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1 Abstract

In this work, we present a few modifications to the state-of-the-art algorithms, as
well as several novel approaches, related to the detection of cells in biological image
processing.

We start by explanation of a PDE-based image processing evolution called
FBLSCD and study its properties. We then define a fully automatic way of fin-
ding the stop time for this evolution. Afterwards, we try to see the FBLSCD as a
morphological grayscale erosion, and we formulate a novel cell detection algorithm,
called LLSOpen, as an intersection of PDE-based and morphological image processing
schools.

Then, we discuss the best ways of inspecting cell detection results, i.e. cell
identifiers. We try to quantitatively benchmark various cell detection methods by
the relative amount of false positives, false negatives and multiply-detected centers
yielded. We will observe that comparing cell detection results in a binary fashion is
insufficient, therefore we are going to utilize the concept of distance function.

Motivated by this need for robust cell detection result comparison, we analyze
commonly-used methods for computing the distance function and afterwards we
formulate a novel algorithm. This one has complexity O(nlog,n) and it yields Eu-
clidean distance. In addition to that, we introduce a modification to this algorithm,
enabling it to work also in maze-like, wall- and corner-containing, environments.
This modification relies on the line rasterization algorithm. We perform various ex-
periments to study and compare distance function methods. Results illustrate the
viability of newly-proposed method.

Further, a software for the comparing and inspecting cell detection results,
SliceViewer, is specified, designed, implemented and tested.

In the end, quantitative experiments are discussed, validating the above-mentioned

novelties.



Abstrakt

V tejto praci prezentujeme viacero modifikacii zvyc¢ajne pouzivanych algoritmov, a
taktiez zopar novych pristupov, v kontexte detekcie buniek v spracovani biologickych
dat.

Na zaciatku popiseme algoritmus FBLSCD a analyzujeme jeho vlastnosti. Po-
tom zadefinujeme plne automatickti metédu na najdenie zastavovacieho ¢asu tohto
procesu. Nésledne sa na FBLSCD pozrieme cez optiku morfologického spracova-
nia obrazu, uchopime ho ako morfologicku er6ziu v skile Sedi, a pomocou znalosti
morfologickych principov spracovania obrazu sformulujeme alternativny algoritmus,
LSOpen.

V nasledujicej sekcii diskutujeme o inSpekcii vysledkov detekcie centier, ¢ize
mnozine bunkovych identifikatorov. Pozorujeme, Ze porovnévanie vysledkov binarne
je nedostatocné, preto vyuzijeme koncept funkcie vzdialenosti.

Motivovani poziadavkou robustného porovnavania mnozin bunkovych identi-
fikatorov, analyzujeme dostupné metody pocitania funkcie vzdialenosti a nésledne
formulujeme novy algoritmus. Tento je radu O(nlog,n) a je definovany pomocou
Euklidovskej vzdialenosti. Navy$e uvedieme modifikaciu tohto algoritmu, umoznu-
jicu pocitanie vzdialenosti aj v prostrediach obsahujicich steny a rohy, podobnych
bludiskdm. Taktiez uvedieme viaceré experimenty, ktoré validuji novo navrhnuté
algoritmy.

Nasledne je zdokumentovany softvér SliceViewer.

Na zéver uvedieme experimenty validujice vySSie spominané modifikicie a

postupy.
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2 Introduction

Two-photon confocal laser microscopy technology enables us to view a zebrafish em-
bryo few hours after fertilization, in vivo, and observe its behavior in the upcoming
hours at the cellular level. Data provided by the microscope are sequences of 3D

frames in time, containing an intensity value for each voxel.

Zebrafish is an organism of choice for many current in vivo developmental
biology research projects - it is so due to its translucency, ability to accept contrast
dyes, resistance to potential damage caused by mechanical handling and the heat of
microscope light [1|. Images are captured in two channels: in the first, we can see
the cell membranes, in the second, intensity blobs representing cell nuclei. We are
working with 3D-+time datasets, where we refer to a given pixel by its coordinates,
namely (x,y, z,0). The confocal laser microscope produces images as 2D slices (with
a position of a pixel in a slice given by z and y coordinates) of 512x512 pixels, and
the depth of the imaging is controlled by coordinate z, which varies from dataset to
dataset. Its maximum is z,,,,; = 104 in the dataset studied. Number of time steps,
Omaz, 1S also a varying parameter, in our dataset 6,,,, = 320. The dataset we are

using is 070418a.

There are usually two types of image understanding problems solved, using this
type of biological data. At first, for a given dataset, the task is to quantitatively
describe various biological properties of the organism|2||3][4][5]. Secondly, the goal
is to perform the tracking of cells over time, i.e. to reconstruct the cell lineage
tree[6][7][8]

In either of the two mentioned frameworks, an automatic identification of cells
is part of the image processing pipeline. For this task, we use the state-of-the-art
algorithm, called FBLSCD [9][10], and an alternative method, called LSOpen|11].
There exist also other methods for object detection - see for example [12], [13] or [14]
for reference. In this work, we discuss possibilities of benchmarking these methods,

and describe the design and implementation of a software enabling us to do so.

We will next list the content of following chapters and highlight novelties in
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them in bold.

Chapter 3 covers the image processing problem called object detection. Basic
image features are introduced, together with the outlines of their standard detection

methods.

Subchapter 3.1 describes the state-of-the-art algorithm, Flux-based level set
center detection (FBLSCD). This algorithm is presented as PDE-based scale space
evolution, which forces intensity contours of an image to shrink in inward-normal
direction. It is demonstrated, that it serves well in the role of blob detection method,
and since cell detection is a specific case of blob detection problem, we will see that

FBLSCD is capable of performing this task with given data.

In subchapter 3.2, we discuss a challenging problem of setting the parameters
of FBLSCD. There are four parameters to be set: J as advection term coefficient, u
as curvature term coefficient, R as minimal intensity for the local maximum to be
considered as a cell identifier and T" as the duration of scale space evolution. All of
these terms are data-dependent and quality of their setting directly influences the
quality of results the algorithm yields. We try to tackle the challenge of formulating
a fully-automatic way to set the value of parameter 7', considering that ¢, i
and R are given. In [10], authors suggested to consider observing local maxima count
evolution (LMCE) and define T" as plateau point, but then they were dissatisfied with
the results it yielded while working with real data. We built upon their experience
by first defining 7" as a minimum of quantity we call local maxima count
evolution decline (LMCED), and then we suggested to apply least-squares
polynomial fit to this evolution and define T as its first local minimum.
This novelty yields results for 7" which have minimal variance in the frame-to-frame

sense.

Subchapter 3.3 describes a combination of two image processing viewpoints,
namely PDE-based and morphological approaches, for the purpose of object de-
tection. At first, we reduce FBLSCD equation by removing the curvature term by
setting © = 0 and normalize the advection term by setting § = 1. This operation can

be seen as morphological level set grayscale erosion |9] [2] and we call it LSErode.
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It can be argued that this operation can differentiate between large blobs of cell
nuclei and high-intensity peaks of noise set in the low-intensity backgrounds. How-
ever, in case where there are low-intensity valleys of noise in the cell nuclei objects
present, this method would enhance them, thus dramatically reducing detectability
of a given nucleus. Therefore, we expand upon the concept of LSErode and by
simply switching the sign at the advection term, we formulate a morphological
level set grayscale dilation and call it LSDilate. This method does the exact
opposite to LSErode, namely it shrinks low-intensity noise artifacts in high-intensity
blobs and expands high-intensity noise artifacts in low-intensity background. Mor-
phological image processing school provides a standard concept of combining erosion
and dilation by simply performing these operations in succession: erosion and then
dilation is called opening, while dilation followed by erosion is called closing. By
performing a step of LSErode and then a step of LSDilate, we obtain
morphological level set grayscale opening and call this operation LSOpen.
We will show that this novel method is robust to both types of noise mentioned

above.

In subchapter 3.4, methods of cell detection algorithms evaluation are dis-
cussed. At first, we argue that the very large amount of data provided by cell
detection algorithm makes it impractical for human inspector to evaluate the qual-
ity of this result. However, by letting two distinct cell detection algorithms yield
their results, out of which one may be the ground truth data, and comparing these
only in identifiers in which they differ, we reduce this workload significantly.
Furthermore, if we manage to not only tell the correspondence of centers in a one-
to-one manner, but also to measure the distance from a center yielded by
the first algorithm to the set of centers yielded by the second algorithm

and vice versa, this workload can be reduced even further.

Chapter 4 discusses methods for computing the distance function. Last sub-
chapter of previous chapter can be seen as a motivation for this direction of research.
In the beginning of this chapter, we define the problem and specify requirements for

the solution.
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Subchapter 4.1 studies unconstrained distance function methods - those are
methods, which compute distance d from the set of source points €y in the whole
domain €, s.t. )y C ). Here, we analyze 5 commonly-used DF methods: Brute-
force (BF), Time relaxed Rouy Tourin (TRRT), Fast marching method (FMM),
Fast sweeping method (FSM) and Vector distance transform (VDT). In addition
to describing properties of these methods, we also present pseudocodes for each
of them. We try to classify these methods based upon 1) distance definition -
eikonal or Euclidean and 2) pixel visit order strategy - multi-visit, wavefront or
sweeping. We formulate our own novel method, which fills up an empty
gap in this classification, namely a Euclidean wavefront-type method. We
call it Dwykstra-Pythagoras. This method relies on first computing a distance
estimation, upon first few visits of a given pixel, similarly to Dijkstra-like graph
search algorithms, and then solidifies a correct Euclidean distance value on the last

visit of a given pixel, using Pythagoras’ theorem.

The next subchapter, 4.2, formulates a more complicated problem: the task is
to compute distance from the set of source points €2y in the domain €2, s.t. Qy C €,
with addition of respecting set of wall points 2, C 2. We call this problem type
constrained distance function computation. It is in this environment, where the
wavefront-type methods behave more reliably than sweeping-type methods. We
have to introduce some modifications for the Dijkstra-Pythagoras to
work, namely to implement a visibility test from a given pixel to the
source pixel. We use line rasterization algorithm to perform this task,

and we call this novel method Bresenham-Dijkstra-Pythagoras.

To wrap up the discussion about distance functions, we perform a wide va-
riety of experiments and present them in the subchapter 4.3. We measure precision,
speed and quality of results for unconstrained and constrained cases and also quali-
tative properties of these results to solve maze navigation problem. Here, we can
see that the novel BDP method has a few quantitative and qualitative

advantages over the state-of-the-art method, FMM.

Chapter 5 is a more technical one, where the SliceViewer, a software enabling

18



the user to semi-automatically evaluate cell detection results, is introduced and
presented. Software enables user to view 4D data on a 2D computer screen by
introducing two sliders, is capable of visualizing motion in time by making three
distinct channels (red, green and blue) view three consequent frames (previous,
current and next, resp.), and quality of cell detection results can be measured by
classification of correspondencies and differences.

And finally, chapter 6 is a discussion about various experiments performed. In
the first experiment of this chapter, we will see a comparison of behavior of FBLSCD
and LSOpen cell detection methods. This experiment shows that while majority of
results yielded by FBLSCD and LSOpen are in accordance, there is also a small
percentage of differences, namely LSOpen result sets are missing some
correct cell nuclei which got detected by FBLSCD, but LSOpen results
shows that FBLSCD introduced a few false positives to the result set.
In the second experiment, we also compare the results against a ground truth data
and observe, that both methods perform reasonably similar and well. In the third
experiment, we try to empirically analyze correctness of LSOpen’s numerical

discretization and implementation.
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3 Detection of objects in images

In order to solve the vaguely defined image processing problem called image under-
standing, image processing softwares/pipelines often choose to extract a system of
significant entities called features, from the image. Using their hierarchy, topology
and spatial relationships, they try to obtain understanding of image content.

Among the features usually considered, are edges, boundaries, corners, blobs
and ridges.

Edges are defined as points where there is a boundary between two logical
objects. Quality of edge detection results usually depends on strong gradient mag-
nitude. More elaborate techniques are able to fill in the missing edges, by extrap-
olating from the present ones, using knowledge of object shape and topology [15].
An edge is a locally one-dimensional structure.

