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Abstract

In medical diagnosis, the spine is often a frame of reference and so helps to localize diseases
(e.g. tumors) in the human body. Automated spine labeling approaches are in demand, in order
to replace time consuming, manual labeling by a radiologist. Different approaches have already
been proposed in the literature, mainly for Computed Tomography (CT) and Magnetic Reso-
nance Imaging (MRI) data. While CT scans exhibit a generalized intensity scale, MR images
come with a high variability within the data and hence the tissues. Several factors influence the
appearance of vertebrae and intervertebral disks in MRI data: different scanners, changes of ac-
quisition parameters, magnetic field inhomogeneities or age-related, structural changes of the
spinal anatomy. These factors compound the development of semi- and fully automatic spine
labeling systems.

The main goal of this thesis is to overcome these variations and find a generalized repre-
sentation for different kinds of MR data. Furthermore, it aims for a semi-automatic labeling
approach on these preprocessed scans where the user has to provide an initial click. Entropy-
optimized Texture Models are applied to normalize the data to a standardized, reduced intensity
scale. With Probabilistic Boosting Trees, intervertebral disk feature points are detected, whereby
the disk center is selected with a Shape Particle Filter.

The results achieved with the proposed pipeline are promising in terms of data normalization,
timing and labeling accuracy. With a mean overall processing time of 6.0 s for normalizing and
labeling a dataset (0.8 s per disk), the algorithm achieves a precision of 92.4% (recall = 86.8%).
Using a higher resolution of the data for disk detection (average timing of 1.6 s per disk resp.
12.4 s per dataset), reduces the number of missed disk candidates and hence increases the recall
to 91.7% (with a precision of 91.9%).
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Kurzfassung

Die Wirbelsäule wird in der medizinischen Diagnose oft als Referenz verwendet und unter-
stützt so die Lokalisierung von Krankheiten (z.B. Tumoren). Verfahren, die der Wirbelsäule
automatisch ihre anatomischen Bezeichnungen zuordnen sind gefragt, um zeitraubendes ma-
nuelles Beschriften durch einen Radiologen einzusparen. Verschiedene Algorithmen wurden
bisher in der Literatur vorgestellt, wobei die meisten mit Computertomographie- (CT) und
Magnetresonanztomographie-Daten (MRI) arbeiten. Während CT-Daten eine einheitliche Inten-
sitätsskala aufweisen, treten in MR-Daten hohe Variabilitäten innerhalb der Daten und folglich
innerhalb der Gewebe auf. Verschiedene Faktoren beeinflussen das Aussehen von Wirbeln und
Bandscheiben in MRI-Bildern: unterschiedliche Scanner, Änderungen in den Aufnahmepara-
metern, Inhomogenitäten des Magnetfeldes oder altersbedingte Änderungen in der Struktur der
Wirbelsäulenanatomie. Diese Faktoren erschweren die Entwicklung von halb- und vollautoma-
tischen Systemen, die der Wirbelsäule ihre anatomischen Beschriftungen zuordnen.

Hauptziel dieser Diplomarbeit ist es, diese Variabilität zu überwinden und eine generalisierte
Repräsentation für verschiedene Arten von MR-Daten zu finden. Weiters soll auf diesen norma-
lisierten Bildern die Anatomie der Wirbelsäule beschriftet werden, wobei ein Benutzer einen
Startpunkt zur Verfügung stellt. Entropie-optimierte Texturmodelle werden verwendet, um die
Daten zu normalisieren und in eine standardisierte, reduzierte Intensitätsskala umzuwandeln.
Mit Probabilistic Boosting Trees werden mögliche Punkte innerhalb der Bandscheiben detek-
tiert, wobei der Mittelpunkt der Bandscheibe mit Hilfe eines Shape Particle Filters ausgewählt
wird.

Die Ergebnisse, die mit der vorgestellten Methode erzielt werden, sind vielversprechend
hinsichtlich der Datennormalisierung, benötigten Zeit und erzielten Beschriftungs-Genauigkeit.
Mit einer mittleren gesamten Verarbeitungszeit von 6.0 s für Normalisierung und Beschriftung
eines Datensatzes (0.8 s pro Bandscheibe) liefert der Algorithmus eine Genauigkeit von 92.4%
(Trefferquote = 86.8%). Verwendet man eine höhere Auflösung der Daten für die Detektierung
der Bandscheiben (durchschnittliche Verarbeitungszeit von 1.6 s pro Bandscheibe beziehungs-
weise 12.4 s pro Datensatz), so reduziert sich die Anzahl nicht gefundener Bandscheiben und
erhöht somit die Trefferquote auf 91.7% (mit einer Genauigkeit von 91.9%).
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CHAPTER 1
Introduction

The spinal column forms an important part in the human body. It is responsible for the body’s
upright position and enables movement of the torso. Moreover, it protects the spinal cord – a
bundle of nerves which runs from the brain to the rest of the body [17].

It is often a target of medical imaging, e.g. with X-ray, Computed Tomography (CT) or
Magnetic Resonance Imaging (MRI), due to several reasons. On one hand, back pain is among
the most common diseases. According to a survey from Statistik Austria [3], about 2.3 million
Austrians suffer from chronic problems with the spine. Causes for back pain are e.g. herniated
disks or fractured vertebrae (see Figure 1.1) [13]. On the other hand, the spinal column is usually
visible if images of the abdomen or upper body are acquired.

For medical diagnosis, the spinal column is a frame of reference in the human body when
it comes to describing the location of an organ or a pathology. Hence it is important, that
a reliable anatomical labeling of the spine is available. Within this scope, it is sufficient to
localize disks and vertebrae and provide their corresponding anatomical label (e.g. L4 for the
forth lumbar vertebra). However, manual placing of landmarks is time consuming and tedious,
especially if only parts of the spinal column are visible on the scans. Radiologists have to ensure
the quality of scans and correctness of the labeling on the acquired datasets. Hence a reliable
computer-aided system for automatic detection of landmarks and labeling right after acquisition
is in demand [55].

1.1 Motivation for Spine Labeling

Several reasons and fields of application motivate the development of spine labeling algorithms.
The rough localization of the spinal column can be employed as reference for full segmen-

tation of organs in the abdomen [66]. The spinal column is detected first in scans and then used
to derive the relative location of organs based on a statistical model.

Another field of application is automated scan planning. Usually the planning of scans is
carried out by an operator on a low resolution scan acquired in advance. For every examination,

1



Figure 1.1: Lateral (from the side) view of the spinal column with a fractured fifth lumbar
vertebrae (left). Axial (from the top) view of the fracture (right). The arrow indicates a part of
the vertebra that presses into the spinal canal. Image from web page [13].

she manually determines scan parameters. The aim of automated planning tools is to ensure
consistency across the acquisitions and hence improve the workflow. Therefore a robust labeling
of the spinal anatomy is needed, so that the necessary parameters are derived correctly [47].

Besides localization of spinal interest points, there are use cases for full segmentation of the
spinal anatomy as well. Segmentation algorithms that separate bones from soft tissue are in use
for example within computer-assisted surgery of the spinal column [26], [9]. From segmented
parts, a precise 3D model of the anatomy is reconstructed and shown to the surgeon in order to
assist at the intervention. Full segmented intervertebral disks and vertebrae furthermore enable
pathologic anatomical assessment of these [42].

Generally speaking, localization and full segmentation approaches of the spinal anatomy are
of use in Computer Aided Diagnosis (CAD) systems, which support clinical decision making
processes. With these, pathologies of the spinal column, disks or vertebrae can be detected by
automated analysis of the recognized parts [64]. From segmented vertebrae, measures such as
height and density can be derived, which give information about possible osteoporosis. Spine
disorders, such as disk degeneration or pathological curvatures can be detected and monitored
by the analysis of metrics (e.g. thickness or volumes) [41].

2
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Figure 1.2: T1-weighted and T2-weighted slice image from volume d13_1_t1w respectively
d13_1_t2w (left) and corresponding histograms (right). The intensity range of intervertebral
disks in the dataset is depicted by light blue bars. Data by courtesy of AGFA HealthCare [25].

1.2 Problem Statement

Numerous spine labeling algorithms have been designed on various imaging modalities, includ-
ing X-Ray, CT and MRI. Within CT data, the intensities follow a standardized scale [58]. Unfor-
tunately this is not the case for MR datasets. Different scans exhibit different intensity ranges,
due to changes in the acquisition protocol. This results in varying intensities for the same tissue
across different scans. Furthermore, noise and low contrast in the images cause these variations
within a single slice. These factors, as well as a poor signal-to-noise ratio make generalized
image processing tasks more complex on MR data [26].

Figure 1.2 illustrates intensity differences for two groups of MR scans, namely T1-weighted
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(T1w) and T2-weighted (T2w) scans. They are acquired on the same subject, but with a dif-
ferent acquisition parameter setup. This causes varying gray values within intervertebral disks
between both scans. The global intensity ranges for the images are t1 = [0, 249] for the T1w
and t2 = [0, 225] for the T2w scan (gray area). Looking at the disk intensities (blue area), a
huge difference is seen immediately. They lie within the range t1 = [29, 94] and t2 = [8, 203],
respectively.

Algorithms designed for one modality are (usually) not directly applicable to another one.
Models and algorithms have to be retrained for their application on different modalities [32]. In
the literature, one work mentions that it was trained on a set of MR scans and is also directly
applicable to CT scans without retraining [36]. However, for MR data they focus on T2w scans
and do not report results for other types of MR data, such as T1w images.

Currently state-of-the-art spine detection and labeling algorithms usually focus on a specific
set of MR scans, e.g. T1w or T2w scans. This motivates for a general approach, that is applicable
to several kinds of MR datasets without a necessary retraining of feature detection and labeling
algorithms. The goal of this thesis is to design an algorithm, that performs semi-automatic spine
labeling (with an initial click from a user) on a range of MR scans. To be more specific, the
system should be able to process the two main groups of T1w and T2w scans without know-
ing, which kind of dataset is currently processed. To accomplish this goal, the following two
processing stages are integrated:

1. Normalization of the input data with an Entropy-optimized Texture Model (ETM), which
was proposed by Zambal et al. [67]: From sparse annotations covering the lumbar spine,
a model is learned for normalizing MR scans. The goal is to reduce the number of present
gray values in the data to a fixed number of s target values without losing relevant anatom-
ical information.

2. Feature detection and labeling of the spinal anatomy: Starting from a click position,
disk candidate voxels are extracted on the normalized data with Probabilistic Boosting
Trees (PBTs) in an iterative manner. The best voxel is selected as disk center point.

1.3 Thesis Overview

The thesis is organized as follows: At the end of this chapter, the mathematical notation used in
this thesis is introduced. Chapter 2 gives a detailed overview about the anatomy of the human
spine. Furthermore imaging modalities on the spinal column are introduced, whereby the focus
lies on MRI. Chapter 3 reviews related work on spine labeling algorithms and summarizes pre-
processing methods. The theoretical background of the methods integrated in this work is given
in Chapter 4. This includes on one hand algorithms for preprocessing and data normalization,
and on the other hand feature detection and classification algorithms. Implementation and inte-
gration of those is detailed in Chapter 5. Data normalization, disk detection and labeling results
on lumbar datasets are discussed in Chapter 6. Finally, Chapter 7 concludes this work and gives
an outlook to future work.
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1.4 Mathematical Notation

The mathematical notation used in this work is summarized in the following, with respect to its
field of application.

Data and Annotations
S annotated set of datasets (2D or 3D)
Str ⊂ S annotated set of training datasets
Ik k-th dataset of S, also referred to as image data, i.e. a 2D image or 3D volume
∆k

x voxel size of Ik in x-direction
λi anatomical disk label, whereby λi ∈ {T8/T9, T9/T10, . . . , L4/L5, L5/S1}
κj anatomical vertebra label, whereby κj ∈ {T9, T10, . . . , L5, S1}
dki intervertebral disk center i with label λi in dataset Ik
cki spinal canal landmark i with label λi in dataset Ik
zki cylinder i in dataset Ik, i.e. the cylinder placed around disk center dki
vkj vertebra body center j in dataset Ik

Entropy-Optimized Texture Models
m = |Str| number of training datasets
l number of corresponding landmark points
Tk texture extracted from image data Ik
N number of extracted texel
tj model texel, whereby j = 1 . . . N
rk number of source values (source bins), whereby k = 1 . . .m
s number of target values (target bins)
g′i mapped target value, whereby g′i ∈ {1 . . . s}
fk mapping from rk source values to s target values, whereby k = 1 . . .m
pj probability density function (PDF) of model texel tj
H(pj) information entropy of corresponding PDF pj
H (fk (Tk)) image entropy of training texture Tk
Htex entropy of entire training texture set
Hmodel model entropy
S shape instance
U texture U = (u1, . . . , uN ) of unseen dataset, that is currently overlapped from

the model
U ′ normalized texture U , i.e. mapped to s target bins
P (S) prior probability of shape instance S
P (U ′|S) likelihood of the observed normalized texture U ′, given the shape instance S
sd sampling distance
β downsampling factor
Mi trained ETM
moded(Mi) mode of intervertebral disk histogram in modelMi

modev(Mi) mode of vertebrae histogram in modelMi
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Bias Field Correction
Bk background image extracted from image Ik
Fk estimated bias field from image Ik
I∗k corrected image Ik
gi gray value of selected point i, whereby i = 1 . . . n
h (x, y; a1, . . . am) Function h, fitted to data points (x, y) with coefficients a1, . . . , am

Feature Detection and Labeling
II (x, y) integral image
∇Ix partial differentiation in x-direction
∇I ′x approximated partial derivative in x-direction, obtained by filtering
Gxy gradient magnitude of partial derivatives∇I ′x and ∇I ′y
Mx filter mask in x-direction
W number of resolution levels
Cw classifier C on resolution level w, whereby w ∈ {0 . . .W}
Φw
L detector for lumbar disks at resolution level w

Φw
T detector for thoracic disks at resolution level w
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CHAPTER 2
Medical Background

This chapter aims to give an introduction into the anatomy and pathologies of the human spine
and medical imaging techniques related to it. Section 2.1 describes the functionality and general
anatomy of the spinal column, as well as anatomical and possible pathological variations. Com-
monly used imaging techniques for the spine are explained in Section 2.2. Finally, Section 2.3
introduces MRI and its application on the spinal column.

2.1 The Spine

The spine (lat.: columna vertebralis), also called vertebral column or spinal column, is char-
acteristic for all vertebrate. It is located in the back of the torso and functions as support for
the torso. The spine is a bony chain of vertebrae, which is stabilized with ligaments and mus-
cles. The muscles enable movement of the torso. Soft cushions called intervertebral disks act as
ligaments between two adjacent vertebrae [17].

Besides supporting the torso and enabling movement of it, the spine has another important
task to fulfill. It protects the central nervous system in several ways: On one hand, the disks
enable elasticity and suspension of the vertebral column, which is important to protect the brain
from concussion. On the other hand, the chain of vertebrae forms the spinal canal, which holds
and protects the spinal cord [35], [17].

The vertebral column usually consists of 24 free vertebrae, which are connected by 23 inter-
vertebral disks. The spine is grouped in three main regions (from top to bottom): the cervical,
thoracic and lumbar spine. These parts are followed by two additional ones: the sacrum and
coccyx. The sacrum is a fusion of vertebrae, which is flexibly connected with the fifth lumbar
vertebra. The bottommost part of the spine is the coccyx. Its small, bony elements are a rudi-
ment of a tail. That is why this part is also called tailbone [17]. Table 2.1 and Figure 2.1 give an
overview about the regions described.

Different sizes and heights of vertebrae and intervertebral disks give the spine its typical
form (see lateral view in Figure 2.1). The cervical and lumbar region have an inward curvature,
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Figure 2.1: Anterior (from the front) and lateral (from the side) view of the spinal column. The
lateral view shows the characteristic curvature. Image from OpenStax [10].

the thoracic and sacral region an outward curvature. The inward curvature (concavity) is called
lordosis, while the outward curvature (convexity) is called kyphosis. The alternating order of
lordosis and kyphosis results in the double-S curvature of the vertebral column. This charac-
teristic provides elasticity and therefore helps to absorb pressure while walking, running and
jumping [17].

2.1.1 Vertebrae

Cervical, thoracic and lumbar vertebrae have the same structure in general, but show anatomical
variations, depending on their location in the spine. The typical structure of a vertebra is shown
in Figure 2.2: A vertebra has a vertebral body and a vertebral arch. The arch is formed from
the paired pedicles and the paired laminae. The pedicles extend from the body and the laminae
from the pedicles. The laminae fuse in the midline, where the spinous process originates. The
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Notation Latin Notation Body Area Number of Vertebrae Abbreviation
Cervical Vertebrae cervicales Neck 7 C1 - C7
Thoracic Vertebrae thoracales Chest 12 T1 - T12
Lumbar Vertebrae lumbales Low Back 5 L1 - L5

Sacrum Vertebrae sacrales /
Os sacrum

Pelvis 5 (fused) S1 - S5

Coccyx Os coccygis Tailbone 3-6 —

Table 2.1: The five parts of the human vertebral column.

Figure 2.2: Parts of a typical vertebra. Image from OpenStax [10].

arch and the posterior of the vertebral body bound the vertebral foramen. The foramen from all
vertebrae form the spinal canal, which holds and hence protects the spinal cord. Furthermore,
vertebrae have three paired processes, which originate from the vertebral arch: Two transverse
processes, two superior articular processes and two inferior articular processes. The superior
articular processes (facing upwards) and inferior articular processes (facing downwards) join
with the articular processes from adjacent vertebrae. The processes form joints and act as sites,
where muscles and ligaments connect and hence enable movement [17], [10].

The anatomy of vertebrae varies between the cervical, thoracic and lumbar body region.
The size of vertebrae increases from top to bottom (see Figure 2.1), since lumbar vertebrae
(see Figure 2.3) have to bear more weight than cervical vertebrae. Thoracic vertebrae (see
Figure 2.4) have additional facets for connection with the ribs. One facet is located on each
side of the body for articulation with the head of the rib. Another pair of facets is located at the
transverse processes. There the tubercle of the ribs connect via ligaments with the vertebrae.
Cervical vertebrae (see Figure 2.5) have two transverse foramen which give passage for the
vertebral artery, vein and nerves [17], [10], [35]. The topmost vertebrae C1 and C2 show other
variations, which are not explained within this thesis. Additional information can be found in
the literature [17].
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Figure 2.3: Lumbar vertebrae have a large, thick body and are characterized by a short spinous
process. Image from OpenStax [10].

Figure 2.4: Thoracic vertebrae have additional facets for connection with the ribs and a long
spinous process. Image from OpenStax [10].
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Figure 2.5: Cervical vertebrae are characterized by a small body and additional foramen, that
give passage e.g. for nerves. Image from OpenStax [10].

