
Parallel Reyes-style Adaptive Subdivision with Bounded Memory Usage

Thomas Weber∗

Vienna University of Technology
Michael Wimmer†

Vienna University of Technology
John D. Owens‡

UC Davis

Figure 1: Illustration of the memory usage for breadth-first adaptive subdivision as a camera moves through a scene. The thumbnails in
the scene show the view from the camera at the highlighted positions. While the overall memory consumption of breadth-first remains mostly
constant, there are locations where significantly more memory can be necessary. Scene courtesy of Zinkia Entertainment, S.A.

Abstract

Recent advances in graphics hardware have made it a desirable
goal to implement the Reyes algorithm on current graphics cards.
One key component in this algorithm is the bound-and-split phase,
where surface patches are recursively split until they are smaller
than a given screen-space bound. While this operation has been
successfully parallelized for execution on the GPU using a breadth-
first traversal, the resulting implementations are limited by their un-
predictable worst-case memory consumption and high global mem-
ory bandwidth utilization. In this paper, we propose an alternate
strategy that allows limiting the amount of necessary memory by
controlling the number of assigned worker threads. The result is an
implementation that scales to the performance of the breadth-first
approach while offering three advantages: significantly decreased
memory usage, a smooth and predictable tradeoff between memory
usage and performance, and increased locality for surface process-
ing. This allows us to render scenes that would require too much
memory to be processed by the breadth-first method.

∗e-mail:t.weber@cg.tuwien.ac.at
†e-mail:wimmer@cg.tuwien.ac.at
‡e-mail:jowens@ece.ucdavis.edu

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

Keywords: GPGPU, Reyes, surface rendering, parallel rendering

1 Introduction

The steady rise in the flexibility and performance of graphics hard-
ware over the years has made it feasible to implement increasingly
sophisticated rendering algorithms in real time. Among these is the
Reyes rendering architecture [Cook et al. 1987], which was devel-
oped during the 1980s for production rendering.

Using Reyes for real-time rendering is desirable because it allows
scenes composed of displaced higher-order surfaces to be rendered
directly without any visible geometry artifacts. Surfaces are tessel-
lated into sub-pixel sized polygons during rendering and shaded on
a per-vertex basis. This also allows high-quality motion-blur and
depth-of-field effects using stochastic rasterization.

Even though each stage of Reyes rendering has been successfully
mapped to the programmable features of the GPU, the adoption
of Reyes for real-time graphics applications has so far been ham-
pered by practical considerations. While image quality and ren-
dering performance are quite relevant, one of the most important
aspects in this regard is robustness. For instance, it is unaccept-
able that a graphics pipeline can run out of memory for some un-
fortunate placement of the camera. Production rendering systems
can fall back to pages swapping to disk, but a GPU-based Reyes
pipeline must guarantee a peak memory bound for all components
in order to be useful.



Figure 1 demonstrates how the memory consumption for breadth-
first bound-and-split can look as a camera moves through a scene.
(Figure 6 shows the same data as a regular graph with axis labels.)
Note how this value stays at a mostly constant level for most of the
path with a small number of sharp spikes in memory consumption
at certain locations. Properly rendering from views such as these
can easily exceed the memory budget of an application or even the
available physical memory.

In this paper, we present a method that allows choosing the memory
budget for parallel bound-and-split. When there is enough avail-
able memory, the performance and behavior of the algorithm is the
same as the breadth-first approach. In case the breadth-first mem-
ory requirements exceed our memory budget, we can get a smooth,
asymptotic tradeoff between memory usage and performance. This
should make it possible to write rendering systems that perform
well in the general case, while still being robust enough to render
arbitrary scenes and viewpoints with reasonable performance.

2 Previous Work

Reyes tessellates surfaces into micropolygons using a two-stage ap-
proach [Cook et al. 1987]. In the first phase, surfaces are recursively
subdivided until they are smaller than a given screen-space bound.
After this, the surfaces are uniformly evaluated to create grids of
polygons. This phase is also called dicing. The reason for sep-
arating tessellation into these two steps is that it results in more
uniformly sized polygons and better vectorization than either step
could achieve on its own [Fisher et al. 2009].