Boundary of an object is a locally one-dimensional structure for 2D image,
similar to an edge. The difference is that it is a closed curve and is encompasses a
simply connected region.

Blobs in image processing are understood as clusters of pixels having roughly
the same properties - color, intensity or texture.

Many classes of algorithms aim to detect these features. Some analyze image
using the mathematical operators, such as Laplacian of the image, gradient vector
field, hessian matrices, eigenvalues and eigenvectors [13]. Also, the morphological
image processing offers a handful of techniques: hit and miss transform, skeletoniza-
tion, pruning [12]. Some special shapes can be found in the image using the Hough

transform. The class of algorithms we are dealing with are PDE-based models.
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3.1 Flux-based level set center detection

Fluz-Based Level Set Center Detection (FBLSCD) is, from the image processing
point of view, a blob-detection method. It was first introduced in [10]. Tt is based
upon the difference in size of nuclei and noise artifacts - the smallest cellular struc-
tures are still larger than the largest noise structures. In FBLSCD, all contours of
the level set of the image are forced to shrink in the inward normal direction (accor-
ding to the advection term). Furthermore, the speed of this shrinking is enhanced
by the curvature of the contour (according to the curvature diffusion term). Thus, in
theory, the noise artifacts should disappear sooner than the cell blobs do. From the
mathematical point of view, it is formulated as an advection-diffusion-type partial

differential equation. Its equation reads as follows:

Ut+5ﬂ

Vu
— =1 =0. A
’vu’Vu p| Vu|V ( ) 0 (3.1)

V|

Initial condition is the input image. Zero Neumann boundary condition is
introduced at the image boundary. First term is the time derivative, 6 > 0 in the
second term is the coefficient of the advection, and ¢ > 0 in the third term represents
the coefficient of the curvature diffusion. Scale evolution parameter is ¢, t € [0, 7],
where T" will be called stop time, and we will discuss it in the following chapters. At
time 7', local maxima of u larger than some threshold value R are considered. The
set of these points represent the blob center identifiers, and is considered to be the

output of the FBLSCD algorithm.

We solve the FBLSCD equation numerically. We discretize the equation in
space, using the finite volume method. Image voxel serves as a natural choice for
the control volume. We use upwind principle for advection term discretization,
and diamond cell method to discretize the curvature diffusion term. For the time
discretization in time, we use semi-implicit principle. The fully discretized scheme

of eq. (3.1) is following:
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- ijk ijk o n—1 _ ,,n—1y, pqr
m(Vijr) o = E :<“i+pu‘+q,k+r Uijg )Uijk
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u 1 —u 1
pqr Yitpjtak+r — Yijk
+ ij‘ Zm zgk: qurn 1 ( pqr) ) (32)
Nijk ijk 'ij

where n is the present time step, n — 1 is the past time step, wu;j; is the actual
voxel, Ui p itqk+r 18 a neighboring voxel (with the property |p| + |¢| + |r| = 1), the

set Nz”ﬁc is the set of inflow voxels, m(Vj;;) is voxel size, 7¢ is time step size, P

z]k

n—1

is the upwind scheme approximation of the advection defined as v?? = <&
ijk |Vu" |7

Qq;x is approximated gradient modulus in the voxel center, fﬁ: is approximated

pqr

gradient modulus on a given voxel face, m(%'k) is the distance between neighboring

voxel centers, m(af]q,: ) is the measure of voxel face. A more detailed derivation and
discussion of the eq. (3.2) can be found in [2] [9].

The FBLSCD behavior is illustrated in the figure 3.1.
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Figure 3.1: The center detection process, shown in 60x60 pixel part of slice z = 60 of frame
6 = 100. Top left, the intensity function of the original image. Top right, the intensity function
of the filtered image. The filtering was performed by the GMCF algorithm [16]. Bottom left, the

intensity after 10 steps of center detection process. Bottom right, the intensity after 30 steps.

3.2 Finding the optimal stop time

In [10], the authors consider the following method of finding the optimal FBLSCD
stop time: observe the local maxima count evolution (LMCE) over the scale pa-
rameter ¢, and stop it the first time it happens to be non-descending. This method
yielded reasonable results for the input artificial images, but didn’t work that well
with real data. We observed [11] that this event is not guaranteed to occur at the

representative time, and in some cases it does not happen at all - see fig. 3.2 for

LMCE of frame 6 = 100.

A more refined way is to first compute the LMCE decline sequence (LMCED)
from LMCE, and then consider the first time it happens to be below a certain
threshold. We construct the LMCED by taking first difference of LMCE and mul-
tiply its values by —1, so that the largest values mean the largest decline of local

maxima count in subsequent frames. Note that in the language of the LMCED,
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Figure 3.2: Local maxima count evolution (LMCE) at time 6§ = 100. While after a while the

decline stops, a proper plateau is never truly formed and it is difficult to define the stop time.

Figure 3.3: Local maxima count evolution decline (LMCED) at time § = 0, 100 and 200. If we
were to define stop time as global minimum of LMCED, stop times for given frames would be 19,

26 and 22, respectively.

the original approach was to see it become less than or equal to zero, and call time
of this occurence the stop time. Now this threshold can be larger than zero. This

approach was proposed in [2].

We want to propose a novel approach, namely to consider minimum of LM-
CED. It can still be greater than zero. This strategy is a certain weakening of the
requirement of LMCE’s non-descendence, and, formulated as such, it is an automatic
method for finding the optimal stop time, as no input from the user is required. The
results can be seen in fig. 3.3.

Whatever strategy we choose, a natural requirement for the results it yields is
to not to vary too much from frame to frame along the dataset. This requirement
arises naturally from the fact that the sequence of 3D frames, if viewed as a video,

flows rather smoothly, from frame to frame, without flickering or exhibiting any
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Figure 3.4: Global minima of LMCED for the whole dataset € [0...320]. Standard deviation is
4.62377.

abrupt intensity jumps. So the transitions of all the parameters between the frames
should be smooth as well.

We found out, that taking the newly proposed minimum of LMCED did not
have this property - it seems to vary from frame to frame with a rather large variance.
See fig. 3.4 for reference. In order to tackle this, we found a least-squares fit of the
LMCED and took the first local minimum of this fit. We computed fitting of real
LMCED data by polynomials of degree n € [2...7]. First local minima of the fittings,
which are computed from each frame’s LMCED and are independent of the results
in neighboring frames, happen to have much lower variance from frame to frame
than taking raw LMCED minima. Observe this information for the chosen time in
the fig. 3.5, and see the analysis for the whole dataset in the fig. 3.6.

The open question at this point is, what is the right degree of a fitting poly-
nomial, n. One of ways to choose n is to pick the one which minimizes variance
of optimal time steps in a sequence of frames of the dataset. For FBLSCD, this
happens to be n = 5. Another way is to consider visual inspection of the LMCED
in the sequence of frames, for each n, and let the user pick the correct n.

Thus, we propose a novel way to define the fully-automatic optimal stop time:

by considering the first local minimum of the variance-minimizing polynomial fit

25



150 150 150
100 100 100
50 50 . 50
o
R
....... 3 .. A
P L et
10 ) 50 10 LSRR ) 0 0 10 0’ 30 a0 0
150 150 150
100 100 100
50 50 50 .
' .
st . W
PP e s ’ vees .- prbernnettE .
' ] Dy llieele [ LTI i3
10 40 50 10 0 ) 40 0 10 0 ) 4@ 0

Figure 3.5: Polynomial fittings of LMCED at 8 = 100. Upper row, degrees of fitting polynomial

2, 3 and 4, lower row, degrees of fitting polynomial 5,6 and 7.
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Figure 3.6: First local minima of polynomial fittings of LMCED, for the whole dataset, 6 € [0...320].

Upper row, degrees of fitting polynomial 2, 3 and 4, lower row, degrees of fitting polynomial 5,

6 and 7. The corresponding standard deviations are 1.9597, 1.3698, 0.6128, 0.4555, 0.5795 and

2.4477. Thus, 5th degree polynomial fit yields minimal standard deviation.
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of the LMCED data. It is in accordance with the requirement of smoothness of
parameter variation along the inspected sequence and also with visual inspection.

In order to validate this approach, we performed a similar analysis of the
optimal stop time on one more dataset, 070420a. The results yielded by this analysis
can be seen in the fig. 3.7.
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Figure 3.7: The complete optimal stop time analysis for a different dataset, 070420a. First row
- LMCED at time 6 = 0, 100 and 200. Second row - Global minima of LMCED for the dataset.
Standard deviation is 5.27447. Third and fourth row - Polynomial fittings of LMCED at 6 = 100,
for n € (2..7). Fifth and sixth row - First local minima of polynomial fittings of LMCED, for the
whole dataset. The corresponding standard deviations are 4.7886, 1.8622, 1.3320, 1.0179, 1.5174,
3.8109. It is again the 5th degree polynomial fit, which minimizes the standard deviation.
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3.3 Morphological cell detection

FBLSCD can be interpreted as a morphological grayscale erosion with curvature
regularization [14]. Let us observe its behavior with this property in mind, and try
to construct and consider the usage of similar, more general morphological PDE-
based operators.

We have tested FBLSCD with phantom data, where we introduced salt and
pepper noise. We set diffusion coefficient p to zero (in [9], 6 = 800 in eq. (3.1)), and
it was observed that while it is able to handle pepper-type noise, salt noise remains
to be present. Reason for this is that advection in FBLSCD is in the direction of
the inward normal, only if we consider level sets of high-intensity blobs surrounded
by low-intensity environment. As soon as we have low-intensity blobs surrounded
by high-intensity environment, behavior of FBLSCD is different - now the advection
happens in the outward normal. This is when salt-type noise is located in the cell
interior - this noise artifact not only remains, but also grows in size [11].

In general, it is a difficult task to analyze the noise contained in the real data
and find a well-suited mathematical/stochastic model to describe it. It is an open
question, if a) this type of artifacts happens to be present in the real data input, and
even if it is, if b) it remains present to certain extent also after the image filtering.
Nevertheless, we felt motivated to design an algorithm, which can tackle both types
of noisy structures, since a) we want our image processing workflow to be able to
process a variety of input data with different properties and b) we often want to
skip the noise filtering step in the workflows, in order to save computer resources or
preserve data fidelity.

We have seen that FBLSCD (namely the implementation of its discretization,
see eq. (3.2)) with 4 = 0 and 6 = 1 is a level-set based pepper-shrinking and
salt-expanding evolution. This behavior is in fact similar to the grayscale level set
erosion, a well-known morphological image processing operation. Thus, we called
this special case of FBLSCD LSErode. PDE of LSErode looks as follows:

Vu
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Initial condition is the input image and boundary condition is zero Neumann.

We will now illustrate the process of discretization of LSErode’s equation to
obtain a formulation solvable numerically by computer. The discretization will be
performed regardless of problem dimensionality. We will use finite volume method,
with pixel/voxel/doxel serving as a control volume. We will call this volume uni-
formly to be "pixel", even if we may mean voxel (in 3D case) or doxel (in 4D case).
We will further assume that all sizes are 1: pixel’s volume is 1, distance between
two pixel centers is 1, each face size is 1 and each edge size is 1 (imagine a grid of
unit cubes here, where all these properties hold true, in 3D case). We will use two

identities of vector analysis:

/f-ngx:/V-(fg)dx—/gv-fdx (3.4)

Q Q Q

/V-fdxz/f-z?dy , (3.5)
Q r

where ¢ is a scalar function, f is a vector function, () is integration domain, I' is

and

domain boundary and 7 is its a unit outward normal vector.

At first, we will discretize the equation (3.3) in time, using explicit method:

u® — unfl N Vunfl
T |Vur—1|

Vu"t =0, (3.6)

where n is the new time step, n — 1 is the previous time step and 7 is time step size.

