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Kurzfassung

Mit einem 3D-Drucker können physische, anatomische Modelle basierend auf medizini-
schen 3D-Volumsdaten (CT, MRI) angefertigt werden. Diese können für chirurgische
Planung, Diagnose, die Herstellung von Implantaten und Bildung genutzt werden. Poly-
gonnetze, die aus gescannten Daten extrahiert wurden, enthalten typischerweise Rauschen,
sowie andere Arten von Artefakten. Diese Bachelorarbeit vergleicht verbreitete Denoising
Algorithmen und beurteilt, wie gut diese für medizinische Polygonnetze geeignet sind –
insbesondere in Hinblick auf einen anschließenden 3D-Druck. Darüber hinaus wird ein
Ansatz vorgestellt um dünne, längliche Artefakte, die häufig in medizinischen Daten
vorkommen, jedoch von Denoising Algorithmen nicht entfernt werden, zu erkennen und
zu entfernen. Dadurch können sowohl Deformationen im geglätteten Polygonnetz als
auch Stützstrukturen für den 3D-Druck reduziert werden.
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Abstract

3D printed anatomical models obtained from medical volume data (CT, MRI) can be
used for surgery-planning, diagnosis, fabrication of implants, and education. Surface
meshes that are extracted from real-world data typically suffer from noise, as well as
other types of artifacts. This thesis compares common denoising algorithms and assesses
their applicability to medical surface meshes, particularly with regard to subsequent 3D
printing. Additionally, this thesis proposes an approach to detect and remove frayed
parts, an artifact commonly found in medical data that cannot be reduced through
smoothing. By removing them, deformations in the smoothed mesh can be reduced and
less support structures are needed for 3D printing.
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CHAPTER 1
Introduction

3D printing medical image data offers great potential to medicine. 3D printed models of
anatomical structures can be useful as tools for planning and rehearsing surgery, they
can serve educational purposes, and can even be used directly on the human body in the
form of implants. [1, 2]

Clinicians commonly rely on 3D images of anatomical data rendered on 2D displays
for diagnosis and surgical planning. Compared to 2D images, 3D renderings give them a
better understanding of their patient’s body. A tangible 3D model can offer additional
advantages. Surgeons operate using their hands, so a physical model enables them to
practice their cuts just like they will perform them on the patient during surgery. [1] 3D
printed models can also be used in anatomy classes to give students a chance to examine
a wide range of accurate reproductions of diverse human anatomy. [3] Laypeople can get
an intuitive understanding of pathologies from a physical model. [4]

The first step to printing a physical 3D model from anatomical data is usually image
acquisition. A CT or MRI scanner produces a stack of gray-scale images of the human
body, which can be combined into a volumetric representation of the body. The images
are segmented to identify and delineate different parts of the body. The result of the
segmentation is a binary mask, in which each voxel of the volume data is labeled as
either part of a target structure or part of the background. Then, a surface mesh is
extracted from the segmented volume data. When noise and artifacts have been removed,
a slicer transforms the surface model into layers (and support structures if needed) and
writes machine-readable code for the 3D printer. Then, the 3D printer, following these
instructions, builds the physical model layer by layer. [5]

However, before the model is ready to print, noise and other artifacts have to be
removed to reconstruct the originally smooth surface and reduce the need for support
structures for 3D printing. The contribution of this thesis is to compare widely used
mesh denoising algorithms and their performance on medical surface meshes, visually
and quantitatively. We compare the following methods: Laplacian smoothing, improved
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Laplacian smoothing [6], Taubin’s signal processing approach [7], mean curvature flow
[8] and the scale-dependent umbrella [8, 10].

Additionally, a novel algorithm is presented that detects and removes frayed parts,
a type of artifact common in medical surface meshes, that cannot be reduced through
smoothing. The algorithm consists of three steps: (1) identifying frayed parts by finding
very thin parts of the mesh, (2) growing the identified regions to fully cover them, and
(3) removing them from the mesh. Finally, we 3D printed a medical surface mesh from
which noise and frayed parts were removed.

Figure 1.1: Pipeline from image acquisition to 3D print. The focus on this thesis lies on
Denoising and Removing Frayed Parts from the extracted surface mesh.
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CHAPTER 2
Denoising Algorithms

2.1 What are denoising algorithms?

Data obtained by scanning real-life objects typically contain noise, which is caused by
imprecise measurements of the technical scanning device. Noise is distributed fairly
regularly across the surface mesh. The goal of denoising algorithms is to remove noise,
while preserving the inherent shape and characteristic features of the scanned object.

2.2 Formal conventions

A mesh consists of vertices. These vertices form triangles, called faces: each face consists
of three vertices. A vertex is a point that has a position in R3. Vertices are connected to
each other through edges: one edge connects two vertices. The 1-ring-neighborhood of a
vertex consists of all vertices that are connected to that vertex by one edge. When using
the term neighborhood we refer to the 1-ring-neighborhood of a vertex. All denoising
algorithms presented below use the neighborhood of a vertex to calculate its new position.
The vertex that is being modified, will be denoted as the central vertex. The position of
a vertex in the original, noisy mesh is denoted as originali. The position of a vertex that
has not yet been modified by the current iteration of smoothing is called currenti. The
modified position of that vertex after an iteration of smoothing is denoted as smoothi.