Applying only dicing would lead to problematic over- or under-
tessellation for parts of surfaces that are strongly distorted, for in-
stance, due to perspective projection. On the other hand, while do-
ing full subdivision up to the micropolygon level is possible, this
leads to unnecessary over-tessellation since surfaces can only be
halved, effectively limiting the dicing rates to powers of two. Hav-
ing dicing as a separate phase avoids this, since the optimal dicing
rate for every bounded surface can be chosen. Performing shad-
ing and rasterization on grids instead of single polygons is also de-
sirable for parallelization, since vertex and face operations can be
vectorized.

The dicing phase maps to hardware tessellation supported on recent
graphics APIs and GPUs [Loop and Schaefer 2008]. This feature
works well and is commonly used in current games. Hardware tes-
sellation also allows the selection of separate tessellation levels for
the inside and each boundary edge of a surface in order to avoid
surface cracks. We will not go into detail about our implementa-
tion of the dicing phase, since we feel that this topic is already well
explored. Hardware tessellation has been around for several years
and is supported by most recent graphics processors and APIs. In-
stead, we will focus on the memory-efficient implementation of the
far less predictable subdivision phase. The output of this is a flat
array of parametric ranges on the 2D surfaces, which can easily be
used as input for hardware tessellation.

Programmable Tessellation on the GPU Over the past five
years, many researchers have used the programmable features of the
GPU to implement high-quality tessellation. Patney and Owens’s
adaptive subdivision on the GPU [2008] transformed the typical
depth-first recursive traversal of split surfaces into a breadth-first
operation. While this performs well on the GPU, using a breadth-
first traversal means that the peak memory consumption of this al-
gorithm rises exponentially with the number of splits [Zhou et al.
2009; Loop and Eisenacher 2009; Fisher et al. 2009]. Sanchez
et al. [2011] also note the disadvantages of breadth-first schedul-
ing (compared to other scheduling strategies) with respect to mem-

ory usage and locality. Nevertheless, several papers build on this
method.

Zhou et al. [2009] use breadth-first adaptive subdivision as part of a
full GPU-based interactive Reyes renderer called RenderAnts. Ren-
derAnts uses dynamic scheduling to ensure bounded memory us-
age for fragment processing. However, no such bound is given for
adaptive subdivision. Patney et al. [2009] use the breadth-first ap-
proach for crack-free view-dependent tessellation of Catmull-Clark
subdivision surfaces, and Eisenacher et al. [2009] adopt the same
breadth-first approach for parametric surface subdivision, but also
consider surface curvature, resulting in considerably fewer surfaces
being created.

Fisher et al. [2009] present a method for efficiently avoiding surface
cracks during subdivision by applying the scheme used in hardware
tessellation. They allow surfaces to be split along nonisoparamet-
ric edges to ensure integer tessellation factors at all times. Their
paper also discusses the scalability issues of breadth-first subdivi-
sion and gives this as a reason for their decision to implement their
adaptive subdivision on the CPU using multithreading and balanced
stacks. This gives excellent memory scalability and good locality,
but does not scale well beyond a relatively small number of concur-
rent threads.

Tzeng et al. [2010] consider adaptive subdivision from a schedul-
ing point of view. They make use of persistent kernels and dis-
tribute the total work over many work-groups. To ensure load bal-
ance, they advocate a scheduling strategy based on work-stealing
and work-donation. This approach has the advantage of avoiding
host-device interaction for enqueueing additional iterations. How-
ever, while general memory consumption is greatly reduced with
their approach, the peak memory usage remains unpredictable.

A method for the real-time tessellation of Catmull-Clark surfaces
on the GPU was presented by Nießner et al. [2012a]. They avoid
having to fully subdivide all surfaces by directly tessellating regular
faces as B-Spline surfaces and only applying further subdivisions
to faces containing an extraordinary vertex. This allows them to
greatly reduce the memory consumption. In a follow-up paper, they
discuss how semi-sharp creases can be handled efficiently [Nießner
et al. 2012b]. While their presented methods work well, their ap-
proach is essentially an efficient implementation of dicing Catmull-
Clark surfaces, since the subdivision level for a single model has to
be constant.

In a different application domain, Hou et al. consider the problem
of memory-efficient parallel tree traversal during k-d tree construc-
tion [2011]. With similar motivation to this work, they propose a
partial breadth-first search traversal scheme that only evaluates a
limited number of leaves in a tree.