Then, we will integrate over volume of pixel p:

un _ uTL—l Vun_l

—d ——— - Vu" 'z =0, 3.7

/ - T+ V] u T (3.7)
Vp Vy

where p is the actual pixel and V), is its volume. Since the volume of the pixel is 1,

the first term of (3.7) can be approximated as

n_ ,n—l1 u® — u
/“ Yo dem~? (3.8)

Vo

where u, is the value of u in pixel p. To approximate the second term, first observe

that it has the form similar to (3.4), where f = % and g = v 1. If we apply
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this identity, we obtain

Vur—! 1 Vur1 \VA T
u" Ydr = -1 dr — n—1y7 . d
. /V Ty Eal (=)
v, Vp
(3.9)
Now we see that both right-hand-side terms of (3.9) have the form similar to (3.5).

If we apply this identity and assume that «"~! is constant in V},, we end up with

vunfl
—  .Vu" ldr ~
[Vur=t
VP
vun—l vun—l
~ n—1 . _,n—1 ve
NZ/U Vo] Vpgdy — Z yvunil‘l/pqd’y, (3.10)
qup@pq qENPepq

where N, is the neighborhood of those pixels of p, which share a common face with
it - this is a 4-neighborhood in 2D case, 6-neighborhood in 3D and 8-neighborhood
in 4D, e, is the face area between neighboring pixels p and ¢ and v, is the normal
vector of this face, pointing outward from pixel p. Further, let us define

un—l - un—l

=4 P 3.11
= T, (&1

where |Vu""!],, is a numerical approximation of gradient magnitude on the face
between pixels p and ¢ - here, we use the so called diamond cell estimation - see [2]

for implementation details. Using this definition, we can partition N, into Ng“t and

Q _ ut in.
Nin st. N, = Now U Nin:

N = {q € Ny, vpg > 0} (3.12)
and
N ={q € N,,vpy < 0}. (3.13)
We will approximate terms in (3.10) using the upwind principle:
n— Vun—l n— : ou
/u ! Vo] Vpgdry = ul ™ o if qe N (3.14)
and
n— vunil n— 3 in
/U 1W . qud’}/ ~ U’q 1qu if qc Np . (315)
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Thus, we can approximate the first right-hand-side term of (3.10) using the upwind

principle and the second right-hand-side term by just applying the fact that N, =
out in.

N U Ny™

Vunfl
n—1 ~ n—1 n—1 . n—1 . n—1
|Vun_1|-Vu du ~ Z Up Vpg T Z g Upg § : Up  Upg E : Uy Upg

Vp geNgHt geEN" geENgU qeEN"
(3.16)
which can be further simplified to
Vur1 - e n—
W -Vu 1d3? ~ Z (Uq - Up 1)’qu. (317)
v, qeNg"
Final fully discrete form of (3.3) then reads as follows:
u’ — un—l
Lt D (Tt —ul v, =0. (3.18)

This linear system is a directly solvable explicit scheme.

We know that there exists a morphological operation called dilation. Erosion
and dilation the basic, atomic operations in morphological image processing theory.
We observed that we can formulate the level-set version of dilation by simply switch-
ing the advection sign in the LSErode.

Its PDE reads as
Vu

|Vl

and its fully discrete form, which can be obtained following the similar derivation

-Vu=0 (3.19)

Uy

principle as in (3.3) - (3.18), but now with v,, containing minus sign in its definition:

un—l _ un—l
qu = —W (320)

Compare this with definition of v,, in (3.11) to see the difference. The final fully
discretized form of (3.19) is then the same equation (3.18).
Having tested this operation, we have seen, it works as expected - it is a salt-
shrinking and pepper-expanding operation. We called this equation LSDilate [11].
Morphological operator theory gives us a way of combining these equations

together. Similar to morphological opening, which is an erosion step, followed by
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dilation step, we performed a step of LSErode, followed by a step of LSDilate, and
called this non-atomic operation LSOpen. We have computed several LSOpen steps
(an alternating sequence of LSErode and LSDilate steps) and we observed, that with
phantom data, this operation makes both salt- and pepper-type artifacts disappear,
and the local maxima larger than a certain threshold, similar to FBLSCD, are viable
cell center identifiers |11].

Behavior of LSErode, LSDilate and LLSOpen is illustrated in the fig. 3.8.

Notice that LSOpen is not formulated as a standard advection-diffusion equa-
tion, so the way to analyze it theoretically is an open question from mathematical
point of view. We will, however, try to reason about its properties experimentally:

see the third experiment in chapter 6.
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Figure 3.8: Illustration of cell detection algorithms behavior with noisy phantom images. Upper
left - input phantom image, with cell intensities being quadratic functions of distance to its centers
of varying size, with salt and pepper noise added. Upper right - 10 steps of LSErode. Notice black
spots disappear and white enhance. Lower left - 10 steps of LSDilate. Notice white spots disappear
here, and black spots enhance. Lower right - 10 steps of LSOpen. Both noise types disappear,
and local maxima larger than threshold R tend to denote true cell center positions with increasing

scale parameter t.
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3.4 How to compare various cell detection results?

In order to reason about quality of available cell detection algorithms, one has to
have a way of measuring the quality of results they yield.

At first, it is reasonable to inspect the results at first visually, e.g. by visualizing
the sets of points representing cell identifiers, superimposed over the original 3D data
volume.

If the results are visually pleasing, the next step would be to estimate the
number of false positives, false negatives, and the number of multiple identifiers
yielded for one cell. However, FBLSCD yields approximately 3500 cell identifiers at
the beginning of the dataset and about 6500 in the end. Dataset is 320 frames long,
so a rough estimation of total cell images present in the video is about 1.6 million.
It is therefore difficult to check the correctness of each detected identifier manually.

However, it is worth noting that comparing two different cell identifier sets is
not that much work, provided they don’t contradict each other in too many points.
Then, checking only their differences suffices.

Thus, the first method we propose, is not to check each identifier yielded by
a given method by itself, but instead, compare always two different results of two
different cell detection approaches and only check visually those points in which they
differ. As we will see in the chapter about the software, we implemented a software
solution enabling us to perform this task efficiently. As we will see in the experiment
discussion chapter, this method of mutual result comparison reduces the amount of
work to be done by the human inspector significantly.

We have further observed, that the vast majority of identifier differences hap-
pen to be only small shifts, within the same cell nucleus. Therefore, we felt motivated
to not only compare the identifiers in a binary fashion (i.e. labelling each identifier as
‘corresponding’ and 'not corresponding’ to an identifier in the alternative method),
but also to introduce some kind of metric, that would measure the distance to the
closest cell identifier yielded by the alternative method, for each 'not corresponding’
identifier.

Therefore, we propose a second reduction of the amount of work to be done
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by the visual inspector: Computing the distance function for each cell identifier in
one method, finding the corresponding closest identifier from this method to each
cell identifier in the second method via steepest descent, and vice versa, and only
checking differences over certain threshold of distance.

We will see that this approach worked well with our data and methods, in the
experiment discussion chapter.

An open question for now is how to efficiently compute cell identifier cor-
respondencies and their distances in order to find the closest pairs. We will use
distance function to help us. This will motivate us to discuss distance function

(DF) computation in the next chapter.
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4 Methods for computing distance function on a
pixel-based grid

At first, let us define the vocabulary, since these definitions these terms vary across
scientific texts. The mathematical community calls the result of distance computa-
tion to be the distance function (DF) [4][21]. The signal processing community uses
the name distance transform or distance field [17][18][25]. To our understanding,
there are no practical differences between the meanings of these two terms. Since
this work is classified as an applied mathematics text, we will stick to the former
of the names across the text. A DF method will then be an algorithm, which yields
DF as a result.

We will analyze commonly-used DF methods. Let us classify these based on

A) distance definition - distance function found as a solution of the so
called eikonal equation, or Euclidean distance and

B) pixel visit order strategy — multi-visit, wavefront, or sweeping,.

Then a new method will be introduced and we will see it filling an empty
gap in the logic of existing methods. Further, we will use resulting DFs to find the
shortest path solution of maze navigation, and demonstrate the usefulness of the
newly proposed method in this environment.

This work limits its scope to analyzing these commonly used DF methods:
Brute-force, Time-Relaxed Rouy-Tourin Scheme, Fast Marching Method, Fast Sweep-
ing Method and Vector Distance Transform. Multiple surveys comparing a broader
range of approaches have been published [17] [18]. The DF application studied in
this article is navigation in a maze-like environment. There are many other appli-
cations of DFs, let us mention biological and medical data analysis [4] [19] [6] and

level-set computational physical simulations [15], just to name a few.

4.1 Unconstrained distance function

Let us introduce computational domain €, @ C R", and €y, C €, called the

source set. For means of digital image processing, we simplify our task to dimen-

37



sionality n = 2, domain €2 being a square grid of pizels, and subset 2y being a set
of source pizels. Define function d,d : Q2 — R called distance. Distance should be
d(a) = 0,Va € Qq (this can be regarded as special Dirichlet-type condition) and the
task of a DF method is to find d(b), Vb € Q\y.

4.1.1 Distance definition
Eikonal equation is given by
|Vd| = ]_iDQ\Qo, d:OIHQO

It says, that the gradient magnitude of the distance should be = 1 everywhere,
except for source pixels, where the value is fixed at 0. If we consider pixel a and a
set of all its 4-neighbors being N,={n, e, s, w}, we can define Vb€ N, quantities [20]

M? = (min(d(b) — d(a),0))?,

a

and use them to define approximation of gradient magnitude g(a) [20]

gla) = \/(max(Mc’}, M?) + max(Me, M»)). (4.1)

Eikonal-based methods solve a problem g(a) = 1, Ya € Q\€.
In Euclidean space, we define Fuclidean distance by Pythagoras’ theorem.

Va = (az, ay),b = (b, b,) €

d(a,b) = /(s — )% + (a, — b,)2.

In continuous formulation of the problem, results yielded by either eikonal
equation or Euclidean distance definition are the same. However, on a discrete
grid, they are different: a result obtained by eikonal equation condition fails to yield
correct Euclidean distances, and vice versa: results obtained with Euclidean distance
condition fails to have g = 1, for g defined as in eq. (4.1). This is illustrated by a
simple example in tab. 4.1.

Reason for this disparity is non-exactness of discrete gradient approximation.

Eikonal equation only needs information about several closest neighbors of a given
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W lo| 1 2 3 @) lo]| 1 2 3
1| 1.707 | 2.545 | 3.442 1| 1.414 | 2.236 || 3.162
2 || 2.545 || 3.252 || 4.048 2 | 2.236 || 2.828 || 3.606
3| 3.442 || 4.048 || 4.755 3| 3.162 || 3.606 || 4.243

@ o] 1 1 1 4) (0] 1 1 1
1] 1 1 1 1 0.586 || 0.855 || 0.94
1] 1 1 1 1] 0.855 || 0.838 || 0.895
1] 1 1 1 1 0.94 || 0.895 || 0.901

Table 4.1: Disparity between eikonal and Euclidean distances in discrete case. Left illustration:
compute DF in a small 4x4 pixel image, where top left pixel is the only source pixel. (1)(2): results
for eikonal equation approximated as stated above, inexact d values (1) and correct g values (2).
(3)(4): results for Euclidean distance definition, correct d values (3) and inexact g values (4), if

considering g defined as in eq. (4.1)

pixel in order to tell this pixel’s distance value. Euclidean distance, on the other
hand, requires and uses information about closest source pixel for a given pixel,
which can in fact be anywhere in the image. Thus, we can say that eikonal solvers
in general behave locally, while Euclidean are global. We will further see that the
classification of a method as local or global determines a lot of its properties and

behavior.

4.1.2 Pixel visit order strategy

In this work, we adopt the term multi-visit approach: it is a solution, which doesn’t
try to optimize the number of times each pixel is visited. It aims to reduce imple-
mentation time, but usually at the price of computational redundancy. With this
definition of multi-visit approach, a multi-visit method can be formulated for both

distance definitions, Euclidean and eikonal equation-based.