2.3 Data structure

Only vertex positions and local neighborhood-information are needed for smoothing.
Neighborhood relationships can be derived from information about which vertices are
part of a face: all vertices that share a face with a given vertex are part of that vertex’
neighborhood-set.
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Figure 2.1: Data Structure

2.4 Laplacian smoothing / Umbrella operator

Laplacian smoothing is the most basic approach to smoothing. Its origin lies in image
processing, where it is used to blur an image by replacing each pixel’s color value with
the average of its neighboring pixel’s color values. This approach can be extended to
mesh smoothing by averaging vertex positions instead of pixel colors.[6]

smoothi := 1
neighbors(i).size

∑
j∈neighbors(i)

currentj (2.1)

Laplacian smoothing strongly shrinks the mesh, and can be slowed down by using
a weighing factor λ on the displacement vector (i.e. the vector that moves the central
vertex towards its new position).

smoothi := currenti + λ

neighbors(i).size
∑

j∈neighbors(i)
(currentj − currenti) (2.2)
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Algorithm 2.1: Laplacian smoothing
1 smooth ←− original;
2 while not smooth enough do
3 current ←− smooth;
4 for i ∈ vertices do
5 n ←− neighbor(i).size;
6 if n > 0 then
7 smoothi ←− 1

n

∑
j∈neighbor(i) currentj ;

8 end
9 end

10 end

Figure 2.2: The Laplacian operator is sometimes called umbrella operator, because the
central vertex surrounded by its neighbors resembles an umbrella.

2.5 Issues

Denoising algorithms deal with three main issues [9] when applied to 3-dimensional
meshes:
1) Irregularity: In a 2-dimensional image pixels are positioned at regular distances. In
a mesh the number of neighbors, the distances between neighboring vertices, and the
angles between edges can vary. If the influence of the neighbors is not weighed according
to these factors, deformations occur.
2) Shrinkage: Smoothing algorithms shrink the mesh if no counter-measures are taken.
The shrinking becomes more pronounced with the number of smoothing iterations.
3) Vertex-Drifting: If vertices are moved in other directions than along their normal,
the result is tangential drifting. Features do not stay in place, vertices move even if
they are on flat surfaces. Vertex-drifting is especially strong for meshes with different
sampling rates.
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2.6 HC-algorithm / Improved Laplacian Smoothing
The HC-algorithm [6] improves the Laplacian algorithm by reducing shrinking and
deformation. The basic idea is to push back the smoothed vertices toward their previous
and / or original positions. Obviously, the vertices cannot be pushed back to their exact
same, old positions – that would just result in an unchanged mesh. Instead, each modified
vertex is pushed back, not only by its own difference vector but by an average of its own
and its neighbors difference vectors.

diffi := smoothi − (α ∗ originali + (1− α) ∗ currenti) α ∈ [0, 1] (2.3)

pushBacki := β ∗ diffi + 1− β
neighbors(i).size

∑
j∈neighbors(i)

diffj β ∈ [0, 1] (2.4)

Figure 2.3: Central vertex’ position is first replaced by average of its neighbors (Laplacian
operation), then pushed back.

The influence of the central vertex can be adjusted by a parameter, and must be
included. Including the original vertices can reduce shrinkage and to avoid the possibility
of the mesh collapsing to one point, but it also preserves the noise of the original mesh.

Each iteration of the HC-algorithm consists of two steps. In the first step all vertices
are smoothed using the Laplacian operation, and the differences between the old and
new position of each vertex are stored. In the second step each vertex is pushed back by
an average of its own and its neighbors’ distances, calculated in the first step. Notably,
the second step also uses the idea of smoothing by averaging the local neighborhood –
but this time using differences.

The algorithm can be performed sequentially (immediately updating vertex positions,
so that some new vertex positions will be calculated using neighbors, that have been
modified already) or simultaneously (calculating all new vertex positions using only previ-
ous vertex positions). While the sequential version saves storage space, the simultaneous
version yields better results. Since storage space was not an issue, the simultaneous
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version was implemented. The HC-algorithm yields the same degree of smoothing as the
Laplacian algorithm, while preserving shape and size far better. The HC-algorithm is
very fast, using only a local neighborhood for calculations. Also, calculations require only
simple vector arithmetic, which makes it easy to implement.

Algorithm 2.2: HC-algorithm
1 smooth ←− original;
2 while not smooth enough do
3 current ←− smooth;
4 for i ∈ vertices do
5 n ←− neighbors(i).size;
6 if n > 0 then
7 smoothi ←− 1

n

∑
j∈neighbors(i) currentj ;

8 end
9 diffi ←− smoothi - (α * originali + (1-α) * currenti);

10 end
11 for i ∈ vertices do
12 n ←− neighbors(i).size;
13 if n > 0 then
14 smoothi ←− smoothi - (β * diffi + 1−β

n

∑
j∈neighbors(i) diffj);

15 end
16 end
17 end

2.7 Signal Processing Approach
The basic idea of Taubin’s algorithm [7] is similar to the HC-algorithm: Vertices are first
smoothed and then pushed back to correct the shrinking, that was caused by smoothing.
Unlike the HC-algorithm, shrinking can be eliminated completely, because this approach
allows to fine-tune the shrinking and un-shrinking steps so that they balance each other
out.

