upper-left tile.

houses are generated in the parcels: two types of family houses and
one apartment building type. The example modeling session was
done on a scene with 7 houses and 2–6 examples were provided
for each operation. Note how the building shape and consequently
the façade details are determined by the parcel size, creating varied
house models. Other sources of variation are the random selection
of alternative branches in the operations tree and the use of random
extrusion heights, as described in Section 4. The example modeling
session took approximately 3.5 hours: one hour for each of the two
family houses and ~ 1.5 hours for the apartment building. A total of
135 operations (including selections) were used to create all three
building types.

Figure 1 shows a scene with New York-style skyscrapers, where
we apply an operations tree to coarse footprints of the skyscrapers.
Nine skyscrapers were part of the example scene and between 2 and
8 examples were provided in each operation. Variation is generated
in part through the skyscraper footprints and in part through ran-
dom selection operations and extrusions with random height. Cre-
ating the example scene took around 4 hours and was split into four
editing sessions: mass modeling (~ 1.5 hours), façades on the base
floors of the skyscrapers (~ 1.5 hours), on the center floors (~ 0.5
hours) and on the top floors (~ 0.5 hours). All together, 146 opera-
tions were performed in these four editing sessions.

Figure 8 shows a subset of various kitchen scenes that we gener-
ated, where we applied an operations tree to single rooms. The
starting point in this example is a polygon defining the shape of the
room and labels indicating walls with a planned door. The example
scene contained 9 kitchens and 2–6 examples were given in each
operation. Note how the furniture adapts to the shape of each room,
creating variation in the scenes. Additionally, alternative branches
in the tree were used to place different window styles and furni-
ture models. In total, 85 operations were performed in a modeling
session that took around 3 hours.

Three Japanese garden scenes are shown in Figure 9. These were

generated from 2D layouts of paths, lakes, stone gardens and pavil-
ion footprints. One of the gardens was used as the example scene
(marked in the figure), which was created with 18 operations in ap-
proximately one hour, with 2–6 examples given for each operation.
Variation is generated mainly by adaption to the input layout, as
well as alternative branches in the operations tree for pavilions with
or without roofs.

Computational complexity The computational complexity of
the method mainly depends on the number of example placements
Ne, the number of points Np in the position grid defined in Sec-
tion 3.5, and the maximum number of elements Nf with the same
label and type in the example feature sets. Since we use a kernel
method, the feature sets of all grid points have to be compared to
the feature sets of all example placements. For each pair of feature
sets, one assignment problem has to be solved with a maximum
size given by the number of elements with same type and label, as
defined in Equations (2) and (3). The resulting computational com-
plexity is O(Ne ·Np ·N3

f). In practice, Nf does not depend on the
scene size, since increasing the scene complexity usually only in-
creases the number of independent surfaces or hierarchy polygons,
like façades or parcels, while the number of mutually dependent
elements inside these areas stays more or less constant. Ne is usu-
ally independent of the scene size as well; typically a user provides
2-10 example placements. This leaves the term Np, which directly
depends on the scene size, giving our method a linear time complex-
ity in practice. In practice, operations typically take between half
a second up to one minute. In the most demanding scenes, like the
skyscraper facades with hundreds of elements on a single façade, a
propagation can even take several minutes in our unoptimized Mat-
lab prototype. These timings can certainly be improved in future
work. For example, the relations between each sample grid en-
try and the surrounding geometry are computed directly in Matlab,
taking every façade element into account. Considering only those
elements that can actually have a significant contribution could al-
ready provide a large speedup.

Figure 8: Kitchen interiors generated by our method: Starting from a labeled room shape, we generate the 3D model of the kitchen, including furniture, walls
and windows. Nine of the 17 generated kitchens are shown here. The supplementary material provides the full set.

Figure 9: Japanese garden scenes: In these scenes, a set of polygons with rather “organic” shapes was used as a starting point (see the small inlays). We
populate the scenes with objects including pavilions (with handrails, columns and benches), bridges and trees in 18 operations. All example placements were
performed on the right-most scene.