2.1.2 Intervertebral Disks

Intervertebral disks are soft cushions that lie between two adjacent vertebrae in the spine. They
make up 25% of the length of the vertebral column and are responsible for the natural double-S
curvature, due to their uneven thickness in sagittal direction [17], [19]. An intervertebral disk
consists of two parts (see Figure 2.6):

anulus fibrosus The fibrous ring on the outer side of the disk is built of 10-15 concentric layers
of collagen fibres. It protects the inner, softer part of the disk and prevents it from getting
pressed out.

nucleus pulposus The enclosed central portion of the disk is the actual cushion. It gets flatter
under pressure and distributes the pressure evenly to the whole disk. The fibrous ring
absorbs the pressure, rebounds, and brings the nucleus back in position. The nucleus
releases water under pressure, which results in a decline of the height of the vertebral
column up to 3 cm during the day. This process is reversible when lying down. The water
content of the nucleus is about 85-90% and decreases with advancing age [19]. This
structural change of the intervertebral disks can be observed with Magnetic Resonance
Imaging (see Section 2.3.3) .

2.1.3 Variations and Pathologies of the Spine

Besides natural anatomical variations, physiological and pathological variations of vertebrae,
disks and the whole spinal column can occur. Some are mentioned in the following.
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Figure 2.6: Lateral and superior view of an intervertebral disk, showing the embedding between
two adjacent vertebra (left) and the two parts of a disk (right). Image from OpenStax [10].

Especially in the lumbar spine, the number of vertebrae varies. Instead of fusing with the
sacrum, the first sacral vertebra may also develop a vertebral body and appear as sixth lumbar
vertebra, whereas the sacrum only consists of four fused vertebra. This phenomenon is called
lumbarization [17].

The fusion of two or more vertebra is called block vertebra. Several factors may cause block
vertebrae, like inherited or age-related reasons or development due to trauma. Block vertebrae
mainly occur in the cervical spine [17], [50].

Furthermore, vertebrae can suffer from osteoporosis. This common age-related disease re-
duces the density and strength of bones, which makes them prone to fractures. Osteoporosis
reduces the height of vertebrae and hence changes the curvature of the spine. This may lead for
example to an excessive kyphosis of the thoracic vertebral column [50], [35].

Another pathology regarding the curvature is scoliosis. A scoliotic spine shows an abnormal
lateral curvature, which is accompanied by twisting of the spine [50].

Narrowing of the spinal canal (i.e. the vertebral foramen), is called stenosis. It leads to
compression of the spinal cord and spinal nerves [50].

Intervertebral disks can suffer from disk herniation, which happens when the nucleus moves
into the outer fibrous rings. There are several stages, whereby in the worst case, parts of the
nucleus are completely pressed out of the intervertebral disk and the connection to the remaining
nucleus is lost [50].

2.2 Overview of Imaging Modalities for the Spine

In radiological diagnostics of the vertebral column, usually two radiographs are acquired first
(one in anterior-posterior direction, the second in lateral direction). Radiographic images are
created by casting X-rays from a beam onto the desired part of the body. Every tissue absorbs
and scatters the rays in a different way, depending on the thickness, density and the atomic
number of the underlying tissue. For dense tissues, the attenuation of X-rays is high and the
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appearance in the obtained image is bright (e.g. bones). Brightness decreases for soft tissues,
water, fat and air, with air appearing darkest in radiographs [50].

For further investigations and to support diagnosis in case of special diseases (e.g. herniated
disks or tumors), CT and MRI can be applied. In contrast to X-ray, which captures only a 2D
image, these two methods capture multiple slices of the examined body region. Therefore a 3D
reconstruction of the region is possible, which provides a better insight [50].

CT is also based on X-rays. The patient lies on the back on a desk and is put into a tube,
where a 360◦ rotating beam casts the X-rays onto the desired body parts. A series of transverse
slices is obtained, which results in a 3D dataset. The reconstructed images show the attenuation
coefficients of the tissues. In order to compare different tissues in CT scans and overcome the
indifferences caused by the radiation energy, Hounsfield Units (HU) are introduced [50]. The
Hounsfield scale normalizes the attenuation coefficients of tissues, based on the attenuation of
water and air. Air maps to -1000 HU and water to 0 HU. The range of the Hounsfield scale
usually lies between -1000 and 3000 HU. While air, fat, water and bones are significantly dif-
ferent in CT scans, the contrast for soft tissues is very poor as they lie within a small Hounsfield
range [58].

The main disadvantage of X-ray and CT imaging is the exposure of the body to radiation.
The amount of radiation is indicated by the effective dose. It describes the biological effect
of ionizing radiation and takes the radiation sensitivity of organs into account. The unit of a
radiation dose, e.g. the effective dose, is Sievert (Sv). The effective dose for an examination of
the spine ranges from 0.09 - 1.8 mSv for X-rays (in two directions) and from 3 - 10 mSv for CT
scans (depending on the examined spinal region). In comparison, humans are normally exposed
to a radiation of 2.1 mSv per year in their natural environment [50].

2.3 Magnetic Resonance Imaging

In contrast to X-ray and CT, MRI is not based on radiation. It rather uses a property of the
nucleus (i.e. of protons and neutrons) of an atom, which is called spin. This spin is an angular
momentum, which can be observed and is the basis of MRI (see detailed in Section 2.3.1).

MRI has several advantages over CT. It provides the best contrast for soft tissues and is the
method preferred for the locomotor system (except bones) and bone marrow. It is very important
for examining the central nervous system (i.e. the brain and spinal cord) and intervertebral
disks [50]. Furthermore, it is possible to acquire images in arbitrary directions, e.g. coronal
or sagittal images (see Section 2.3.1). Probably the main advantage of MRI is the absence of
ionizing radiation. However, problems can occur because of the strong magnetic field, e.g. with
electronic implants like pacemakers or magnetizable metallic objects. Another disadvantage are
artifacts, that occur during image acquisition due to the relatively long examination time and the
complex imaging technique [58], [50]. Possible reasons for artifacts are:

• movement of the patient

• flow artifacts due to blood flow
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• extinction or distortion of the signal caused by local magnetic field inhomogeneities

• signal interference

• chemical-shift-artifacts, which appear at boundaries between fat and water

Changes in the acquisition technique and averaging over multiple acquisitions can reduce
movement artifacts. Also clarification with the patient is important in order to reduce movement
[8].

2.3.1 Image Acquisition

In MRI the spin of nuclei is the basis for imaging, as mentioned in the previous section. Usually,
the nucleus of hydrogen (which consists only of one proton) is used, because hydrogen is very
abundant in the human body [58], [65]. When acquiring an MR scan, the patient is also put into
a tube as in CT imaging. In case of MRI, the scanner produces a strong, longitudinal magnetic
field. The strength of the field is measured in Tesla (T). Imaging devices nowadays operate with
a strength of 1 T to 3 T for human full body scans [58]. The obtained magnetic field aligns the
spin of the nuclei of all atoms of the body to the external field. This is the resting state, where
the examination starts from. In order to produce measurable resonance, a perpendicular high
frequency (HF) signal is switched on, which leads to the excitation of the protons. The spins of
excited atoms are projected into the xy-plane (in a certain flip angle), which is orthogonal to the
outer magnetic field B0. When the HF signal is switched off, the protons (i.e. the spins) start
returning to their resting state (see Figure 2.7). This process is called relaxation. The relaxation
consists of a simultaneous longitudinal and transverse relaxation. They are described by the
tissue-dependent time constants T1 and T2 [19], [58]:

Longitudinal relaxation and T1 time The longitudinal relaxation is finished, when all spins
are aligned to the magnetic field of the MRI scanner again, i.e. when the magnetization
Mz is restored (see Figure 2.7). The time constant for this exponential process is given by
the T1 time and lies between 300 - 2000 ms, depending on the tissue.

Transverse relaxation and T2 time The spins of the protons induce individual magnetic fields.
Right when the HF signal is turned off, all spins are in phase and give the maximum signal
in transverse direction Mxy. With the proceeding of time, the protons dephase and the
signal decreases (see Figure 2.7). The T2 time describes the exponential decay of the
transverse magnetization Mxy towards its initial state. It lies between 30 - 150 ms and is
as the T1 a tissue-dependent constant.

In order to generate images out of the produced magnetic resonance signal, additional gra-
dient fields (x-, y- and z gradients) are needed. Before the HF signal is switched on, a gradient
field in the direction of the outer magnetic field is applied. The spin frequency of the protons
depends on the location in the gradient field. When applying the HF signal, only the protons are
excited whose spin frequencies correspond to the frequency of the HF signal. This process is
called slice selection. By overlying additional gradient fields in xy-direction, the location of the
protons within the slice is determined. These gradient fields are not necessarily perpendicular

14



Figure 2.7: The HF signal causes the spin of the nuclei to flip in the xy-direction (top row).
When the signal is switched off, the observed signal decreases faster than the longitudinal mag-
netization is restored (bottom row). The corresponding restoration of the spins z-magnetization
is shown in the top row. Image from Toennis [58].

to the longitudinal magnetic field of the scanner. They can be generated in arbitrary directions,
which enables imaging in any preferred direction.

In order to suppress noise in the obtained scan, multiple excitations are performed and the
obtained signal is averaged. Multiple consecutive HF impulses are called sequence or pulse
sequence (see below). The time between two excitations, i.e. the time between two consecutive
HF pulses applied to the same slice, is called repetition time (TR). The echo time (TE) describes
the time between excitation and echo of the signal. In contrast to the T1 and T2 time, TR and TE
are tissue independent measurement parameters. They can be reset by the operator for every new
acquisition. These parameters influence the image contrast, which will be explained in Section
2.3.2.

As mentioned, predefined settings of the measurement parameters are denoted as sequences.
They influence the image contrast, acquisition time and hence image quality. A commonly
used sequence is the spin-echo sequence (SE), which provides the best tissue contrast and is not
prone to inhomogeneities of the magnetic field. Disadvantageous is the relatively long exami-
nation time. The fast-spin echo (FSE) or turbo-spin echo (TSE) sequence and the gradient-echo
(GE, GR) sequence provide faster acqusition. However, the tissue contrast is lower within these
sequences and more artifacts are present [50]. Details on these sequences and others can be
found in the literature [65], [43].

2.3.2 Image Contrast

The image contrast in MR scans is subject to tissue-dependent parameters (T1, T2 and proton
density), but also to sequence parameters (TE, TR) and the sequence type (SE, GE, TSE, etc.).
Tissue-dependent parameters define the weighting of the image: In T1w and T2w images the
image contrast originates mainly from the T1 and T2 relaxation times, respectively. Whereby
the echo time controls the T1 contrast, the repetition time is responsible for the T2 contrast. In
proton density (PD) weighted images, the PD of the tissues defines the appearance [50]. Unlike
within CT, a normalized scale does not exist [58]:
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T1-weighting (T1w) In T1w scans, the intensity of the tissues is determined by their T1 time.
The data is acquired with a short TR and TE [50]. A short TR interval (400 - 800 ms in
practice) is necessary so the T1 relaxation is not yet over within the TR interval. In order
to suppress T2 influences, a short TE is required, usually below 25 ms. Tissues with a
long T1 time appear dark, whereas tissues with short T1 time have a brighter appearance
(see T1w scan in Figure 2.8). Water for instance is very dark, because it has the longest
T1 time. Fat has the shortest T1 time and is therefore very bright [19].

T2-weighting (T2w) In T2w scans, the image contrast originates from the T2 time of the tis-
sues. Contrary to T1w images, a long TR and TE are characteristic for T2w scans [50].
To minimize the T1 influences in T2w images, the T1 relaxation has to finish completely.
Tissues with long T2 time appear brighter than tissues with short T2 relaxation time (see
T2w scan in Figure 2.8). Water has the longest T2 time and hence is very bright. For
good contrast in T2w images, a TE about 70 - 150 ms and a TR above 2500 ms is used in
practice [19].

PD-weighting (PDw) In PDw scans, tissues with high PD appear bright (e.g. water). Tissues
with low PD appear dark in the image (e.g. bones and air). PDw scans are acquired with
a long TR and short TE. The T1 and T2 times of the tissues have almost no influence on
the image contrast [50].

Figure 2.8: T1w (left) and T2w (right) image of the lumbar vertebral column. Images from
Dataset VOLUMEMERGIX by OsiriX [46].

2.3.3 MRI on the Vertebral Column

In the general MRI acquisition pipeline, a low resolution scout scan (also referred to as survey
dataset) is acquired first. This sparse scan usually consists only of a few slices in sagittal and
coronal direction [16]. It is necessary for the operator in order to plan the follow-up diagnostic
scan. He determines the scan geometries, such as field-of-view and angulation [47]. In this
way, he decides on preferred image planes (regarding the orientation) for diagnosis. For regions
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of interest, e.g. for vertebrae showing fractures or herniated disks, additional image data can be
acquired. Since the planning of scans depends greatly on the experience and skill of the operator,
there are methods towards automatic planning of follow-up scans on the spinal column [16], [47]
(see Sections 3.2 and 3.4).

Besides the scan geometries, one has to decide also on the measurement parameters. As
reviewed in the previous sections, they are used to control the image contrast. The different
contrasts T1w, T2w and PDw provide insight into different medical problem statements. When
it comes to imaging the vertebral column, T1w scans are suitable for examining bone marrow
and T2w images for the spinal cord, spinal canal and intervertebral disks. Pathologies like
tumors and inflammations exhibit a high signal in T2w scans, due to the increased amount of
liquid within this tissues [50].

Not only pathological variations, but also physiological, age-related changes of the structure
of the spine are visible in MR images. T1w scans show a steady increase of the signal intensity
of bone marrow with advancing age, whereas the appearance of disks remains constant. The
intensity of intervertebral disks decreases in T2w scans, due to the age-related dehydration of
the disks [8] (see Figure 2.9). The evolution of the spinal column from childhood to advanced
age is depicted in Figure 2.10 on T1w and T2w MR scans.

Figure 2.9: Schematic illustration of changing signal intensities of intervertebral disks and bone
marrow with advancing age in T1w (top row) and T2w (bottom row) MR scans. Image from
Breitenseher [8].
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(a) T1w (left) and T2w scan (right) of a 1 year old child. The T1w image shows, that the intensity of
vertebrae is slightly higher than the signal of disks. In the thoracic spine, the distinction between disks
and vertebrae is difficult. The T2w scan provides a high signal intensity of the disks nucleus. Due to the
dark signal of the fibrous ring, disks discriminate very good from vertebrae.

(b) Physiological T1w (left) and T2w scan
(right) of a 40 year old man. Vertebrae
show a higher signal than disks in T1w
images. The nucleus and vertebrae show
a medium signal, whereby the fibrous ring
appears darker in T2w scans.

(c) T2w scan of a 62 year
old man. The image shows
a reduced signal intensity
of the disks due to age-
related dehydration.

Figure 2.10: Changing signal intensities of intervertebral disks and vertebrae with advancing
age. Image from Forsting et al. [19].
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CHAPTER 3
Related Work

In general, spine labeling algorithms can be reviewed and categorized in terms of different cri-
teria. Depending on the built-up of the method, different aspects should be kept in mind when
reviewing such algorithms. Possible categories are listed in the following:

Data As mentioned in Section 2.3, MR data shows high variability depending on the acquisition
protocol used. Several approaches focus on low resolution scout images, especially the
ones which aim for automated scan planning. Furthermore, one can distinguish between
the image contrast (e.g. T1w or T2w), as well as between 2D and 3D acquisition.

Preprocessing For the present intensity inhomogeneity fields, different correction algorithms
exist. The correction is performed either during acquisition or afterwards by means of,
e.g. segmentation or filtering [62]. There are also methods which go one step further and
cope with the problem of varying intensities across different MRI acquisition sequences.

2D vs. 3D methods Many approaches apply 3D segmentation and feature detection algorithms
on the data. Other methods rather work on a selected sagittal slice and aim to detect the
region or landmark of interest in a 2D manner.

Automation In the literature, semi- and fully automatic segmentation, localization and label-
ing techniques are present. Semi-automatic methods require user interaction to a certain
extent. That means for example, the selection of the “best slice“ (i.e. were disks or verte-
brae are visible best) or one or more initial clicks. Fully automatic algorithms manage to
perform without any input from a user.

Localization vs. segmentation Many approaches roughly localize the region of interest,
whereby others provide a full segmentation of the intervertebral disks or vertebrae be-
fore labeling.

Model-driven vs. data-driven methods Another possible differentiation is the usage of
anatomical knowledge within the algorithm. Model-driven approaches learn from a train-
ing set and incorporate anatomical knowledge in the learned model, which is then applied
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on unseen data. On the other hand, data-driven methods integrate hardly any knowledge
about the underlying anatomy. They infer the required information from the target data
and are usually not based on machine learning [38].

From this list of criteria two are chosen as outline for the following chapter, namely prepro-
cessing and 2D vs. 3D labeling methods. Section 3.1 gives a short overview about preprocessing
approaches, which are detailed in the following chapter. Section 3.2 and Section 3.3 review 2D
and 3D state-of-the-art techniques regarding detection, localization, segmentation and labeling
of the spinal anatomy, respectively. The focus hereby lies on intervertebral disk localization and
labeling on MR data, since it is also the main goal of this thesis. Statements regarding other
criteria, such as the dimensionality of the data and automation, are also made for the algorithms
mentioned. Finally, alternative approaches to intervertebral disk localization and labeling are
presented in Section 3.4. These methods rather focus on full segmentation, vertebrae detection
or non-machine-learning techniques. Section 3.5 concludes the related work and motivates the
proposed approach.

3.1 Preprocessing Methods

Various methods exist to enhance MR data, especially when it comes to reducing intensity inho-
mogeneities. Vovk et al. [62], Belaroussi et al. [5] and Hou [27] reviewed several methods for
correcting those. Due to inhomogeneities of the magnetic field and non-uniformities in the radio
frequency, the same tissues (e.g. disks) do not exhibit the same intensity in an image. The ap-
pearance of the tissue rather depends on the location in the image. The intensity inhomogeneities
(also referred to as bias field, gain field or intensity non-uniformity in the literature [27]) appear
as shadow in the border region of the acquired MR scan (see Figure 3.1).

Figure 3.1: MR image of a brain with intensity inhomogeneities. Image from Vovk et al. [62].

A fast, retrospective, histogram-based correction method is presented by Nyúl et al. [45].
They try to overcome the intensity inhomogeneities by learning parameters for a standardized
histogram in a way that the same tissues in the same body region acquired with the same MRI
protocol have the same intensity. Parameters are learned from training data to obtain a standard-
ized transformation. They adjust new images so that the histogram is mapped onto the standard-
ized histogram. The authors state, that the histograms are either unimodal or bimodal and the
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same body regions have the same type of histogram. They tested their method on T1w and T2w
images (FSE and GE sequences). The acquired studies cover brain and foot data. This approach
is similar to the proposed entropy-based method from Zambal et al. [67] (see Section 4.1.2). The
difference is, that Nyúl et al. [45] learn a standardized histogram for each protocol-body-region
group and the method from Zambal et al. [67] works across different MRI protocols and even
modalities with only one trained model.