Taubin interpreted the positions of the vertices on a surface mesh as signals. He
approached the problem of denoising by extending signal processing to signals defined on
polyhedral surfaces. From this point of view the underlying data (the inherent shape of
the mesh) is represented by the low frequencies, while the high frequency-components
should be discarded as noise.

The usual approach to decompose a signal into its frequency components is the
Fourier-analysis. But Taubin found that even performing the Fast-Fourier-transform
on meshes with a very large number of vertices – which are typical for medical data
– was not computationally feasible. He made the observation, however, that a mesh
can be projected onto the space of low frequencies only approximately, using low-pass
filters, which can be computed in linear time. He introduced a non-shrinking smoothing
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algorithm that consists of two scaled Laplacian smoothing steps: A shrinking step that
is followed by a non-shrinking step. The shrinking step uses a positive scale factor λ
and the un-shrinking step a negative scale factor µ. The parameters λ and µ should be
chosen in a way that the shrinking and the non-shrinking steps balance each other out.

Algorithm 2.3: Signal Processing Approach
1 λ←− 0.63; . exemplary values for λ and µ
2 µ←− −0.67;
3 current ←− original;
4 while not smooth enough do
5 . shrinking step
6 for i ∈ vertices do
7 n ←− neighbors(i).size;
8 if n > 0 then
9 diffi ←− 1

n

∑
j∈neighbors(i)(currentj − currenti);

10 smoothi ←− currenti + λ * diffi;
11 end
12 end
13 . un-shrinking step
14 for i ∈ vertices do
15 n ←− neighbors(i).size;
16 if n > 0 then
17 diffi ←− 1

n

∑
j∈neighbors(i)(smoothj − smoothi);

18 currenti ←− smoothi + µ * diffi;
19 end
20 end
21 end

2.8 Mean Curvature Flow
Desbrun et al. [8] use curvature flow to approximate the Laplacian in a discrete setting.
High curvature is associated with high frequency and thus noise. Additionally, when
using curvature flow, vertices are only moved along the normal direction – there is no
movement in the tangential direction, as with the other presented smoothing methods.
This prevents vertex drifting, so characteristic features stay in place. The distance a
vertex is moved depends on its local mean curvature: the higher the curvature the further
the movement. Curvature is independent from sampling rate, so areas with the same
curvature but different sampling rates will have the same curvature after smoothing.
Curvature flow will also keep flat areas intact, because the curvature of a flat surface is
zero.
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The discrete curvature normal of a vertex is given as

−κ n = 1
4A

∑
j∈neighbors(i)

(cotαj + cotβj)(currentj − currenti) (2.5)

where A is the smallest region around this vertex: the triangles of the neighborhood.

Figure 2.4: Central vertex (marked red) surrounded by its neighboring vertices
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Algorithm 2.4: Curvature Flow
1 smooth ←− original;
2 while not smooth enough do
3 current ←− smooth;
4 for i ∈ vertices do
5 sumDiff ←− 0;
6 n ←− neighbors(i).size;
7 if n > 0 then
8 for j ∈ neighbors(i) do
9 . find vertices opposite the edge −−−−−−−−−−−−−→currenti currentj

10 opposite←− intersection(neighbors(j), neighbors(i));
11 . find the cotangent of the angles αj and βj (see Figure 2.4)
12 sumCotangent ←− 0;
13 for o ∈ oppositeV ertices do
14 cosinus ←− −−−−−−−→o currenti ·

−−−−−−−→
o currentj ;

15 sinus ←− −−−−−−−→o currenti ×
−−−−−−−→
o currentj ;

16 sumCotangent ←− sumCotangent + cosinus
sinus ;

17 end
18 sumDiff ←− sumDiff + (currentj - currenti) * sumCotangent;
19 end
20 smoothi = sumDiff 1

4 areai
;

21 end
22 end
23 end

2.9 Scale-Dependent Umbrella
The Scale-Dependent Umbrella [8, 10] is based on the Laplacian operator, but the
influence of each neighboring vertex is based on to the length of the edge that connects
it to the central vertex.

One important difference between a 2D-image and a 3D-mesh is that in an image all
the pixels are positioned at regular distances. The distance between a pixel and each
of its neighboring pixels is the same, and distances are also regular across the entire
image. In a typical 3D-mesh this is not the case; distances between vertices are usually
irregular. So, if all neighboring vertices are weighed equally, vertices farther from the
central vertex will have a stronger influence on its new position. This can be especially
problematic if sampling rates differ across the mesh, leading to strong deformations:
regions with larger distances between vertices will be smoothed more quickly than regions,
where vertices are connected by shorter edges. The Scale-Dependent Umbrella reduces
tangential vertex drifting: a more distant neighboring vertex will not pull the central
vertex stronger towards itself than a closer neighboring vertex. However, in contrast to
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the Mean Curvature Flow algorithm, tangential movement of vertices is still possible, so
tangential vertex drifting cannot be fully eliminated.

L(currenti) = 2
E

∑
j∈neighbors(i)

currentj − currenti
|edgeij |

(2.6)

E =
∑

j∈neighbors(i)
|edgeij |

Figure 2.5: Comparison of a) Laplacian Smoothing and b) Scale-Dependent Umbrella.
When applying the Scale-Dependent Umbrella the neighbors’ influence on the new position
of currenti does not depend on the edge lengths.