Comparison to previous work Our method uses similar geo-
metric relationships as Guerrero et al. [2014]. In the following,
we discuss the main differences to this method. First, we propa-
gate placements based on relationships at multiple points instead of
poses based on relationships at a single center point. In our scenes,
it is often necessary to adapt the size of an element to the surround-
ing geometry, for example, to adapt the width of a balcony to the
width of the façade, as shown in Figure 10(a). The pose propa-
gation of Guerrero et al. is rigid, and the relationships at a single
center point do not provide enough information to adapt the width
and height of a shape. Our method computes relationships at sev-
eral points on a shape and adapts width and height of the shape
to maximize the relationship similarity at each point. Second, we
learn from multiple examples instead of a single one. This allows us
to disambiguate placements by learning which relationships are im-
portant. Consider Figure 10(b), where a flower box is placed under
a window that happens to be above a door. With a single example
only, the relation to the door and to the window are equally impor-
tant. Consequently, flower boxes are placed above all doors. With
multiple examples, the user’s intent is better captured and flower
boxes are only placed below windows.

We additionally compare our work to the arrangement model used

by Fisher et al. [2012] by adapting our method to use a Gaussian
kernel and the x- and y-position relative to an object centroid as
geometric relationships. In Figure 11, two mirrors are placed on
a bathroom wall so they have the same width as the sink and end
at the ceiling. If we take only the two relationships proposed by
Fisher et al. into account, we obtain suboptimal placements since
only the centroid of scene elements and not their shape is consid-
ered. Additionally, using a Gaussian kernel results in maxima that
minimize the Euclidean distance to all of the features of an exam-
ple placement (divided by a per-feature variance). However, this
is often not desirable, as only some of the features are relevant for
a given placement. For example, in Figure 11, the coordinates of
the mirror relative the the centroid of the wall are not important, as
well as the height of the mirror above the sink. In contrast, the SL0
kernel accumulates evidence and finds maxima that have the largest
number of matched features, resulting in better placements.

Feature pooling In Section 3.3, we described how to compare
two feature vectors of different sizes by finding an optimal assign-
ment of features corresponding to scene elements. A more tradi-
tional approach to compare two vectors of different sizes is feature
pooling [Boureau et al. 2010], where statistics over the feature val-

A
 o

nl
y

po
se

pl
ac

em
en

t

A
,B

 a
nd

 C
AA B CA B C

ex
am

pl
es

ex
am

pl
es

(a) (b) (c)

Figure 10: Comparison of poses versus placements, as well as single ex-
amples versus multiple examples: In (a), we show that using multiple instad
of a single example point allows adaption of the shape to the surrounding
geometry (windows). In (b), the ambigous placement of the flower box in
example A (above a door or below a window) can be resolved when us-
ing additional examples B and C. Providing multiple examples for doors on
empty façades in (c) makes it clear that doors should maintain their size
(bottom row) instead of adapting to the size of the façade (center row).

example 1 example 2 Fisher rel., Gaussian kernel our rel., Gaussian kernel

Fisher rel., SL0 kernel our rel., SL0 kernel

Figure 11: Comparison to Fisher et al. [2012] for propagating the two
mirror placements shown on the left. We show the propagated mirrors (red)
and the prediction for the top left corner of the mirror as heat maps in
the background for the two relationships proposed by Fisher et al. (center
column) versus our relationships (right column) and for a Gaussian kernel
(top row) versus the SL0 kernel (bottom row). Our method (bottom right)
finds the best interpretation of example placements: ‘Same width as the sink
and ending at the ceiling.’

ues are extracted. Figure 12 compares two feature-pooling methods
to our approach. If we use only the relationships to the three closest
elements, the implied assignment fails to correctly identify the rele-
vant elements and results in bad placements, indicated by the num-
bered windows. Similarly, histograms are not usable since they also
include the contributions of irrelevant elements (i.e., the windows
on the first floor). Our approach finds the assignment that maxi-
mizes the similarity to the examples and thereby correctly identifies
the relevant elements.

Deformation tolerance and overlap filter Although the focus
of this paper is learning the relationships of shapes to surrounding
scene elements, but not the properties of the shapes themselves, we
provided a simple way to optionally penalize shape deformation in
Section 3.5. The effect of the deformation tolerance is illustrated in
Figure 13(a). Similarly, we focus on placing single shapes but no
shape arrangements. In Section 3.5, we also provided a simple way
to avoid overlap between those candidate placements presented to
the user. Figure 13(b) shows the effects of this filter on a scene with
three potentially good placements of the example balcony. Without
the filter, all three placements are presented to the user. In contrast,
the overlapping placements with a lower score are removed by the
filter.