For correcting the bias field, a surface fitting approach proposed by Juntu et al. [31] is in-
tegrated in this work. The authors extract a background image from the scan and fit a surface
to it. The obtained function describes the inhomogeneity field, which is then removed from the
original scan. On top of the bias field removal, the method from Zambal et al. [67] is used for
normalization of the different MR scans (T1w, T2w). The outcome of this step is a standardized
intensity scale.

3.2 Two-dimensional Spine Labeling Approaches

Peng et al. [48] are among the first who addressed automated whole spine analysis on MR data.
Within their survey, they propose a method for fully automatic disk localization and vertebrae
segmentation on sagittal images. First they localize the best slice, i.e. the one with the most visi-
ble intervertebral disks. The best slice is obtained as follows: By convolving all slices separately
with a predefined disk model, they find disk clue points, which are used to fit a polynomial. The
extracted intensity profile along the fitted polynomial shows possible disk centers (i.e. local
peaks in the profile) and vertebrae locations (local minima). The variation of the height of ver-
tebrae is calculated and the slice with minimum variation is selected as best slice. Starting from
one disk clue position, the disk center positions are refined by incorporating knowledge about
approximate shape and size of disks and vertebrae. A large distance between two intervertebral
disks is interpreted as a missing disk, which is then searched in adjacent slices. This is the case
when dealing with scoliotic spine images, for instance. Finally the boundaries of the vertebral
bodies are extracted. Edge points are detected with the Canny edge operator and refined. They
tested their method only on five MR scans, where they detect 100% of disk locations and be-
tween 87.5% and 100% of vertebrae corners of the whole spine. The scans have seven sagittal
slices each and were acquired on 1.5 T scanners. The authors did not state further details about
the data.

Pekar et al. [47] developed a labeling approach for automated MRI scan planning. As men-
tioned in Section 1.1, an operator is responsible for a correct and consistent parameter setting
of the acquisition. The goal of automated planning tools is to derive the acquisition parame-
ters automatically from the low resolution scout scan. Therefore a robust labeling of the spinal
anatomy is needed. Since the labeling is performed on scout scans, this approach is one step be-
yond the afore-mentioned work from Peng et al. [48]. They work on already existing diagnostic
scans. Pekar et al. [47] extract disk candidates from 2D sagittal slices by detecting approxi-
mately horizontal lines. The centers of mass of the detected structures represent potential disk
centers. Progressive search is performed from the determined starting point (topmost candidate
position in lumbar scans and bottommost candidate in cervical scans) by looking in defined dis-
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tances from the last found disk for the next disk center. In case of missing points, artificial disk
centers are inserted and the search continues from there. For the automated scan planning, the
detected landmarks are used to find correlations with manually defined plan sets. The goal is to
find a suitable mid-sagittal plane and planned vertebrae and discs, where transverse slices will
be obtained. They evaluated their method on lumbar and cervical scout scans. The 3D T1w
FFE (Fast-Field Echo) scans were all acquired on a 1.5 T Philips scanner with the same field-
of-view and voxel size. The labeling is correct in 29/30 cases for the cervical scans and 25/30
cases for the lumbar area. The overall processing time for anatomy detection and scan geometry
planning is 6 s.

Corso et al. [15] propose a two-level probabilistic model for intervertebral disk localization
and labeling of lumbar MR scans. They aim to overcome the problematic intensity variations
in disks and hence increase robustness with their method. The first level models low level pixel
information, such as the local disk appearance (i.e. the intensity). The spatial information is
also incorporated by assuming an elliptic shape for the intervertebral disks. The second level
adds high-level information to the model, i.e. geometric and contextual knowledge of all lum-
bar disks. The expected location of disk centers and distances between neighboring disks are
taken into account. The local disk intensity models, disk distance distributions, and so forth are
learned from labeled training data. The optimum solution for the labeling problem is determined
by means of the generalized expectation maximization algorithm. They tested their method on
20 T2w scans from healthy patients, acquired on a 3 T Philips Scanner. From these scans, they
extracted the four middle slices, which resulted in 80 2D images in total. They evaluated their
method with leave-two-out cross validation. Every cross validation round two datasets (8 slices)
are left for testing and the remaining 72 slices are used for training. The labeling accuracy
reached is 96.2%.

Alomari et al. [2] continued the work from Corso et al. [15] and added also abnormal cases
to their model. They extended their dataset to 105 cases, now including subjects with various
disk abnormalities and patients of different age and height. They report, that it is not necessary
to train a separate model for normal and abnormal cases. When using different training and
testing sets, they achieve an accuracy of about 90 % for training and testing set (87% when
using only abnormal cases). This proves the robustness of their method and shows that they did
not overfit their model. They work an T2w SPIR (Spectral Presaturation Inversion Recovery)
images, where intervertebral disks discriminate very good from other anatomical structures.

3.3 Three-dimensional Spine Labeling Approaches

Schmidt et al. [52] propose a parts-based probabilistic graphical model for locating and label-
ing the spine. It models the local appearance of the disks and also the relative location of disk
pairs. Candidate points of the local parts (i.e. the disks) are detected by a set of randomized
tree classifiers, which are learned from the training data. The most probable locations of these
candidates are then determined to find the global-optimum configuration of parts. This is per-
formed with the A∗ algorithm. The algorithm is trained and tested on 3D T1w FFE MR full
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spine scout scans, acquired on one scanner. The disks appear usually bright whereas vertebrae
give no signal. The dataset covers inhomogeneities due to the magnetic field and also fractures.
The method proposed can cope with missing parts, but fails if the geometry of detected parts is
not covered by the training data (e.g. severe fractures). The authors report an average ground
truth distance of 7.8 mm for novel data.

Kelm et al. [32] propose a learning-based approach, which they trained on MR and CT
data alike. First they roughly localize the cervical, thoracic and lumbar part of the vertebral
column with the Marginal Space Learning (MSL) approach, proposed by Zheng et al. [68]. This
algorithm is designed to find a specific object within a volume, e.g. a landmark or organ. MSL
does not search the whole nine dimensional parameter space (three position, three orientation
and three scale parameters) at once. The algorithm stepwise determines position, orientation
and scale parameters after another by following only the most promising candidate detections
from each step (see Figure 3.2). For determining intervertebral disk candidates, the authors
extended MSL and formulate an iterated approach, because they aim to find multiple objects
of the same type (i.e. the disks) within the localized spinal parts. The basic MSL method
and the iterative extension are shown in Figure 3.2. Haar-like features and boosting trees are
applied as position detectors, which are also used in this thesis. Selecting and labeling of the
disk candidates is performed by matching a global probabilistic spine model through solving a
maximum a-posteriori optimization problem. As last (optional) step, detailed segmentation is
performed with the estimated position, orientation and scale of the disk landmarks. A patient-
adaptive segmentation approach based on graph cuts [7] is applied, which is able to adapt to the
current underlying data. Fore- and background models are obtained on-the-fly during processing
and not beforehand from training data, which makes the segmentation very robust. Segmentation
is provided for intervertebral disks and vertebrae on MR and CT data, respectively.

Figure 3.2: The original MSL algorithm (in black) and the iterative extension (in blue). Image
from Kelm et al. [32].

The evaluation was carried out on full spine MR datasets, acquired on two different scanners
from healthy patients. They used a T1w VIBE (Volume Interpolated Breath Hold) sequence,
which provides real 3D GE data with Fourier interpolation. Advantages over 2D GE sequences
are a higher signal-to-noise ratio, thinner slices and no gaps between slices, due to the 3D acqui-
sition [43]. Artifacts and intensity inhomogeneities were present in the data, but no correction
algorithm was applied. The overall processing time is 11.5 s on average and the detection of
disks yields a sensitivity of 98.6% and only 0.073 false positive detections per volume. The
accuracy is also very high, with an average position error of only 2.42 mm. However, their
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approach cannot deal with scans with varying scan ranges. The algorithm needs external infor-
mation, provided by a user or an automatic scan range detector [32].

3.4 Alternative Approaches

Apart from the reviewed spine labeling algorithms, this section reviews methods based on seg-
mentation, non-machine-learning approaches, or algorithms that focus on vertebrae detection
first.

Dong et al. [16] also build a graphical model, similar to Schmidt et al. [52], Corso et al. [15],
and Alomari et al. [2], but aim for detecting vertebrae first. Furthermore, the detection of the ver-
tebrae and disks is replaced by a non-machine-learning approach. Hence no training is required,
but constraints and assumptions are added to the graphical model. Also more input from the
user is required as initialization. One has to select a sagittal slice, where all vertebrae are visible
and pick the center of the first and last visible vertebra, which makes the method rather hard to
use. The detected vertebral bodies are the initialization for the intervertebral disk detection. By
means of particle filtering, disks are detected between vertebral bodies on sagittal slices. With
this detection result, the nearest coronal slice showing the disk can be determined and the 3D
geometrical information (center, orientation, and so forth) is derived. The authors also aim for
automated scan planning and therefore deal with scout scans as input data. They focus on data
from the lumbar and thoracic body region. With an execution time of 1 s per disk and a mean
error of 5 mm (distance-to-disk-center) and 5◦ (disk plane orientation), the results are acceptable
for scan planning.

Neubert et al. [42] propose a fully automatic segmentation technique using 3D statistical
shape models. They only segment the lower spine, but do not perform labeling. Meshes are
generated from the manually segmented disks and vertebrae with the marching cubes algorithm.
After finding corresponding points between the triangulated meshes, they get procrustes aligned
and a mean shape is computed, i.e. the mean position of every corresponding point. By means
of eigenanalysis, each shape - and also new shapes - can be described by the mean shape and
a weighted sum of eigenvectors (i.e. the modes of variation). The statistical shape model de-
scribes then the mean shape and its possible variations in each corresponding point. Every
shape in the database is described with this model and 1D intensity profiles for every surface
point on a shape are extracted. When segmenting a new MR scan, first the 3D spine curve is
located. They use an enhanced, automated approach of the curved planar reformation method
proposed by Vrtovec et al. [63]. The approximate disk and vertebrae centers are determined by
analysing the intensity profile along the extracted curve. These points are used as initialization
for the statistical shape models. The extracted intensity profiles from the mesh surfaces guide the
shape deformation during the segmentation process. Their method is evaluated on three different
datasets, having six scans each: T1w lumbar scans, 3D T2w lumbar scans and 3D T2w thoracic
scans. The 3D datasets are acquired with the SPACE (Sampling Perfection with Application
optimized Contrasts using different flip angle Evolution) sequence, which exhibits a very high
resolution - similar to CT. The sagittal in-plane resolution is 0.34 mm and the slice thickness is
1 mm - 1.2 mm. The similarity between the manually segmented structures and the automated
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segmentation is described by the dice similarity measure. The authors state a mean similarity of
0.83 for the T1w scans and 0.85 - 0.87 for the 3D datasets. However, they have to derive six 3D
statistical shape models, in order to be able to deal with the variability within the data: one for
intervertebral disks and one for vertebrae for each of the three datasets.

Neubert et al. [41] evaluated their approach also on another dataset consisting only of T2w
3D SPACE scans of the lumbar and thoracic vertebral column. They derive twelve statistical
shape models: two for lumbar and thoracic disks and ten for the vertebrae T8 to L5, due to
the high shape variability of vertebrae. They report a mean dice similarity measure of 0.89 for
intervertebral disks and 0.91 for vertebrae. However, with an average segmentation time of 26 s
for one intervertebral disk and 21 s for one vertebrae, the proposed algorithm is rather slow.
Since their algorithm is currently single-threaded, there is some room for improvement of the
processing time, e.g. by parallelization of profile matching.

Lootus et al. [36] introduce a pipeline for automatic detection of labeled bounding boxes
around vertebral bodies. Their algorithm works in 2D and processes every sagittal slice from
a stack of slices individually. The authors train two feature detectors (vertebrae bodies and
sacrum) for the detection of bounding boxes around the anatomy (based on the Deformable
Parts Model framework [18]). For training, 2D patches showing single vertebrae are extracted
and Histogram of Oriented Gradients features are calculated from the patches. On an unseen
dataset, the feature detectors provide bounding boxes (around vertebrae and the sacrum) on
every sagittal slice. With non-maxima suppression, false positive detections are eliminated and
the remaining bounding boxes are fed into a graphical model which delivers the final labeled
bounding boxes. The method is trained and tested on lumbar T2w scans. The authors yield
a correct identification rate of 84.1% for all vertebrae, with a mean vertebra body center error
of 3.3 mm ± 3.2 mm. Overall processing time is less than a minute. The method can cope
with pathologies, such as scoliosis and deformed vertebrae or disks. It is robust against imaging
artifacts and also intensity variations. The authors claim that it is applicable to CT data without
retraining. This makes it interesting for multi modal feature detection. However, the authors
do not state the performance on T1w scans, which exhibit usually a lower edge contrast as T2w
scans.

3.5 Conclusion

The reported state-of-the art semi- and fully automatic spine labeling approaches on MR datasets
focus on a specific type of dataset instead of dealing with scans from different protocols.

Corso et al. [15] and Alomari et al. [2] trained a two-level probabilistic model on lumbar
T2w scans. They were acquired on a single scanner.

Schmidt et al. [52] and Pekar et al. [47] proposed spine labeling on T1w scout scans, which
were also acquired on one scanner. The latter report that all datasets exhibit the same voxel size.

Kelm et al. [32] propose an iterated MSL algorithm on real 3D T1w scans. These scans
exhibit a high resolution and a high signal-to-noise ratio.

25



Neubert et al. [42], [41] present fully automatic segmentation of the spinal anatomy with
statistical shape models. They report results on T1w and T2w scans. However, they need to
train two separate models in order to process both kinds of data.

Lootus et al. [36] report that their algorithm was trained on T2w MR scans and is applicable
without retraining to CT data. However, they do not state the performance on T1w MR scans
which exhibits usually a lower edge contrast than T2w scans.

Nyúl et al. [45] presented an approach, which is somehow similar to the integrated method
from Zambal et al. [67]. Their method tries to overcome intensity variations within one MR
protocol by standardizing the intensity scale with a histogram-based approach. They tested their
method on T1w and T2w scans, whereby they have to learn two standardized histogram, one for
each protocol.

The goal of this thesis is to train only one model which captures the variability within T1w
and T2w scans even across different MR scanners. The datasets are normalized to a reduced
intensity scale with the learned model where disk detection is performed. The advantage is, that
both types of scans can be processed without retraining or knowing, which type of dataset is
currently processed. To the best of our knowledge, this approach is new within the field of MR
spine labeling.
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CHAPTER 4
Methods

This chapter aims at giving a detailed overview to existing methods, which will be integrated
in our semi-automatic spine labeling pipeline proposed in Chapter 5. The presented litera-
ture is grouped into two main parts: data preprocessing and normalization and feature extrac-
tion. Section 4.1 introduces methods for preprocessing and normalizing MR scans. Within this
scope, a noise correction method and Entropy-optimized Texture Models (ETMs) are reviewed.
Section 4.2 gives an overview of low- and high-level feature extraction techniques. Haar-like
features, image gradients, Probabilistic Boosting Trees (PBTs) and an extension of PBTs are
detailed.

4.1 Data Preprocessing and Normalization

Many techniques for preprocessing and enhancing of CT data can be applied to MR data as well.
However, the differences within MR scans have to be kept in mind when applying contrast en-
hancement, noise removal or similar techniques [58]. Especially intensity inhomogeneities (see
Section 3.1) complicate preprocessing methods and image processing tasks in general [27]. The
presence of such intensity inhomogeneities motivates the application of correction algorithms.
In general, several methods exist for reducing intensity inhomogeneities. They are split into
prospective and retrospective methods:

Prospective correction techniques are applied during the acquisition process. This group of
methods tries to minimize the inhomogeneities by acquiring additional images with dif-
ferent coils or by merging imaging information from several coils. Special sequences may
also be derived. These methods increase the acquisition time (due to additional measure-
ments) and require extra hardware, which is unfavorable [62].

Retrospective algorithms on the other hand correct the MR data after the acquisition and
hence overcome the afore-mentioned disadvantages. One group of these methods esti-
mates the bias field by fitting a surface to image features containing information about
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the inhomogeneity. The smooth surfaces are represented by splines or polynomial func-
tions. The group of filtering algorithms assumes, that the inhomogeneities are present as a
low-frequency noise in the image, which can be eliminated by low-pass or homomorphic
filtering. Statistical methods assume that the bias field follows certain distributions, such
as the Gaussian distribution [62], [27].

In the following, two approaches for preprocessing and data normalization are introduced:

• Juntu et al. [31] proposed an approach for the correction of a bias field in MR images,
which is detailed in Section 4.1.1.

• Zambal et al. [67] presented ETMs, which reduce the intensity scale of the images to
a standardized scale. Their texture model is based on entropy terms and can cope with
images from different modalities. Section 4.1.2 provides a detailed overview about their
work.

4.1.1 Bias Field Correction

In general, the intensity inhomogeneity field is present as a smooth, low frequency signal in the
MR scan [27]. Usually it is not problematic for a reliable medical diagnosis, but it negatively
influences the accuracy of image processing algorithms, e.g. segmentation tasks. The signal
blurs the images and reduces high frequency content (for example edges) in the border region of
the scans. Hence the intensity values change, which results in different intensities of the same
tissue within an image (i.e. within a slice). This suggests to include a correction algorithm, with
the goal to eliminate illumination variations before further processing. Juntu et al. [31] describe
a parametric surface fitting approach for removal of intensity inhomogeneities, which does not
need machine learning in advance. The main steps of the method are described in the following:

Extraction of Background Region A 2D image Ik showing illumination variations can be
corrected by dividing it with an image estimating these variations (across the entire image) [31].
This image is referred to as background image. The 2D background image Bk is extracted
by low-pass filtering, i.e. by convolving the original image Ik with a large Gaussian kernel.
Formally

Bk = Ik ∗ κ, (4.1)

whereby κ denotes the Gaussian kernel, which has a size of about 2/3 of the size of the image
Ik [31].

Surface Fitting In order to get a smoother estimate of the illumination variation, a surface is
fitted to the background image. This surface is then used for correction. From the background
imageBk, n data points are selected from a region where the MR signal intensity is not very low.
Low signal intensity regions appear black in the images, as reviewed in Section 2.3.3. This is
recommended, since this regions do not show a bias field, according to Juntu et al. [31]. For ev-
ery selected point (xi, yi) , i = 1 . . . n, its corresponding gray value gi is extracted. The authors
propose to apply the Levenberg Marquardt algorithm for fitting a function h (x, y; a1, . . . , am)
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to the selected data points, whereby a1 . . . am refer to the coefficients of h. As objective func-
tion, the method of nonlinear least squares is used. For details on the optimization with the
Levenberg Marquardt algorithm, we refer to the work of Juntu et al. [31]. With the obtained
function h (x, y; a1, . . . , am), a 2D bias field Fk having the same size as the underlying image
Ik is generated.