Algorithm 2.5: Scale-Dependent Umbrella
1 smooth ←− original;
2 while not smooth enough do
3 current ←− smooth;
4 for i ∈ vertices do
5 n ←− neighbors(i).size;
6 if n > 0 then
7 for j ∈ neighbors(i) do
8 sumDiff ←− sumDiff + (currentj - currenti) * 1

|edgeij | ;
9 sumWeight ←− sumWeight + |edgeij |;

10 end
11 smoothi ←− currenti + sumDiff

sumWeight ;
12 end
13 end
14 end

2.10 Comparison
We have described five smoothing algorithms, which are widely used for denoising surface
meshes. Now we will evaluate which of these algorithms is best suited for medical data.
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Medical surface meshes differ from technical models, in that organic shapes do not contain
sharp, straight edges. When a model is acquired by a scanning device in an everyday
clinical setting, there is no perfect reference model available– only the original model,
which contains both noise and artifacts from different sources. Common artifacts are
missing or additional object parts, holes, frayed parts, stairs and plateaus. [11]

2.11 Models
The performance of the denoising algorithms will be tested on three different models:

A computer-generated sphere partially corrupted by artificial, uniformly distributed
noise. The sphere consists of four regions: one of coarse resolution with noise, one of
coarse resolution without noise, one of fine resolution with noise and one of fine resolution
without noise. The original, smooth model will be used as reference.

A vertebra (C7) extracted from a CT scan obtained from the Laboratory of Human
Anatomy and Embryology, University of Brussels (ULB), Belgium. To enhance the step
artifacts typical of a CT scan only a third of the images in the original dataset were used
to extract the surface model. A surface model extracted from the complete dataset will
be used as a reference.

A spine and pelvis that contain light noise and frayed parts mostly on the vertebrae.
The only reference model available is the original, noisy surface model.

2.12 Metrics
The impact of the denoising algorithms on the models will be evaluated quantitatively
and through visual inspection. Surface area, curvature and visual inspection are suitable
for assessing visual improvement; the distance between smoothed mesh and original mesh,
as well as volume are appropriate measures for the deviation from the original model.
[11]

The different algorithms smooth the mesh at different speeds. To enable a meaningful
comparison between them, we do not compare the smoothed meshes after the same number
of iterations, but at the same total change in vertex positions. We used appropriate
parameters to slow down some of the algorithms to achieve this.

The changes in surface area, curvature and volume are shown in line graphs. To give
an idea when sufficient smoothing was reached and how this amount of smoothing affects
the mesh, the point, where the model looked “best”, subjectively, when smoothed with
each algorithm is marked with a star.

False color images will show how the effects of the different smoothing algorithms are
distributed across the surface meshes.

To assess shape deformations caused by the application of the denoising algorithms
on the model of the vertebra and sphere, the silhouette of the reference model was traced
over images of the smoothed surface meshes, shown at their “best” look, as determined
by visual inspection.
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2.12.1 Total Change

The different denoising algorithms smooth the surface at different speeds. To enable a
better comparison of the smoothed meshes, they are being compared at the same level of
change, instead of at the same number of iterations.

Change will be defined as the Euclidian distance between the position of a vertex in
the original mesh and its new position in the smoothed mesh, and total change as the
sum of these distances.

changei =
√

(originali − smoothi)2 (2.7)

total change =
∑

i∈vertices
changei

The following graph (Figure 2.6) shows how the number of iterations of each denoising
algorithm relates to total change. For all algorithms more iterations lead to an increase
in total change.
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Figure 2.6: total change in relation to iterations

Figure 2.7 shows a false color visualization of the model of the pelvis and spine after
the same amount of total change was applied by each denoising algorithm. With the
Mean Curvature Flow algorithm change is much more focused on certain regions of the
mesh: more change occurs in noisy regions and on edges, while flatter regions were moved
less. The same pattern can be seen with the Scale-Dependent umbrella algorithm but
less pronounced. The Laplacian, Improved Laplacian and Signal Processing algorithm
distribute change more evenly across the entire mesh.
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(a) (b) (c) (d) (e) (f)

Figure 2.7: The distribution of approximately the same amount of total change indicated in
false colors. (original mesh (a), Laplacian (b), Improved Laplacian (c), Signal Processing
(d), Mean Curvature Flow (e), Scale-Dependent Umbrella (f))

2.12.2 Surface Area

Surface area is an indicator of smoothness: the less wrinkled a surface is, the smaller its
area. But the surface area of an object is dependent on its volume: if an object is scaled
to a greater size its surface area will increase. In the process of denoising, the volume
can change. To make the comparison of surface area scale-independent, we will measure
the deviation of the surface area of a smoothed mesh from the minimal surface area,
given the same volume – which is the surface area of a sphere with the same volume.
The graph (Figure 2.8) shows how much the model’s actual surface area deviates from
that of a perfectly round sphere at a given amount of total change. Using the Mean
Curvature Flow algorithm surface area decreases the fastest and the meshes reach their
“best” look (marked with a star) with the least total change. With the Signal Processing
algorithm the surface area does no longer decrease beyond a certain point – which is
close to the point where the volume starts to increase (best seen in the right side of the
graphs(vertebra)).
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surfaceAreasphere = 4π ∗
(
volumecurrent

4
3π

) 2
3

(2.8)

deviationcurrent = ((surfaceAreacurrent/surfaceAreasphere)− 1) ∗ 100
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Figure 2.8: change of surface area in relation to total change

2.12.3 Mean Curvature

Mean curvature locally describes the curvature of a surface and can be approximated as
the length of the mean curvature normal κ n = 1

4A
∑
j∈neighbors(i) cotαj + cotβj(currentj−

currenti). The Mean Curvature Flow algorithm minimizes mean curvature and we can
see in the graph that this algorithm decreases mean curvature the fastest (Figure 2.9).
Second fastest is the Scale-Dependent Umbrella algorithm. It is noticeable that the other
algorithms – Laplacian, Improved Laplacian and Signal Processing algorithm – affect
mean curvature very unsteadily, but do decrease it eventually.