window distance0 maxwindow distance0 max

1 1

2

31 2 3 2 3

example (a) 3 closest elements (b) histograms (c) assignment

Figure 12: Comparison to feature pooling: The balcony on the left is
propagated using the three closest scene elements only (a), a histogram over
feature values (b) and our scene element assignment (c). For the red point
(correct position of the lower-left balcony corner), the implied assignment
between windows is indicated by the numbers in (a) and (c) and the his-
togram of window distance values is shown in (b). Our approach compares
the correct feature pairs and finds a good balcony placement (c).

example placements (a) distortion tol. (b) overlap filteroff on0.5∞

Figure 13: Effect of deformation tolerance and the overlap filter: Two ex-
amples of a balcony placement on the left are propagated to the two scenes
in (a) and (b). In (a), the distortion tolerance is set to infinity, i.e., turned off
(left), and to a moderate value of 0.5 (right), while in (b), the overlap filter is
turned off (left) and on (right). Depending on the situation, the resulting list
of candidates (red) may be more useful when applying one of these filters.

Quantitative evaluation In Figure 14, we show detailed quanti-
tative evaluations of our method and compare to previous work and
the variations of our own method as described above. A ground
truth was manually created for several shape placement operations
in the scenes shown on the left (only parts are shown here; the com-
plete scenes are provided as supplementary material). Exhaustive
cross validation (or repeated random sub-sampling cross validation
with a minimum of 25 splits if exhaustive cross-validation was not
feasible) was conducted to compare the results of each operation
to the ground truth. The tested training set size was varied from
one to the number of ground truth placements. To simulate the user
adjusting the score threshold for candidate placements, we chose
the optimal threshold with respect to the ground truth in each op-
eration (in all of the tested methods). The average F1-score (i.e.,
the harmonic mean of precision and recall) of our method over all
operations compared to previous methods is shown in the center of
Figure 14. These evaluations support our conclusion that learning
from multiple examples significantly increases the quality of prop-
agated placements. In the table on the right, we show the average
F1-score over typical sets of 2-5 examples. The proposed method
results in placements with significantly higher quality than the gen-
erated by existing methods. Since Guerrero et al. [2014] only use
a single example and additionally cannot adapt the shape size, the
upper bound for this method is given by the “single example” col-
umn of the table. Using feature pooling with the closest three ele-
ments is on average not much worse compared with our assignment
approach. However, note that there are several scenes where this
approach clearly provides sub-optimal results (e.g., the balconies
and windows in scene 1, decorations A and B in scene 2, classroom
chairs in scene 3 in Figure 14), for the reasons discussed earlier.

Relationship influence The influence of each relationship type
on the score of a point is determined by the kernel. We show the
most important relationships learned from two sample points of two
example placements in Figure 15. Note that the wall light varies in
size, but like the example placements, the mirror remains at the size
of the sink. The effect of learning the examples is noticeable in the

sc
en

e
1

sc
en

e
2

sc
en

e
3

sc
en

e
4

0.2

0.6

1

0.2

0.2

0.6

0.6

1

1

0.4

0.7

1

1 4 8 12 16

F1 score

examples

93 5 71

2 3 4 5 61

2 3 4 5 61

pla
cem

en
ts

Fish
er

Gau
ssi

an

all
Gau

ssi
an

Fish
er

SL0

his
tog

ram
po

oli
ng

clo
ses

t 3
po

oli
ng

sin
gle

ex
am

ple

ou
rs o

ver
lap
filt
er)

ou
rs

. fi
lte
r)

ou
rs

doors 16 0.62 0.73 0.54 0.87 0.89 0.70 0.84 0.90 0.89
flowerboxes 14 0.14 0.17 0.69 0.46 0.67 0.48 0.82 0.67 0.75

balconies 24 0.03 0.02 0.65 0.36 0.74 0.59 0.84 0.84 0.89
doorsigns 16 0.17 0.33 0.65 0.80 0.96 0.78 0.96 0.96 0.96

windowframes 133 0.00 0.00 0.80 0.25 0.97 0.93 0.94 0.81 0.97
door roofs 15 0.20 0.24 0.74 0.68 0.86 0.59 0.90 0.85 0.87

windows 18 0.03 0.03 0.72 0.37 0.59 0.47 0.78 0.73 0.71
scene1 average 0.17 0.22 0.68 0.54 0.81 0.65 0.87 0.82 0.86