Wavefront strategies ensure that each pixel is assigned final value already in
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Algorithm 1 Brute-Force DF algorithm pseudocode

Require: allocate Vp € Q : d(p) = 40
1: for each pixel p € Q2 do

2: for each pixel s € Qy do

3: D = \/(px — 52)% + (py — 5y)?
4: if D <d(p) then

5: ‘ d(p) =D

6: end if

& end for

8: end for

the first pass. To make this happen, methods have to pay attention to visiting pixels
in the correct order. Algorithms use min-priority heap data structure for managing

pixel visit order.

Sweeping strategies allow multiple passes of each pixel, but the number of
these sweeps is bound to the dimensionality of the problem - it is 4 sweeps for a
2D problem in total. By altering sweep directions DF is computed for the whole

domain without the need for order-managing priority heap.

4.1.3 Brute-force (BF)

We can trivially formulate a multi-visit method yielding exact results in Euclidean
sense: Set d(a) = oo,Va € . For Ya € Q, search through Vb € Q, and define
D as Euclidean distance between a and b. If D < d(a), set d(a) := D. Since this
method visits each source pixel for each pixel, its complexity is O(ns), where n is the
number of pixels in 2 and s is the number of pixels in €. The worst-case scenario
of brute-force method occurs when half of the pixels are source pixels: in that case,
s = n/2, and complexity is thus O(n?/2) = O(n?). Algorithm is also presented in
the form of a pseudocode - see Alg. 1.
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Algorithm 2 Time-Relaxed Rouy-Tourin DF scheme
Require: allocate Vp € Qg : d(p) =0, f(p) =

Require: allocate Vp € Q\Qo : d(p) =0, f(p) =0, define D: Q@ — R
1: 7=0.5

2: € = 0.0001
3: while number of p s.t. f(p) =1 < number of p € Q2 do
4: for each pixel p € Q, s.t. f(p) ==0do

5: (7,7) = p coordinates

6: Mit1,; = [min(dit1,; — dij,0)]

7 mi_1,; = [min(d;_1,; — d; ;,0)]?

8: Mij+1 = [min(d; 1 — d;3,0)]”

9: mi j—1 = [min(d; j—1 — d; ;,0)]?

10: (p)—i—T—T\/max Mit1,5, Mi—1,5) + max(m; j4+1,M; j—1)
11: if |D(p) —d(p)| < € then

12: ‘f@z

13: end if

14: end for

15: for each pixel p € Q) do
16: ‘ﬂm:D@

17: end for

18: end while

4.1.4 Time-Relaxed Rouy-Tourin (TRRT) scheme [4]

This multi-visit method yields discretized solution of eikonal equation, by formula-
ting it as an evolution in time [20], with consecutively raised values in a sedimentation-
like manner. Each pass, all pixels except for the source pixels and those with g = 1
are incremented by a time-relaxed gradient estimation defined in eq. (4.1). This
method is fairly easy to implement. Number of times each pixel is visited is pro-
portional to its distance, which is of course not known beforehand. Worst-case
complexity of this method, that is when image is extremely thin, is therefore O(n?).

Algorithm is described in Alg. 2.
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4.1.5 Fast Marching Method (FMM) [21]

This is a wavefront-type method yielding eikonal equation-based results. All pixels
are fixed in only one pass. The visit order is defined by causality principle - pixels
which are closer to €2y will be visited sooner than those further away. The first
ones visited are all z € €)y. This algorithm assigns labels to pixels, similar to graph
algorithms like breadth-first-search or Dijkstra’s. A pixel can have 3 types of labels,
meaning ‘unvisited’, 'to be visited’ and ’visited’. Labels can also be interpreted in
terms of field fire: ’grass’, ’fire front’ and 'burnt ground’ — let us stick with this
intuitive naming convention. All the pixels labeled as ’fire front” are contained in a
data structure called min-priority-heap |23|. As pixels change label from ’grass’ to
fire front’, they are inserted to the bottom of min-heap, as their states are changed
from ’grass’ to 'fire front’, while min-value pixels are popped from its top as their
states are changed from ’fire front” to ’burnt ground’. The behavior of min-heap is
similar to FIFO queue, but unlike in FIFO, ordering of elements in min-heap can
be changed during the waiting process. Worst-case complexity of this method is
O(nlogyn) - each pixel is visited once, therefore n, but in order to do so, it has to
make it all the way from bottom to top of min-priority-heap, which is implemented
as a binary tree. Height of the binary tree containing n elements is log, n.

FMM is considerably harder to implement than TRRT scheme, since one has
to implement a min-priority-heap data structure and its operations. To see the

pseudocode of this procedure, refer to Alg. 3.

4.1.6 Fast Sweeping Method (FSM) [24]

This is a sweeping method yielding eikonal equation-based results. This method
operates with concept of inializing d(a) = 0o, Va € Q\y, and then reducing values
at given pixels until they stop at correct values. We address this updating of values
in non-increasing manner by the term relazation.

Initialize d(a) = oo,Va € Q\Qy and d(b) = 0,Vb € Qp. Start from top left
corner and make a sweep through computational domain in right-down direction

(implemented as double for loop with both iterators increasing from 0) and relax all
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Algorithm 3 Fast Marching Method (FMM) DF algorithm pseudocode

Require: values for v are defined as: ’grass’=0, fire front’=1, ’burnt ground’=2

Require: allocate Vp € Q\Qq : d(p) = 400, v(p) = 'grass’,s(p) =7, allocate heap
Require: allocate Vp € Qg : d(p) = 0,v(p) = 'fire front’,s(p) = p, heap.pushBack(p)

1: while heap is not empty do

2: p = heap.pop > pops a fire front’ pixel, whose estimate value is minimal of all
3: for each pixel r € Neighborhood4(p), s.t. v(r) =’grass’ or 'fire front’ do
4: (i,7) = r coordinates
5: x = min(d; jy1,dij—1) > use +o0o whenever out of bounds
6: y = min(dit1,5, di—1,5)
7 a=2
8: (x ==400 7 (a — —;2 = 0;) : nothing)
9: (y == +00? (a ——;y =0;) : nothing)

10: b=—2x%(z+y)

11: c=ax?4+y* -1

12: D = b% — 4ac

13: T = (-b++vD)/(2a)

14: if T' < d(r) then

15: dir)y=T

16: if v(r) = 'grass’ then

17: heap.insert(r)

18: v(r) = 'fire front’

19: else

20: heap.decreaseKey(r, T )

21: end if

22: end if

23: end for

24: v(p) ="burnt ground’

25: end while
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pixels using upwind neighbors, if they carry relaxation information. Make a similar
sweep in right-up direction starting from bottom left corner, in left-up direction
starting from bottom right corner and in left-down direction starting from top right
corner. (by switching respective iterators’ behavior in for loops), using always pre-
viously visited neighbors to relax value of d. Since each pixel is passed exactly 4
times for a 2D problem, complexity of this method is O(4n), which is in the O(n)
complexity class of algorithms. (see [24], page 607, remark (4)).

An algorithm pseudocode can be seen in Alg. 4.

4.1.7 Vector Distance Transform (VDT) algorithm [25]

This is a sweeping method yielding Euclidean distance results. Logic of the sweeps is
the same as in F'SM, but the globalness and source-awareness of Euclidean method
changes relaxation rules. Now, instead of computing actual value of d directly
from the values of d of the previously visited neighbors, we check their sources. If
Euclidean distance to a source of any neighbor is less than current distance value,
set current value to it, and call that neighbor’s source to be also current pixel’s
source. Complexity of this method is also O(n).

This Euclidean solver is source-aware, as it not only keeps a record of distance
values for each pixel, but it also needs to address the source pixel guaranteeing this
value for each pixel. Let us introduce source function s, s : 0 — €. Va € €2, we
can get the source of a by referring to s(a).

To study algorithm pseudocode, refer to Alg. 5.

4.1.8 Novel method: Dijkstra-Pythagoras (DP)

Let us now formulate a wavefront-type method - similar to FMM, guaranteeing the
narrow-bandedness of this approach, but unlike FMM, yielding Euclidean distance
results.

For initialization, set d(a) = oo,Va € Q\Qy and d(b) = 0,Vb € Q. Set
s(a) = undefined,Ya € Q\Qy and s(b) = b, Vb € Qy. Label all a € Q\{)y as 'grass’

and all b € )y as ’fire front’. Allocate min-heap h and insert all b € )y into it.
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Algorithm 4 Fast Sweeping Method (FSM) DF algorithm pseudocode

Require: allocate Vp € g : d(p) = 0, allocate Vp € Q\Q : d(p) = +o0

1:
2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

function UpPDATE(L,))
r = min(d; j11,dij-1)
y = min(dit1,5,di—1,5)
D
if |x —y| <1 then
D= (rtyt VI 0P )2
else
‘ D = min(z,y) + 1
end if
if D < d(p) then
) =D
end if

end function
for (i=0; i<idim; i++) do
for (j=0; j<jdim; j++) do
UPDATE(L,])
end for
end for
for (i=0; i<idim; i++) do
for (j=jdim-1; j > 0; j——) do
UPDATE(L,])
end for
end for
for (i=idim-1;i > 0; i——) do
for (j=0; j<jdim; j++) do
UPDATE(L,])
end for
end for
for (i=idim-1;i > 0; i——) do
for (j=jdim-1; j > 0; j——) do
UPDATE(L,])
end for 45

end for

> use +oo whenever out of bounds




Algorithm 5 Vector Distande Transform (VDT) algorithm pseudocode

Require: allocate Vp € Qg : d(p) = 0,s(p) =p

Require: allocate Vp € Q\Q : d(p) = +o0,s(p) =7

1

2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:

: function UPDATE(L,))
p=(i,])
for all r eNeighborhood4(p), s.t. s(r) is not ’?’ do
D = /(s(r); — 1) + (s(r); — J)?
if D < d(p) then
d(p) = D
s(p) = s(r)
end if

end for

end function
for (i=0; i<idim; i++) do
for (j=0; j<jdim; j++) do
UPDATE(L,])
end for
end for
for (i=0; i<idim; i++) do
for (j=jdim-1; j > 0; j——) do
UPDATE(L,])
end for
end for
for (i=idim-1;i > 0; i——) do
for (j=0; j<jdim; j++) do
UPDATE(L,])
end for
end for
for (i—idim-1;i > 0; i——) do
for (j=jdim-1; j > 0; j——) do
UPDATE(L,])
end for

end for
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Backbone of this approach is a two-fold way of d relaxation. First few times (at
most 8, one for each neighbor), the pixel a can undergo a Dijkstra-like relaxation:
d(a) := d(b) + 1, anytime one of a‘s direct 4-neighbors b is being fixed, or d(a) :=
d(c) ++/2, anytime one of a‘s diagonal neighbors c is being fixed, provided that this
new value is < d(a). Sources are handled as s(a) := b or s(a) := ¢, respectively.
We will see later that this design enables the algorithm to work also in constrained
DF computations. The first time the pixel a is touched, it changes label from
‘grass’ to ’fire front’ and gets inserted into the min-heap h. Each time d(a) is
relaxed afterwards, its s(a) is updated to current relaxation source, and heap h gets
heapified at a. Eventually, pixel a manages to bubble to the top of the min-heap.
It checks its distance values to sources of all its already fixed neighbors (possibly at
most 8, again, one check for each fixed neighbor) — this time distance is Euclidean.
Then, d(a) = min of these values, s(a) = s of this distance-minimizing-neighbor,
a gets a chance to relax all its 8-neighbors in the Dijkstra way and is finalized by

being assigned a label ’burnt ground’.

Algorithm ends as soon as h becomes empty. At this time, Va € Q,d(a) =
correct Euclidean distance, s(a) contains correct references to source pixels, and all

a € () carry the label ’burnt ground’.

Each pixel can be relaxed in a Dijkstra-way at most 8 times, which has comp-
lexity O(log, n) per pixel due to heap swaps. Afterwards, it has to check at most
8 neighbor source distances to be finalized in a Pythagoras-way (thus the name
Dijkstra-Pythagoras) — which has constant complexity O(8 + 8) = O(16) = O(1)
per pixel. The final algorithm complexity is O(n.log,n) — same as FMM. To see
the pseudocode for DP, refer to Alg. 6.