2.12.4 Volume

Volume is relevant for medical diagnosis as it may indicate whether a tissue is healthy.
Denoising does not shrink the object uniformly: a coarser resolution leads to faster
shrinking when Laplacian and Improved Laplacian are used (see Figure 2.11). The Mean
Curvature Flow and the Scale-Dependent Umbrella algorithm shrink high-curvature
parts of the surface shrink faster than other parts. The Mean Curvature Flow keeps
overall volume constant by rescaling the mesh after smoothing. The Laplacian, Improved
Laplacian and Scale-Dependent Umbrella algorithm shrink the mesh with increased total
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Figure 2.9: change of total mean curvature in relation to total change

change, while the Signal Processing algorithm eventually increases the volume. While
the Laplacian and less strongly the Scale-Dependent Umbrella start to decrease the
volume already with low total change, the Improved Laplacian and the Signal Processing
algorithm keep the volume constant up to a certain point. (Figure 2.10)
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Figure 2.10: change of volume in relation to total change

2.12.5 Shape preservation

Shape preservation is evaluated through visual inspection (see Figures 2.11, 2.12). To
facilitate comparison of the results, the silhouette of the original shape was traced over
the smoothed meshes (shown at the “best” level of smoothing). A strong shrinking at the
curved tip of the vertebra’s process is noticeable. We decided to determine the “best”,
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smooth look of the vertebra with regard to removal of step-artifacts: we chose the point
at which no more steps were visible. A property of the Mean Curvature Flow algorithm
is, that preserves flat areas well (if a vertex lies in the same plane as its neighbors, it
has mean curvature 0 and is not moved). As a consequence, steps only disappear after
significant smoothing with the Mean Curvature Flow algorithm.

When using Laplacian smoothing the sphere shows a strong shrinking of the right
part (coarser resolution). This effect is less pronounced, but still noticeable, when
using Improved Laplacian smoothing. The Signal-Processing algorithm leads to a slight
growing of the coarser part of the sphere. The Mean Curvature Flow and Scale-Dependent
Umbrella algorithm restore the round shape best. The Mean Curvature Flow algorithm
restores the original volume through rescaling, and leads to the best result on the noisy
sphere overall (see Figure 2.11).

(a) (b) (c) (d) (e) (f)

Figure 2.11: Comparison of shape preservation (sphere). (original mesh (a), Laplacian (b),
Improved Laplacian (c), Signal Processing (d), Mean Curvature Flow (e), Scale-Dependent
Umbrella (f))
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(a)

(ref)
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Figure 2.12: Comparison of shape preservation (vertebra). (reference model (ref), original
model (a), Laplacian (b), Improved Laplacian (c), Signal Processing (d), Mean Curvature
Flow (e), Scale-Dependent Umbrella (f))
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CHAPTER 3
Removing Frayed Parts

3.1 Motivation
In 3D printing thin features can be difficult to print. Fine details might not be printed
at all, if they are thinner than the layers the 3D printer can print. Thin, long features
sticking out of the surface can require additional support structures to keep them from
collapsing. After the print is finished these support structures need to be removed
manually with specific tools, causing extra work and leaving traces on the finished model.
Usually, removed support structures will then be discarded as waste. [5]

Thin parts do not only pose problems in the printing process but are also a common
type of artifact in medical surface meshes, which cannot be eliminated through denoising
[11], because the do not follow the typical pattern of noise. Noise is distributed (roughly)
uniformly across the surface: some incorrectly placed vertices occur above the “correct”
surface and some below. The denoising algorithms presented above smooth the surface
by basically finding an average surface. The vertices in frayed parts, on the other hand,
are positioned above the surface. As a result, denoising algorithms will make this type of
artifact only thinner but will not remove it.

We want to reduce these problems by detecting and removing frayed parts before
smoothing. Users can choose a minimum diameter according to what they identify as
artifacts, as opposed to desired features. Frayed parts are marked red in the rendered
3D-model, so that users can clearly distinguish them. Detected frayed parts can then be
removed automatically.

19



3.2 Related Work
Technical scanning devices add physical noise to the image data. As a result, the
measurements of the points deviate from the positions, that they have on the real surface.
Thus, smoothing the mesh leads to a more realistic representation of the surface. However,
excessive smoothing decreases accuracy, as it causes deformations, change in volume
and a loss of detail. Accuracy is an important issue in medicine, as an anomaly, e.g.
in volume, might indicate a pathology. Surgical planning and drilling guides require
especially high accuracy. [16]

Smoothing is a trade-off between achieving a smooth surface and preserving important
features. [21] However, feature-sensitive algorithms, which are often applied to engineering
data [22] preserve edges and are thus unsuitable for organic shapes. The only edges
typically present in medical data are staircases, which should be removed instead of
preserved. Because of that, advanced smoothing techniques specifically for medical data
were developed.

