
AudioFlow
Flow-influenced sound

Matthias Adorjan, BSc
e0927290@student.tuwien.ac.at

February 12, 2015

1 Introduction
Nowadays flow visualization is used in various application fields to make invisible flow
patterns and flow structures visible. The automotive industry, for example, needs flow
visualization to evaluate and optimize car designs. Since flow data can contain much more
information than the direction of the flow, flow visualization can also be used for failure
analysis. It reveals regions of high pressure or turbulant flow, which can indicate a source
of error in car engines, for example. Another application area of flow visualization is the
field of medical diagnosis. To gain a better understandig or to detect misfunctionalities
of the human respiratory system, the motion of lungs during an inhale-exhale cycle can
be visualized with the help of flow visualization [LEG+08].

However, we use flow datasets in a very different way. The main goal of our work is to
analyze how flow data can influence audio playback. We use values from existing flow
datasets to control the playback of an audio stream in our developed music player called
AudioFlow. This application allows the user to extract flow data values from a loaded
dataset with the help of simple drag and drop gestures. A rendered flow visualization
makes it possible to select specific flow channel values. The extracted data values are
then used to change the volume and playback speed of a background audio stream.
Furthermore, it is possible to introduce a fading effect, which repeatedly decreases and
increases the volume of the played audio file.

2 Implementation
Since portable devices like smartphones or tablets have become very popular these days,
we decided to implement our idea in an Android application. AudioFlow targets an
Android 4.3 device with OpenGL ES 3.0 support. We choose these minimum requirements,
because full floating point texture support is needed to render the flow dataset in a
proper way. This support was introduced with OpenGL ES 3.0 in August 2012, which

Matthias Adorjan AudioFlow 1



is further available on devices with Android 4.3, or newer, and appropriate graphics
hardware and drivers. We developed the program using the IntelliJ IDEA, Android SDK
19 and a HTC One with an Adreno 320 GPU. The user interface is completely realized
using OpenGL ES 3.0 (see Section 2.1).

2.1 Interaction concept
In order to use a flow dataset as an input, one must be able to extract specific data from
it. The following lines describe how we realized our user interface.
When searching for a suitable interaction method for this selection task, we found a

device called Reactable [Rea]. It is an electronic musical instrument with a tangible user
interface. There also exists a mobile version of Reactable. Figure 1 depicts the main
concept of this instrument. It comes with a marker-based user interface which lets the
user create music by placing markers, which can be real tangible or virtual objects, on
a table or screen. This way of interaction deals as an inspiring example for our user
interface development.

Figure 1: Reactable Live! (left) and Reactable Mobile (right) [Rea].

We implemented a similar marker-based input method. In contrast to the Reactable’s
interaction technique, which changes the audio output according to the spatial relationship
between the virtual objects, we influence the output by analyzing the relationship between
the markers and the underlying flow visualization. The flow data value at the marker’s
position on the currently displayed flow visualization is used to change a specific audio
property. By combining different types of markers, each of them influencing another
audio property, the audio playback can be manipulated in various ways (see Section 2.2).
Figure 2 shows our realization of a marker-based music player. It can be seen that the
background layer consists of a rendered flow visualization, and the foreground layer
contains the interactive input objects. To select these objects/markers, the user has
to press the finger on them and hold for about a second. After selection they can be
dragged and dropped onto the visualization to changed the audio playback, its properties,

Matthias Adorjan AudioFlow 2



or the used flow dataset/visualization. The menu at the bottom of the screen lists all
available markers and is scrollable if the screen does not provide enough space for it.
Furthermore, it is possible to switch between the represented flow data channels by
simple horizontal-swiping over the currently displayed visualization.

Figure 2: User interface of our created music player called AudioFlow.

2.2 Marker types and audio manipulation
In Section 2.1 the marker-based interaction concept has been introduced. This chapter
now gives a detailed description of the different types of markers, which make up the
integral part of this interaction concept.