Tab. 4.2 presents an overview of combinations of distance definitions and pixel
visiting strategies. We see that Dijkstra-Pythagoras fills up a logical empty spot in
the chart.
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Algorithm 6 Dijkstra-Pythagoras DF algorithm pseudocode

Require: Vp € Q\Qp : d(p) = oo,v(p) =0, s(p) =7, allocate heap
Require: Vp € Qg : d(p) = 0,v(p) = 1, s(p) = p, heap.insert(p)

1: while heap != empty do

2: a = heap.pop

3: for each pixel b € Neighborhood8(a) , which has v(b) =2 do

4: r = s(b)

5 | | Dy= e — ¥ Iy P
6: if D, < d(a) then

7 d(a) = D,

8 s(a)=r

9: end if

10: end for

11: v(a) =2 > a set to ’burnt ground’
12: for each pixel ¢ € Neighborhood8(a), which has v(c) =1 or v(c) = 0) do

13: Dy=d

14: ( ¢ € Neighborhood4(a) ? Dg+=1: Dg+ =+/2)

15: if Dy < d(c) then

16: d(c) = Dy

17: s(c) =a

18: (v(c) =0 7 heap.insert(c) : heap.decreaseKey(c, Dy ) )

19: v(c) =1 > ¢ set to 'fire front’ anyways
20: end if

21: end for

22: end while

Multi-visit Wavefront Sweeping
Eikonal equation TRRT FMM FSM
Euclidean distance BF Dijkstra-Pythagoras VDT

Table 4.2: Unconstrained DF methods overview. Column captions - pixel visit order policies, row
captions - distance definition. Dijkstra-Pythagoras is a novel method, introduced in this work,

filling up the logical gap which arised from the classification of existing methods.
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4.2 Constrained Distance Function

Until this point, the novel DP algorithm may have felt like an unnecessary addition
to VDT — after all, they both provide the same numerical results, and VDT is
faster. In this chapter we introduce maze-like concept, where some of the pixels
are impassable. We will see that it is in this case, where wavefront concept is more

suitable than the sweeping one.

4.2.1 Problem formulation

Define a set of pixels Q., Qs C €, called wall pizels. These are impassable for the
distance-carrying signal, so the information has to find its way around them. In the
maze navigation problem, maze can be thought of as €2, while (), denotes maze
walls and Qg denotes maze exit(s).

Shortest path finding methods studied here rely on computing d from €
throughout ) while respecting the constraints set by (2. Then, it obtains the
path by steepest descent method. Maze entrance (or current standpoint of an agent
of interest in the maze - from our viewpoint, these are interchangeable) can be
interpreted as steepest descent’s initial point. We will then see that the cost of
computing optimal paths from other standpoints only requires computing the new
steepest descent procedure - d is computed only once. We identify 2, as a set
of constraints, and we call the DF respecting them to be the constrained distance
function (CDF). A method that can compute CDF would then be called constrained
distance function method (CDF method).

4.2.2 Usability of existing DF methods for finding CDF

Since number of passes needed in sweeping approaches scales with number of turns
in a maze [24] and it is often hard to estimate this number beforehand, sweeping
approach is not ideal for solving complex mazes. Nevertheless, we try to experiment
with the applicability of FSM in CDF environment - the results will be presented

and discussed later, in the experiments section.
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We don’t know if there exists any modification to the brute-force Euclidean
algorithm, which would make it suitable to solve this type of problem.

In maze environments, the localness of approaches based on eikonal equation
is an advantage. Wall pixels can be simply regarded as having d(w) = oo, Vw € Q.
and both TRRT and FMM would work without further modifications. How about
the newly-introduced DP? Its globalness seems to be a problem. We will, however,

use its source-awareness to overcome it.

4.2.3 Method enhancement: Bresenham-Dijkstra-Pythagoras

Two fundamental questions have to be answered in order for the DP concept to
work. First, how do we check if a given a,a € €2, can see the given source b, b € €,
without having its view occluded by some pixel w,w € Q.7 And second, how do
we treat the case when b is not visible from a?

To answer the first question, consider using rasterized line algorithms, like
DDA or Bresenham’s (whichever is faster on current hardware). By doing so, we
are taking an advantage of pixels forming a square grid similar to screen raster. If
a pixelated line from a to b is drawn, and none of this line’s pixels are wall pixels,
we could say b can see a. However, if at least one pixel of this line is a wall pixel,
we have to admit that w prevents b from seeing a. This is illustrated in fig. 4.1.

To answer the second question, consider introducing a concept of quasi-sources.
Maybe a pixel ¢ cannot see the pixel a directly, but what if ¢ sees pixel b, which in
turn sees the pixel a? If the broken line ¢ —b—a is the shortest of all possible broken
lines (considering line break-points to be allowed at pixel centers only) connecting
¢ to a without violating the visibility condition, we can say that b serves as a quasi-
source for c. To distinguish quasi-sources from sources in €2y, let us call Va € gy the
true-sources. For a given pixel p, there can be a long list of quasi-sources, until we
reach the true-source a. This is illustrated in fig. 4.1, rightmost image.

From implementation point of view, modifications to DP algorithms are minor.
Firstly, we have to include visibility check before finalizing d(a) in the Pythagoras-

way, once a was removed from top of min-heap. Note that we don’t have to check
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Figure 4.1: Illustration of CDF behavior. From left to right: (a) Problem formulation — from a
red source in upper left part of the domain, compute d in whole gray domain, but respect the
wall defined as 12 pixels in the frame. (b) Examples of pixels which can clearly see the true-source
directly. (c) Examples of pixels where visibility of true-source is occluded by the wall. (d) Euclidean
CDF solution: orange-connected pixels see the true-source directly, green-connected pixels can see
the quasi-source 1 which sees true-source, and blue-connected pixels can see quasi-source 2 which
sees quasi-source 1 which sees true-source. The distance of any pixel to true-source is computed
as the length of the shortest broken line from it to the true-source, with line-breaks allowed only

at the quasi-sources.

visibility when relaxing d(a) in the Dijkstra-way, since sources are set to neighbors
themselves, and it is clear that a pixel can see its 8-neighborhood neighbor, provided
they both are non-wall pixels. For relaxations happening in the Pythagoras-way, we
use the DDA algorithm to get rasterized line. Secondly, whenever a new neighbor
is touched for the first time and it is a wall, we have to set it to ’burnt ground’

immediately.

To see the pseudocode, refer to alg. 7. Observe that it contains only minor

additions to unconstrained version - algorithm styling highlights these.

To distinguish this modified version from original Dijkstra-Pythagoras, we call
this wall-aware algorithm Bresenham-Digkstra-Pythagoras (BDP) due to its usage

of line rasterization technique to tell source visibility.

This algorithm was successfully used to compute constrained distance function
in spatio-temporal 4D tubular cell structures in order to reconstruct cell lineage trees.

For details, see [29].
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Algorithm 7 Bresenham-Dijkstra-Pythagoras DF algorithm pseudocode

Require: Vp € Q\Qo : d(p) = oo,v(p) =0, s(p) =7, allocate heap

Require: Vp € Qg : d(p) = 0,v(p) = 1, s(p) = p, heap.insert(p)

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

while heap = empty do

a = heap.pop

for each pixel b € Neighborhood8(a) , which has v(b) =2 do

r = s(b)

Dp = /(12 — az)? + (ry — ay)?

L = set of pixels of rasterized straight line rendered from a to r

if D, <d(a) and Yu € L : u ¢ Q. then

end if

end for

v(a) =2 > a set to burnt ground’
for each pixel ¢ € Neighborhood8(a), which has v(c) =1 or v(c) = 0) do

if ¢ ¢ Q. then

Dy=d

( ¢ € Neighborhood4(a) ? Dg+ =1: Dg+ = +/2)

if D; < d(c) then

d(c) = Dy

s(c)=a

(v(c) =07 heap.insert(c) : heap.decreaseKey(c, Dy ) )

v(c) =1 > ¢ set to 'fire front’ anyways

end if

else

v(c) =2
end if

end for

end while
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Figure 4.2: Results of one dot experiment. From left to right: input g, resulting d (result yielded

by BF, but the result yielded by e.g. FSM is visually indistinguishable from this one), difference
between results of BF and analytical, difference between results of FSM and analytical. There is
no numerical difference between BF result and analytical solution. Range of difference between
FSM result and analytical solution is [0, 0.6355]. Difference results are shown rescaled, white color

meaning largest error.

4.3 Distance function experiments
4.3.1 One dot experiment

The first experiment was intended as an exercise to validate implementations of
six studied algorithms. We computed DF on a 10x10 pixel image, where the pixel
(5,5) was the only source pixel. We found it interesting that the numerical results
of all Euclidean distance-based algorithms (BF, DP and VDT) were the same, and
the results of all eikonal-based algorithms (TRRT, FMM and FSM) were also the
same, although these were different than the results of Euclidean distance-based set
of algorithms. For this simple example, we computed an exact analytical solution,
by simply setting each pixel’s d to Euclidean distance from pixel (5,5). Results are
presented also visually in fig. 4.2.

4.3.2 Dots experiment

In the second experiment, we wanted to measure CPU time consumption and its
dependence on the number of sources. We created three 1000x1000 pixel images,
containing 1,000; 10,000 and 100,000 randomly-placed source pixels, respectively.
The results are presented in tab. 4.3. It can be observed that Brute-Force method

scales roughly linearly with the number of sources. TRRT exhibits negative scaling
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Method BF | TRRT | DP | FMM | VDTM | FSM
CPU time 1000 source px 10s 9s 25 1s 1s 0Os
CPU time 10000 source px | 104s 58 25 2s 1s 0Os
CPU time 100000 source px | 1083s 4s 3s 2s 1s Os

Table 4.3: Dots experiment shows computational time of studied methods and its dependence upon

the number of source pixels.

w.r.t. the number of sources, and so does Dijkstra-Pythagoras. Other methods
performed quickly and their performance was only slightly affected by the number

of sources.

4.3.3 Diagonal line experiment

In the third experiment, we wanted to exploit the qualitative difference between
eikonal-based and Euclidean distance approaches as clearly as possible. We created
a 20x20 pixel image, placed a rasterized straight line to be passing from its top-left
corner to the bottom-right one, and we wanted to compute the DF from this line.
Eikonal-based methods solved this task with zero error w.r.t. analytical solution
(to our surprise - notice that these same algorithms are incapable of solving a much
simpler problem, to compute the distance from a single point, exactly). Euclidean
distance methods introduced the largest error in the first diagonal below and first
diagonal above the main diagonal - using the matrix algebra vocabulary - with error
magnitude descending further from diagonal. The reason for this difference lies in
the fact that eikonal solvers tend to interpolate interconnected neighboring source
pixels and see them as forming an interface, while Euclidean distance solvers see
these points as separated and treat them as such.

To diminish this phenomenon, it is suggested to use the so called shell boundary
condition [27]. That means, if we want to compute the distance to an interface with a
very good precision, we should consider including not only the pixels with 0 distance
value into )y, but also some narrow band of near-zero-distance pixels, to formulate

an interconnected interface. Notice that in this case, d at these pixels should not be
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Figure 4.3: Results of diagonal line experiment. From left to right: (a) input Q¢ without considering

shell boundary condition - white color of pixel p means that p € Qq, (b) resulting d (result yielded
by BF) prior to considering shell boundary condition, (c) difference between results of BF and
analytical - largest error value is in white and has value 0.293 and black is 0 error, (d) input g
considering a shell boundary condition, (e) resulting d - result yielded by BF - after including shell

boundary condition - this results contain no error w.r.t. exact analytical solution

set to 0, but to their exact, analytically computed value, to achieve the best precision
of DF result - this is an exception to the rule that d(a) = 0,Va € Q. All algorithms
have to be slightly modified then, at least the initial setting of d(a) = 0,Va € Q,
has to be removed.

We introduce the shell boundary condition by considering main diagonal pixels
to carry value d(a) = 0 and first diagonal below and above pixels to carry the exact
value d(a) = v/2/2 - this is the distance between center of a given pixel and a point
which is a projection of this point on the line passing through the main diagonal.
After introducing this modification, results of all algorithms contained zero error
w.r.t. the exact solution. Results are visualized in fig. 4.3.