Removal of Estimated Bias Field Finally, the original image Ik is divided by the estimated
bias field Fk, formally:

I∗k =
Ik
Fk
, (4.2)

Advantageous to this method is, that it is only based on the current underlying data. Hence no
learning phase is needed beforehand. Just the type of the surface has do be defined in advance,
e.g. a quadratic or polynomial surface, a 2D spline, etc. The authors [31] propose to prefer
simple surfaces (such as low order polynomials) over more complex surfaces, since they are
smooth and enable simple parameter estimation. Also non-parametric surfaces using, e.g. neural
networks, can be fitted to the data points.

4.1.2 Entropy-Optimized Texture Models

ETMs were introduced by Zambal et al. [67] as an extension of Active Appearance Models
(AAMs) [11] and hence Active Shape Models (ASMs) [12]. All three approaches aim at matching
shapes and objects. While they have the same representation of shape, the handling of texture
differs. In the following, the basics of statistical models of shape and texture are outlined in
Section 4.1.2.1. Furthermore the limitations of ASMs and AAMs are shown, which motivate the
approach from Zambal et al. [67]. Building of their entropy-based texture model and matching
of unseen data with it are described in Section 4.1.2.2 and Section 4.1.2.3, respectively.

4.1.2.1 ASMs and AAMs – Basics and Limitations

When building a shape model for a specific object, manually placed landmarks at the boundaries
of the object of interest are needed. They delineate the object and are necessary to ensure corre-
spondence across the training images. Landmarks are further used to align the shapes and derive
a mean shape. The variation within the training dataset is described by their principal compo-
nents (also called eigenvectors), which are determined through Principal Component Analysis
(PCA). PCA reduces the dimensionality of the underlying data to dimensions which exhibit the
highest variance within the data. The first eigenvector points into the direction of the highest
variance. All other eigenvectors are orthogonal to this eigenvector [30]. Every training data
shape and also new shapes can be described by the mean shape and a linear combination of the
main modes of variation, i.e. the main principal components [12].

In ASMs, local statistical models describe the varying appearance around landmarks. For
each landmark such a model is built separately. They guide the shape model matching in order
to find the correct object boundary. As the shape model, these models are described by PCA
[12], [54].
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AAMs extend the texture representation from ASMs and incorporate not only local appear-
ances at the landmark positions. The model covers the full texture, that lies within the convex
hull spanned by the landmarks [11]. In order to extract the texture for the texture model in a
consistent way, the training images are mapped onto the mean shape. This way, a “shape-free“
representation is obtained, which is raster scanned into a texture vector (for every mapped train-
ing image). From these vectors, the texture model is built with PCA. Both models are combined
into a single model by learning the correlation between shape and texture [11].

AAMs provide a fast, accurate and robust solution for matching shape and texture simulta-
neously [11]. However, Zambal et al. [67] review some aspects of the texture model and image
matching in general, that inspired their approach, which also apply for this work:

• For the datasets observed by the authors, texture eigenvalues decrease much slower than
shape eigenvalues. Hence, PCA may not be the optimal choice for modeling texture. One
of the datasets mentioned in their work covers different MRI protocols (including T1w and
T2w scans), which is also the case for the datasets evaluated in this thesis (see Section 6.1
for details).

• Usually the training textures are normalized before model building and matching. This
keeps unwanted texture variations out of the model, like for example varying lightning
conditions. Kittipanya-ngam and Cootes [34] reviewed several non-linear texture prepro-
cessing algorithms on raw and gradient filtered image data, e.g. Gaussian smoothing or
exponential distance functions. These methods increase the performance of AAMs, but in
practice it is difficult to predict which method is good for which kind of data [67].

• Besides the mentioned texture variations, also tissues showing low contrast, e.g. lung
in MR scan, or having a fuzzy appearance, e.g. spongy bone, compound texture model
matching. When matching a new image, the goal is to find a model instance that is closest
to the target image. The difference measures used to determine the model mismatch are
usually based on texture differences. A commonly used criterion is the sum of squared
differences between intensity values [34]. It is assumed, that large texture differences
come along with a misalignment of the model. Fuzzy structures and low tissue contrast
can lead to model misplacement.

To tackle the issues mentioned, Zambal et al. [67] propose to measure texture difference
based on entropy, inspired by the mutual information criterion. It is commonly used in medical
image registration, because it enables registration of images with different modalities [49], [61].
For the matching of unseen images, Bayesian reasoning is applied, which is wide-spread within
pattern recognition [67].

4.1.2.2 ETM Model Building

In general, the construction of an ETM is similar to building an AAM. An annotated set of
m = |Str|, k = 1 . . .m training images Ik ∈ Str with a fixed number of l corresponding
landmarks is needed. Based on these landmarks, and texture Tk is extracted from every training
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Figure 4.1: Schematic overview for the mapping within ETMs. The original gray values are
quantized to r = 16 source values. For those, the authors try to find mappings fk to the target
value scale [67]. This sample shows the mapping to s = 4 target values.

image Ik. Every texture is represented by N texels and covers the same anatomical region of
interest. A texel (or texture element) is an element of a texture, analogous to a pixel in an image.

The original gray values present in the image are quantized to rk source values (also referred
to as source bins), which leads to a binning of the original grayscale (see Figure 4.1). From the
extracted textures Tk, the shape model is built by PCA in the same way as in ASMs and AAMs.
For the texture model, the authors incorporate the following concepts.

Probability-based Modeling of Texture In AAMs, the variation of the texture is also modeled
with PCA. For ETMs, Zambal et al. [67] suggest a different representation. They propose, that
every model texel tj , j = 1 . . . N captures the statistical intensity variation observed at the
corresponding texel tj in the set of extracted training textures. One goal of the authors was, to
keep unwanted intensity variations out of the model, e.g. due to different imaging modalities or
noise. Therefore, they suggest not to model the source values rk in the texture. Instead, Zambal
et al. [67] map these values to a generalized scale (see Figure 4.1), which consists only of a few
target bins. These values are then modeled in their texture model.

The goal is now to find such a mapping fk for every training texture Tk, where source values
rk are mapped to s target values (also referred to as target bins) – formally:

fk : Zrk → Zs, s� rk, k = 1 . . .m (4.3)

Hence we obtain an individual mapping fk for every training texture Tk. A mapping assigns
allN training texels (from an underlying texture Tk) a target value g′i ∈ {1 . . . s}. As said before,
every model texel tj captures the variability of mapped intensities of training texels. That means
for a texel tj , m occurrences of the possible s target values are observed. These observations
are interpreted as probability density functions (PDF) pj (see Figure 4.2), where every PDF pj
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describes the variation within the corresponding texel tj . The probability pj (g′i) denotes then
the probability, that the target value g′i is observed at texel tj .

Based on this, a quality criterion for mappings fk is derived, which optimizes the mappings
from source bins rk to s target bins.

Entropy-based Quality Function Zambal et al. [67] suggest to assess the quality based on
the predictability of the mapped bins. Figure 4.2 gives an example for a model with N = 10
model texel: The predictions for texel t2 show only a single peak, while the PDF of t10 rather
follows a uniform distribution. This suggests, that the information content of the predictions by
the PDFs is higher for texel t2 than for t10.

In general, the information content of an image can be estimated by the entropy H [54]. It
is a measure for the amount of uncertainty of an event (i.e. a random variable). In case of infor-
mation entropy, this event is associated with a given PDF. Entropy increases, if the amount of
uncertainty rises. This results in less predictable events [54]. That means, that for the presented
example (see Figure 4.2), the entropy of t10 is higher than for t2 because the reliability of the
target value prediction is lower for texel t10 than for t2.

Figure 4.2: Normalized training textures with corresponding landmarks (left) and the learned
model (right). Every texel tj models the target value variation g′i ∈ {1 . . . s} with its PDF pj .
Image from Zambal et al. [67].

The authors [67] suggest to favor a reliable prediction over an uncertain prediction by mini-
mizing the entropy of a corresponding PDF pj :

H (pj) = −
s∑

i=1

pj
(
g′i
)

log2
(
pj
(
g′i
))

(4.4)

In order to increase the reliability of mappings, the entropy has to decrease for all N model
texels. This results in the following cost function for the model, which aims at yielding a mini-
mum:

Hmodel =
1

N

N∑
j=1

H (pj)→ min (4.5)

However, the transformed training images contain no information about their initial appear-
ance anymore. Important structures could be lost, due to the reduction to the target values.
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(a) original

(b) optimized

Figure 4.3: Three training images (see Figure 4.3a) and their mapping to s = 3 target values
(see Figure 4.3b) are shown. From the training images, two are MR scans and one is a CT scan.
Images from Zambal et al. [67].

The extreme case would be, that all source values rk map to only one target value. Hence, the
authors [67] propose to consider also the training textures Tk in the formulation of a cost func-
tion for the model building. The information content gained from the mapped training textures
fk (Tk) should be maximized.

The image entropy H (fk (Tk)) measures the information content in training texture Tk. In
order to maximize the information content across the entire training set, one aims at maximizing

Htex =
1

m

m∑
k=1

H (fk (Ik))→ max (4.6)

The final cost function combines Eq. 4.5 and Eq. 4.6 and maximizes the information content
in the training images while minimizing the uncertainty of the model:

{f?1 , . . . , f?m} = argmax
{f1,...,fm}

(
Htex −Hmodel

)
(4.7)

Figure 4.3 shows a training set of MR and CT scans and their mapping to s = 3 target bins.

4.1.2.3 ETM Model Matching

If matching an ETM, only shape parameters (scale, position and statistical shape parameters)
are optimized by changing them randomly within their valid ranges while matching. This is in
contrast to AAMs, where also the texture parameters are optimized iteratively [11].
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If an unseen image Ik should be matched, a new model instance is initialized first. As
with ASMs and AAMs, a good initialization regarding the position of the model instance is
crucial. Zambal et al. [67] initialize their models close to the correct contours of the anatomical
structure, which was learned by the model. The texture, which is currently overlapped by the
model is denoted as texture U = (u1, . . . , uN ) of the unseen image.

Two aspects are important for the matching of an unseen image with ETMs. First, a suitable
initialization method of the texture U has to be formulated. Second, a criterion function has to
be derived, which evaluates the fitness of the current shape instance S to the unseen image [67].

Texture Extraction and Mapping from an unseen Image According to the current shape
instance S, the overlapped texture U is extracted. Since the model texels tj capture the variation
of target values g′i ∈ {1 . . . s}, the extracted texture has to be mapped to this scale as well. The
task is to find a mapping

fu : Zru → Zs, (4.8)

which normalizes the texture from ru source values to s target values. Note that the original
gray values of the unseen dataset have to be quantized to ru source values before the optimiza-
tion starts in order to be correspondent to the learned model. For the image quantized to ru
source values, Zambal et al. [67] propose to assign the target values, which lead to the maximum
likelihood of the mapping fu (i.e. of the texture). All model texels tj , which observe a given
gray value û ∈ {1 . . . ru}, contribute to the likelihood according to their PDFs. The target value
g′i ∈ {1 . . . s} leading to the maximum likelihood is assigned – formally:

fu (û) = argmax
g′i

∏
uj=û

pj
(
g′i
)

i = 1 . . . s (4.9)

Cost Function based on Bayesian Inference The quality of the current mapping is deter-
mined by comparing the normalized texture U ′ to the model PDFs. The authors suggest to apply
Bayes’ law [6] and maximize the posterior probability of U ′ = fu (U) subject to the shape
parameters S (i.e. a shape instance).

In general, the posterior probability is proportional to the product of a likelihood and a
prior probability (see Eq. 4.10, left) [6]. Within ETMs, the posterior P (S|U ′) describes the
probability of the current shape instance S, given the normalized texture U ′. The likelihood
P (U ′|S) describes the likelihood of the observed texture U ′, given the shape instance S. As
reported by Zambal at el. [67], it is calculated as product of the probabilities of the normalized
texels. The calculation of the prior probability P (S) of the shape instance S is performed with
a multivariate Gaussian distribution, which corresponds to the shape space (modeled with PCA).
For details see Bishop et al. [6].

The combination of the introduced terms results in the final cost function [67]:

P
(
S|U ′

)
∝ P

(
U ′|S

)
P (S) =

 n∏
j=1

pj (fu (uj))

P (S)→ max (4.10)
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4.2 Feature Extraction

Feature extraction methods aim at detecting specific structures in the data and reduce therefore
the search space for subsequent image analysis or pattern recognition tasks [6]. A feature de-
scribes a property of the given image data, which provides information about a specific structure
in the data [29]. Examples for features are lines, edges and corners or more complex structures
like curvatures or texture information. As such, thresholding is also a simple image feature,
which is calculated point-wise for the underlying image data [44]. A detailed review on differ-
ent image features and feature representation is provided by Jähne [29].

In general, feature extraction algorithms can be differentiated into low- and high-level meth-
ods [44]. Low-level algorithms derive features automatically from an image. These features
describe localities at a given point or region by considering only small sub-regions of interest
in the image, for example edges, corners or curvatures. High-level feature extraction methods
incorporate relations between features in order to find specific objects and shapes. One way to
do so is by matching templates on the unseen data, e.g. with the Hough Transform. It is an
efficient algorithm, which enables matching of simple structures like lines, but allows also for
more complex, arbitrary shapes [4]. Another common approach is to define high-level feature
detectors as a combination of extracted low-level interest points. This method enables building
of more complex feature detectors and classifiers.

Feature detection methods can also be differentiated regarding their defined dimension. Gen-
erally, most of the common methods (e.g. sobel, canny or laplacian operator) are originally
defined in 2D [44]. Some methods can be easily extended to 3D by combining the 2D extrac-
tion results, like for example the sobel edge detector (see Section 4.2.2). However, defining
an extraction algorithm in 3D can become computationally too expensive regarding the tem-
poral performance. This is the case for instance for the popular SIFT (Scale Invariant Feature
Transform) feature detector, which was presented by Lowe [37], [53].

Figure 4.4 gives an overview of a selection of feature extraction methods, which are ex-
plained in the following. Haar-like features and image gradients are introduced as low-level
feature extraction methods in Section 4.2.1 and Section 4.2.2, respectively. Building of a high-
level classifier with extracted low level features is explained on PBTs in Section 4.2.3. A variant
of those is further introduced in Section 4.2.4.

4.2.1 Haar-like Features

Viola and Jones [60] observed for face detection, that often the eye region is darker than the
cheeks or the forehead. To detect this region in a facial image, they suggest to calculate the in-
tensity difference between these two regions. If we look on images of the spinal column, we can
observe, that also neighboring dark and bright regions are present, e.g. between intervertebral
disks and vertebrae.

Viola and Jones [60] proposed a low-level feature, which considers this difference between
sums of intensities within rectangular areas in the underlying image data – so called Haar-like
features. The areas are adjacent and usually of the same size (see Figure 4.5, right).

In order to compute these sums of intensities fast and efficiently, Viola and Jones [60] intro-
duced the concept of integral images. The integral image II(x, y) at position (x, y) is defined
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Figure 4.4: Overview of selected low- and high-level feature extraction methods.

Figure 4.5: The value in the integral image at certain positions (left): at position 1, it is the
sum of pixels in area A, at position 2 it is A + B, and so on. The sum within area D can be
written as 4 + 1− 2− 3. Examples for two-rectangle ((a) and (b)), three-rectangle (c) and four-
rectangle (d) Haar-like features (right): only six, eight and nine lookups in the integral image
are necessary to compute two-, three- and four-rectangular structures, respectively. Image from
Viola and Jones [60].

as the sum of pixels above and to the left of position (x, y). Formally

II(x, y) =
∑

x′≤x,y′≤y
I
(
x′, y′

)
, (4.11)

whereby I(x, y) denotes the intensity in the original image I at position (x, y). Any sum of
a rectangular area in I can be computed by a minimum of four lookups in the integral image II
(see Figure 4.5, left). In order to obtain the value of a feature, the areas are subtracted. For the
three-rectangle feature (see Figure 4.5c) for example, the sum of the two white rectangles on the
outside is subtracted from the intensity sum of the mid-rectangle.
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Different patterns can be constructed with Haar-like features and used to detect also more
complex characteristics in the data [60]. Furthermore, the concept of integral images can be
extended to three dimensions. Integral volumes sum up the intensities also in z-direction –
formally:

II(x, y, z) =
∑

x′≤x,y′≤y,z′≤z
I
(
x′, y′, z′

)
. (4.12)

4.2.2 Image Gradients

Rapid intensity changes between adjacent pixels in an image I are often of interest in image
processing, since they delineate edges and object boundaries. This changes can be detected by
differentiation between these points, i.e. pixels [54], [44]. So called gradient operators aim
at approximating local derivatives, whereby a bigger derivative is obtained at image locations
which undergo rapid intensity changes (e.g. sharp edges). Horizontal changes are determined
by vertical differentiation of adjacent intensities at pixels and vertical changes by horizontal
differentiation [44]. Mathematically the gradient of an image I in x-direction (i.e. the horizontal
change) is defined as the partial derivative of the intensities in x-direction:

∇Ix =
∂I

∂x
. (4.13)

In image processing, the partial derivative is usually approximated by convolving the original
image with a filter mask. One of the most commonly applied filters in practice is the sobel filter
[44]. Its masks for detecting horizontal (Mx) and vertical edges (My) are defined as follows:

Mx =

1 0 −1
2 0 −2
1 0 −1

 My =

 1 2 1
0 0 0
−1 −2 −1

 (4.14)

The approximated partial derivatives ∇I ′x and ∇I ′x in x- respectively y-direction are then
obtained by convolving the image data I with these masks separately (see Figure 4.6):

∇I ′x = Mx ∗ I (4.15)

∇I ′y = My ∗ I (4.16)

The overall strength of an edge in an image is calculated by combining the partial derivatives
in every direction. The resulting edge magnitude, or gradient magnitude, Gxy (see Figure 4.7)
is defined by

Gxy =
√
∇I ′2x +∇I ′2y . (4.17)

The calculation of the partial derivatives can be extended to 3D, by convolving the volume
I not only with Mx and My, but also with a mask Mz . The obtained approximated partial
derivative ∇I ′z = Mz ∗ I then depicts the edge strength in z-direction. The overall gradient
magnitude is calculated analogously to Eq. 4.17:

Gxyz =
√
∇I ′2x +∇I ′2y +∇I ′2z . (4.18)
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(a) Optimized image (b) Horizontal edges (c) Vertical edges

Figure 4.6: Entropy-optimized T1w MR scan with s = 3 gray values and detected edges by
filtering with Mx (horizontal edges) and My (vertical edges). Images based on data by courtesy
of AGFA HealthCare [25].