edit operation

F
1 scores

F
1 scores

F
1 scores

F
1 scores

windows 8 0.29 0.39 0.26 0.80 0.85 0.58 0.70 0.75 0.82
columns 9 0.38 0.37 0.55 0.58 0.71 0.55 0.73 0.68 0.73
staircase 13 0.21 0.31 0.50 0.47 0.72 0.57 0.73 0.59 0.70

balconies 19 0.04 0.03 0.45 0.49 0.76 0.53 0.71 0.68 0.77
decorations A 32 0.00 0.00 0.80 0.31 0.72 0.60 0.82 0.73 0.88

door frames 12 0.25 0.21 0.95 0.70 0.95 0.89 0.97 0.94 0.96
decorations B 10 0.00 0.00 0.95 0.27 0.76 0.60 0.96 0.95 0.95

scene 2 average 0.17 0.19 0.64 0.52 0.78 0.62 0.80 0.76 0.83

beds 6 0.29 0.29 0.94 0.60 0.95 0.78 0.92 0.95 0.94
night tables 7 0.62 0.62 0.82 0.70 0.81 0.74 0.90 0.85 0.82

rugs 6 0.01 0.01 0.69 0.34 0.69 0.46 0.73 0.63 0.69
desk chairs 12 0.11 0.11 0.75 0.44 0.75 0.37 0.77 0.79 0.75

classroom chairs 7 0.00 0.00 0.83 0.01 0.21 0.34 0.86 0.83 0.83
scene 3 average 0.21 0.21 0.81 0.42 0.68 0.54 0.84 0.81 0.81

pavilionbeams 34 0.07 0.07 0.93 0.63 0.90 0.83 0.94 0.56 0.93
stone area 6 0.50 0.50 0.81 0.67 0.78 0.55 0.82 0.63 0.81

stones 5 0.71 0.71 0.74 0.75 0.79 0.71 0.82 0.69 0.82
bridges 6 0.00 0.00 0.82 0.07 0.81 0.58 0.89 0.78 0.82

scene 4 average 0.32 0.32 0.82 0.53 0.82 0.67 0.87 0.66 0.84

 (n
o defo

rm

 (

Figure 14: Quantitative evaluation of several shape placement operations by cross-validating against a manually generated ground truth and comparison
with the results of previous methods. In the center, the average F1-score over all edit operations is plotted as the number of examples selected from the ground
truth increases. Each curve corresponds to the method with the same line style in the table. The table shows the average F1-score for each edit operation over
typical sets of 2-5 examples. Part of the scenes are shown on the left. See the supplementary material for the complete scenes.

 τ = 1 τ = 0.1 τ = 10examples

Figure 16: Effects of changing the kernel size: In two examples, a small
roof is placed between a door and a window (left). The score for the lower
left edge point is shown as heat maps. The upper window is strongly mis-
aligned, the lower window only slighty. With a small τ as the kernel size,
both misalignments are too strong to be considered similar to the examples,
while with a big kernel size, both misalignments are considered similar.

low weight of the normalized bounding box width relationship to
the lamp (second column, top row), compared to the same relation-
ship in the bottom row.

Kernel size The size of the SL0 kernel is determined by the vari-
ance of the Gaussians in the SL0 similarity. Each relationship type
defines a variance based on its range of values, e.g., a directional
relationship requires a different variance than a relationship that
computes an absolute distance. Relationships based on an abso-
lute distance use the bounding box diagonal of the placed shape to
normalize the variance. We can additionally multiply the variances
with a constant factor τ to control the precision of the placements.
Figure 16 shows the effect of changing τ . Lower values increase
the precision and decrease the tolerance, while higher values do the
opposite. A good value of τ is a tradeoff between precision and
tolerance. We use τ = 1 in all shown examples.

ex
am

pl
e

fa
ca

de
s

ge
ne

ra
te

d
fa

ca
de

s

Figure 17: Results of applying an operations tree learned from unrepre-
sentative examples: The operations tree for a family house was learned on
single-story buildings (top row). When applied to two-story buildings, there
is ambiguity that results in unexpected element placements (bottom row).
Providing addtional examples on two-story buildings would help to resolve
the ambiguity.