In general, formulating a shell boundary condition for arbitrary shape is a

non-trivial task.

4.3.4 Circle experiment

In this experiment, we wanted to measure precision of the results yielded by DF
methods. For a 100x100 pixel image, we calculated an exact analytical euclidean
distance to a circle of radius 25 pixels, centered at [49.5,49.5] - center of this circle
happens to be in the middle of the picture if array indices are zero-based (com-
mon way of indexing arrays in programming languages). We used shell boundary

condition - all pixels, for which the values of analytical solution were < 1, were
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Figure 4.4: Results of circle experiment. From left to right: (a) input Qg, (b) resulting d - shown
result yielded by BF, but again, results yielded by all other methods are visually indistinguishable
from this one, (c) difference between results of BF and analytical, (d) difference between results
of FSM and analytical. Range of difference between BF result and analytical solution is [0, 0.303].
Range of difference between FSM result and analytical solution is [-0.755, 0.355]. Difference results
are shown rescaled, darker intensities map to smaller values and lighter intensities are mapped to

higher values.

considered to be the part of the circle, they were included to €y and d was set to
exact analytical value so that no error is introduced in the initialization. Results of
all three Fuclidean distance methods are numerically equal also in this experiment.
Results of all three eikonal equation-based distance methods are also numerically
equal. The character of error for Euclidean versus exact and for eikonal versus exact

is demonstrated in fig. 4.4.

4.3.5 Round-cornered square experiment

In this experiment, we wanted to measure result precision with a more complicated
shape, but with one for which we still can tell the analytical solution. We chose a
round-edged square. In an image 200x200 px, we placed 150x150 px square into the
centered position. Roundness of the square corners was achieved by substituting
them by quarters of circles of radius 25x25 px. We used shell boundary condition
also in this case. Results for Euclidean-based methods are all the same, and results

for eikonal-based methods are all the same as well. Results can be seen in fig. 4.5.
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Figure 4.5: Results of round-cornered square experiment. From left to right: (a) input Qg, (b)

resulting d - result yielded by BF, (c) difference between results of BF and analytical, (d) difference
between results of FSM and analytical. Range of difference between BF result and analytical
solution is [0, 0.751]. Range of difference between FSM result and analytical solution is [-0.702,
0.538]. Difference results are shown rescaled. In order to understand image scaling, observe that
the median intensity (the color present in the vast majority of pixels) happens to represent error= 0

in both difference results.

4.3.6 Maze experiment

To compare the performance of CDF methods, we used them to solve the path fin-
ding problem in a complicated maze. Maze image is 810x810 pixels and its pathways
are 6 pixels wide, and is taken from [30]. Entrance is the upper-left-most pixel; exit
is the lower-right-most. See the input in fig. 4.6.

We measured the time it takes for CDF methods to compute CDF. Results
can be seen in tab. 4.4 - see 'CPU time’ row.

Having the DF results, we can compute the path from entrance to exit.

While formulating the steepest descent procedure, the advantage of having a
source-to-source map in case of BDP becomes obvious - unlike in FMM case, we
don’t have to take steps in the domain of neighboring pixels, but we can jump from
quasi-source to quasi-source, until we reach the true-source (maze exit).

At first, we see that in complicated mazes this dramatically reduces the number
of pixels visited - in this case, only approximately one tenth of pixels was visited
when compared to FMM path reconstruction in this specific maze. This property
may be especially useful in problems where we have to compute steepest descent
from many standpoints for a fixed configuration of maze walls and maze exits.

Secondly, the length of the broken line from entrance to exit is the same number
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as the DF result value - while in FMM these two numbers differ (in our experiment,
the relative difference of these two values was about 2.1% in FMM case). This
property of BDP may prove to be of help in scenarios where the agent has to know

how long the road will take, before he decides to take it.

And thirdly, while to represent the path reconstruction visually, we could take
an advantage of the fact that we have a line rasterization algorithm implemented
and use it not only to tell if two points can see each other w.r.t. constraints, but also
for broken line painting. Note that we couldn’t use line rasterization while painting
FMM path though - the problem is that we don’t have a notion of which pixels are
the line-breaking ones. As a result, path reconstructed from BDP and visualized
using line rasterization algorithm resembles the movement of an agent in a maze

more closely than the path reconstructed by FMM, which has an 8-way character.

We tried to analyze and compare results of FMM and BDP also quantitatively.
They can be seen in tab. 4.4 and fig. 4.7. Results show, that:

1. BDP’s broken line is shorter than FMM’s.

2. BDP had to visit approximately 10x less points than FMM in this specific
case, in order to reconstruct the steepest descent path, taking advantage of

s(a),Va € .

3. value of d(a) is the same value as the length of the broken line from a to the

maze exit, in BDP. In FMM, these values are different.

4. Path characters are different: while FMM’s broken line has 8-way character,
BDP’s path looks like pixelated broken line, which resembles more closely the

shortest path in a maze. This can be seen in the fig. 4.7.

A 4D implementation of BDP algorithm was used to reconstruct cell lineage
trees, by computing CDF in spatio-temporal 4D tubular cell structures and subse-

quent steepest descent computation. More information can be found in [29].
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Figure 4.6: Maze experiment: input image, a maze of 810x810 pixels, pathways are approximately

6 pixels wide, walls are white, entrance is top left, exit is bottom right.

Algorithm FMM BDP
CPU time 1s 2s
Path length 12016.4 11332.9
d(start) 11760.1 11332.9
# of visited points 10265 1201
Path character 8-directional | rasterized line

Table 4.4: Comparison of FMM and BDP behavior. BDP’s DF value at the start equals the
length of shortest path, while for FMM these quantities are different. Number of visited points
differs, since different steepest-descent methods are used: FMM goes pixel-by-pixel, while BDP
goes source-by-source. Therefore, this value for BDP is related to number of corners visited, while
FMM results represents number of pixels in the 8-connected path. The last quality, path character,

is best illustrated by fig. 4.7
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Figure 4.7: Results of maze experiment. Upper row: DF yielded by FMM and steepest-descent
solution, left - full solution, right - zoom. Lower row: DF yielded by BDP and steepest-descent
solution, left - full solution, right - zoom. Compare the different path character of FMM (left)
and BDP (right) - better visible while looking at zooms. FMM'’s steepest descent has to construct
path in a pixel-by-pixel manner, as it only has local information. BDP’s steepest descent can be
formulated using source information and path goes from corner to corner — it has a source-to-source

character. BDP’s path was painted using line rasterization algorithm DDA.
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4.3.7 Trying to solve maze with Fast Sweeping Method

In this experiment, we attempt to use Fast Sweeping Method to solve constrained
distance function problem. The algorithm (4) can be easily modified to ignore
relaxation updates for wall pixels. Notice, however, that while 4 sweeps in each of
the diagonal directions are enough to obtain a solution in 2D case for unconstrained
distance function problem, this number of sweeps doesn’t assure that signal gets
‘sweeped’ throughout the whole domain, for this constrained distance function case,
due to the walls preventing it to go around the corners.

Let us call the original approach a 4-sweep: that means making 4 sweeps in
all 4 diagonal directions always in the same order. A natural way to cover larger
part of the computational domain €2 increase the number of 4-sweeps performed in
succession. The only way to tell the number of sweeps which cover the entire domain
beforehand, is to know the character of maze beforehand. In a very complicated
maze, like the one from previous experiment - see fig. (4.6), it is, however, difficult
to tell the upper bound of the number of sweeps.

We tried to make 1, 10, 100 and 1000 4-sweeps in order to solve this case.
Results can be seen in fig. (4.8). We can conclude that it took several hundreds of
4-sweeps to get the solution, which took about a minute of CPU time. Notice that
both wavefront-type methods, FMM and BDP, studied in the previous experiment,
can obtain the solution of this example faster. This method is therefore suitable only
in cases, where we know the character of maze, so that we can bound the number

of 4-sweeps needed to cover the domain of interest.
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Figure 4.8: Tllustration of FSM in CDF environment. Top left: 4-sweep - notice the small black
part in bottom right corner of this image - this is how far signal travels from a single source point
€ g, in bottom right, until it is stopped by maze walls. Top right: 4-sweep repeated 10 times.
Bottom left: 4-sweep repeated 100 times. Bottom right: 4-sweeps repeated 1000 times. We can
see that it took at least several hundred 4-sweeps to obtain a solution for the whole domain. CPU

time spent obtaining these solutions were 0, 1, 8 and 66 seconds.
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5 Software

This section is written less formally, serving as a combination of developer’s diary,

specification of the SliceViewer software, and the user manual.

5.1 State-of-the-art software

In order to visualize the data, we started by using an existing software, a robust
scientific data viewer, called ParaView. We identified three viewing options as being

useful:

1. Volume rendering of 3D volume + small 3D spheres centered at FBLSCD-given
cell identifier. Volume rendering is performed as mapping image intensity to

color tone and transparency
2. Translucent isosurface view (depending on intensity value) + small 3D spheres

3. 2D slice of data + 2D or 3D marks for cell identifiers

An example of these viewing modes can be seen in the figure 5.1. We found out,
that the inability of first two approaches of showing the interior cells of the organism
volume in detail, due to surface cells occluding the interior ones, happened to be a
major drawback. For the third method, we have seen the speed of file loading and
data manipulation as being insufficient. So we decided to create a more speciali-
zed software to serve our needs. We needed it to view spatio-temporal volumes of
3D-+time data, and we needed to tackle the challenge of projecting them onto the
2D surface of computer monitor, with as little information loss as possible. For the
sake of simplicity and speed, we decided it was not needed to rotate the view. The
software was meant to show 2D slices based on 2D graphics libraries, and we called

it SliceViewer.

5.2 SliceViewer

This software was designed to be able to load and view a large amount of 3D+time

data. We chose the Microsoft Visual Studio platform, programming language C++,
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Figure 5.1: Visualizing with ParaView. Left - volume rendering, middle - translucent isosurfaces,

right - viewing as a 2D slice.

and the standard graphics library. The data files are of type .vtk, containing x,,q. *
Ymaz * Zmaz Sbit chars, and there are 6,,,, of them. In the dataset 070418a, 2,4, =
104, Ymaz = 512,24 = 512, and there are 320 time steps recorded. We stored the
data as bitmaps of dimension %40 X Ymaz), and we would have zp,q: * Nrimesteps Of
them. Npimesteps 18 limited by computer’s RAM size. We tested it on a computer with
8GB RAM, and we were able to load approximately 70 time steps of Z,,02 *Ymaz * Zmaz
data, using 24bit RGB color encoding (one byte for each of the color channels R, G
and B). This limit may be pushed further via color pallette encoding, if needed, or

considering 8bit greyscale pallette.

We required it to be able to view specific z-coordinate slice and 6-time without
further computation, so the bitmaps are initialized at the time of loading from HDD.
Two sliders (one for z, one for 6) are used to control the viewed slice. Computational
burden of changing z and 6 values of the sliders is therefore slim - GraphicsView

only has to swap the currently shown bitmap for another.

The sketch of the software user interface layout and the detailed view of the

control panel can be seen in the figure 5.2.

We wanted to make sure the marks representing the cell identifiers are as clear
to see in the data as possible, but don’t cover up much of the data, so we chose
upright equilateral crosses. Using 3D crosses means user can see the presence of the
cross even several slides over- and under its occurence in the z-direction. Lenght of
the 3D cross arm was chosen to be 5 pixels, and the color combination was chosen
red-green, green are arms of the cross from center in the axes directions, red are arms

against axes directions. This combination of colors is well visible in the grayscale
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Figure 5.2: SliceViewer design. Left - miniature of the user interface. Right - detailed view of the

control panel.

environment.