4.2.3 Probabilistic Boosting Trees

While the previous sections introduced low-level feature extraction methods, a high-level ap-
proach combining those is reviewed in the following. The concept of boosting proposes that
a strong classifier can be learned as a combination of weak classifiers, which was confirmed
by Schapire [51]. A weak classifier gives only a slightly better classification result as random
guessing, i.e. > 50%. A strong classifier in contrast combines these weak classifiers and gives a
prediction, that is correlated with the true classification result.

Tu [59] uses this concept and introduces PBTs. They are a general framework for learning
a conditional posterior probability, which is referred to as strong classifier, from a set of weak
classifiers (evidence, knowledge). This is inspired by AdaBoost [21], which approximates the
posterior distribution. AdaBoost and decision tree algorithms in general learn one strong clas-
sifier from weak classifiers. The disadvantage of these methods is, that they may have to pick
hundreds of weak classifiers. With PBTs, one tree classifier is learned recursively, where every
tree node itself is a strong classifier.

Training Phase If we want to train a classifier for a two-class, i.e. binary, classification prob-
lem, we learn a binary tree. In the training phase, the tree is built recursively with a divide-
and-conquer strategy. Starting at the root node of the tree, a strong classifier is learned with
the boosting algorithm, i.e. weak classifiers are selected to build a strong classifier. As weak
classifiers act likelihood classifiers on extracted image features, e.g. Haar-like features, image
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Figure 4.7: Combined gradient Gxy from Figure 4.6b and Figure 4.6c. Image based on data by
courtesy of AGFA HealthCare [25].

gradient, etc. All samples are then classified with the learned classifier (i.e. the posterior distri-
bution), and propagated down into the left or right sub-tree, depending on their assigned class. In
this way, samples which are hard to classify are passed further down in the tree, which leads to
an expansion of it. To control overfitting of the learned tree node classifier, a margin is defined.
Classified samples which fall into this region are passed down into both sub-trees. Training
continues till all samples are classified correctly or a maximum tree depth is reached.

Classification with PBTs The classification of an unseen image works accordingly to the
training (see Figure 4.8). For every sample, the posterior probability is calculated at every node
of the tree and gathered in the root of the tree. It reports the overall approximate posterior
probability for the sample. In order to classify a sample (i.e. pixel or voxel), the posteriors for
the left and right sub-tree are calculated at every node. Starting from the root at level l = 0,
the classification result for the sample is obtained by following the respective sub-trees with the
higher posteriors till the lowest level ln is reached.

The presented algorithm provides a very general framework, which can be used for classifi-
cation, object recognition or segmentation. PBTs provide good computational and classification
performance, but are far too slow for real time classification [59], [53]. Another issue is the
overfitting problem, especially with a limited number of training samples. Recent publications
on MR and CT spine labeling by Kelm et al. [32] and Major et al. [38] apply PBTs for feature
detection as well. The latter use an improved, multiresolution approach, which is also integrated
in this thesis and described in the following.
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Figure 4.8: A synthetic dataset with 2000 points is classified by a PBT. The tree expands on
nodes where positive and negative samples are present till a maximum depth is reached or all
samples are classified correctly. At every node, the list of weak classifiers is evaluated, which
was learned for this specific node in the training phase. A weak classifier is a likelihood classifier
on a feature, e.g. a Haar-like feature or a distance feature. Image from Tu [59].

4.2.4 Multiresolution Probabilistic Boosting Trees

Schulze et al. [53] aim for a memory efficient feature extraction algorithm, which provides a
detection result within seconds and is applicable especially on medical data. To accomplish this
goal, the authors introduce several concepts in order to speed up the PBT approach from Tu [59]
presented in the previous section.

Partial Cascading Viola and Jones [60] introduced a cascading framework together with
AdaBoost. A cascading node discards negative classified samples and passes only positive sam-
ples down further in the tree (see Figure 4.9 (left)). Schulze et al. [53] propose so called partial
cascading, where they combine cascading and boosted tree nodes in one tree. The benefit of
cascading nodes is, that they reduce the number of classification tests and hence speed-up fur-
ther processing. The advantage of boosted nodes on the other side is, that they capture a high
variability of features, which increases flexibility. The authors suggest to add a cascading root
node before the standard PBT, as seen in Figure 4.9 (right). A large number of voxels is there-
fore discarded in the beginning and positive samples are further classified by a PBT. Cascading
nodes may also be inserted on other levels in the decision tree.
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Figure 4.9: Cascaded sequence of classifiers (left) and PBT with cascading root node (right).
Only positive paths are further processed. Image from Schulze et al. [53].

Classifier Sorting To further increase execution speed, fast performing classifiers should be
preferred over expensive classifiers in tree nodes often visited. The cascading root node is visited
most often and in an early classification stage. Hence this node is built with cheap classifiers
with low computational costs, such as likelihood classifiers on Haar-like features and image
intensities. They eliminate a large number of false candidates in the very beginning. More
complex classifiers, e.g. gradients, principal curvatures or structure tensors, are moved further
down in the PBT.

Multiresolution PBT In order to decrease the search space already in an early processing
stage, boosting trees are also trained on downsampled data. For this purpose, a Gaussian image
pyramid is built from the original volume. A separate PBT classifier Cw is learned for every
resolution level w ∈ {0 . . .W} (see Figure 4.10), whereby the original image has resolution
level w = 0, i.e. no downsampling is performed. A new image I is classified on the lowest
resolution level W with classifier Cw first. With the classifier Cw every voxel is classified and
only those who were accepted by the classifier are candidates for the next higher level, i.e. for
classifier Cw−1. Iteratively only accepted candidates are propagated till the original resolution
is reached, i.e. w = 0.

Memory Management In order to decrease the occupied memory, only the original volume
data is kept in the memory. Lower resolution volumes, gradients and curvatures are calculated
block wise on demand. Calculated blocks are kept in a cache. If the memory gets too low for
allocating new blocks, blocks which have been accessed the longest time ago are replaced by
new ones. The classification of a dataset now follows two strategies: First, it follows resolution
order, starting with the lowest resolution. Only positive samples are propagated to the next level.
Within a resolution level, the classification is performed in a block-wise manner. Therefore only
a small number of blocks must be cached.
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Figure 4.10: The multiresolution approach, where a strong tree classifier is evaluated in every
resolution level. Only accepted voxels are propagated to the next higher resolution level. Re-
jected voxels at a low resolution are not taken into account in higher levels. In this example,
we start at level w = 2 and propagate the accepted voxels to level w = 1. Voxels, which are
accepted in this level are then passed down to the original resolution level w = 0. Image from
Schulze et al. [53].
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CHAPTER 5
Semi-automatic Spine Labeling on

Normalized MR Data

The methods, which were reviewed in Chapter 4, are combined to a novel pipeline for semi-
automatic labeling of the lumbar spine. Section 5.1 presents our proposed approach and explains
its main steps. Section 5.2 details the implementation of the bias field preprocessing. The
building of the model used for spine labeling is introduced in Section 5.3. Section 5.4 presents
the application of the learned model on an unseen MR scan. Finally, Section 5.5 concludes the
chapter with technical details on the implementation.

5.1 System Overview

Figure 5.1 gives an overview of the proposed, novel semi-automatic spine labeling pipeline and
shows, how the previously presented algorithms will be applied. The input to the system is a
T1w or T2w MR volume dataset, which is reconstructed from a stack of sagittal 2D slices. In
the following, we will refer to a 3D volume dataset with Ik, i.e. 3D image data. Within this
work, we focus on labeling of the lumbar spine. However, this approach should be applicable to
other parts of the spinal column as well.

As first step in the pipeline, the dataset is preprocessed in two stages. The intensity inho-
mogeneities are removed with the bias field correction method, which was presented by Juntu et
al. [31]. Afterwards, the dataset is normalized to a reduced scale with ETMs, presented by Zam-
bal et al. [67]. The output of the first stage is a normalized MR volume. In the second step of the
pipeline, intervertebral disks are detected by a feature detection framework. Fast and memory
efficient PBTs, presented by Schulze et al. [53], were trained with image gradients and Haar-like
features [60]. The detection framework delivers candidate points for every disk, whereby one
point is selected as disk center and labeled with its anatomical label. The output of the system
is the labeled input MR scan.
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Figure 5.1: Overview of the suggested semi-automatic spine labeling pipeline.

Except for the bias field correction method, which is not a machine learning approach, the
spine labeling system is learning-based. That means, we have to train a model first, in order to
be able to normalize MR scans and label the spinal column. If a new, unseen dataset comes in,
we apply the model and obtain the desired labeling. Figure 5.2 presents the main steps for the
training of a model for spine labeling and its application to a new MR scan.

The input to the model building pipeline are annotated T1w and T2w volumes and the pa-
rameter configuration for ETMs, e.g. number of source bins r, number of target bins s, and
PBTs, e.g. depth of boosting trees, initial resampling voxel size ∆x,y,z . The output of the model
building phase is a learned ETM and trained feature detectors for lumbar ΦL and thoracic ΦT

intervertebral disks. In the following, we will refer to a learned entropy model withM. It has a
specific parameter configuration, which will be introduced in Section 5.3.2.

If a new MR volume dataset has to be labeled, the learned spine model is applied. The input
to the labeling system are the trained ETM M, the feature detectors ΦL and ΦT , the unseen
T1w or T2w volume dataset and an input from the user. This is on the one hand a clicked start
point (x, y, z), that lies within an intervertebral disk or vertebrae. On the other hand, the user
has to provide the anatomical label of the point. The output of the system is the labeled MR
dataset.
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Figure 5.2: Overview of spine model building (left) and its application in the testing phase
(right), i.e. the semi-automatic labeling of an unseen dataset.

5.2 Bias Field Preprocessing

The first step in the preprocessing pipeline is the bias field correction algorithm by Juntu et
al. [31] (see Section 4.1.1). The preprocessing is performed before the model building respec-
tively the model application. Therefore the following description is not included in both sections,
i.e. Section 5.3 and Section 5.4. The correction algorithm was implemented in MATLAB [40]
and all datasets were preprocessed in advance.

The presented algorithm [31] works with 2D images, therefore every slice of a volume Ik
is processed by itself within our work. In the following, we refer to the e-th sagittal slice of a
volume Ik with Iek .

For every sagittal slice image Iek , we extract its background image Be
k. We convolve Iek with

a Gaussian filter, which has 2/3 of the size of the slice. Based on the obtained filter size k,
σ is calculated by σ = k+1

6 . From the extracted background image Be
k, n points are selected

pseudo-randomly for surface fitting. A raster was constructed with a step size of 50 pixels
and a second one with a step size of 25 pixels. This provides a good coverage of the whole
image. Not all points at this raster were selected, but only those which belong to the foreground.
The foreground region is obtained by thresholding over the background image. In order to avoid
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image-dependent thresholds, the obtained background imageBe
k is normalized to the range [0, 1]

first. The background is denoted by pixel having intensities i ≤ 0.25, i.e. the foreground image
is Be

k > 0.25. Several thresholds were tested, whereby with 0.25 the best results were achieved
for all volumes Ik.

We fit a second order polynomial surface of the form

h (x, y) = a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 (5.1)

to the n points extracted from the background image Be
k with the fit method provided by

MATLAB [40]. Finally, the original slice image Iek is divided by the bias field calculated from
the fitted polynomial. Figure 5.3 gives an overview about the images obtained in the different
steps. The mid-slice image refers to the middle sagittal slice of the 3D MR volume, i.e. of
the stack of sagittal slices. Two different variants for the bias field preprocessing were evalu-
ated, which is reported in Section 6.3. The corrected sagittal slices were reconstructed and the
preprocessed volumes were stored on the hard disk for further processing.

5.3 Model Building for Spine Labeling

Building a model for our proposed semi-automatic labeling pipeline involves several steps:

1. Training datasets Str have to be annotated by an expert with sparse landmarks covering
the lumbar spine. The annotations used in this thesis are introduced in Section 5.3.1.

2. Based on this landmarks, an ETM is learned on the training MR scans. All necessary steps
for building such a texture model are reviewed in Section 5.3.2.

3. Applying the learned model to the training data results in the desired normalized datasets
on which PBTs are learned for interest point detection. Section 5.3.3 gives details about
training of the feature detectors.

The input for the model building pipeline are the annotated training volumes Ik ∈ Str and a
parameter configuration for the training of an entropy model and the boosting trees.

5.3.1 Dataset Annotations

The following introduced annotations (and notation of it) are based on the work by Major et
al. [38]. From 14 datasets of different patients, a set S of 28 volumes Ik ∈ S, k = 1 . . . 28
was extracted and annotated manually. Figure 5.4 visually describes the annotated landmarks,
which are introduced in the following. For each disk i in volume Ik ∈ S, the disk center dki
was annotated with an anatomical label λi ∈ {T8/T9, T9/T10, . . . , L4/L5, L5/S1}. Around
every disk center dki , a cylinder zki defined by a radius, a height and with a certain orientation
was placed. The cylinder is oriented in a way that it approximates the disk shape and covers
only disk tissue. For every disk center dki , a corresponding point cki was set in the spinal canal.
cki lies in the center of the spinal canal, at approximately the same height as the corresponding
disk center.
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(a) Original mid-slice image (b) Corrected image

(c) Background image (d) Estimated bias field

Figure 5.3: Processing steps of bias field correction shown on T1w volume d17_t1w. Data by
courtesy of AGFA HealthCare [25].

Vertebrae were annotated by placing a landmark in the vertebral body. The point vkj denotes
the body center j in volume Ik with anatomical label κj ∈ {T9, T10, . . . , L5, S1}. Analogously
to the disks, for every vertebra body center vkj , a landmark was placed in the spinal canal ckj .

The annotations are saved in XML-format (eXtensible Markup Language). Statistics about
the size of disks and vertebrae are derived automatically, e.g. the mean lumbar disk height, the
mean lumbar vertebra height, etc. The mean dimensions, e.g. radius and height, for individual
disks, e.g. L3/L4, are also calculated. These statistics are used later on in the spine labeling
pipeline.
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(a) Sagittal view (b) Axial view

Figure 5.4: Illustration of annotated landmarks in the training volumes: (1) disk center dki ,
(2) cylinder zki , (3) corresponding spinal canal landmark cki to disk dki , (4) vertebra body cen-
ter vkj , (5) corresponding spinal canal landmark ckj to vertebra vkj . Image based on data by
courtesy of AGFA HealthCare [25].

5.3.2 ETM Spine Model Building

Several steps are necessary for building an ETM, which provides the desired intensity mapping.
In contrast to Zambal et al. [67], the model used within our work is built from sparse annotations.
It is aimed to cover the lumbar spine in order to learn the appearance and provide a good intensity
mapping. The authors matched single objects (e.g. the heart) with dense landmarks located at
the border of the object.

The main approach, as presented by Zambal et al. [67], is illustrated in Figure 5.5. Out of
the total number of 28 annotated volumes, up to m = 11 were used in the training phase. From
these datasets, corresponding landmarks are extracted and the shape model is built. Then the
texture is extracted on the preprocessed scans. The mappings fk, k = 1 . . . m from r source
values to s target values are optimized iteratively with simulated annealing [33].

For the building of an ETM, several input parameters are necessary:

• number of source values r

• number of target values s

• sampling distance sd of the model

• landmark extraction method

Various ETMs were trained, with different parameter configurations. An extensive evalua-
tion is provided in the Section 6.4. The individual steps (cf. Figure 5.5) for learning of an ETM
are detailed in the following.
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.  .  .

(a) Landmark Extraction

(b) Preparation of Data

(c) Building of Shape Model

(d) Texture Extraction

(e) Iterative Optimization

Figure 5.5: The main steps for training of an ETM. From the input data, landmarks are extracted
(a) and the scans are aligned and downsampled if necessary (b). Then the shape model is built
(c) and the texture extracted (d). Finally the training textures are optimized iteratively (e). Image
based on data by courtesy of AGFA HealthCare [25].

(a) Landmark Extraction We integrated three different landmark extraction methods within
this work. They are based on the sparse annotations of the MR volume data, as introduced in
Section 5.3.1). We refer to the extraction methods as Disk-Spinal-Centers-Plane, Disk-Cylinder-
Points and Disk-Cylinder-Spinal-Points. With these methods, different landmarks for model
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building are extracted, which are illustrated in Figure 5.6.

• Disk-Spinal-Centers-Plane From the training datasets Ik, the disks centers dki having label
λi (point #1) and vertebra body centers vkj with label κj (point #4) are extracted (see Figure
5.6a). Additionally, their corresponding spinal center points cki (point #3) and ckj (point #5)
are obtained as well. Around these points, an artificial hull is constructed by adding extra
landmarks. For a disk center cki , a point is added in distance of the radius of cylinder zki
in anterior direction (point #2). For a vertebra body center vkj , a point is added according
to the mean size of the vertebral body, also in anterior direction (point #7). The mean size
is based on the derived statistics, as mentioned in Section 5.3.1. For every spinal point cki
and ckj , a point within a distance of 10 mm is added in posterior direction (point #6).

• Disk-Cylinder-Points The second extraction method is shown in Figure 5.6b. For every
disk, the center dki (point #1) and points at the surface of the corresponding cylinder zki are
extracted (points #2). They are calculated from the annotations, i.e. from the annotated
disk cylinder center dki , the height of the cylinder and its orientation. The centers from the
top and bottom base are added to the landmark set. Points at the border of every base are
sampled in an angle of α = 60◦, which results in 12 additional landmarks – 6 from each
base. Furthermore, the vertebra body centers vkj (point #4) are taken into account.

• Disk-Cylinder-Spinal-Points) This method extracts the same points as the previous one
described. In addition, corresponding spinal points cki (point #3) and ckj (point #5) are
added in order to cover also the spinal canal (see Figure 5.6c).

(b) Preparation of Training Data The shapes defined by the previously extracted landmarks
need to be aligned first in order to enable comparison between them. They exhibit variation in
scale, translation and rotation, e.g. due to varying body sizes of the patients, pathologies of the
spine or differences in image acquisition. These variations are removed by a Procrustes analy-
sis [22]. In Procrustes analysis, the shapes are iteratively centered and aligned to a uniformly
scaled mean shape, which is re-calculated after every iteration. In the first round, the mean shape
is chosen arbitrarily. The alignment is finished when the mean shape converges. As optimiza-
tion criterion, the Procrustes distance is minimized, i.e. the square root of the sum of squared
distances between corresponding points. This means for two shapes:

d =

√√√√ l∑
i=1

(ui − xi)2 + (vi − yi)2 + (wi − zi)2 , (5.2)

whereby (ui, vi, wi) and (xi, yi, zi) denote the coordinates of the current corresponding land-
mark i, i ≤ l (i.e. the number of landmarks).