3 Adaptive Subdivision on the GPU

The classic Reyes pipeline implements adaptive subdivision as a re-
cursive operation. Reyes estimates the screen-space bound of a sur-
face to decide whether the surface needs further subdivision or can
be sent to the next pipeline stage for dicing. If further subdivisions
are necessary, Reyes splits the surface and recursively calls bound-
and-split on the new sub-surfaces. This process can be thought
of as the depth-first traversal of a tree (“split tree”). While this is
easy to implement on regular CPUs and requires minimal memory
(O(N + k), where N is the number of input surfaces and k is the
maximum depth of the split tree), this approach is not suitable for
the GPU since it is inherently sequential. Due to this exponential
growth in memory consumption, the static preallocation of memory
for this operation quickly becomes unfeasible.



p = 1 p = 20 p = 100 p =∞

Figure 2: Comparison of evaluation order of surfaces for different batch sizes (p is the number of surfaces in a batch). Surfaces that are
created in the same iteration are shaded in the same color. This shows the locality-preserving property of our subdivision algorithm: surfaces
that are spatially close together are evaluated in the same iteration.

Patney and Owens [2008] parallelize the Reyes split phase by trans-
forming this depth-first operation into a breadth-first traversal of the
split tree. This way, a single iteration of the adaptive subdivision
can be implemented using a parallel bound kernel, prefix sums, and
a copy kernel. These are then iterated until all surfaces have been
successfully bounded. Figure 3 gives an overview on how this ap-
proach works.

While this is simple to implement and yields excellent speedup, this
approach suffers from high peak memory usage. Since all nodes of
a single depth in the split-tree have to be held in memory, the worst-
case memory consumption is the number of possible leaves of a
binary tree of maximum depth k. This is O(N ·2k), where N is the
number of input surfaces processed at once. Due to this exponential
growth in memory consumption, the static preallocation of memory
for this operation quickly becomes unfeasible.

It is possible to split the input surfaces into several batches that are
subdivided separately. This slightly reduces the worst-case mem-
ory consumption, but the overall memory consumption can still be
very high, especially since the total memory consumption of the in-
dividual input surfaces varies highly due to perspective projection.
The results section presents the test scene EYESPLIT, which has a
very high memory requirement despite only containing a single sur-
face. Furthermore, reducing the batch size also reduces the overall
performance especially during the first few iterations.

Figure 3: Schematic overview of breadth-first subdivision. Each
row represents the state of the surface buffer during one iteration.
Each surface can either be culled (red), split (yellow), or drawn
(green). For each split surface in the previous iteration, two new
surfaces are generated in the following iteration. This always hap-
pens for all surfaces in the surface buffer.

3.1 Adaptive Subdivision with Bounded Memory

Instead, we propose an adaptation of this approach where the num-
ber of surfaces processed at a given iteration is limited by a constant
value p. The buffer of surfaces is used as a parallel last-in-first-out
data structure where surfaces are read from the end of the buffer,
and any generated sub-surfaces are appended back to the end. By
using this approach, we can bound the peak memory consumption
by O(N + p · k). Figure 4 illustrates how this approach works.

Figure 4: Schematic overview of how our memory-bounded subdi-
vision operates. Unlike in Figure 3, the number of active surfaces at
each iteration is constant (in this case, p = 4). The other surfaces
are inactive and shaded in gray.

Adding the batch size p as a tweakable parameter in the subdivi-
sion process allows us to balance between memory consumption
and performance. Figure 7 shows the impact the chosen batch size
and the amount of assigned memory have on the overall subdivision
time. As the batch size increases, the subdivision time asymptoti-
cally approaches that of breadth-first subdivision. Our approach
also preserves locality, as can be seen in Figure 2.

In our implementation, a bound kernel first copies the last p sur-
faces into a temporary buffer and estimates the screen-space bound
for each of them. Depending on this bound, the kernel decides an
action to be taken on this surface (draw, split, or cull), which is
stored as a flag value in a separate buffer.

Whether a surface is ready to be drawn depends on the size of its
screen-space bound, which is estimated by the kernel. Surfaces are
culled when they are outside of the camera frustum or a surface
has been split the maximum number of times. More advanced sys-
tems may also support occlusion culling, for instance by accessing
a hierarchical depth buffer in GPU memory; however, our imple-
mentation does not at the moment.