5.1 Limitations and Future Work

When an operations tree is created and example placements are
learned, the example scenes should represent the types of scenes the
operations tree is intended for. To illustrate this point, in Figure 17,
an operations tree was generated from single-story buildings only.
By applying this operations tree to buildings with two stories, too
much unresolved ambiguity remains. For example, should the en-
trance be placed on the first or second floor, or should it cover both
floors? Since our method mostly operates on a geometric level,

boundary distancenorm. boundgboxboundingbox x yy

B
 to

 la
m

p
A

 to
 si

nk

norm. boundingbox combined

A A

B

B

Figure 15: Learned importance of individual relationships: A mirror placement between a sink of fixed size and a wall light of varying width is learned from
two examples. Scores of individual relationships are shown as heat map on the right. For more information on the relationship types, see Appendix A.2.

these questions could be resolved by providing additional exam-
ples.

In future work, we would like to extend our method to include ge-
ometric relationships in the full 3D space. This would allow plac-
ing 3D shapes anywhere in the scene, not only on planar surfaces
of objects. Also, we currently propagate point placements without
considering their orientation relative to the surrounding scene el-
ements. Guerrero et al. [2014] show that this relative orientation
can be described by several interesting geometric relationships that
would enrich our statistical model. Finally, extending our definition
of placements to include more general deformations would allow a
better adaption of the propagated shapes to the surrounding geom-
etry, but would also require a new technique to find the maxima of
our statistical model in the higher-dimensional space of placements.

6 Conclusion

We presented a method for placing shapes “by example” in 2D
scenes. In contrast to previous example-based placement methods,
which are limited to a single example and a single representative
point, our method learns a model from multiple example place-
ments and takes the width, height and orientation of the examples
into account. This is made possible by using kernel regression to
learn the user’s intent, with a kernel defined on a similarity metric
that can deal with heterogeneous feature sets. Quantitative evalu-
ations show that learning from multiple examples significantly im-
proves the quality of propagated placements.

We further generalize the 2D placement operation to 3D scenes us-
ing extrusion and Boolean operations, which makes it possible to
apply the method for a wide range of modeling tasks. Through an
operations tree that records operations carried out by the user, mod-
eling sessions can be applied to different scenes. As an example,
we have demonstrated how several steps in a city modeling pipeline
can be carried out efficiently using our application prototype.

Acknowledgements

We would like to thank Khaled Abd El Gawad and Yoshihiro
Kobayashi for rendering the scenes shown in Section 5, as well as
Virginia Unkefer for proof-reading the paper.

This publication is based upon work supported by the KAUST
Office of Competitive Research Funds (OCRF) under Award No.
62140401, the KAUST Visual Computing Center and the Austrian
Science Fund (FWF) projects DEEP PICTURES (no. P24352-N23)
and Data-Driven Procedural Modeling of Interiors (no. P24600-
N23).

References

BISHOP, C. M. 2006. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

BOKELOH, M., WAND, M., SEIDEL, H.-P., AND KOLTUN, V.
2012. An algebraic model for parameterized shape editing. ACM
Trans. Graph. 31, 4 (July), 78:1–78:10.

BOUREAU, Y.-L., PONCE, J., AND LECUN, Y. 2010. A theo-
retical analysis of feature pooling in visual recognition. In 27th
International Conference on Machine Learning, Haifa, Israel.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3d modeling. ACM Trans. Graph. 30, 4 (July), 35:1–35:10.

CUI, Z., ZHANG, H., AND LU, W. 2010. An improved smoothed
l0-norm algorithm based on multiparameter approximation func-
tion. In Communication Technology (ICCT), 2010 12th IEEE
International Conference on, 942–945.

FISHER, M., AND HANRAHAN, P. 2010. Context-based search for
3d models. ACM Trans. Graph. 29, 6 (Dec.), 182:1–182:10.

FISHER, M., SAVVA, M., AND HANRAHAN, P. 2011. Character-
izing structural relationships in scenes using graph kernels. ACM
Trans. Graph. 30, 4 (July), 34:1–34:12.

FISHER, M., RITCHIE, D., SAVVA, M., FUNKHOUSER, T., AND
HANRAHAN, P. 2012. Example-based synthesis of 3d object
arrangements. ACM Trans. Graph. 31, 6 (Nov.), 135:1–135:11.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P.,
KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D.
2004. Modeling by example. ACM Trans. Graph. 23, 3, 652–
663.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. iWIRES: an analyze-and-edit approach to shape manip-
ulation. ACM Trans. Graph. 28, 3 (July), 33:1–33:10.

