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1 Abstract

In this work, we present a few modi�cations to the state-of-the-art algorithms, as

well as several novel approaches, related to the detection of cells in biological image

processing.

We start by explanation of a PDE-based image processing evolution called

FBLSCD and study its properties. We then de�ne a fully automatic way of �n-

ding the stop time for this evolution. Afterwards, we try to see the FBLSCD as a

morphological grayscale erosion, and we formulate a novel cell detection algorithm,

called LSOpen, as an intersection of PDE-based and morphological image processing

schools.

Then, we discuss the best ways of inspecting cell detection results, i.e. cell

identi�ers. We try to quantitatively benchmark various cell detection methods by

the relative amount of false positives, false negatives and multiply-detected centers

yielded. We will observe that comparing cell detection results in a binary fashion is

insu�cient, therefore we are going to utilize the concept of distance function.

Motivated by this need for robust cell detection result comparison, we analyze

commonly-used methods for computing the distance function and afterwards we

formulate a novel algorithm. This one has complexity O(n log2 n) and it yields Eu-

clidean distance. In addition to that, we introduce a modi�cation to this algorithm,

enabling it to work also in maze-like, wall- and corner-containing, environments.

This modi�cation relies on the line rasterization algorithm. We perform various ex-

periments to study and compare distance function methods. Results illustrate the

viability of newly-proposed method.

Further, a software for the comparing and inspecting cell detection results,

SliceViewer, is speci�ed, designed, implemented and tested.

In the end, quantitative experiments are discussed, validating the above-mentioned

novelties.
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Abstrakt

V tejto práci prezentujeme viacero modi�kácií zvy£ajne pouºívaných algoritmov, a

taktieº zopár nových prístupov, v kontexte detekcie buniek v spracovaní biologických

dát.

Na za£iatku popí²eme algoritmus FBLSCD a analyzujeme jeho vlastnosti. Po-

tom zade�nujeme plne automatickú metódu na nájdenie zastavovacieho £asu tohto

procesu. Následne sa na FBLSCD pozrieme cez optiku morfologického spracova-

nia obrazu, uchopíme ho ako morfologickú eróziu v ²kále ²edi, a pomocou znalostí

morfologických princípov spracovania obrazu sformulujeme alternatívny algoritmus,

LSOpen.

V nasledujúcej sekcii diskutujeme o in²pekcii výsledkov detekcie centier, £iºe

mnoºine bunkových identi�kátorov. Pozorujeme, ºe porovnávanie výsledkov binárne

je nedostato£né, preto vyuºijeme koncept funkcie vzdialenosti.

Motivovaní poºiadavkou robustného porovnávania mnoºín bunkových identi-

�kátorov, analyzujeme dostupné metódy po£ítania funkcie vzdialenosti a následne

formulujeme nový algoritmus. Tento je rádu O(n log2 n) a je de�novaný pomocou

Euklidovskej vzdialenosti. Navy²e uvedieme modi�káciu tohto algoritmu, umoº¬u-

júcu po£ítanie vzdialenosti aj v prostrediach obsahujúcich steny a rohy, podobných

bludiskám. Taktieº uvedieme viaceré experimenty, ktoré validujú novo navrhnuté

algoritmy.

Následne je zdokumentovaný softvér SliceViewer.

Na záver uvedieme experimenty validujúce vy²²ie spomínané modi�kácie a

postupy.

4



Contents

1 Abstract 3

2 Introduction 15

3 Detection of objects in images 20

3.1 Flux-based level set center detection . . . . . . . . . . . . . . . . . . 21

3.2 Finding the optimal stop time . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Morphological cell detection . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 How to compare various cell detection results? . . . . . . . . . . . . . 35

4 Methods for computing distance function on a pixel-based grid 37

4.1 Unconstrained distance function . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Distance de�nition . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Pixel visit order strategy . . . . . . . . . . . . . . . . . . . . . 39

4.1.3 Brute-force (BF) . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.4 Time-Relaxed Rouy-Tourin (TRRT) scheme [4] . . . . . . . . 41

4.1.5 Fast Marching Method (FMM) [21] . . . . . . . . . . . . . . . 42

4.1.6 Fast Sweeping Method (FSM) [24] . . . . . . . . . . . . . . . 42

4.1.7 Vector Distance Transform (VDT) algorithm [25] . . . . . . . 44

4.1.8 Novel method: Dijkstra-Pythagoras (DP) . . . . . . . . . . . . 44

4.2 Constrained Distance Function . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Usability of existing DF methods for �nding CDF . . . . . . 49

4.2.3 Method enhancement: Bresenham-Dijkstra-Pythagoras . . . . 50

4.3 Distance function experiments . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 One dot experiment . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Dots experiment . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Diagonal line experiment . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 Circle experiment . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.5 Round-cornered square experiment . . . . . . . . . . . . . . . 56