Procedural displacement also affects the screen-space bound of
a surface. While there exist methods to efficiently estimate the
bounds of displaced surfaces [Munkberg et al. 2010; Nießner and
Loop 2013], our renderer is limited to a configurable safety mar-
gin to avoid erroneous culling of displaced surfaces near the screen
edge.

The temporary storage of surfaces is necessary to avoid surfaces be-
ing overwritten by split surfaces before they have been read. This is
not necessary in breadth-first subdivision, which uses a ping-pong
buffer approach. While our temporary storage requires one addi-
tional write operation, the performance cost is minimal.

We then apply a prefix-sum operation to these flag buffers to cal-
culate write locations. The split kernel checks the flag buffer and
either copies the bounded surface into the output buffer or applies
a split operation and places the resulting sub-surfaces at the end of
the surface buffer.

For a surface P , the split-results P ′0 and P ′1 are placed at address
a0 = S + fc · 2+ 0 and a1 = S + fc · 2+ 1 respectively, where S
is the current size of the surface buffer and fc is the prefix sum of
the split flags. Using this particular order is necessary to prove the
memory bound of our algorithm.

The flags accumulated by the prefix-sum operator are then used in
a subsequent copy kernel to find the correct location for writing in
the global-output and surface buffers. Surfaces remaining in the
surface buffer will be further split by subsequent iterations of our
subdivision algorithm, until the surface buffer is empty. The output
surfaces of a single iteration are copied to an output buffer from
where they are ready to be used by subsequent dicing and rasteriza-
tion kernels.

In our implementation, the output surfaces are immediately con-
sumed by subsequent pipeline stages. This way, we can make sure
that the maximum number of surfaces that have to be processed in
later stages is p. It is also possible to collect the output of sev-
eral iterations before passing it on. However, collecting the entire
output of the algorithm before passing it along further is not recom-
mended, since this might once again lead to unbounded memory
consumption due to the unpredictable amount of output surfaces.

Keeping the children of a surface that has been split close to-
gether also improves locality. Figure 5 shows the difference be-
tween placing the sub-surfaces in the order described by Pat-
ney and Owens [2008] (NONINTERLEAVED) with our approach
(INTERLEAVED).

We chose these names due to the order in which the split results
are written into the output buffer. NONINTERLEAVED separates
the left-hand and right-hand split products of {a, b, c} in the order
{a0, b0, c0, a1, b1, c1}, while INTERLEAVED places left-hand and
right-hand products in the order {a0, a1, b0, b1, c0, c1}.

Active surfaces are always read from the end of the surface buffer,
and their potential children in the subdivision tree are always put
back at that end again. As a result, and since the local order of the
split products mirrors that of their parents, we can always expect
that the surface buffer is sorted by subdivision level. This means
that surfaces closer to the beginning of the buffer have had fewer
subdivisions applied to them than those at the end.

At every iteration, the subdivision algorithm consumes p surfaces
and appends at most 2p surfaces back to the buffer. These new
surfaces are guaranteed to have a higher subdivision level than the
ones that were consumed. This has the effect that for each interme-
diate subdivision level, there can be at most p surfaces in the buffer
(safe for the root and top levels). Since we are actively limiting the
maximum allowed subdivision level to k and there can be at most

INTERLEAVED NONINTERLEAVED

Figure 5: Illustration of the effect the placement order after split
has on the locality of generated surfaces. Surfaces created during
the same iteration share the same color. INTERLEAVED is the order
described in this section while NONINTERLEAVED uses the order
of Patney and Owens.

p surfaces per subdivision level, we can make sure that there are at
most O(N + p · k) surfaces in the buffer at any point in time.

4 Results

We have implemented a simple Reyes renderer (called Micropolis)
in OpenCL that implements adaptive subdivision, dicing, shading,
and micropolygon sampling as kernels on the GPU. It supports both
the breadth-first adaptive subdivision approach and our memory-
bounded method.