At the end of this stage, the training volumes may be downsampled. This depends on their
individual voxel sizes and the sampling distance sd parameter of the model. It controls the
voxel sizes of the volumes in the training set, i.e. that all volumes exhibit similar voxel sizes.
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(a) Disk-Spinal-Centers-Plane (b) Disk-Cylinder-Points

(c) Disk-Cylinder-Spinal-Points

Figure 5.6: The extracted landmarks for the three different methods shown on dataset d6_t1w:
(1) disk center dki , (2) points at the surface of cylinder zki , (3) corresponding spinal canal land-
mark cki to disk dki , (4) vertebra body center vkj , (5) corresponding spinal canal landmark ckj to
vertebra vkj , (6) additional landmark to a spinal canal landmark in distance of 10 mm, (7) addi-
tional vertebra landmark according to the mean size of the vertebra vkj .
Note that the points are projected on one slice, hence not all landmarks (points #2) are visible
for the Disk-Cylinder-Points and Disk-Cylinder-Spinal-Points method. Images based on data by
courtesy of AGFA HealthCare [25].

Based on the sampling distance sd, an individual downsampling factor βk for every volume Ik
is calculated – formally:

βk =

⌊
sd

min
(
∆k

x,∆
k
y

)⌋ (5.3)

It defines, if the underlying volume Ik is downsampled, i.e. βk ≥ 2, or not, i.e. βk = 1. ∆k
x
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and ∆k
y refer to the voxel sizes of Ik in x- and y-direction, respectively.

(c) Building of Shape Model For building of the shape model, PCA is performed on the
aligned shapes. The obtained eigenvectors and eigenvalues describe the shape variation, as
already reviewed in Section 4.1.2.

(d) Texture Extraction The convex hull, which contains all extracted landmarks l, is tetrahe-
dralized first (see Figure 5.7). This is enabled by Delaunay Tetrahedralization. With the CGAL
library [1], the subdivision of the convex hull is calculated. The result is a list of landmark
pairs, whereby a pair a connection between the two landmarks depicts. On the tetrahedra, the
texture is then extracted. The size of the texture, i.e. the number of texels tj , depends on the
extraction method and the number of voxels in the dataset. Hence the Disk-Cylinder-Points and
Disk-Cylinder-Spinal-Points extraction method result in a larger texture than the Disk-Spinal-
Centers-Plane method, because a larger region is covered. A small sampling distance sd also
favors a large texture, because of a smaller voxel size of the training volumes. Table 5.1 gives
an overview of the approximate size of textures with different sampling distances and extraction
methods. All trained models cover the lumbar and lower thoracic region (L5 to T10).

Figure 5.7: Mid-slice image extracted from volume I1 with l = 76 landmarks (left), the ob-
tained tetrahedralization based on the landmarks (middle) and the extracted texture T1 with
N = 12163 texel (right). Images based on data by courtesy of AGFA HealthCare [25].

When the texture is extracted, all original gray values present in the underlying volume data
are quantized to a fixed number of r source bins first, as proposed by Zambal et al. [67]. Recall,
that this number is a parameter of the ETM. This binning is performed in order to build the
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`````````````̀Sampling
Extraction Disk-Spinal-

Centers-Plane
Disk-Cylinder-Points

Disk-Cylinder-
Spinal-Points

sd = 1.5 12200 42500 48000
sd = 2.0 5200 18000 20200
sd = 2.5 2500 9200 10400

Table 5.1: Approximate texture size in texels (rounded to hundreds) for the three landmark
extraction methods Disk-Spinal-Centers-Plane, Disk-Cylinder-Points, Disk-Cylinder-Spinal-
Points with increasing sampling distance sd.

statistical model, which maps from source bins to target bins. For datasets, which exhibit more
than r gray values in the data, the intensity scale is reduced. However, no anatomical information
is lost, which was tested for all datasets.

If the texture gray value band is extracted from the underlying volume dataset, the position
and anatomical label λi of the intervertebral disk centers cki in the texture is extracted as well.
The position is in this case the index j of the texel tj , j ≤ N , where the intervertebral disk
center dki is located. This position is evaluated during the texture extraction with lookups in the
annotation file. For vertebra body centers the same information is extracted. This results in a
lookup table T of texel indices j, j ≤ N . For every anatomical label, that occurs in the learned
model, a list of size m including the texel indices is stored, e.g. T (L3) delivers a list of texel
indices for vertebra L3. This information is used for the initialization of the entropy model in
the matching phase, which will be introduced in Section 5.4.1.

(e) Iterative Optimization The extracted training textures are optimized iteratively with sim-
ulated annealing [33], as it was proposed by Zambal et al. [67]. The simulated annealing algo-
rithm is a heuristic for the global optimization problem. However, it does not aim at finding the
best global solution of a given problem, but rather to find a good approximation of the global
optimum.

Zambal et al. [67], [20] propose to start with a subset of all training textures and add the
remaining textures iteratively till all m training textures are included in the optimization. This
should increase robustness and avoid to get stuck in a local minimum. They suggest to start
the optimization with m′ = 4 textures. The mappings fk are represented by lookup tables
and are in the beginning initialized randomly. In every iteration, the model entropy Hmodel

and the entropy of the training images Htex are calculated. As long as the combined entropy
H = Htex −Hmodel improves, the statistical shape parameters, position and scale are changed
randomly within their valid ranges and the lookup tables are updated. After 5000 optimization
rounds without improvement of the entropy H , a new training texture is added to the model.
With this updated set of textures the iterative optimization continues till all m training textures
are included and there is no further improvement. Tests showed, that with a smaller number of
optimization rounds, some improvements were missed but with 5000 iterations, the optimization
performs well with the current set of textures.

Figure 5.8 shows a texture which depicts the entropy of a trained model for s = 3 target
bins. Bright texels mean areas of high entropy, i.e. high variation. The dark regions denote high
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Figure 5.8: Image showing the entropy of the training texture: Bright texels mean a high entropy,
dark texels denote low entropy for the corresponding training texel tj , j ≤ N . This reflects the
phenomena of varying intensities across T1w and T2w for vertebrae and intervertebral disks, as
reviewed in Section 2.3.3. Therefore the image represents a desired, good model.

predictability and hence low entropy. It describes directly the phenomena of varying intensities
across T1w and T2w scans, which was reviewed earlier in Section 2.3.3. The high entropy in the
disks in the lower lumbar disks, is due to the different appearance in T1w and T2w scans or age-
related dehydration. Entropy decreases for disks in the border region, which can be explained
by lower contrast in this area of the scans. The appearance of vertebrae does not vary as much as
the disk’s intensities, hence the entropy is lower for vertebrae. The model captures this variation
and therefore the entropy image shows a desired, good model.

Model Storage The parameters used for the training of ETMs are saved to a XML-file. This
includes the number of source bins r, number of target bins s, sampling distance sd and the
landmark extraction method. Within the parameter evaluation of the ETMs, the models were
trained on the original MR volume data and on preprocessed datasets, i.e. were the bias field
was corrected. Therefore, a property indicating if preprocessing was performed or not is also
saved in the file.

The lookup table with texel indices T is saved to a text file. For every anatomical label
present in the model, the list of texel indices is saved.
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For every texel tj , j ≤ N of the learned model, the number of mappings to the target values
1 . . . s are saved. This results in a table, where every row shows how many training textures map
to 1 . . . s target values.

The training volumes are normalized with the obtained texture transformations fk and saved
to the hard disk. They are needed for the subsequent training of the PBTs.

5.3.3 Training of PBTs

After building of an ETM, the datasets are normalized with the obtained texture transformations
and PBTs are trained on the normalized data (see Section 4.2.3). The goal of this stage in the
model building pipeline is to train classifiers, which are able to detect intervertebral disks in an
unseen, normalized dataset. Hence they should be able to detect voxels in the volume, which
belong to an intervertebral disk and these voxels should form a disk-shaped cloud for every
detected disk.

Two detectors are learned with maximum tree depth of three, one for lumbar disks (ΦL) and
another one for thoracic disks (ΦT ). For both body regions, the respective detector consists of
two boosted trees for two levels of resolution. The classifiers Φ0

L and Φ0
T classify the data at the

original resolution level, whereas Φ1
L and Φ1

T operate on one time downsampled data. The trees
are trained with Haar-like features and gradient features, whereby only Haar-like features were
selected during the training phase for the detectors. Two variants for both regions were trained,
with differences in the initial resampling of the training volumes. One detector was trained with
an initial voxel size of ∆x,y,z = 1.0 mm and the other with ∆x,y,z = 1.5 mm. These variants
are compared regarding detection accuracy and timing.

The obtained disk detectors ΦL and ΦT are saved in XML-format to their corresponding
ETMM.

5.4 Labeling of an Unseen Dataset

If an unseen MR scan has to be labeled, a user has to provide two inputs to the system:

• An initial click position (x, y, z) inside an intervertebral disk or vertebra

• The anatomical label for the clicked position, e.g. L3/L4, L4, etc.

With the user input, the previously learned ETM M and the trained feature detectors ΦL and
ΦT , the labeling of an unseen MR scan follows three main processing stages:

1. As first step, bias field correction is done on the unseen dataset.

2. Based on the initial click position (x, y, z) and its corresponding label provided by the
user, the learned entropy model M is matched to the dataset. Afterwards the dataset is
normalized according to the obtained texture transformation. Section 5.4.1 gives a detailed
overview about matching of an ETM.
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3. On the normalized dataset, the intervertebral disks are localized. Starting from the initial
position (x, y, z), iteratively one disk after the other is detected with the feature detec-
tors ΦL and ΦT . Details on the semi-automatic labeling approach are provided in Sec-
tion 5.4.2.

5.4.1 ETM Spine Model Matching

When matching a new volume, we match a new instance to the dataset. We aim to find the best
mapping from source values r to target values s for the unseen volume, based on the learned
model M. These parameters are provided by the model M. Figure 5.9 gives an overview of
the normalization pipeline for a new, unseen MR scan. First the input dataset is prepared, i.e.
downsampled, subject to the trained model (a). Then, new model instances are initialized (b)
and optimized (d).

(a) Data Preparation First, the input volume Ik is prepared subject to the trained modelM.
Rescaling may be performed, depending on the voxel size of the data, i.e. ∆x and ∆y, and the
sampling distance sd of the modelM. The downsampling factor βk is calculated (cf. Eq. 5.3.2)
for the volume and the dataset is downsampled if necessary.

(b) Model Instance Initialization For a good spatial initialization of the model, Zambal et
al. [67] initialize their model close to the correct object boundary. We propose to use the ex-
tracted texel indices T from the training phase. By looking up the input label from the user, i.e.
T (λi) for a disk label or T (κj) for a vertebra, we retrieve a list with m texel indices j, j ≤ N .
These are possible locations in the texture for the given anatomical structure.

We propose to use these indices to initialize multiple model instances in order to increase
the robustness of the model matching. We initialize the instances at slightly different positions
and optimize them in parallel, i.e. every instance in an own thread. For every texel index in the
list, we initialize a new instance by performing the following steps (see also Figure 5.10):

• We create a new instance and set it to the origin of the volume (0, 0, 0). The instance is
created around its centroid, which lies then in the origin of the volume.

• The world coordinates (x′, y′, z′) for the texel j, j ≤ N in the current volume are calcu-
lated. Note that they can also lie outside of the volume.

• Between the input position form the user (x, y, z) and the position of the label in the
model instance, i.e. the texel position, the distance is calculated. This distance indicates
the translation which is necessary to move the model instance to the correct position.

• Based on the calculated translation, the model instance is moved to its start position. After
this process, the instance is initialized in the region of interest, i.e. around the lumbar
spine.

We do this for all m model instances and propose to optimize them in parallel, which is
described in the next step.

56



.  .  .

(a) Data Preparation

(b) Model Instance 
Initialization

(c) Optimization

T1w or T2w scan L4

Pa
ra

lle
liz

ed
 fo

r m
ul

tip
le

 
M

od
el

 In
st

an
ce

s

Figure 5.9: ETM model matching pipeline. The unseen scan is prepared, i.e. downsampled,
according to the learned model first (a). A new model instance is initialized at the region of
interest, based on the user input (b) and optimized (c). In order to enhance robustness, multiple
instances are created at slightly different positions and the matching of those is performed in
parallel. Image based on data by courtesy of AGFA HealthCare [25].

(c) Optimization If an ETM model instance is matched, only shape parameters (scale, position
and statistical shape parameters) are optimized [67]. This makes exhaustive search for the best
model instance feasible and is applied in this phase, as proposed by the Zambal et al. [67]. Since
the optimization is performed in parallel with multiple instances, the following holds for every
initialized model instance.

As introduced in Section 4.1.2.3, the texture transform of the new model instance is created
as maximum likelihood of the given underlying texture and the texture model. In every iteration
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Centroid of underlying 
Model Instance

(0, 0, 0)

Position of Input Label in the 
underlying Model Instance

(x’, y’, z’)
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Model Instance
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Figure 5.10: Spatial initialization of a new model instance. A new model instance is created at
the centroid of the instance and moved to the origin of the volume (0, 0, 0). For a texel j with
an anatomical label, we calculate its position (x′, y′, z′) in the initialized model instance, i.e.
in the underlying volume. Based on the input position from the user (x, y, z), the distance to
(x′, y′, z′) is calculated. This distance indicates the translation, which is necessary, to move the
model instance to its start position.

round, the parameters (scale, position and statistical shape parameters) of the current model
instance are changed randomly within their valid range. Then the model instance is evaluated by
calculating the likelihood of its overlapped texture U ′: For every texel tj the underlying source
value is extracted and transformed into a target value g′i. The likelihood given g′i at texel tj is
retrieved and summed up. If the texture likelihood improved, the current configuration is kept as
basis for the next iteration. Otherwise the current parameter changes are discarded and the next
iteration starts with the same model instance. Figure 5.11 shows normalized data after several
iterations, where the current mapping fu from r source values to s was applied on the dataset.

A maximum number of 100 optimization rounds is performed, in order to increase robust-
ness and reduce the risk to get stuck in a local minimum. For all testing datasets a solution was
found within the first 60 iterations at the most. In every optimization round, the current model
instance is optimized with simulated annealing, with a maximum number of 500 iterations. Iter-
atively model shape parameters are changed randomly within their valid ranges and the current
model instance is evaluated, i.e. the likelihood of texture U , which is currently overlapped by the
model instance. If no better mapping is found within the 500 iterations, model matching stops.
If a better solution is found, this mapping is selected as new best mapping and used as start
configuration in the next optimization round. The heuristics are based on work from Zambal et
al. [67], [20].

From all parallel optimized texture transformations fk, the best one is applied to the MR
scan. The parallel matching further increases the robustness of the matching. The corresponding
model instance should now be matched to the spinal column. If we derive the landmark positions
of the matched shaped model, i.e. the disk and vertebra body centers, we already obtain possible
intervertebral disk center positions. However, with these positions we obtain a disk localization
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1. Iteration

5. Iteration18. Iteration

T1w scan

Figure 5.11: Normalized T1w data after the first, fifth and eighteenth iteration. Data by courtesy
of AGFA HealthCare [25].

precision of 89.8% at a recall of 85.8% (see Section 6.5). To increase precision and recall, we
suggest to normalize the volume Ik with the obtained texture transformation fk and apply PBTs
in order to find intervertebral disk centers.

5.4.2 Iterated Feature Extraction and Labeling

As last step in the labeling pipeline, the disks are localized in the entropy-optimized volumes
with the feature detectors ΦL and ΦT obtained in the model training phase. Instead of searching
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for disks in the whole dataset, we propose to use the user input in order to define a region of
interest and search for the disks in an iterative manner. This reduces the time for disk detection,
because we restrict the search space in the very beginning.

At the provided input position (x, y, z), we define a search region for the first intervertebral
disk by a bounding box (see Figure 5.12). The dimension of the bounding box is obtained from
the derived statistics from the annotated data, as described in Section 5.3.1. It is spanned by
the mean anterior-posterior (x-direction), top-bottom (y-direction) and left-right (z-direction)
distances (in mm) of the disk.

Figure 5.12: Visual illustration of the dimension of the bounding box (left-right, top-bottom
and anterior-posterior distances) for intervertebral disk detection. Image adapted from Open-
Stax [10].

Within this bounding box, disk candidate voxels are extracted with the detector for the cur-
rent body region, i.e. lumbar or thoracic. The trained feature detectors are executed from coarse
to fine. For a lumbar disk that means for example, that we start at level w = 1 with Φ1

L and
continue with Φ0

L at the original resolution, i.e. w = 0.
The detected voxels form a disk-shaped cloud (see 2D projection in Figure 5.13), from which

the best center-candidate is then determined. Schulze et al. [53] propose to assign probabilities
to every detected voxel and select the voxel with the highest probability as disk center. It is
determined in the following way: Around every detected voxel we span another box, which
roughly approximates the shape of an intervertebral disk. The dimension of this box is again
based on the derived mean disk sizes. For every detected voxel, we count how many other
detected disk voxel lie currently within the box and assign the ratio of

#detected disk voxel within box
#voxel of box

as its probability. Hence, voxels which lie close to the center of the detected point cloud have
a high probability. The voxel with the highest probability is selected as disk center candidate.

Then the bounding box is propagated along the spinal canal to the next potential location
of a disk. The distance is again based on statistics from the annotations, i.e. we translate the
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initial bounding box detected disk voxels

detected disk center 
with assigned label

propagated 
bounding box

Figure 5.13: Iterated feature detection pipeline illustrated on normalized MR data. The disk
candidate voxels are detected with the corresponding detector, i.e. ΦL or ΦT within a region
of interest around the position (x, y, z), which is provided by the user. The best disk center
candidate is selected and labeled. The bounding box is propagated to the next potential disk
location, whereby the distance to this position is based on the derived statistics. At the new
position, the search for the next disk center continues.
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bounding box according to the mean height of lumbar or thoracic vertebrae. The iterations
continue till no further disks are detected or the border of the dataset is reached. The assignment
of anatomical disk and vertebrae labels is based on a standard spine dictionary (see Section 2.1).

5.5 Implementation Details

The training and semi-automatic spine labeling pipelines were integrated into an existing frame-
work, which is written in Java. For the building of the spine model, a simple GUI (Graphical
User Interface) was designed (see Figure, 5.14). The annotation file can be specified, as well
as the necessary parameters for the ETM learning. For the training of PBTs, the configuration
XML-files for the trees to learn have to be specified. They include the parameters, e.g. the initial
resampling voxel size ∆x,y,z or the number of resolution levels w. Furthermore, the features,
which should be extracted, have to be specified. In our work, those are image gradients and
Haar-like features.

For the semi-automatic spine labeling of an unseen MR scan, a plugin to the existing soft-
ware was implemented in Java (see Figure 5.15). The anatomical label for the start disk or
vertebra has to be selected from the drop-down list boxes (left). The labeling starts, if the user
hits the start-button and clicks on the desired start position (x, y, z) in the volume in the imaging
area (right).