2.2.1 Flow markers

The first type of markers reviewed are the so-called flow markers. They are used to
change the currently loaded flow visualization, from which data values can be extracted
to affect the audio output. When dropped into the scene (which means out of the menu
area) the dragged marker disappears and the flow visualization is updated showing the
dataset connected to the used flow marker. Our application comes with two flow datasets:

• the Block dataset created by R.W.C.P. Verstappen and A.E.P. Veldman of the
university of Groningen (the Netherlands) [VV98]. It stores flow data representing a
flow around a static block. Additionally to the velocity vectors, the dataset contains
two scalar channels describing the flow pressure and its vorticity perpendicular to
the flow slice.

• the Hurricane dataset originally created at the National Center for Atmospheric
Research [Nat]. Its additional datasets contain scalar values describing the temper-
ature in degrees celsius and the amount of liquid cloud water in the cell.

Figure 3 depicts the markers representing these two datasets.

Matthias Adorjan AudioFlow 3



Figure 3: Marker representing the Hurricane dataset (left) and Block dataset (right).

2.2.2 Audio markers

Audio markers are used to change the audio file, whose playback is manipulated with the
help of the background flow data. Similarly to flow markers, they have to be dropped
into the scene to change the currently streamed sound track. We include two audio tracks
in our application:

• a festive christmas sound obtained from http://www.freesound.org/people/Setuniman/
sounds/207637/

• a drum loop retrieved from http://www.freesound.org/people/Setuniman/sounds/
207637/

Figure 4 shows the markers representing these two sound tracks. They are colored yellow
for easier identification.

Figure 4: Markers representing a christmas sound (left) and a drum loop (right).

2.2.3 Channel markers

The third and last type of markers used in our application are so-called channel markers.
They interact with the underlying flow visualization to change the playback of the
currently active sound track. There exist three different channel markers:

• a volume marker affects the playback volume. The normalized flow channel value
(between 0.0 and 1.0) is mapped directly onto the normalized volume value.

• a speed marker allows the user to adjust the playback rate of the currently active
sound track. The normalized flow channel value is mapped into the range from 0.5
to 2.0 to halve or double playback speed.

Matthias Adorjan AudioFlow 4

http://www.freesound.org/people/Setuniman/sounds/207637/
http://www.freesound.org/people/Setuniman/sounds/207637/
http://www.freesound.org/people/Setuniman/sounds/207637/
http://www.freesound.org/people/Setuniman/sounds/207637/


• a fading markers allows the user to specify a fading time. The currently played
sound track fades in and out repeatedly if one of these markers are placed onto the
flow visualization.

These channel markers receive their input from three different flow channels (velocity
magnitude, pressure/temperature, vorticity/cloud water amount). Therefore AudioFlow
creates nine channel markers, three for each loaded flow channel. When a marker is
dragged onto the flow visualization, the value of its corresponding flow channel at the
marker’s position on the visualization is extracted and used to change the audio playback
according to the marker’s audio manipulation property. To increase the app’s usability,
the flow visualization shows the channel which is used by the currently selected flow
channel marker.
Figure 5 shows the available channel markers. The red markers use velocity magni-

tude values, blue markers use the pressure/temperature values and green markers use
vorticity/cloud water amout measurements to adapt the audio playback.

Figure 5: Markers used to manipulate the playback volume (left column), playback
speed (middle column) and fading time (right column). The colors indicate

different flow channels from which the input values are gathered.

2.3 Flow visualization
Additionally to the input markers, our implemented user interface contains a flow
visualization in the background. It allows the user to explore the loaded flow dataset in
order to pick specific information out of it. This section briefly explains details about
the implementation of the flow dataset loading and the flow visualization rendering.

Matthias Adorjan AudioFlow 5



2.3.1 File format and loading

Our application supports flow datasets that are stored within two files. A file with a .gri
extension stores the geometry of the dataset. It contains a description of the rectilinear
grid on which the flow data is given. The first 40 bytes are the ascii header of the grid
file. It describes the spatial dimension of the dataset, the number of stored flow channels
and the number of timesteps. We ignore the number timesteps when loading the dataset,
because we only need one timestep for our application.

The actual flow data is stored in a separate file with a .dat extension. The flow channels
are stored interleaved, which means that each connected data block contains all flow data
values for a given grid point defined in the grid file. For further information visit https:
//www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp2.html#Datensätze.