BREADTH implements the breadth-first approach of Patney and
Owens [2008]. In case this algorithm runs out of memory, it will al-
locate further memory on-the-fly. This is necessary since the worst-
case memory consumption of breadth-first subdivision is so high
that preallocation is not possible. This exact situation is what we
want to avoid with this paper. Since we allow for a certain num-
ber of rendered frames before measurement, the necessary time-
overhead for this does not affect the measured subdivision times.

BOUNDED implements adaptive subdivision with bounded memory
as described in the previous section.

0 100 200 300 400 500
frame number

0

200

400

600

800

1000

1200

m
em

or
y

us
ag

e
[M

iB
]

Figure 6: Memory usage of BREADTH as the camera moves along
a straight path through the ZINKIA scene. Figure 1 gives the posi-
tion and local context for the features in this graph.

Table 1 shows the test scenes we used for evaluating our renderer.



TEAPOT HAIR COLUMNS ZINKIA

N 32 10 000 12 850 999 812

Table 1: Overview of the different test scenes used for performance analysis. N is the number of surface patches in a scene before applying
adaptive subdivision. Not pictured is the synthetic test scene EYESPLIT, because all that can be seen is a white rectangle over the entirety of
the frame buffer. ZINKIA scene courtesy of Zinkia Entertainment, S.A.

TEAPOT contains a single large object composed of a small num-
ber of surfaces. HAIR is a single mesh with a large number of sur-
faces and moderate depth complexity. COLUMNS contains about
the same number of surfaces as HAIR, but has a lower depth com-
plexity. The ZINKIA scene is very detailed and contains almost a
million surfaces.

We have prepared three different viewpoints to evaluate ZINKIA.
These three views are extracted from a straight path that has the
camera move along a line through the ZINKIA scene as shown in
Figure 1. Figure 6 shows the breadth-first memory usage at each
position of this path. The views we chose are one representing the
average case (ZINKIA1), one for the highest memory spike near
the tree (ZINKIA2), and one for the 1 GiB spike close to the cliff
(ZINKIA3).

In addition, we have also prepared a synthetic test scene called
EYESPLIT, which cannot be reasonably pictured. This is intended
to demonstrate the possible worst-case behavior of our subdivision
algorithms. EYESPLIT contains a single planar surface patch with
the camera placed in such a way that the split axis of the surface
falls onto the camera’s eye plane. This has the effect that the subdi-
vision of the surface does not terminate before the allowed number
of recursive splits has been exhausted and the surface gets culled.
The eye-split problem is an intrinsic property of the Reyes pipeline,
and artists have learned to avoid it in production rendering. Nev-
ertheless, it is important that such a configuration can be evaluated
without the subdivision pipeline stage of a renderer exceeding its
memory budget.

All benchmarks have been measured on a system with an AMD
Radeon R9 290 GPU and a 3.4GHz Intel Core i5-4670K CPU. The
graphics driver used was Catalyst 14.9 on a 64-bit Linux system.

Table 2 lists the execution results for various combinations of adap-
tive subdivision methods and test models. The scenes are ren-
dered at a resolution of 1280×720 and surfaces are split until they
are smaller than 8 pixels along each dimension. For BOUNDED,
three different batch sizes (low: 10000, medium: 40000, medium:
200000) are evaluated. The batch size of BREADTH is defined by
the scene and view itself. The maximum number of recursive sub-
divisions k has been set to 23.

Note that the memory consumption of BREADTH is the actual
amount of necessary memory, while BOUNDED is configured to
allocate enough memory for the worst-case possible memory con-
sumption. Especially for simple scenes, this can mean that the
conservative amount of memory allocated by BOUNDED exceeds
the amount of memory actually needed by both BREADTH and
BOUNDED. The average case is usually a lot better. A good ex-
ample for this is HAIR, which actually only requires at most 7 sub-

divisions to any surface in the scene. This can also be seen from
the max patches value in table 1, where the actual amount of stored
patches for BOUNDED always remains lower than for BREADTH.

A variant of BOUNDED that reallocates memory buffers on-the-fly
like BREADTH does could significantly reduce the amount of nec-
essary memory for these scenes. Our own focus was more on han-
dling extreme cases gracefully while accepting a constant memory
budget for anything lower. This is why we have not implemented
this.