Advanced smoothing algorithms adapt smoothing locally, instead of smoothing the
entire mesh equally. [18] Context-aware smoothing limits smoothing to certain areas,
by taking into account local properties. Moench et al. [17] present an algorithm to
remove staircase artifacts from the surface mesh. First, the vertices of the mesh are
divided into artifact (part of a staircase) and non-artifact vertices. Then, vertices in
artifact-regions are smoothed more strongly, while vertices in non-artifact regions are
(optionally) smoothed with less weight.

Spatial relationships also play an important part in medicine. However, smoothing
changes distances between vertices. Distance-aware smoothing [21] preserves small
distances between neighboring structures during smoothing – achieving a smooth, and
therefore more natural look, while keeping critical distances accurate.

Smoothing is also not suitable to remove artifacts, that change the topology of the
mesh, because smoothing will not change the topology. Guskov et al. [13] developed an
algorithm that identifies and removes handles from the surface mesh, letting the user
control the size of handles that should be removed. They found that the loss of accuracy
through smoothing is reduced when the artifacts are removed first.

Medical surface meshes often contain artifacts, that are the result of an incorrect
segmentation (over- or under-segmentation): frayed parts, holes, additional or detached
parts. These artifacts can generally not be reduced through smoothing. [23]

Physicians generally prefer automatic solutions due to time constraints in everyday
clinical settings. But a reliable, automatic segmentation is often prevented by the large
anatomical variety in medical image data. Segmentation of medical images identifies and
delineates different regions of the body. Basic segmentation methods use thresholds, seed
points and region growing, or border detection. These methods face difficulties, when the
images contain noise, if regions are not homogenous, or values of neighboring structures
are not sufficiently distinct. More advanced techniques work based on models, but they
can fail when applied to diverse types of anatomy or pathologies. [19]

Thus, manual correction of an automatically generated segmentation is often necessary.
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However, a fully manual segmentation can take hours. [4] Heckel et al. [12] developed a
tool that lets users edit the automatically generated segmentation of a tumor by sketching
on the slices. The segmentation is then recomputed based on the user input.

Moench et al. [20] recommend manual removal of segmentation artifacts from the
surface mesh using 3D computer graphics software. This is time-consuming, however, and
requires experience with such software tools. Additionally, medical experts are needed
to validate changes made to the mesh, distinguishing between artifacts and anatomical
anomalies.

3D printing allows the creation of highly accurate replicas of individual patient
anatomy [14] – even on a relatively low budget. Bortolotto et al. [15] found, that a
state-of-the-art 3D printer for consumer use can produce 3D objects from CT scans,
which are sufficiently accurate, even for demanding medical applications. Accuracy is
influenced much stronger by the quality of segmentation than by technical factors. [16]

In anatomy classes 3D printed models can be used in place of real human bones or
anatomical models. This allows students to directly examine a diverse range of highly
accurate copies of human tissue, that might otherwise be too fragile, rare or expensive to
distribute among students. [3]

3D printed models of patient’s pathologies have been successfully used for surgical
planning. A tactile model can help surgeons to better understand their patient’s condi-
tion and to practice before the actual operation. This can reduce operation time and
complication rates for the patients. [14]

The haptic component and actual three-dimensional shape of a 3D printed model
makes it better suited for the brain’s perceptive mechanisms – like perception of depth and
relative size – than a virtual 3D rendering on a flat 2D monitor. This allows laypeople an
intuitive understanding of a pathology, which can be useful in courtrooms and education.
[4]

3D printing adds specific requirements to mesh processing. While it is not always
necessary to remove certain artifacts for visualization, they can cause problems in the
process of 3D printing. [20] For a successful 3D print the mesh must be manifold: this
means – among others – that the surface mesh must be watertight (i.e. have no holes)
and each triangle edge must be shared by exactly two triangles. [5] A 3D printer builds
an object by placing layer upon layer. Each layer supports the layer placed on top of it.
Overhanging parts – by approximately 45◦ – need to be supported by support structures,
otherwise these parts might collapse. Some 3D printing technologies do not require
support material, but FDM (Fused Deposition Modeling), which is the most commonly
used 3D printing technology [15] relies on support material. Support material must be
removed manually after printing, which is tedious – especially in hard-to-reach areas –
and produces waste. Thus, support material should be avoided as much as possible – e.g.
by eliminating noise and other artifacts, such as frayed parts, which protrude from the
surface. [5]
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3.3 Algorithm to Remove Frayed Parts
We want to find and remove frayed parts – a type of artifact which cannot be reduced
through smoothing. [11] We will do this by labeling each vertex as either an artifact-
vertex, if it it is part of a frayed part of the mesh, or a non-artifact-vertex, if it does not
lie in a frayed part. Then, only artifact-vertices will be removed, other regions of the
mesh are left unchanged. Non-artifact-vertices can be smoothed before or after removing
the frayed parts.

To find frayed parts in the mesh, we need to define what a frayed part is. A frayed
part is a region of the mesh, where parts of a neighboring structure were included in the
mesh because of over-segmentation. [11] It consists of thin spikes, sticking out of the
surface mesh. To find these thin spikes, we will identify “very thin” parts of the mesh.
The user can give a threshold value, to control what Euclidian distance between vertices
should constitute a “very thin” part.

