
Kontakt: weber.t@gmx.at, thomas.weber@cg.tuwien.ac.at

Masterstudium:
Visual Computing

Diplomarbeitspräsentation

Thomas Weber

Micropolygon Rendering on the GPU

Technische Universität Wien
Institut für Computergraphik und Algorithmen

Arbeitsbereich: Computergraphik
Betreuer: Prof. Michael Wimmer

Mitwirkung: Prof. John D. Owens, UC Davis

Problem Statement/Motivation

Shading and Rasterization

Results, Conclusions, Outlook

50 100 150 200
memory usage [MiB]

0

100

200

300

400

500

600

700

pr
oc
es
si
ng

ra
te

[M
pa

tc
he

s/
s]

T EAPOT

HAIR

COLUMNS

Z INKIA 1
Z INKIA 2
Z INKIA 3
E YE SPLIT

100000 200000 300000 400000 500000
batch size

While the recursive bound & split operation (essentially
a depth-�rst tree traversal) can be parallelized for the
GPU by turning it into a breadth-�rst traversal, this is li-
mited by its high worst-case memory consumption.
The image on the right shows the memory necessary for
breadth-�rst subdivision as a camera moves through a
scene. The highest spike requires over 1GB of memory.

Subdivision Memory Usage

Breadth-First

Bounded

Parallel Subdivision with
Bounded Memory

Columns Teapot

Zinkia Hair

We present a generalization of breadth-�rst subdivisi-
on, which allows controlling the maximal memory
consumption by limiting the number of surfaces that
are processed concurrently. This gives the user a smooth
transition between memory usage and performance.
The column on the very right shows the e�ect that ch-
anging this parameter has on the worst case number of
surfaces in memory.
Our method also preserves locality as shown in the
middle column. Sub-patches sharing the same color are
processed together.

The �gure to the right plots the surface subdivision rate
for the amount of assigned memory. The performance
converges toward that of breadth-�rst. This, combined
with our shading and rasterization kernels, allows us to
render very detailed scenes at real-time or interactive
framerates.
One of the largest performance costs when subdividing
is host-device communication. Device-side kernel en-
queue could potentially improve performance signi�-
cantly.

Reyes is a powerful rendering algorithm that works by
tessellating surfaces into polygons that are smaller than
the screen‘s pixels (so-called micropolygons). Surfaces
are �rst recursively bound and split until the result is
smaller than a prede�ned screen-bound. After this, the
surface is evaluated into a grid of polygons, which are
then shaded and rasterized.
This allows artifact-free rendering of curved surfaces
with optional displacement. These quality advantages
of Reyes makes it desirable to implement it on the GPU.

Once the surfaces have been successfully sub-
divided, they are evaluated at regular posi-
tions to create grids of polygons. After this,
the polygons are shaded and rasterized.
These operations are implemented as a suc-
cession of OpenCL kernels. Dicing happens in
a separate kernel (1). The resulting grids are
split into smaller chunks (2), and polygon sha-
ding is performed (3). The shading kernel also
checks if all polygons are back-facing and the
chunk can be culled.
Chunks are then rasterized in a separate
kernel that checks for polygon/sample inter-
sections for all chunk polygons in parallel (4).

1 2

3 4

Model Bound

Split

ShadeDice

Cull

diceable

outside

too large

Sample