For configurations where the view-inherent batch size of BREADTH
does not exceed the configured batch size, we can achieve a simi-
lar performance with BOUNDED. This is expected, since the exact
same amount of computation kernels with the same dimensions are
executed. In case the assigned batch size of BOUNDED is lower than
that of BREADTH, we get a smooth transition from low to high de-
pending on the amount of assigned memory. Especially for scenes
with high memory demand like ZINKIA3, assigning just 11% of
the memory necessary for BREADTH can give 66% of the overall
performance.

The 1 GiB spike of ZINKIA3 shows that doing naive breadth-first
subdivision is not feasible for real-world graphics applications. The
Zinkia scene is in no way extreme in what is to be expected of
Reyes rendering for interactive applications, and the render settings
we have chosen should be reasonable for the scene at hand. 1 GiB
of memory is 25% of the total physical memory of a top-of-the line
desktop GPU, and considering we are only rendering at 720p, this
value would grow for higher resolutions. Figures like these seem
especially prohibitive in the mobile space where such a memory
consumption can easily exceed the total available memory on cur-
rent devices.

Figure 7 demonstrates the impact of the chosen batch size on the
performance of BOUNDED. The achievable processing rate de-
pends highly on the intrinsic parallelism of a scene, with sim-
pler scenes very quickly reaching a plateau. The performance of
complex scenes like ZINKIA2/3 and EYESPLIT asymptotically ap-
proaches that of BREADTH when more memory is assigned. The
curve of HAIR shows how the processing rate quickly rises with
more assigned resources, starts to go flat, and then remains almost
constant past a certain point. This is the point at which the batch
size is large enough to keep all surfaces active at all times. It can be
seen that the other curves mirror this behavior at different scales.

Note that the memory values used for the horizontal axis in figure 7
don’t include the constant memory requirement for the initial num-
ber of patches. This is done to make the memory usage and batch-
size axes align. If we didn’t do this, the plot would be shifted on
the x axis, with the ZINKIA plot being the only one with a clearly



scene method batch size time memory max patches processed processing rate
[ms] [MiB] [M patches/s]

TEAPOT BREADTH 5030 1.72 0.52 5030 22172 12.92
TEAPOT BOUNDED 10000 1.69 4.88 5030 22172 13.11
TEAPOT BOUNDED 40000 1.70 19.53 5030 22172 13.03
TEAPOT BOUNDED 200000 1.69 97.66 5030 22172 13.11

HAIR BREADTH 150958 1.79 16.27 150958 430958 240.37
HAIR BOUNDED 10000 6.98 5.08 49000 430958 61.71
HAIR BOUNDED 40000 2.98 19.73 115488 430958 144.51
HAIR BOUNDED 200000 1.80 97.86 150958 430958 239.91

COLUMNS BREADTH 38712 3.02 4.14 38712 293178 96.98
COLUMNS BOUNDED 10000 5.98 5.15 22326 293178 49.00
COLUMNS BOUNDED 40000 3.02 19.80 38712 293178 97.03
COLUMNS BOUNDED 200000 3.01 97.93 38712 293178 97.25

ZINKIA1 BREADTH 999812 6.21 107.78 999812 1402768 225.78
ZINKIA1 BOUNDED 10000 29.25 24.91 999812 1402768 47.95
ZINKIA1 BOUNDED 40000 12.50 39.56 999812 1402768 112.20
ZINKIA1 BOUNDED 200000 7.48 117.69 999812 1402768 187.50

ZINKIA2 BREADTH 3847162 18.92 414.74 3847162 9284930 490.81
ZINKIA2 BOUNDED 10000 138.89 24.91 999812 9284930 66.85
ZINKIA2 BOUNDED 40000 55.51 39.56 999812 9284930 167.26
ZINKIA2 BOUNDED 200000 25.62 117.69 1040464 9284930 362.44

ZINKIA3 BREADTH 9766796 33.90 1052.81 9766796 20946484 617.89
ZINKIA3 BOUNDED 10000 315.62 24.91 999812 20946484 66.37
ZINKIA3 BOUNDED 40000 120.62 39.56 999812 20946484 173.66
ZINKIA3 BOUNDED 200000 51.05 117.69 1305212 20946484 410.33

EYESPLIT BREADTH 1950752 9.25 210.28 1950752 4024029 434.89
EYESPLIT BOUNDED 10000 62.99 4.88 85236 4024029 63.89
EYESPLIT BOUNDED 40000 23.68 19.53 260960 4024029 169.90
EYESPLIT BOUNDED 200000 11.43 97.66 843844 4024029 352.01

Table 2: Test results for various combinations of test scenes and subdivision method. max surfaces is the maximum amount of surfaces stored
in memory at any given point in time. processed is the total number of surfaces processed during subdivision including intermediate surfaces.
The processing rate is the number of processed surfaces divided by the subdivision time.

visible shift by about 20 MiB to the right. The constant offsets
of the other scenes are relatively small with at most 0.27 MiB for
COLUMNS.