For the Delaunay Tetrahedralization, the CGAL library [1] was compiled for 64 bit systems.
The feature detection framework with PBTs is provided by VRVis [20], as well as part of the
ETM implementation.

Bias field preprocessing was implemented in MATLAB [40]. The data was preprocessed in
advance for the evaluation within this thesis. MATLAB was further used to generate plots and
graphs. For the integrated flowcharts and other diagrams, Microsoft Visio [14] served well.

The labeling results were evaluated with a python-based tool, provided also by VRVis.
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Figure 5.14: Screenshot of the GUI for the building of the spine labeling model. The parameters
for the training of an ETM can be specified, e.g. source bins r, target bins s, etc. For the training
of PBTs, a configuration file in XML-format can be loaded, which specifies the properties of the
tree. Based on this, the classifier is learned.
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CHAPTER 6
Evaluation and Results

The following chapter reports the quality of data normalization with ETMs and the accuracy of
disk center point detection. First, Section 6.1 gives an overview on the training and testing data
used. Then, measures for evaluation of entropy optimization and disk detection are introduced
in Section 6.2. Results based on these measures as well as timings are reviewed afterwards.
Results from bias field preprocessing are shown in Section 6.3. Section 6.4 reports and discusses
the results achieved for data normalization with ETMs. Section 6.5 shows the accuracy for the
disk center detection. Notes on the training and testing system as well as the performance are
given in Section 6.6. Section 6.7 concludes this chapter with a short summary of the achieved
results.

6.1 Datasets

Datasets from 14 different patients are provided by courtesy of AGFA Healthcare [25], contain-
ing T1w and T2w SE sequences and/or T1w FFE 3D (FFE3D) sequences. From this set, a total
number of 28 volumes covering the lumbar and lower thoracic region of the spinal column were
extracted. Scans from three out of the 14 patients are originally full spine scans, but only cut outs
from the desired body part are used for evaluation, i.e. the volumes d1_t1w, d1_t2w, d2_t1w,
d2_t2w, d24_t1w and d24_t2w. According to the DICOM tags [28], the datasets were acquired
on different Philips scanners, namely Achieva 1.5 T, Panorama 0.23 and Intera 1.5 T. They show
women in the age of 37 - 71 years and men from 23 - 71 years.

The voxel sizes in the datasets are highly anisotropic: The sagittal in-plane voxel size ranges
from 0.59 mm to 1.19 mm (i.e. ∆x,y), whereby the slice distance lies in the range of 4 mm to
6 mm (i.e. ∆z). The in-plane resolution for the FFE3D scans is 288 × 384 voxels and for the
SE scans 320 × 320, 324 × 324 or 512 × 512 voxels. The cut-outs from the full body scans
are between 512 × 844 and 512 × 908 voxels in size. The number of slices depends on the
acquisition method. For the T1w and T2w SE sequences it varies between 11 and 16 slices,
whereby most of the scans have 12 or 13 slices. The FFE3D scans are acquired in 3D and have
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16 or 18 slices. The data also shows a high variability regarding intensity ranges. As mentioned
in Section 2.2, MR data does not have a standardized scale as CT. Most of the datasets are in
the range [0, 255], but there are also volumes which have a maximum intensity between 1270
and 4000. A detailed overview on the field of view in the volumes and properties of the data is
provided in the Appendix (see Table A.1 and A.2).

6.2 Measures

In order to evaluate the quality of entropy mappings and furthermore the detected disk center
points, proper measures need to be defined. For the entropy models, comparing the trained
texture models by their entropies Htex and Hmodel is not sufficient in order to evaluate the
quality of the intensity mapping. A trained ETM should yield a rather homogeneous intensity
mapping for each tissue of interest in order to provide a good basis for the following feature
detection. A method for comparing ETM mappings is introduced in Section 6.2.1. For evalu-
ation of the disk centers, the position of the detected disk center candidates is compared to the
expert-annotated disk cylinders. The quality is described by the well-known measures precision
and recall [39], [57], which are reviewed in Section 6.2.2.

6.2.1 Intensity Homogeneity in ETMs

For evaluation of the entropy optimization, we look at the normalized training data I ′k ∈ Str
obtained with the trained modelsM. The quality of the mapping provided by a modelMi is
measured based on the achieved intensity homogeneity within disk and vertebrae tissue in the
training data.

From the mapped volumes I ′k ∈ Str, we derive histograms for disks dki (see Figure 6.1) and
vertebrae vki (see Figure 6.2) for every modelMi based on the annotated ground truth. From
the annotated disk cylinders zki , the percentage of every target value g′j ∈ {1 . . . s} from model
Mi is calculated on a voxel level. The volumes are re-sampled to a voxel size of ∆x,y,z = 1.0
mm. The voxel inside a cylinder zki in volume Ik (with anatomical label λi) having the same
intensity g′j are counted and the ratio to all voxel in zki is calculated – formally:

hki
(
g′j
)

=
#
{

(x, y, z) | (x, y, z) ∈ zki ∧ Ik (x, y, z) = g′j
}

#
{

(x, y, z) | (x, y, z) ∈ zki
} (6.1)

Calculating this percentage value for all target values g′j ∈ {1 . . . s} in a disk dki results in
its relative intensity histogram hki (analogous for vertebrae).

Looking at the peak of such a tissue histogram, we can derive its mode immediately. It is
defined as the most frequently occurring bin/value in a histogram. The mode bin should exhibit
a very high peak (i.e. close to 1), because then the intensity mapping is very homogeneous
within the tissue. However, a high homogeneity of a disk or vertebra in a model is not a suffi-
cient criteria for a good normalization. Each tissue should map to a specific target value/range
and to another value/range as its adjacent disks or vertebrae. The histograms of neighboring
tissues have to be put in relation to each other. Figure 6.1 and Figure 6.2 show histograms for
disk L4/L5 and vertebra L4 for every training volume Ik ∈ Str, k = 1 . . . 11.
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Figure 6.1: Relative intensity histograms for disk L4/L5 across the normalized training vol-
umes. Three out of eleven volumes do not exhibit a single peak for L4/L5, whereby two of
them map to the same target value s = 3 as the adjacent vertebra L4 (see Figure 6.2).
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Figure 6.2: Relative intensity histograms for vertebraL4 across the normalized training volumes.
All histograms are rather homogeneous and exhibit a peak at s = 1.
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We calculate relative histograms for all disks and vertebrae across the mapped training vol-
umes from a trained modelMi (see Figure 6.3 as sample for one training volume). Having a set
of relative intensity histograms for disks and vertebrae, the next step is to calculate the mode for
disks respectively vertebrae ofMi. Across all disks in modelMi we determine the maximum
occurring target value g′i and call it the mode for disks moded(Mi) in model Mi (analogues
for vertebrae modev(Mi)). Based on the modes, we calculate the Hamming distance [24] for
all disks and vertebrae in the mapped training data of modelMi. The Hamming distance is a
measure in information theory, that describes in how many positions two strings differ.

For this work, we consider the Hamming distance for disks and vertebrae of a modelMi.
For every disk in the training set, we calculate its mode and compare it with the disk mode
moded(Mi) of the model, respectively modev(Mi) for vertebrae. Mismatches increase the
respective Hamming distance.

By considering both relative Hamming distances (normalized to the range [0, 1]), we judge
the mapping quality of a trained entropy modelMi. Hence we prefer models with low Hamming
distances.

6.2.2 Spatial Precision and Recall

In pattern recognition and computer vision, the measures precision and recall are often used
to evaluate the quality of classification and recognition algorithms [57]. They were originally
introduced within the scope of information retrieval [39], in order to evaluate retrieval results.
Generally, the task in information retrieval is to retrieve relevant information from a set of objects
(e.g. words, images, documents, etc.), based on a query. The precision describes then, how
many relevant documents are retrieved, i.e. the ratio of relevant retrieved documents to all
retrieved documents. Recall denotes the fracture of retrieved relevant documents to all relevant
documents, i.e. how many of all relevant documents were retrieved by the algorithm.

Within the scope of intervertebral disk localization, Major et al. [38] describe precision and
recall in a spatial context. They aim for measuring the accuracy of detected disk landmarks,
i.e. if the detected disk center point lies within the expert-annotated disk cylinder or not. For
formulating precision and recall, criteria for true positive (TP), false positive (FP) and false
negative (FN) detections have to be derived.

A detected disk landmark is a TP candidate, if it lies within the expert-annotated cylinder of
the corresponding intervertebral disk. FP landmarks are detected by the algorithm, but are not
present in the ground truth. FN labels lie either outside the cylinders or are not detected at all.

With these terms, precision and recall are defined as:

precision =
|TP |

|TP |+ |FP |
recall =

|TP |
|TP |+ |FN |

(6.2)

The precision describes then the ratio of correct retrieved disks to all retrieved disks, whereby
recall denotes the ratio of correct retrieved disks to all ground truth disks.
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Figure 6.3: Relative tissue intensity histograms (top) for volume d2_t1w and the obtained nor-
malized volume (bottom). The dataset was normalized to s = 3 target gray values with model
M3 (see Table 6.2 for parameter details). The histograms show, that the ETM delivers the
desired homogeneous mapping for disks respectively vertebrae in the training volume. 69



6.3 Bias Field Correction

Two different bias field correction methods, based on the work from Juntu et al. [31] were tested:
For the first method, the bias field was estimated based solely on the mid-slice of the volume.
Every slice of the volume was divided by this bias field. The second method approximates the
bias field for every slice and hence every slice is divided by the bias field of itself. Regarding
timing, it is slower than the first method, because the surface fitting is done for every slice (see
performance evaluation in Section 6.6.3). Both methods reduce the bias field (see Figure 6.4).
Looking at the intensity ranges for the disks T9/T10, T10/T11 and T11/T12, we see that they
are now closer to the other disks in the volume. For the mid-slice method they are closer together
than for the method with every slice. The latter shifts the disk intensity ranges and also enlarges
the range, as seen in the plot. The mid-slice method is also faster then the other approach, since
only a single surface fitting step is needed. Hence this approach is integrated as preprocessing
method.

6.4 ETM Parameter Optimization

Eleven volumes Ik ∈ Str, k = 1 . . . 11 were selected for training of the texture models. The
volumes were chosen in a way that they show not only the lumbar spine but also the lower part
of the thoracic spine. This ensures, that the learned texture model covers the lower part of the
spinal column well. The training set contains a mixture of T1w (six volumes) and T2w (five
volumes) scans. In this way, the intensity variability from both weightings should be covered by
the model.

On the training data, parameter space exploration was performed for several variables of the
texture model (see Table 6.1).

Parameter Values or Range # Values
source values rk ∈ [70, 75, . . . 130] 13
target values s ∈ [2, 3, 4, 5] 4
sampling distance sd ∈ [1.5, 2.0, 2.5] 3

extraction strategy
Disk-Spinal-Centers-Plane
Disk-Cylinder-Points
Disk-Cylinder-Spinal-Points

3

bias field correction on/off 2
936 configurations

Table 6.1: Parameter ranges used for the evaluation of ETMs.

Even though the valid ranges for the model parameters have been restricted to a reasonable
subset, a model setMwith a total number of |M| = 936 model configurations is obtained. Only
one training set Str was extracted out of all 28 volumes and no cross-validation was performed.
On the one hand, it is very time consuming and computationally expensive to train multiple sets,
where for every subset Str ∈ S 936 parameter configurations have to be trained. On the other
hand, not all datasets cover the same anatomical region, e.g. only the disks T11/T12 to L5/S1.

70



40 50 60 70 80 90 100 110 120

L5/S1
L4/L5
L3/L4
L2/L3
L1/L2

T12/L1
T11/T12
T10/T11
T9/T10

di
sk

s

intensities

(a) Original volume.
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(b) Every slice of the volume corrected with the bias field of the mid-slice.
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(c) Every slice of the volume corrected with the bias field of itself

Figure 6.4: Boxplots showing the disk intensity ranges for the original volume d17_t1w (see
Figure 6.4a) and after applying the two proposed variants of the bias field correction method.
Figure 6.4b denotes the corrected intensities, if the volume is divided only by the estimated bias
field of the mid-slice of the volume. Figure 6.4c shows the corrected volume, where the bias
field is estimated for every slice.
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Hence models would be obtained, that cover a smaller region of interest. The performance of
the normalization might suffer for volumes showing vertebrae and disks not covered with the
trained model. However, this hypothesis needs further investigation and can be considered as
future work.

For visual exploration of the ETM training results, the HTML5 PivotViewer [23] (see Fig-
ure 6.5) was used. This tool allows to browse through a collection of images, whereby every
image is associated with meta data. Within this work, the meta data describes the trained ETMs,
i.e. one row corresponds to one trained model. The data table includes on the one hand the
training parameters of the models, such as number of target bins s, sampling distance sd, texture
extraction strategy, etc. On the other hand, model properties and data statistics, such as disk and
vertebrae mode moded(Mi) and modev(Mi) of the modelMi are included. For every model,
one image is generated, which represents this model. It is a collection of normalized mid-slice
images, which are obtained by normalizing the eleven training volumes with the trained model
Mi.

For a qualitative evaluation of the trained entropy models, we look at the modes and Ham-
ming distances (see Section 6.2.1). Relative Hamming distances for disks and vertebrae for all
modelsMi, i = 1 . . . 936 are plotted against each other (see Figure 6.6). It is seen immediately,
that the distances are lowest for s = 2 and s = 3 target values. Models that map to s = 4 or
s = 5 target bins often result in noisy images (see Figure 6.7, right), although for high-resolution
training images they can keep more details because the level of abstraction is lower as for exam-
ple with s = 2 or s = 3 bin models (see Figure 6.8). However, we cannot rely on unseen testing
images which exhibit a high resolution.

Investigating models with Hamming distances < 0.2 in more depth (see Figure 6.9), we see
that the models with the lowest Hamming distances map to s = 2 target values at sampling
distance sd = 2.5. Also – what is not shown in this plot – more than half of the models in
this area use bias field correction (see Figure 6.10). The models mapping to s = 3 target bins
use mainly the Disk-Spinal-Centers-Plane landmark extraction method. It seems to generalize
better for the three-bin model than the other extraction methods. No such trend can be detected
within two-bin models.

Several models are selected with distances < 0.2 in order to compare labeling results on
models with different parameter settings. The evaluation is provided in the next section.
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(a) (b)

Figure 6.7: Sample normalization results of trained ETM models at sampling distance sd = 2.0
with s = 3 (see Figure 6.7a) and s = 4 (see Figure 6.7b) target bins (95 source bins). A higher
number of target values s often results in noisy images (see also Figure 6.6), especially in images
with lower resolution. Data by courtesy of AGFA HealthCare [25].
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(a) (b)

Figure 6.8: Mid-slice images of sample normalization results of trained ETM models at sampling
distance sd = 1.5 with s = 2 (see Figure 6.8a) and s = 5 (see Figure 6.8b) target bins (110
source bins). More details are lost with the two-bin model than with the five-bin model. This is
seen around vertebra L3, indicated by the orange arrow. The two-bin model provides a higher
level of abstraction. Data by courtesy of AGFA HealthCare [25].
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(a) (b)

(c) (d)

Figure 6.10: Sample mid-slice images of normalized training volumes with (see Figure 6.10b
and Figure 6.10d) and without (see Figure 6.10a and Figure 6.10c) bias field correction. One
model uses s = 2 target bins (see Figure 6.10a and Figure 6.10b)), the other model uses s = 3
target bins (see Figure 6.10c and Figure 6.10d). It seems that the two-bin model performs better
with bias field correction than the three-bin model. However, the dataset in the bottom row is a
cut-out of a fullspine scan, so not a real bias field is present there as in the dataset in the top row.
Data by courtesy of AGFA HealthCare [25].
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6.5 Disk Center Detection on Lumbar and Lower Thoracic Spine

The evaluation was carried out on 17 annotated testing volumes covering the lumbar and lower
thoracic spine. In every volume, the disks in the range between T11/T12 and L5/S1 are in the
ground truth, i.e. seven disks. Some volumes cover also the disks T9/T10 and T10/T11. In
total, 133 disks were annotated in the 17 volumes (see Appendix Table A.1). Several models
were tested, mapping the input data to s = 2 and s = 3 target bins. For the final comparison,
four models Mi, i = 1 . . . 4 were selected (see Table 6.2 and highlighted in Figure 6.9). The
models use initially r = 110 source bins and map to s = 2 or s = 3 target bins. Different
sampling distances, landmark extraction methods and bias field processing are used. For every
model, a lumbar and thoracic PBT detector were trained with two different initial re-sampling
voxel sizes, i.e. ∆x,y,z = 1.0 mm and ∆x,y,z = 1.5 mm.

For every selected configuration, a batch evaluation was performed with a testing frame-
work provided by VRVis [20]. The complete spine labeling pipeline was done for every testing
volume, starting from every annotated intervertebral disk in the volume. This results in 133
iterations for one tested model configurationMi.

Figure 6.11 presents the labeling accuracy of the disk center positions obtained after the
ETM model matching. No subsequent feature detection was performed. The plots report the
number of missed disks (top), i.e. a disk center which was not detected by the algorithm but is
present in the ground truth annotation, and the mean distance-to-disk-cylinder error per dataset
(bottom). One value in the matrix indicates the mean distance-to-disk-cylinder error for a com-
plete ETM preprocessing and labeling run, with initial click position in disk dki with label λi
(y-axis) in dataset Ik (x-axis). This holds analogously for the missed disk plot, where one value
indicates the number of missed disk center points for the respective testing run. Only detected
disks are considered for error calculation. Missed and extra disks do not contribute with a penalty
term.

The results show, that no disk center points were missed, which is desired. However, the
mean distance-to-disk-cylinder error suggests, that many disks lie outside the annotated cylinder,
which is not a good result. This is also reflected in the recall of 85.5% and precision of 89.8%.

In the following, the labeling performance with a subsequent feature detection with PBTs on
entropy-optimized training data is reported. Section 6.5.1 reviews the results achieved for map-
ping to two target bins and Section 6.5.2 summarizes results for the selected three-bin models.
The influence of bias field correction is also reported for both target values.

Model rk s sd extraction strategy bias field correction
M1 110 2 2.5 Disk-Cylinder-Points off
M2 110 2 2.5 Disk-Cylinder-Points on
M3 110 3 1.5 Disk-Spinal-Centers-Plane off
M4 110 3 1.5 Disk-Spinal-Centers-Plane on

Table 6.2: List of trained modelsMi, which are selected for evaluation of spine labeling. Source
bins rk, target bins s, sampling distance sd, extraction strategy and bias field correction settings
are listed for ETM matching.
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Figure 6.11: Labeling results achieved with matched three-bin modelM4 on preprocessed vol-
ume data. No feature detection was performed, but the positions of the matched landmarks were
evaluated. This method achieves a precision of 89.8% at a recall of 85.8%. Processing time for
one dataset is only 2.66 s on average, since only model matching is performed. This corresponds
to a mean processing time of 0.34 s per disk.
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6.5.1 Labeling Results on Two-bin Models

The disk detection results achieved with model M1 and M2 are shown in Figure 6.12 and
Figure 6.13.