5



4.3.6 Maze experiment . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.7 Trying to solve maze with Fast Sweeping Method . . . . . . . 61

5 Software 63

5.1 State-of-the-art software . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 SliceViewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 RGB viewing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Mutual comparison of two cell detection results . . . . . . . . . . . . 67

6 Experiments - comparing cell detection results 70

7 Conclusions 73

8 Resumé 75

Bibliography 79

6



List of Figures

3.1 The center detection process, shown in 60x60 pixel part of slice z = 60

of frame θ = 100. Top left, the intensity function of the original

image. Top right, the intensity function of the �ltered image. The

�ltering was performed by the GMCF algorithm [16]. Bottom left,

the intensity after 10 steps of center detection process. Bottom right,

the intensity after 30 steps. . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Local maxima count evolution (LMCE) at time θ = 100. While after

a while the decline stops, a proper plateau is never truly formed and

it is di�cult to de�ne the stop time. . . . . . . . . . . . . . . . . . . . 24

3.3 Local maxima count evolution decline (LMCED) at time θ = 0, 100

and 200. If we were to de�ne stop time as global minimum of LMCED,

stop times for given frames would be 19, 26 and 22, respectively. . . . 24

3.4 Global minima of LMCED for the whole dataset θ ∈ [0...320]. Stan-

dard deviation is 4.62377. . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Polynomial �ttings of LMCED at θ = 100. Upper row, degrees of

�tting polynomial 2, 3 and 4, lower row, degrees of �tting polynomial

5,6 and 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 First local minima of polynomial �ttings of LMCED, for the whole

dataset, θ ∈ [0...320]. Upper row, degrees of �tting polynomial 2,

3 and 4, lower row, degrees of �tting polynomial 5, 6 and 7. The

corresponding standard deviations are 1.9597, 1.3698, 0.6128, 0.4555,

0.5795 and 2.4477. Thus, 5th degree polynomial �t yields minimal

standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7



3.7 The complete optimal stop time analysis for a di�erent dataset, 070420a.

First row - LMCED at time θ = 0, 100 and 200. Second row - Global

minima of LMCED for the dataset. Standard deviation is 5.27447.

Third and fourth row - Polynomial �ttings of LMCED at θ = 100,

for n ∈ (2..7). Fifth and sixth row - First local minima of polynomial

�ttings of LMCED, for the whole dataset. The corresponding stan-

dard deviations are 4.7886, 1.8622, 1.3320, 1.0179, 1.5174, 3.8109. It

is again the 5th degree polynomial �t, which minimizes the standard

deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Illustration of cell detection algorithms behavior with noisy phantom

images. Upper left - input phantom image, with cell intensities being

quadratic functions of distance to its centers of varying size, with salt

and pepper noise added. Upper right - 10 steps of LSErode. Notice

black spots disappear and white enhance. Lower left - 10 steps of LS-

Dilate. Notice white spots disappear here, and black spots enhance.

Lower right - 10 steps of LSOpen. Both noise types disappear, and

local maxima larger than threshold R tend to denote true cell center

positions with increasing scale parameter t. . . . . . . . . . . . . . . . 34

4.1 Illustration of CDF behavior. From left to right: (a) Problem formu-

lation � from a red source in upper left part of the domain, compute d

in whole gray domain, but respect the wall de�ned as 12 pixels in the

frame. (b) Examples of pixels which can clearly see the true-source

directly. (c) Examples of pixels where visibility of true-source is oc-

cluded by the wall. (d) Euclidean CDF solution: orange-connected

pixels see the true-source directly, green-connected pixels can see the

quasi-source 1 which sees true-source, and blue-connected pixels can

see quasi-source 2 which sees quasi-source 1 which sees true-source.

The distance of any pixel to true-source is computed as the length of

the shortest broken line from it to the true-source, with line-breaks

allowed only at the quasi-sources. . . . . . . . . . . . . . . . . . . . 51

8



4.2 Results of one dot experiment. From left to right: input Ω0, resulting

d (result yielded by BF, but the result yielded by e.g. FSM is visually

indistinguishable from this one), di�erence between results of BF and

analytical, di�erence between results of FSM and analytical. There

is no numerical di�erence between BF result and analytical solution.