Exact performance comparisons against previous implementations
are difficult because of different rendering parameters, but our over-
all performance appears competitive modulo differences in hard-
ware and rendering parameters:

• Patney and Owens [2008] give times for the adaptive subdivi-
sion of TEAPOT (6.99 ms) and KILLEROO (3.46 ms). They
perform fewer split operations (512×512 resolution with a
16-pixel bound) and use a significantly less powerful NVIDIA
GeForce 8800 GTX for measurement. Under this configu-
ration our subdivision times are 1.43 ms for TEAPOT and
0.30 ms for KILLEROO with BREADTH. The subdivision
times for BOUNDED are essentially the same.

• Tzeng et al. [2010] give overall frame render times including
shading and rasterization for TEAPOT (51.81 ms), BIGGUY
(90.50 ms), and KILLEROO (54.11). They render at resolution
800× 800 and use a 16-pixel bound. Micropolis is consider-
ably faster in this configuration (TEAPOT: 3.08 ms, BIGGUY:
3.11 ms, KILLEROO: 5.94 ms). However this is once again
hard to compare since Tzeng et al.’s renderer uses complex
transparency and 16× multisampling.

5 Conclusion and Future Work

This paper has presented a method for implementing adaptive sur-
face subdivision on the GPU with a bounded peak memory con-
sumption. The output order of generated surfaces also preserves
locality. We believe the memory advantages of our algorithm over
previous GPU implementations of bound-and-split may make adap-
tive surface subdivision more tractable for real-time usage, in par-
ticular for constrained rendering environments like mobile plat-
forms.

One aspect not discussed so far is the best choice for the batch size.
As can be seen in Figures 6 and 7, this is highly dependent on the
chosen scene and viewpoint. One possible heuristic for this would
be counting the intermediate surfaces per subdivision level to es-
timate the necessary breadth-first batch size and runtime behavior.
The preceding frame could be used for this.

The performance of BOUNDED could be greatly improved by using
device-side enqueue, as supported in version OpenCL 2.0. This is
because a lot of the overhead of performing more iterations comes
from the necessary host-device interactions. If this overhead were
negligible, then even relatively small batch sizes should be able to
fully utilize all available parallelism for a given graphics proces-
sor. However, AMD only released a preliminary driver supporting
OpenCL 2.0 just weeks before submission of this paper, which is
why we weren’t able to fully explore this.



50 100 150 200
memory usage [MiB]

0

100

200

300

400

500

600

700

pr
oc

es
si

ng
ra

te
[M

pa
tc

he
s/

s]

TEAPOT

HAIR

COLUMNS

ZINKIA1
ZINKIA2
ZINKIA3
EYESPLIT

100000 200000 300000 400000 500000
batch size

Figure 7: Subdivision performance for our test scenes depending
on the amount of assigned memory and batch size. The X axis
shows the amount of used memory on the bottom axis and the batch
size on top. Smaller scenes very quickly level out, while larger
scenes show asymptotic growth. The dashed horizontal lines rep-
resent the processing rate achievable by BREADTH and the upper
bound for BOUNDED.

Robust adaptive subdivision has many possible uses beyond the
classic Reyes algorithm. Hanika et al. [2010] presented a method
for ray-tracing polygons using a two-level approach with ray re-
ordering. This method may be well-suited for implementation
on the GPU using our described method for geometry genera-
tion. Integrating adaptive subdivision into a larger GPU graphics
pipeline would also allow for interesting optimization possibilities
like culling occluded surfaces during subdivision.

The source code for Micropolis, the OpenCL Reyes renderer de-
scribed in this paper, can be found at https://github.com/
ginkgo/micropolis.