GUERRERO, P., JESCHKE, S., WIMMER, M., AND WONKA, P.
2014. Edit propagation using geometric relationship functions.
ACM Trans. Graph. 33, 2 (Apr.), 15:1–15:15.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Trans. Graph. 31, 4 (July), 55:1–55:11.

KITCHEN, L., AND ROSENFELD, A. 1982. Gray-level corner
detection. Pattern Recognition Letters 1, 2, 95 – 102.

KUHN, H. W. 1955. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly 2, 1-2, 83–97.

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND
KOLTUN, V. 2011. Interactive furniture layout using interior
design guidelines. ACM Trans. Graph. 30, 4 (July), 87:1–87:10.

OXVIG, C. S., PEDERSEN, P. S., ARILDSEN, T., AND LARSEN,
T. 2012. Improving smoothed l0 norm in compressive sensing
using adaptive parameter selection. CoRR abs/1210.4277.

XU, K., STEWART, J., AND FIUME, E. 2002. Constraint-Based
Automatic Placement for Scene Composition. In Graphics In-
terface, 25–34.

YEH, Y.-T., YANG, L., WATSON, M., GOODMAN, N. D., AND
HANRAHAN, P. 2012. Synthesizing open worlds with con-
straints using locally annealed reversible jump mcmc. ACM TOG
31, 4 (July), 56:1–56:11.

YU, L.-F., YEUNG, S.-K., TANG, C.-K., TERZOPOULOS, D.,
CHAN, T. F., AND OSHER, S. J. 2011. Make it home: automatic
optimization of furniture arrangement. ACM Trans. Graph. 30,
4 (July), 86:1–86:12.

ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND
TAI, C.-L. 2011. Component-wise controllers for structure-
preserving shape manipulation. Computer Graphics Forum 30,
2, 563–572.

A Scene Elements and Relationship Func-
tions

A.1 Scene Elements

Relationship functions use the following scene elements:

• a polygon A, defined by a sequence of vertices vk, where
k ∈ {1, . . . , nA},

• a polygon segment gj ⊆ A, defined as a subsequence of
consecutive smooth vertices gj = va, . . . ,vb, where a, b ∈
{1, . . . , nA}. A vertex is called smooth if the dot prod-
uct of its adjacent edges is above a threshold (vk+1−vk

||vk+1−vk||
·

vk−vk−1

||vk−vk−1||
> ε), otherwise it is called sharp,

• a corner cj of a polygon, defined by a vertex vkj that is
shared by two adjacent segments gj−1 and gj . Corners corre-
spond to sharp vertices.

A.2 Relationship Functions

We use three relationship functions, one for each element type.
These functions compute tuples of geometric relationships. For
polygon elements, we compute a 3-tuple, consisting of three val-
ues:

• The boundary distance is defined as the minimum distance
between a point and a polygon boundary: Rbd(p, A) =
minx∈b(A) d(p,x), where b(A) is the boundary of A and d
the Euclidean distance.

• The bounding box coordinates are defined as the x and y-
components of the cartesian coordinates in the local coordi-
nate frame of a polygon with origin at the bounding box mini-
mum, the bounding box maximum and the bounding box cen-
ter of the polygon, for a total of six relationship functions.

• The normalized bounding box coordinates are bounding
box coordinates with origin at the bounding box minimum,
normalized to the width and height of the bounding box.

For segment elements, we compute a 2-tuple:

• The segment distance Rgd(p, g) is the same as the boundary
distance, but considers only a segment g ∈ A.

• The segment arc length is the normalized arc length between
the location of minimum distance to a point p and the start
of the segment. If x = arg minx∈b(gj) d(p,x), then Rgl =
tx−ta
tb−ta

, where tx is the arc length at x and ta, tb the arc length
at the start and the end of the segment, respectively.

For corner elements, we compute a 2-tuple:

• The corner distance is the distance between a point and a
polygon corner: Rcd(p, cj) = d(p,vkj).

• The corner ratio is the angle that the direction from
corner to point p makes with the start of the first
polygon segment adjacent to the corner, normalized
with the opening angle of the corner: Rcr(p, cj) =

∠(p−vkj
,vkj−1−vkj

)

∠(vkj+1−vkj
,vkj−1−vkj

)
, where ∠(a,b) is the angle be-

tween vectors: ∠(a,b) = arccos
(

a
||a|| ·

b
||b||

)
.