Finding thin parts
A very thin part of a mesh, is a part where vertices come close together on opposite sides
of the mesh. However, they might lie on two sides of the mesh facing towards each other.
Additionally, vertices are usually close to each other if they are neighbors. To distinguish
between these three cases, we will use normals. Normals are defined for each triangle
of the mesh and determine the direction that it faces. To approximate the normal of a
vertex, we can use the average of the normals of all triangles, that this vertex is a part of.

First, we need to find vertices that are close in distance. To limit the number of
comparisons necessary, we sort the list of vertices along x-, y- and z-coordinate and then
compare each vertex only to vertices with a x-, y- and z-coordinate within the distance
given by the user. Since vertices are positioned at discrete distances, the distance between
two vertices is often larger than the distance between a vertex and a face (see Figure:
3.1). We can get a more reliable distance by calculating the distance between the current
vertex (currenti) and the faces connected to the vertices(currentj1, currentj2) that the
current vertex is close to. The minimum distance between a triangle and a point, is the
distance between the point and the intersection point on the triangle, which is found
by moving the point along the normal and intersecting it with the triangle. The exact
distance is calculated, when the distance between the two vertices is slightly larger than
the given distance.

When we found two vertices (currenti, currentj) that are close to each other, we
determine the angle between the normal of currenti and the “connection vector” to
currentj . The “connection vector” is the normalized vector pointing from currenti to
the vertex currentj . An angle of 90◦ indicates two neighbors, with normals perpendicular
to the plane they lie in; an angle of 180◦ indicates two vertices on opposing, parallel sides
of the mesh. If the two vertices lie on two sides of the mesh, that face each other, the
angle would be 0◦.

However, two sides of a spike are rarely perfectly parallel (see Figure: 3.2) . So, we
have to allow angles less than 180◦. What angle should still be counted as indicating

22



Figure 3.1: Calculating the exact distance between a vertex and a face

Figure 3.2: If the two vertices currenti and currentj do not lie on parallel faces (see right
image), the angle between the vector connecting the two vertices (connectionij) and the
normal of currenti is less than 180◦

vertices on opposite sides of the mesh can be controlled by the user with the parameter
“tolerance of detection”. “Tolerance of detection” can range from 0 (angle must be 180◦)
to 1 (angle from 90◦ to 180◦ is allowed). This parameter has to be used carefully to
maintain the distinction between vertices on different sides of the mesh and neighbors on
the same side of the mesh.

Expanding artifact regions
This approach will not reach the tip of a spike, if there is no close vertex opposing the
tip. Because of this, it is often necessary to grow the artifact region to cover the entire
spike. This is done by additionally labeling vertices as artifact-vertices, that have more
than a given amount of neighbors that are artifact vertices. Taking 30% gave good results.
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Removing frayed parts
Artifact-vertices are removed from the mesh by moving them to the average position of
their non-artifact neighbors. This can take a few iterations, if there are artifact-vertices,
which do not have any non-artifact neighbors (usually artifacts further up a spike). In
each iteration all artifact-vertices with non-artifact-neighbors, are moved to their new
position and are labeled as non-artifact-vertices at the end of the iteration. This is
repeated until all vertices have been labeled non-artifact-vertices. This way, the frayed
parts are “pulled down” onto the correct surface. Removing the frayed parts will leave
no holes in the mesh, and vertices are only moved within their neighborhood, so that no
changes in topology can occur.

Figure 3.3: Removing a spike: In each iteration only vertices which are labelled “artifact-
vertices” (marked red) and which have “non-artifact” neighbors (marked green) are
moved

Algorithm 3.1: Identify and Remove Frayed Parts
1 sortX(vertices);
2 detectSpikes(vertices, minimumDistance, toleranceOfDetection, x);
3 sortY(vertices);
4 detectSpikes(vertices, minimumDistance, toleranceOfDetection, y);
5 sortZ(vertices);
6 detectSpikes(vertices, minimumDistance, toleranceOfDetection, z);
7 growArtifactRegion(vertices);
8 removeSpikes(vertices);
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Algorithm 3.2: detectSpikes(vertices, minimumDistance, toleranceOfDetection,
sortedBy)
1 for i ∈ vertices do
2 j ←− i;
3 while |currentj .sortedBy − currenti.sortedBy| < minimumDistance do
4 j ←− j + 1;
5 distance ←− distance(currenti, currentj);
6 if distance ≤ minimumDistance then
7 connection ←− currentj - currenti;
8 connection ←− connection/connection.length;
9 . toleranceOfDetection between 0 (180◦) and 1 (90◦)

10 if (cos(connection, currenti.normal) < toleranceOfDetection− 1)
then

11 colorRed(currenti);
12 colorRed(currentj);
13 end
14 else
15 if distance ≤ minimumDistance+ ε then
16 for face ∈ faces including currentj do
17 connection←−

vertexToTriangle(currenti, face.vertex1, face.vertex2, face.vertex3);