6 Acknowledgments

We’d like to thank Anjul Patney, Stanley Tzeng, Julian Fong, and
Tim Foley for their valuable input. Another “thank you” goes to
Nuwan Jayasena of AMD for supplying us with testing harware
and giving support on driver issues.

This paper was supported by a scholarship from the Austrian Mar-
shall Plan Foundation, by a generous gift from AMD, by National
Science Foundation Award CCF-1017399, and by the Intel Science
and Technology Center for Visual Computing.

References

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes image rendering architecture. In Computer Graphics
(Proceedings of SIGGRAPH 87), 95–102.

EISENACHER, C., MEYER, Q., AND LOOP, C. 2009. Real-time
view-dependent rendering of parametric surfaces. In Proceed-
ings of the 2009 Symposium on Interactive 3D Graphics and
Games, I3D ’09, 137–143.

FISHER, M., FATAHALIAN, K., BOULOS, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. DiagSplit: Paral-

lel, crack-free, adaptive tessellation for micropolygon rendering.
ACM Transactions on Graphics 28, 5 (Dec.), 150:1–150:10.

HANIKA, J., KELLER, A., AND LENSCH, H. P. A. 2010. Two-
level ray tracing with reordering for highly complex scenes. In
Proceedings of Graphics Interface 2010, GI ’10, 145–152.

HOU, Q., SUN, X., ZHOU, K., LAUTERBACH, C., AND
MANOCHA, D. 2011. Memory-scalable GPU spatial hierarchy
construction. IEEE Transactions on Visualization and Computer
Graphics 17, 4 (Apr.), 466–474.

LOOP, C., AND EISENACHER, C. 2009. Real-time patch-based
sort-middle rendering on massively parallel hardware. Tech.
Rep. MSR-TR-2009-83, Microsoft Research, May.

LOOP, C., AND SCHAEFER, S. 2008. Approximating Catmull-
Clark subdivision surfaces with bicubic patches. ACM Transac-
tions on Graphics 27, 1 (Mar.), 8:1–8:11.

MUNKBERG, J., HASSELGREN, J., TOTH, R., AND AKENINE-
MÖLLER, T. 2010. Efficient bounding of displaced Bézier
patches. In Proceedings of the Conference on High Performance
Graphics, HPG ’10, 153–162.

NIESSNER, M., AND LOOP, C. 2013. Analytic displacement map-
ping using hardware tessellation. ACM Transactions on Graph-
ics 32, 3 (July), 26:1–26:9.

NIESSNER, M., LOOP, C., MEYER, M., AND DEROSE, T. 2012.
Feature-adaptive GPU rendering of Catmull-Clark subdivision
surfaces. ACM Transactions on Graphics 31, 1 (Feb.), 6:1–6:11.

NIESSNER, M., LOOP, C. T., AND GREINER, G. 2012. Efficient
evaluation of semi-smooth creases in Catmull-Clark subdivision
surfaces. In Eurographics (Short Papers), 41–44.

PATNEY, A., AND OWENS, J. D. 2008. Real-time Reyes-style
adaptive surface subdivision. ACM Transactions on Graphics
27, 5 (Dec.), 143:1–143:8.

PATNEY, A., EBEIDA, M. S., AND OWENS, J. D. 2009. Par-
allel view-dependent tessellation of Catmull-Clark subdivision
surfaces. In Proceedings of the Conference on High Performance
Graphics, HPG ’09, 99–108.

SANCHEZ, D., LO, D., YOO, R. M., SUGERMAN, J., AND
KOZYRAKIS, C. 2011. Dynamic fine-grain scheduling of
pipeline parallelism. In Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’11, 22–32.

TZENG, S., PATNEY, A., AND OWENS, J. D. 2010. Task manage-
ment for irregular-parallel workloads on the GPU. In Proceed-
ings of the Conference on High Performance Graphics, HPG ’10,
29–37.

ZHOU, K., HOU, Q., REN, Z., GONG, M., SUN, X., AND GUO,
B. 2009. RenderAnts: Interactive Reyes rendering on GPUs.
ACM Transactions on Graphics 28, 5 (Dec.), 155:1–155:11.

https://github.com/ginkgo/micropolis
https://github.com/ginkgo/micropolis