The results obtained with modelM1 trained on unprocessed data show, that a lot of inter-
vertebral disks are not detected by the algorithm. For one reason, this happens due to missed
disks in the border region of the scan (see Figure 6.14, left). The image shows, that with the
two-bin model the low contrast region at the upper border maps only to one target intensity level
(i.e. black). Hence no disks can be detected in scans that exhibit this low contrast region, i.e. a
bias field. In three cases, the entropy optimization fails (see seven missed disks in Figure 6.12,
dataset d17_ffe3d and d23_2_t1w) if the initial click is at the border region of the MR scans.

Applying modelM2, which was trained and tested on bias field corrected scans, decreases
the number of missed disks and the mean distance-to-disk-cylinder error (see Figure 6.13).
Looking again at the sample result from volume d23_2_t1w (see Figure 6.14), it is apparent
that the model provides a better mapping for the low contrast border region of the image. How-
ever, an extra disk is found which is not present in the ground truth data.

In terms of spatial precision and recall, modelM1 achieves a precision of 94.7% at a recall
of 82.1%. Using bias field correction (model M2) increases the recall to 88.3%, but also de-
creases precision to 92% due to more detected false positive disks in the thoracic region of the
scans. Processing time is lower for modelM1 due to a lower resolution of the data in the feature
detection phase (re-sampling to ∆x,y,z = 1.5 mm). Mean processing time for one dataset is 4.8
s, which results in 0.6 s per disk. With modelM2 processing time rises to 10.7 s per dataset resp.
1.4 s per disk on average. A detailed overview about timing performance is given in Section 6.6.

One problem with two-bin models is that they exhibit a very high level of abstraction. This
can result in a loss of basic anatomical information in the mapped data, e.g. in low contrast
regions at the border (see Figure 6.14). Disks and vertebrae map to the same target value. Even
though bias field correction increases mapping quality, the mappings are not always optimal.
Disk center points were missed for example because disks (nucleus and fibrous ring) mapped
to black in the training data, but where normalized to white on the testing data (as seen on the
missing candidates in L5/S1 in Figure 6.14).

6.5.2 Labeling Results on Three-bin Models

Comparing the results of both three-bin models M3 (see Figure 6.15, unprocessed data) and
M4 (see Figure 6.16, preprocessing), we see again that bias field correction reduces the number
of missed disk center points and the mean distance-to-disk-cylinder error. Again, one value in
the matrix indicates the mean distance-to-disk-cylinder error for a complete ETM preprocessing
and labeling run, with initial click position in disk dki with label λi (y-axis) in dataset Ik (x-axis).

In terms of spatial accuracy, modelM3 achieves a precision of 91.6% with a recall of 90.9%.
Normalizing the data with model M4 gives only a slight increase of precision and recall to
91.9% resp. 91.7%. Extra detected disks (false positives) and disk points that lie outside the
expert-annotated cylinder (false negatives) contribute negatively to precision and recall. Post-
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Figure 6.12: Labeling results achieved with the two-bin model M1 on unprocessed volume
data. Lumbar and thoracic detectors ΦL and ΦT use initial re-sampling to ∆x,y,z = 1.5 mm.
The algorithm achieves a precision of 94.7% at a recall of 82.1%.
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Figure 6.13: Labeling results achieved with the two-bin modelM2 on bias field corrected vol-
ume data. Lumbar and thoracic detectors ΦL and ΦT use initial re-sampling to ∆x,y,z = 1.0 mm.
The algorithm achieves a precision of 92.0% at a recall of 88.3%.
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(a)

(b) (c)

Figure 6.14: Original mid-slice image of dataset d23_2_t1w (see Figure 6.14a) and labeling
results obtained with two-bin modelsM1 (see Figure 6.14b) andM2 (see Figure 6.14c). The
extracted points are projected onto the normalized mid-slice image from the volume dataset.
Detected disks and corresponding labels are shown in red, ground truth annotations in yellow.
Feature points detected with the ΦL and ΦT detectors are shown in green and blue, respectively.
On the unprocessed data, disks are missed in the thoracic region, whereas with preprocessing all
disks are detected, as well as a disk which was not annotated (T9/T10). Data by courtesy of
AGFA HealthCare [25].
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Figure 6.15: Labeling results achieved with the three-bin model M3 on unprocessed volume
data. Lumbar and thoracic detectors ΦL and ΦT use initial re-sampling to ∆x,y,z = 1.0 mm.
The algorithm achieves a precision of 91.6% at a recall of 90.9%.
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Figure 6.16: Labeling results achieved with the three-bin model M4 on bias field cor-
rected volume data. Lumbar and thoracic detectors ΦL and ΦT use initial re-sampling to
∆x,y,z = 1.0 mm. The algorithm achieves a precision of 91.9% at a recall of 91.7%.
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processing, e.g. fitting a spline to the detected points, could further enhance labeling accuracy
at the cost of a higher processing time.

Processing time with modelM3 for one dataset is 10.7 s on average, which corresponds to a
mean processing time of 1.4 s per disk. Applying modelM4 achieves a similar processing time
of 12.4 s on average for one dataset, which corresponds to a mean processing time of 1.6 s per
disk. A detailed overview of timing performance is given in Section 6.6.

Both results were obtained at a high resolution for feature detection (∆x,y,z = 1.0 mm). Ap-
plying detectors ΦL and ΦT with initial re-sampling to ∆x,y,z = 1.5 mm to modelM4 reduces
timing to 6.0 s per dataset (0.8 s per disk). With this, an even higher precision of 92.4% at the
cost of a lower recall of 86.8% is achieved.

Looking at the mapping results of the three-bin modelM4 (see Figure 6.17), we see that for
both weightings a reliable mapping is obtained with the trained ETM. In the T2w scan (bottom)
we can observe a higher signal for the lower lumbar disks L4/L5 and L5/S1 than in the other
disks. This results in a mapping to another target value (in this case black) than the disk mode
moded(M4) = 2 for some voxels. Nevertheless, the model is capable to normalize the majority
of nucleus voxels correctly and detect the disk centers within the cylinder. For other datasets
where the nucleus signal is even higher (see Figure 6.18, left), the model maps the majority of
voxels not to the disk mode, but also not to the vertebra mode as it was the case for the two-bin
model. The nucleus is mapped to the third gray value, which was learned by the PBTs and
therefore enables a detection of the disk.

The presented three-bin models provide more reliable mappings than the two-bin models,
which is reflected in the reported precision and recall of the models. Their level of abstraction
is lower, which results in a better normalization and hence detection rate of the disk candidate
voxels.

6.6 Hardware Setup and Performance

The computer used for implementation and testing of the presented framework has a Quad Core
Intel i7 processor at 3.4 GHz and 8 GB of RAM. Training of ETMs, the bias field preprocessing
and testing of the whole pipeline was performed on this computer. For training of PBTs, a Linux
machine equipped with 32 GB of RAM was used. Time performance for bias field correction is
reported in Section 6.6.1. Timings for the training and testing of ETMs and PBTs are reviewed
in Section 6.6.2 and Section 6.6.3.

6.6.1 Bias Field Correction

Recall, that two methods for bias field correction were implemented in MATLAB. For the first
method, the bias field is calculated only for the mid-slice of the volume. The mean process-
ing time is 0.4 s ± 0.3 s. For the second method, the bias field is calculated for every slice
independently. This results in a total timing of 1.8 s ± 1.0 s.
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(a) (b)

(c) (d)

Figure 6.17: Original mid-slice images for T1w volume d6_t1w (see Figure 6.17a and T2w
volume d6_t2w (see Figure 6.17c). Corresponding normalization results (see Figure 6.17b resp.
Figure 6.17d) are obtained with modelM4. Feature detection was performed with initial voxel
size ∆x,y,z = 1.0 mm. Detected disk centers are shown in red, ground truth annotation is marked
in yellow. The result is projected onto the normalized mid-slice image of the volume dataset.
Data by courtesy of AGFA HealthCare [25].
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Figure 6.18: Original T2w mid-slice image from volume d13_1_t2w (left) and corresponding
normalization result obtained with modelM4 (right). Feature detection was performed with ini-
tial voxel size ∆x,y,z = 1.0 mm. Detected disk centers are shown in red, ground truth annotation
is marked in yellow. The result is projected onto the normalized mid-slice image of the volume
dataset. Data by courtesy of AGFA HealthCare [25]

6.6.2 Training of ETMs and PBTs

Training times for entropy models strongly depend on the parameter setup of the training. The
average times vary between one and 27.5 min, whereby fast training is conducted with a high
sampling distance of sd = 2.5 (see Figure 6.19) and a small number of target bins, i.e. s = 2.
For this setting a minimum average timing of 1 min is reported (maximum average time 2.3
min). With an increasing number of target values s and for lower sampling distances sd = 2.0
(see Figure 6.20) and sd = 1.5 (see Figure 6.21), timing increases up to 27.5 min on average.
Furthermore the size of the texture, i.e. the landmark extraction method, affects the timing.

Training of PBT classifiers with maximum tree depth of three and one level of downsampling
w = 1 takes 32 min± 6 min. Lumbar and thoracic detectors ΦL and ΦT were trained with Haar-
like and gradient features (see Section 5.4.2).

6.6.3 Testing of Labeling Framework

The overall timing when labeling an unseen volume is determined by several factors:

1. Bias field correction
For bias field correction, a processing time of 0.4 s ± 0.3 s was recorded (see Sec-
tion 6.6.1).

2. Data normalization
Matching of an entropy model requires between 1.0 s and 8.1 s on average (see Fig-
ure 6.22), whereby the parameter influence is similar as already reported for the training.
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Figure 6.19: Average timing for training of an ETM at sampling distance sd = 2.5 for the three
landmark extraction methods. The graph shows mean training times (in min) at four target
values s (y-axis).
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Figure 6.20: Average timing for training of an ETM at sampling distance sd = 2.0 for the three
landmark extraction methods. The graph shows mean training times (in min) at four target
values s (y-axis).
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Figure 6.21: Average timing for training of an ETM at sampling distance sd = 1.5 for the three
landmark extraction methods. The graph shows mean training times (in min) at four target
values s (y-axis).

Timing increases with large textures and a small sampling distance, e.g. sd = 1.5. For
both 3D extraction methods (Disk-Cylinder-Points and Disk-Cylinder-Spinal-Points), tim-
ing halves when increasing the sampling distance from sd = 1.5 to sd = 2.0. The plane-
like texture extraction method (Disk-Spinal-Centers-Plane) provides fast model matching
for all sampling distances. Maximum timing is 2.5 s on average at the smallest sampling
distance sd = 1.5.

For the evaluated models in the previous section, an average matching time of 1.8 s for
M1 and 1.9 s forM2 is reported for the two-bin models. Three-bin modelsM3 andM4

require 2.5 s resp. 2.8 s on average.

3. Feature detection
The obtained PBT detectors from the training phase use Haar-like features and one level
of downsampling. Two variants with initial re-sampling to ∆x,y,z = 1.0 mm and
∆x,y,z = 1.5 mm were tested within the evaluation of the labeling. Average timing
for feature detection with initial resolution ∆x,y,z = 1.0 mm is between 8.2 s on M3

and 9.6 s onM4. Using re-sampling to ∆x,y,z = 1.5 mm decreases the mean timing to
3.0 s onM1.
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Figure 6.22: Average timing for matching an ETM at different sampling distances and extraction
methods. The models evaluated use between 85 and 110 source bins.
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6.7 Summary

The evaluation of the proposed semi-automatic labeling pipeline shows, that promising results
can be achieved with this approach. To the best of our knowledge, no approach was presented
so far in the literature, which normalizes and labels lumbar MR scans.

The entropy models learned from sparse annotations on unprocessed and preprocessed data
capture the intensity variations in T1w and T2w MR scans. In order to locate intervertebral disks
in unseen datasets, we evaluated the obtained positions from the ETM model matching, where
we achieve a precision of 89.8%. at a recall of 85.5%. In order to increase the localization
performance, we apply PBTs as disk detection algorithm on the normalized datasets, which
are retrieved from the ETM model matching. The evaluation of various learned texture models
shows, that mapping to s = 3 target values provides the best results in terms of the intensity
mapping quality and generalization of the model. Using more than three target values results
in noisier data. With s = 2 target bins, problems arise especially in low contrast regions,
because too much anatomical information is lost due to homogeneous intensity mapping of
adjacent disks and vertebrae. The problem of low contrast in the border regions of the dataset
was addressed with an additional preprocessing algorithm. The integrated bias field correction
method improved the quality of mappings for both evaluated two- and three-bin models. The
improvement is also reflected in the evaluation of the disk center detection. For the three-bin
model, precision increases from 91.6% to 91.9% and recall from 90.9% to 91.7%.
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CHAPTER 7
Conclusion and Future Work

This final chapter concludes the thesis. Section 7.1 summarizes the presented work and the
insights gained. Outlook on possible future work is then given in Section 7.2.

7.1 Conclusion

This thesis presented a new approach for semi-automatic spine labeling on T1w and T2w MR
data acquired on various scanners. One main goal of this work was to learn one model, which
is capable of normalizing T1w and T2w MR volumes to a reduced, standardized intensity scale.
The task of labeling the spine should then be carried out on the preprocessed data. To achieve
this goal, an entropy-optimized texture model [67] was learned from sparse annotations of the
spinal anatomy. The model learns the intensity variation across the training set and normalizes
the intensities to only three gray values without losing the main anatomical information from
the original image data. Probabilistic boosting trees were trained on this normalized data for the
localization of intervertebral disks. From the detected candidate voxels, the potential disk center
was selected by weighting every detected voxel.

The presented processing pipeline achieves promising results in terms of data normalization
and disk localization. The algorithm performs with a precision of 91.9% and recall of 91.7% on
unseen data with a mean processing time of 1.6 s per detected disk.

To the best of our knowledge, no such spine labeling approach on normalized data was
presented in the literature. The strength of this method lies in the capability of processing T1w
and T2w MR scans without the necessity to retrain the entropy model or the feature detection
algorithm when processing one scan of this type.

To be comparable to current state-of-the art algorithms in MR spine labeling, a development
towards a fully automatic approach is necessary. Furthermore, time performance and labeling
accuracy have to improve. However, the work from Kelm et al. [32] for example reports only
results on high-resolution T1w data and needs re-training for CT scans. Our proposed approach
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can process T1w and T2w scans and has the potential to develop one combined model for CT
and MR data, according to the original work from Zambal et al. [67]. This idea is considered as
future work.

7.2 Future Work

At the end of this thesis, a short overview about ideas and improvements originating from this
work are given.

Automation For use in clinical practice, a fully automatic spine labeling approach is preferred
over semi-automatic methods. This comes with several challenges with the proposed
method. So far it is ensured that the ETM is initialized with the desired region of interest,
because of the user’s initial click. Now with a fully automatic approach, the task is to find
good seed points for placing the model first. One possibility is to use the Histogram of
Oriented Gradient Feature for the detection of candidate voxels. Lootus et al. [36] reported
successful candidate detection on MR T1w scans and also on CT data without re-training
of the algorithm. Performance on T2w scans is not stated and has to be investigated.

Body Region So far the ETM was trained on and applied to scans covering the lumbar and lower
thoracic body region exclusively. An extension to other body regions and fullbody scans
is necessary in order to compete with current state-of-the-art algorithms. Furthermore, for
the use in a clinical environment, it is desired that the algorithm works on the whole spinal
column.

Disk Detection Since the appearance of disks is simplified after the normalization, the complex
PBT classifier could be exchanged with a simpler method. However, this needs further
research in order to find suitable algorithms. Regarding the accuracy of the presented
method, post-processing could further improve the result. Some detected disk centers
were just outside the disk cylinder and therefore count as false negative detection. A
correction with e.g. a spline could tackle this problem.

Time Performance The time performance can be further increased, e.g. by choosing a different
disk detector. Since the appearance of disks is simplified after the normalization, the
complex PBT classifier could be exchanged.

Multi-Modality Currently the algorithm works on T1w and T2w MR scans acquired with GR
and TSE sequences. Zambal et al. [67] claim in their work, that the proposed texture
model works not only with data from different scanners and various MRI sequences, but
also on a mixture of modalities. Including CT scans to the training set could therefore
provide a spine labeling framework that works on MR and CT data with only one training
step. Furthermore the applicability of the already trained model to CT can be investigated.
This area opens up a whole room for improvement and further research and development.
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APPENDIX A
Datasets

All 28 training and testing volumes were acquired on scanners from Philips Medical Systems [56].
They were extracted from datasets from 14 different patients and cover the lumbar and lower tho-
racic spine (see Table A.1). Table A.2 gives a detailed overview of various properties like voxel
sizes, resolution, etc. and patient-related information such as age and gender. The appendix of
the volume names indicate the weighting of the data, hence t1w for T1w and t2w for T2w data
(both TSE sequence), respectively. FFE scans (GR sequence) are identified by a trailed ffe3d.

Volume Annotated Region
∗d1_t1w T8/T9 - L5/S1
∗d1_t2w T8/T9 - L5/S1
∗d2_t1w T8/T9 - L5/S1
∗d2_t2w T8/T9 - L5/S1
d6_t1w T11/T12 - L5/S1
d6_t2w T11/T12 - L5/S1

d10_t1w T10/T11 - L5/S1
d10_t2w T10/T11 - L5/S1

d13_1_t1w T11/T12 - L5/S1
d13_1_t2w T11/T12 - L5/S1
∗d15_t1w T9/T10 - L5/S1
d17_t1w T9/T10 - L5/S1

d17_ffe3d T9/T10 - L5/S1
∗d18_t1w T9/T10 - L5/S1

Volume Annotated Region
d18_ffe3d T9/T10 - L5/S1

d20_t1w T10/T11 - L5/S1
∗d20_t2w T9/T10 - L5/S1

d23_1_t1w T11/T12 - L5/S1
d23_2_t1w T10/T11 - L5/S1
d23_2_t2w T10/T11 - L5/S1
∗d24_t1w T8/T9 - L5/S1
∗d24_t2w T8/T9 - L5/S1
∗d25_t1w T9/T10 - L5/S1
∗d25_t2w T9/T10 - L5/S1
d25_ffe3d T10/T11 - L5/S1

d26_t2w T10/T11 - L5/S1
d26_ffe3d T11/T12 - L5/S1
d27_ffe3d T10/T11 - L5/S1

Table A.1: Overview of training (marked with ∗) and testing volumes and the covered anatomical
region.
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