5.3 RGB viewing mode

We wanted to have an option to see time correspondence between time steps, which
is not an easy task to do, in 2D slice approach. Fast reaction time of the viewer when
moving the #-axis slider is a help towards achieving this goal, but we wanted to see it
even without moving sliders. We took the advantage of having intensities in range
0..255 and, using standard 3-channel RGB color encoding of computer graphics,
created an RGB viewing mode: for a 0, we view a 2D slice in such a way that the
red channel represents slice intensity in the previous frame (0 — 1), the green channel

views the current frame () and the blue one views the next frame (6 + 1).

It was interesting to see various cell behaviors visualized in this mode. Cells
standing more or less still are seen as predominantly white-color blobs as the three
channels overlay in the same location, sometimes with colourful edges (caused by
small cell motion). Cells traveling in a certain direction are seen as R-G-B blob
patterns. Cells undergoing mitoses are seen as B-G-R-G-B patterns. The result of
this color encoding is the simplification of the non-automatic human-eye cell mitosis

detection. All this patterns are visualized in the fig. 5.3
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Figure 5.3: RGB mode of the SliceViewer software. From top left to bottom right: Top left - see
two neighboring cells undergoing cell divisions at the same time, each creating two daughter cells
in the circle. Top right - see multiple cells traveling in the direction from top to bottom of the
image, denoted by the arrows. Bottom left - see a few cells standing more or less still, with large
3-channel overlays creating predominantly white areas. Bottom right - a typical view of random

embryo subvolume, where all these types of behavior can be observed.
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Figure 5.4: Basic strategy results visualization, as a comparison. Left - detail of input image with
3D crosses representing results of FBLSCD at time 6 = 16 (optimal stop-time for this dataset,
this method and at this frame according to chapter 3.4). Right - the same content, with results of
LSOpen at time # = 17 (optimal stop-time for this dataset, this method and at this frame) added.
Viewing data this way, user can spot false positives of the first method, compared to the second
method. (FBLSCD yields a false positive here, which can be seen in the right image - it is the one
slightly to the right and down from the image center. Notice how difficult it is to spot it in the

left image, among many other red-green crosses.)

5.4 Mutual comparison of two cell detection results

We specified the requirements for being able co compare two different cell detection
results in chapter 3.4. Slice Viewer therefore enables the user to load two cell
identifier sets. On loading the first of them, crosses are painted in color. On loading
the second, its crosses are superimposed, painted white now. All those points, which
are detected by the first strategy, but left undetected by the second, remain painted
in color, while the others are covered over by white. In order to see the vice-versa
results, i.e. points detected by the second and left out by the first, user simply loads
the sets in the switched order. This initial mode of comparing two cell detection
strategy results can be seen in the fig. 5.4.

The second requirement stated in chapter 3.4 was for the software to be able
to compare the two sets of points not only binary, but also via a certain metric.
The rightmost part of the main window contains two tables. To compare two center

detection strategies, 1 and 2, at first the user clicks the button above the first table
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and selects centers of method 1 and distance function of centers found by method
2. Then he clicks the button above the second table and selects centers of method
2 and distance function of centers found by method 1. This way, table shows list of
cell centers by each method, with their ID, x — y — 2z coordinates, and the distance
to its closest center in the other method, sorted descending w.r.t. distance value.

Having this interface implemented, we already were able to load two results
of different cell detection strategies and perform a basic comparison. At this stage,
the interface was able to highlight the differences: for each method, it pointed out
the points detected as cell identifiers, which were missed by the other method.

In addition to this functionality, we required to not only show missed cells,
but also point out, if one cell was detected by more than one identifier. So, to the
two tables to the right, we added two more columns - for strategy A, the first of
them carrying the ID of corresponding closest point in the steepest descent sense in
the strategy B, and the second column carrying the number of identifiers in method
B, who consider a given point in strategy A as their closest, in the steepest descent
sense, again. A button to compute steepest descent from each point in the strategy
A results to strategy B results points, and vice versa, was added.

With this last important addition, we were able to not only compare two
methods w.r.t. missing detected centers, but also w.r.t. multiple detected centers.

Both tables are interactive. On selecting an arbitrary table entry, z-dimension
slider is set to this entry’s z, a red-green 3D cross is painted in the location, an
orange-cyan 3D cross is painted in the location of its steepest-descent neighbor in
the other strategy result set. Furthermore, all cell centers from the other method,
who call this selected point to be their closest peer, are marked by blue-pink 3D
Crosses.

For further reference, see [28].

This final user interface is viewed in fig. 5.5.
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Figure 5.5: User interface designed for comparing two cell detection strategy results. Notice the
mutual correspondence of highlighted lines in the right control panel, as well as visual representation
of this event in the main viewer area - pink tip of the second 3D cross can be seen few pixels lower

from the red-green one.
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6 Experiments - comparing cell detection results

The first experiment was comparing the state-of-the-art results, according to [2],
with centers obtained as results of FBLSCD with stop time computed automati-
cally, using the algorithm proposed in the chapter 3.3. In addition to this, we also
compared FBLSCD autostop with LSOpen autostop. Both FBLSCD and LSOpen
stop times are chosen as first local minima of 5th degree polynomial fit. We com-
pared and classified visually all the centers for which their closest peers in the other
method have distance > 6.0. See the results in the fig. 6.1. Using LSOpen results,
it can be seen that FBLSCD indeed contains some false positives, which would be
difficult to spot without comparing it to some other method. It depends upon the

application, if this is an acceptable number of errors.

It is worth noting at this point, the different impact of false positives and false
negatives on the results of our goal, which is either computing statistical characte-
ristics of the zebrafish embryo, or reconstruction of the cell lineage tree. For both of
this goals, there is a feasible method for processing multiple detected cell centers in
one nucleus designed, see 2|, |6], resp. A missing cell center in one frame is also a
problem that can be solved with relative ease, in the cell lineage tree reconstruction
task|6]. On the other hand, false positives may cause much more errors in both these
frameworks, therefore, minimizing this type of error seems to be a feasible metric of

the cell detection algorithm’s quality.

The second experiment was comparing the state-of-the-art, optimal stop time
FBLSCD and optimal stop time LSOpen results, to biological ground truth data,
which is available for this dataset. Results show that in terms of cell detection
differences, the state-of-the-art dataset resembles biological ground truth data the
most closely of all three methods, considering the number of false negatives. While
LSOpen is the furthest from it in this criterion, in the number of false positives it
yields the results closest to the biological ground truth data. Results can be seen in

the fig. 6.2.

Both experiments show however, that FBLSCD may yield some potentially

70



Wt~ 30w ke

= = e e
U\beml—‘o

Wt~ @B w [

= e
LR ERIEBE

FBLSCD: visual vs. automatic

false positives

correct positive, missed by the other method
correct but noisy, missed by the other method
a single nucleus detected multiple times

sUmM

FBLSCD: automatic vs. visual

false positives

correct positive, missed by the other method
correct but noisy, missed by the other method
a single nucleus detected multiple times

SUM

FBLSCD: automatic vs LSOPEN: automatic

false positives

correct positive, missed by the other method
correct but noisy, missed by the other method
a single nucleus detected multiple times

SUM

LSOPEN: automatic vs. FBLSCD: automatic
false positives

correct positive, missed by the other method
correct but noisy, missed by the other method
a single nucleus detected multiple times

SUM

30

15vs 16 15vs 16

D
100

E

150

F

200

15vs16 15vs17 15vs16

G

250

H

300

15vs16 15vs16

1 1 2
8 4 2 2 7 3 10
1 2 4
1 1 3 3 2
9 6 3 5 10 11 18
1 1 1 1
1 1 3 1 2
1 1
1 1 3 4 1 1 3
B D E F G H I
0 50 100 150 200 250 300

16ws17 16vs17 16vs17 17vs17 16vs17 16vs17 16wvs17

4 11 1 1 4 6 8
6 17 26 27 51 71 97
1 1 1 8 3
4 6 3 2 1

15 29 33 31 58 26 108
2 1

21 24 3 3 7 9 10

6 8

1

24 24 3 4 7 15 13

Figure 6.1: Visual comparison of different cell detection strategies. Upper table - classification of

dissimilarities between FBLSCD state-of-the-art stop time and automatic stop time. Upper half

of this table compares state-of-the-art centers against distance function to the autostop centers,

lower half vice versa. Lower table - dissimilarities between FBLSCD and LSOpen automatic stop

time results. Upper part of this table compares FBLSCD autostop centers against the distance

function to the LSOpen autostop centers, the lower part vice versa. Notice the red lines - while

upper table contains no significant differences, in the first line of the lower one, we can see that

LSOpen seems to accuse FBLSCD of yielding some false positives.
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A B C D E F G H I

1 B8=0 8=50 8=100 B6=150 6=200 8=250 8=300

2 |GOLDEN STANDARD (GS) vs FBLSCD: visual stop time

3 | positives in GS, not found in FBLSCD (false negatives in FBLSCD™) 137 123 34 31 65 138 187
4 | positives in FBLSCD, not found in GS (false positives in FBLSCD*) 9 9 5 6 3 10 3]
5

6 |GOLDEN STANDARD (GS) vs FBLSCD: automatic stop time

7 | positives in GS, not found in FBLSCD (false negatives in FBLSCD*) 146 127 36 32 72 144 199
8 | positives in FBLSCD, not found in GS [false positives in FBLSCD¥) 9 9 ] 7 4 9 4
9

10 \GOLDEN STANDARD (GS) vs LSOPEN: automatic stop time

11 | positives in GS, not found in LSOPEN (false negatives in LSOPEN¥) 135 123 63 57 127 213 292
12 | positives in LSOPEN not found in GS (false positives in LSOPEN*) 9 3 3 3 3 3 1

13
14
15 *- if we assume golden standard is flawless
16

Figure 6.2: Comparing state-of-the-art, FBLSCD autostop and LSOpen autostop to biological
ground truth data. Notice that while LSOpen yields the most false negatives, it contains the
lowest count of false positives. When considering which of these to use in an application, one has

to pay attention to this tradeoff.

harmful false positives, although their number is relatively low.

The third experiment can be seen as an experimental insight into the LSOpen
algorithm’s behavioral analysis. This information is of value, since due to composite
character of LSOpen method, we cannot use standard tools of mathematical analysis
to study it theoretically. We computed 17 LSOpen steps with a certain step size.
Then we halved the step size, and wanted to see, which LSOpen step yields the
closest results to the results of the former computation. From steps 31, 34 and 37
of LSOpen halfstep, 34 has the fewest differences - 31 halfstep seems to happen
sooner than 17 fullstep, and 37 halfstep seems to be later than the 17 fullstep. It
is therefore reasonable to assume, that halving step size and doubling step count
yields approximately the same results as the original setup. It is a known property
for advection-diffusion-type equations, but it seems to work also for the non-atomic
morphological operation such as LSOpen. Results of this experiment can be seen in
the fig. 6.3.

All the experiments were performed using the SliceViewer software.
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A B C D E F G H |

1 000 1050 100 1150 t200 t250 300

2 |LSOPEN_17vs LSOPEN_HALFSTEP_ 31

3 | positivesin 17, not found in hs_31 0 2 2 2 1 3 3
4 | positives in hs_31, not found in 17 10 10 4 10 13 25 30
5

6 [LSOPEN_17vs LSOPEN_HALFSTEP 34

7 | positives in 17, not found in hs_34 1 0 2 6 3 8 7
8 | positives in hs_34, not found in 17 2 1 1 0 1 1 0

9

10 LSOPEN_17 vs LSOPEN_HALFSTEP_37

11 | positives in 17, not found in hs_37 11 9 9 17 15 27 30
12 | positives in hs_37, not found in 17 0 2 0 1 3 0
13

Figure 6.3: Analyzing the behavior of LSOpen. Compute 17 LSOpen steps. Then, take half the
step, and observe, how many steps are to be taken, in order for the results to be closest to former.
It seems that 34 is the correct answer, out of three options: 31 yields far too many positives and

37 too many negatives.

7 Conclusions

We started by the discussion about the problem of detection of cells in biological
image data, and described the FBLSCD algorithm. We introduced a novel method
for defining a fully automatic stop time criterion. We formulated a novel algorithm
called LSOpen, as a fusion of morphological and PDE-based image processing, which

can perform the detection of cells and is robust against the salt-type noise.