18 if connection 6= NULL and connection.length ≤
minimumDistance then

19 connection ←− connection / connection.length;
20 if (cos(connection, currenti.normal) <

toleranceOfDetection− 1) then
21 colorRed(currenti);
22 colorRed(currentj);
23 end
24 end
25 end
26 end
27 end
28 end
29 end
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Algorithm 3.3: vertexToTriangle(vertex, v1, v2, v3)
1 iPoint.normal ←− (v1.normal + v2.normal + v3.normal)/3;
2 iPoint.normal ←− iPoint.normal / iPoint.normal.length;
3 t ←− iPoint.normal · v1 - iPoint.normal · vertex;
4 iPoint ←− vertex + t · iPoint.normal;
5 . check if iPoint is inside triangle(v1, v2, v3) using barycentric coordinates
6 α←− triangleArea(v1, v2, iPoint) / triangleArea(v1, v2, v3);
7 β ←− triangleArea(v2, v3, iPoint) / triangleArea(v1, v2, v3);
8 γ ←− triangleArea(v3, v1, iPoint) / triangleArea(v1, v2, v3);
9 if (α+ β + γ) == 1 then

10 return (iPoint - vertex);
11 else
12 return NULL;
13 end

Algorithm 3.4: growArtifactRegion(vertices)
1 while artifact region not fully covered do
2 for i ∈ vertices do
3 incorrectNeighbors ←− 0;
4 n ←− neighbors(i).size;
5 if n > 0 then
6 for j ∈ neighbors(i) do
7 if currentj .correct == false then
8 incorrectNeighbors ←− incorrectNeighbors + 1;
9 end

10 end
11 if incorrectNeighbors / n > 0.3 then
12 colorRed(currenti);
13 end
14 end
15 end
16 end
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Algorithm 3.5: removeSpikes(vertices)
1 removing ←− true;
2 while removing do
3 removing ←− false;
4 for i ∈ vertices do
5 if currenti.correct == false or currenti has artifact-neighbors then
6 removing ←− true;
7 correctNeighbors ←− 0;
8 for n ∈ neighbors(i) do
9 if currentn.correct == true then

10 sum ←− sum + currentn;
11 correctNeighbors ←− correctNeighbors + 1;
12 end
13 end
14 if correctNeighbors > 1 then
15 smoothi ←− sum / correctNeighbors;
16 smoothi.correct ←− true;
17 else
18 smoothi ←− currenti;
19 end
20 end
21 end
22 current ←− smooth;
23 end

3.4 Results
We used different criteria to compare the effects of common mesh denoising algorithms
on surface meshes: total change, surface area, mean curvature, volume and shape
preservation.

We determined the “best” look for each algorithm to see how much change to
the mesh was necessary for each algorithm to reach its “best” look. However, when
comparing the individual “best” looks (Figure 2.12) we can see that Mean Curvature Flow,
Scale-Dependent Umbrella and Signal Processing algorithm produce much better results
than Laplacian and Improved Laplacian smoothing. Overall, the Mean Curvature Flow
algorithm produced the best results. When applied to the model of the sphere it clearly
reached its “best” look with causing the least total change to the mesh, decreased surface
area the fastest and did not change the volume of the mesh. On the model of the vertebra
the Mean Curvature Flow algorithm reached its “best” look only slightly before the
Scale-Dependent Umbrella and Signal Processing algorithm. The staircases in the model
of the vertebra increased the amount of smoothing necessary for achieving sufficient visual
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improvement for all algorithms – but especially the Mean Curavature Flow algorithm
required more smoothing to remove staircases, because it tends to preserve flat parts
of the mesh. Thus, the results could likely be improved by removing staircases from
the mesh [17] before smoothing. The worst results were produced by simple Laplacian
smoothing: it caused the most loss in volume and shape deformation and is therefore
not suitable to preserve accuracy. The smoothing algorithms improved the meshes
by reducing noise. However, they are not suitable for reducing frayed artifacts. We
implemented the algorithm to remove frayed parts described above and applied it to
the model of a spine and pelvis, which contains frayed artifacts mostly on the vertebrae
(remaining parts of the intervertebral discs). The mesh was first denoised using the Mean
Curvature Flow algorithm, which could not remove the frayed parts (see Figure 3.4).
Then we applied our algorithm with 0.7 for “tolerance of detection” (∼ 134◦) and could
detect and remove the majority of frayed parts. Some parts of the mesh were incorrectly
identified as frayed parts, though.
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(a) (b) (c)

Figure 3.4: original, noisy mesh (a), after smoothing with Mean Curvature Flow algorithm
(b), and removal of frayed parts (c)

3.5 Conclusion
In this thesis, we quantitatively and visually compared several mesh smoothing methods,
which are commonly used to remove noise from medical surface meshes. It turned out
that artifacts other than noise – like staircases and frayed parts – inhibited the effects of
smoothing, but that a high amount of smoothing decreased the accuracy of the surface
mesh.

We presented a semi-automatic method to detect and remove frayed parts from the
surface mesh, which are artifacts that are not reducible through smoothing. Our approach
is faster than manual correction with 3D computer graphics software. When the model
is 3D printed, our method helps to reduce the need for support structures.

Future work should improve the algorithm to target frayed parts more reliably. It
could be useful to add an option that lets the user select which of the parts, that were
identified as frayed parts, should be removed and which should be kept. In order to
increase accuracy, a tool could be developed, that lets the user compare the recommended
corrections with the original segmented slides.
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(a) (b)

(c)

(d)

Figure 3.5: A 3D print was created after removal of frayed parts from and subsequent
denoising (with Signal Processing algorithm) of the original, noisy mesh (a, d). Before
(c) and after (b) removing support structures.
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