To prepare the channel data for rendering, it has to be deinterleaved such that connected
data blocks belong to the same flow channel. In order to generate correct textures out
of the flow channel data, it has to be resampled from the rectilinear input grid onto a
cartesian grid. Furthermore, a velocity magnitude channel is computed from the loaded
velocity vectors to obtain additional visualizable information. The data loading and
preprocessing is a time consuming task when done on a current smartphone like the HTC
One. Therefore we decided to develop a small tool called FlowResampler, which does the
preprocessing task in an offline process to further allow fast switching between different
flow visualizations in our Android application. Table 1 compares the computation time
needed to load the preprocessed files and the original files on the HTC One. It can be
easily seen that we could reduce the loading time dramatically.

Dataset Resolution State .gri-file .dat-file
Hurricane 512x512 Original 0.05 seconds 28.68 seconds

Preprocessed 0.05 seconds 1.75 seconds
Block 314x538 Original 0.02 seconds 20.74 seconds

Preprocessed 0.02 seconds 1.19 seconds

Table 1: Loading time of the flow datasets Hurricane and Block.

2.3.2 Rendering

After loading the preprocessed data from the input files, the deinterleaved and resampled
flow channels can be used to create 16bit half-float textures. We use half-float textures
because they are filterable, whereas 32bit full-float textures are supported, but not
filterable. The flow visualization is implemented using color coding. The maximum data
value within a channel is assigned the color white, while the minimum value gets the color
black. The colors for the values inbetween are calculated by using linear interpolation.
To use the screen’s space ideally we defined an orthogonal projection matrix which maps
the flow visualization texture onto the screen, such that it fully covers the screen’s width.
The aspect ratio of the texture depends on the size of the loaded flow dataset. Figure 6
shows the visualization of two datasets, which are included in the application.

Matthias Adorjan AudioFlow 6

https://www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp2.html#Datens�tze
https://www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp2.html#Datens�tze


Figure 6: Visualization of the Hurricane dataset (left) and the Block dataset (right).

3 Conclusion and future work
The application field of flow visualization is wide spread. We decided to use this type of
data visualization in a very different way. With our developed application, we show that
flow data values can be mapped onto audio properties in various ways.
Further types of markers can be added to manipulate other audio properties or to

introduce sound effects like the Doppler effect or reverberation. It is also imaginable
to load multiple sound channels and play them simultaneously. The influencing flow
data value then decides how many sound channels are actually played back. This can
result in some sort of orchestral music, if each sound channel represents a different music
instrument. To make the application look more pleasing, the flow visualization rendering
can be tuned too, for example by using configurable transfer functions for color coding,
or by implementing streamlines or glyph rendering.

References
[LEG+08] Robert S Laramee, Gordon Erlebacher, Christoph Garth, Tobias Schafhitzel,

Holger Theisel, Xavier Tricoche, Tino Weinkauf, and Daniel Weiskopf. Ap-
plications of texture-based flow visualization. Engineering Applications of
Computational Fluid Mechanics, 2(3):264–274, 2008.

[Nat] National Center for Atmospheric Research. Hurricane dataset. Re-
trieved February 03, 2015, from https://www.cg.tuwien.ac.at/courses/

Matthias Adorjan AudioFlow 7

https://www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp2.html#Datens%C3%A4tze
https://www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp2.html#Datens%C3%A4tze


Visualisierung/Angaben/Bsp2.html#Datens%C3%A4tze.

[Rea] Reactable Systems. Reactable. Retrieved January 30, 2015, from http:
//reactable.com/products/.

[VV98] RWCP Verstappen and AEP Veldman. Spectro-consistent discretization of
Navier-Stokes: a challenge to RANS and LES. In Floating, Flowing, Flying,
pages 163–179. Springer, 1998.

Matthias Adorjan AudioFlow 8

https://www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp2.html#Datens%C3%A4tze
https://www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp2.html#Datens%C3%A4tze
http://reactable.com/products/
http://reactable.com/products/

	Introduction
	Implementation
	Interaction concept
	Marker types and audio manipulation
	Flow markers
	Audio markers
	Channel markers

	Flow visualization
	File format and loading
	Rendering


	Conclusion and future work