Then, we discussed cell detection algorithm benchmarking methods. We argu-
mented, that by not checking just one result set, but comparing two different result
sets by computing their mutual distance, in a defined metric, may relieve human
inspector of a significant amount of work. This motivated us to think about ways

the distance function to a set of points can be computed.

After we analyzed commonly-used distance function methods and studied their
differences, we formulated a novel method to compute the distance function. This
one computes distance function to a set of points with the O(nlog,n) complexity,
like the state-of-the-art algorithm Fast Marching Method does, but using exact Eu-
clidean values, not eikonal ones, as Fast Marching Method does. In addition to
this, we proposed an enhancement for this method to work also in an environment

containing walls and corners, relying on the usage of a line rasterization algorithm.
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In various experiments in both unconstrained and maze-like environments, we have
demonstrated the viability of the newly-formulated method. In practice, BDP algo-
rithm was used to reconstruct cell lineage trees in a developmental biology applica-
tion - for details, see [29].

Then, we described the motivation, specification, design and implementation
of the software SliceViewer.

The experiments discussed in the end of the work served as validation for the

aforementioned modifications and as a test of the SliceViewer software.
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& Resumé

Technolbgia dvojfotéonového laserového mikroskopu ndm umoziuje pozorovat em-
bryo zebricky pruhovanej par hodin po fertilizacii, a skiimat jeho spravanie pocas
nasledujicich zopar hodin vyvoja, na Grovni samotnych buniek. Data ziskané mik-
roskopom st sekvenciou 3D snimkov v ¢ase a obsahuju pre kazdy voxel hodnotu
intenzity.

Zebricka pruhovana je organizmus, s ktorym sa pracuje v mnohych stcasnych
projektoch skimajucich otazky vyvojovej bioldgie - najmé vdaka jeho priehladnosti,
schopnosti absorbovat kontrastné latky, rezistencii vo¢i mechanickému poskodeniu
a vy$Sej odolnosti voci teplu zo svetla mikroskopu. Obraz je ziskavany v dvoch

kanaloch - na prvom st bunkové membrany a na druhom bunkové jadra.

V oblasti porozumenia tomuto biologickému obrazu sa riesia dva typy tloh -
prvou z nich je kvantitativne popisat rozne biologické parametre organizmu a druhou

je realizovat sledovanie buniek v ¢ase, ¢ize rekonstrukcia rodokmenov buniek.

V oboch tlohach je identifikdcia buniek stucastou postupov pre rieSenie. Na
identifikaciu buniek sa zvykne pouzivat algoritmus FBLSCD - Flux-Based Level Set
Center Detection, alebo novo navrhnutd metéda LSOpen - morfologické otvorenie
na mnozine drovni. TaktieZ jestvuji mnohé iné metody detekcie buniek. V tejto
praci diskutujeme o moznosti porovnania vysledkov tychto metod, a taktiez pre tuto

tlohu navrhneme a implementujeme softvérové riesenie.
Dalej uvedieme zoznam kapitol s kratkym popisom kazdej z nich.

Kapitola 3 uvadza problematiku v spracovani obrazu zvani detekcia objektov.
St uvedené zakladné priznaky, spolu s na¢rtom Standardne pouzivanych metod na

ich detekciu.

Podkapitola 3.1 popisuje zvycajne pouzivany algoritmus na detekciu buniek
zvany FBLSCD. Tento algoritmus je prezentovany ako evolicia v Skidlovom priestore
formulovana ako parcidlna diferencidlna rovnica. Téato sposobuje, Ze izociary inten-
zity v obraze sa zmrStuji v smere vnutornej normaély. f)alej je vysvetlené, ako je

tato vlastnost vyuzita na rieSenie problematiky.
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V podkapitole 3.2 diskutujeme o netrividAlnom probléme nastavenia spravnych
parametrov pre FBLSCD. Identifikujeme Styri parametre: § ako koeficient modulu-
juci silu advek¢éného ¢lena rovnice, p ako koeficient krivostnej diftizie v rovnici, R ako
prahovi hodnotu, nad ktorou musi byt intenzita lokdlnych maxim, aby boli uznané
za maxima reprezentujice bunkové jadra a T, Cas zastavenia evolicie v §kalovom
priestore. VSetky tieto hodnoty zavisia od dat a kvalita ich nastavenia determinuje
kvalitu vysledkov algoritmu. V tejto praci prezentujeme plne automaticky sposob
volby parametra 7" pre dané 6 , 4 a R. V predchadzajucich pracach navrhli au-
tori pozorovat vyvoj veli¢iny LMCE (Local Maxima Count Evolution), ale neboli
spokojni s vysledkami pre redlne data. Stavali sme na ich skiisenostiach tym, ze sme
definovali 7" ako minimum kvantity, ktortt sme pomenovali LMCED (Local Max-
ima Count Evolution Decline). NavySe sme navrhli aplikovat $tatisticki metodu
najmensich Stvorcov na zhladenie rieSenia. T&to metdéda minimalizuje varianciu

snimok od snimky a dava hodnoty T, ktoré sd plynulé naprie¢ videom.

V podkapitole 3.3 popisujeme kombinaciu dvoch pohladov na spracovanie
obrazu, konkrétne pristup cez parcidlne diferencialne rovnice a morfologicky pristup.
Najprv zredukujeme rovnicu FBLSCD odiatim krivostného ¢lena a normalizovanim
advekcie: u = 0, 0 = 1. Tato operacia sa d4 vnimat ako morfologickd erdzia
v 8kile Sedi a pomenovavame ju LSErode. D4 sa ukéazat, Ze tato operacia vie ro-
71i8it medzi velkymi objektami reprezentujicimi bunkové jadra a osamelymi malymi
pikmi vysokej intenzity, reprezentujicimi Sum v obraze. Problém vSak nastava, ak
sa vyskytuje v obraze opa¢ny typ Sumu: malé piky nizkej intenzity priamo v 1t-
varoch reprezentujucich bunkové jadra. V tom pripade tento Sum nemizne, ale sa
naopak rozpina, na tkor intenzity samotnych jadier, ¢o dramaticky znizuje schop-
nost algoritmu takéto jadro detekovat. Preto rozvijame koncept LSErode a formulu-
jeme opacnu operaciu, zvani LSDilate, pomocou oto¢enia znamienka pri advekénom
¢lene. Tato metoda sa sprava opacne ako LSErode - Sumy s nizkou intenzitou mizn,
ale Sumy s vysokou intenzitou expanduji. Vyuzivame preto Standardny koncept
morfologickej Skoly spracovania obrazu pre kombinaciu efektu tychto dvoch metod

- krok LSErode, po ktorom nasleduje krok LSDilate je kompozitné operacia, ktora
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sa vola morfologické otvorenie - v nasom pripade LSOpen. UkazZeme, Ze tato nova

metoda je robustné voci obom spominanym typom Sumu.

V podkapitole 3.4 diskutujeme o metodach evaluacie vysledkov detekénych
algoritmov. Za¢neme vysvetlenim, Ze vzhladom k velkému mmnoZstvu vystupnych
dat je prakticky netinosné, aby tieto dopodrobna evaluoval Tudsky inspektor. Oproti
tomu uvadzame stratégiu, kde in§pektor porovnava vysledky dvoch metéd navzajom.
Toto redukuje mnozstvo prace v pripade, ak davajiu metody vysledky velmi podobné
a odlisujice sa iba v malom percente rozdielov. Navyse, ak zvladneme porov-
nat vysledky dvoch metod aj sofistikovanejsie ako iba binarne, napriklad pomocou
merania vzdialenosti medzi jednotlivymi identifikdtormi, dosiahneme dalsiu reduk-

ciu mnozstva prace.

V kapitole 4 popisujeme metddy pre vypocet funkcie vzdialenosti. Posledné
podkapitola predoslej kapitoly nam slazi ako motivacia. Na zaciatku tejto kapitoly
definujeme problém a Specifikujeme poziadavky, ktoré kladieme na rieSenie.

Podkapitola 4.1 analyzuje funkciu vzdialenosti bez obmedzeni. Tu analyzujeme
5 ¢asto implementovanych a pouzivanych metéd: Brute-force (BF), Time relaxed
Rouy Tourin (TRRT), Fast marching method (FMM), Fast sweeping method (FSM)
a Vector Distance Transform (VDT). Okrem popisania tychto metod uvadzame aj
pseudokody pre kazdu z nich. Tieto metody sa pokusime klasifikovat podla 1) defini-
cie vzdialenosti - tato moze byt eikonalova alebo Euklidovska a 2) poradia navstive-
nia pixelov - multi-visit, ¢elo viny alebo zametacie. Naformulujeme taktiez nova
metodu, ktord vyplni prazdne miesto v klasifikacii dosial jestvujucich metod - tato
nova metdda je postavend na Euklidovskej definicii vzdialenosti a mé charakter cela
viny. Nazveme ju Dijstra-Pythagoras (DP). Tato metoda sa spolieha na spocitanie
najprv odhadu vzdialenosti, podobnym sposobom ako Dijkstrova metoda v teorii
grafov, a potom sa pri poslednej névsteve pixela ustali na spravnej Euklidovskej
hodnote, pomocou Pytagorovej vety.

Dalsia podkapitola, 4.2, formuluje zlozitejsi problém: pocitanie funkcie vzdi-
alenosti s obmedzeniami typu stena a roh, v ¢oho dosledku je tiloha ekvivalentna

hTadaniu najkrat$ej cesty v bludisku. V tomto pripade uvidime, Ze algoritmy fun-
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gujuce na principe ¢ela vlny st na rieSenie vhodnejSie ako zametacie algoritmy. Na
to, aby novy algoritmus DP v tomto prostredi fungoval, je nutné uviest mierne
modifikacie: konkrétne implementovat test viditeInosti zdroja. Na vyrieSenie to-
hto problému implementujeme algoritmus na rasterizaciu ciary. Tto novi metoédu
nazveme Bresenham-Dijkstra-Pythagoras.

Podkapitola 4.3 obsahuje mnoho experimentov z domény funkcii vzdialenosti.
Meria presnost, rychlost a kvalitu vysledkov jednotlivyich metod na vypocet funkcie
vzdialenosti. Tu uvidime, Ze nova metoda BDP méa zopar kvantitativnych a kval-
itativnych vyhod oproti zvycajne pouzivanej metéode FMM pre rieSenie problému
bludisk. Jedna sa o zéver diskusie o funkcii vzdialenosti.

Kapitola 5 je skor technickejsia. Softvér SliceViewer, rieSenie slaziace na semi-
automaticki evaluaciu vysledkov detekcie buniek, je uvedeny a popisany. Soft-
vér umoziuje pouzivatelovi zobrazit 4D data na 2D obrazovke pocita¢ového moni-
tora pomocou dvoch bezcov. Dalej vie vizualizovat pohyb v ¢ase mapovanim troch
snimkov (predosly, aktualny a nasledujici) na tri farebné kanély (¢erveny, zeleny,
modry). No a napokon vie softvér vizualizovat relativnu kvalitu algoritmov pomocou
vzajonych korespondencii a odlinosti v bunkovych identifikitoroch.

Napokon, kapitola 6 je diskusiou o vysledkoch experimentov. V prvom ex-
perimente tejto kapitoly uvidime porovnanie spravania FBLSCD a LSOpen metod.
Tento experiment demonstruje, Ze kym vacsSina vysledkov tychto dvoch algoritmov
je zhodna, vyskytuje sa aj malé percento odlisnosti. Konkrétne, vo vysledkoch
LSOpen chyba viacero centier, ktoré boli spravne detekované pomocou FBLSCD,
avSak vysledky LSOpen ukazali, ze FBLSCD uvadza do sady vysledkov zopar iden-
tifikatorov centier, ktoré v skutoc¢nosti v datach nie si. V druhom experimente
porovname vysledky oproti biologickému zlatému Standardu. Pozorujeme, Ze obe
metody davaji rozumné vysledky. V trefom experimente sa pokisime empiricky

overit korektnost numerickej diskretizacie a implementacie metody LSOpen.
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