Range of di�erence between FSM result and analytical solution is [0,

0.6355]. Di�erence results are shown rescaled, white color meaning

largest error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Results of diagonal line experiment. From left to right: (a) input Ω0

without considering shell boundary condition - white color of pixel p

means that p ∈ Ω0, (b) resulting d (result yielded by BF) prior to

considering shell boundary condition, (c) di�erence between results

of BF and analytical - largest error value is in white and has value

0.293 and black is 0 error, (d) input Ω0 considering a shell boundary

condition, (e) resulting d - result yielded by BF - after including

shell boundary condition - this results contain no error w.r.t. exact

analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Results of circle experiment. From left to right: (a) input Ω0, (b)

resulting d - shown result yielded by BF, but again, results yielded

by all other methods are visually indistinguishable from this one, (c)

di�erence between results of BF and analytical, (d) di�erence between

results of FSM and analytical. Range of di�erence between BF result

and analytical solution is [0, 0.303]. Range of di�erence between FSM

result and analytical solution is [-0.755, 0.355]. Di�erence results are

shown rescaled, darker intensities map to smaller values and lighter

intensities are mapped to higher values. . . . . . . . . . . . . . . . . . 56

9



4.5 Results of round-cornered square experiment. From left to right: (a)

input Ω0, (b) resulting d - result yielded by BF, (c) di�erence be-

tween results of BF and analytical, (d) di�erence between results

of FSM and analytical. Range of di�erence between BF result and

analytical solution is [0, 0.751]. Range of di�erence between FSM

result and analytical solution is [-0.702, 0.538]. Di�erence results are

shown rescaled. In order to understand image scaling, observe that

the median intensity (the color present in the vast majority of pixels)

happens to represent error= 0 in both di�erence results. . . . . . . . . 57

4.6 Maze experiment: input image, a maze of 810x810 pixels, pathways

are approximately 6 pixels wide, walls are white, entrance is top left,

exit is bottom right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Results of maze experiment. Upper row: DF yielded by FMM and

steepest-descent solution, left - full solution, right - zoom. Lower row:

DF yielded by BDP and steepest-descent solution, left - full solution,

right - zoom. Compare the di�erent path character of FMM (left) and

BDP (right) - better visible while looking at zooms. FMM's steepest

descent has to construct path in a pixel-by-pixel manner, as it only

has local information. BDP's steepest descent can be formulated

using source information and path goes from corner to corner � it

has a source-to-source character. BDP's path was painted using line

rasterization algorithm DDA. . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Illustration of FSM in CDF environment. Top left: 4-sweep - notice

the small black part in bottom right corner of this image - this is how

far signal travels from a single source point ∈ Ω0, in bottom right,

until it is stopped by maze walls. Top right: 4-sweep repeated 10

times. Bottom left: 4-sweep repeated 100 times. Bottom right: 4-

sweeps repeated 1000 times. We can see that it took at least several

hundred 4-sweeps to obtain a solution for the whole domain. CPU

time spent obtaining these solutions were 0, 1, 8 and 66 seconds. . . 62

10



5.1 Visualizing with ParaView. Left - volume rendering, middle - translu-

cent isosurfaces, right - viewing as a 2D slice. . . . . . . . . . . . . . . 64

5.2 SliceViewer design. Left - miniature of the user interface. Right -

detailed view of the control panel. . . . . . . . . . . . . . . . . . . . . 65

5.3 RGB mode of the SliceViewer software. From top left to bottom

right: Top left - see two neighboring cells undergoing cell divisions

at the same time, each creating two daughter cells in the circle. Top

right - see multiple cells traveling in the direction from top to bottom

of the image, denoted by the arrows. Bottom left - see a few cells

standing more or less still, with large 3-channel overlays creating pre-

dominantly white areas. Bottom right - a typical view of random

embryo subvolume, where all these types of behavior can be observed. 66

5.4 Basic strategy results visualization, as a comparison. Left - detail

of input image with 3D crosses representing results of FBLSCD at

time θ = 16 (optimal stop-time for this dataset, this method and at

this frame according to chapter 3.4). Right - the same content, with

results of LSOpen at time θ = 17 (optimal stop-time for this dataset,

this method and at this frame) added. Viewing data this way, user

can spot false positives of the �rst method, compared to the second

method. (FBLSCD yields a false positive here, which can be seen in

the right image - it is the one slightly to the right and down from the

image center. Notice how di�cult it is to spot it in the left image,

among many other red-green crosses.) . . . . . . . . . . . . . . . . . 67

5.5 User interface designed for comparing two cell detection strategy re-

sults. Notice the mutual correspondence of highlighted lines in the

right control panel, as well as visual representation of this event in

the main viewer area - pink tip of the second 3D cross can be seen

few pixels lower from the red-green one. . . . . . . . . . . . . . . . . . 69

11



6.1 Visual comparison of di�erent cell detection strategies. Upper ta-

ble - classi�cation of dissimilarities between FBLSCD state-of-the-

art stop time and automatic stop time. Upper half of this table

compares state-of-the-art centers against distance function to the au-

tostop centers, lower half vice versa. Lower table - dissimilarities

between FBLSCD and LSOpen automatic stop time results. Upper

part of this table compares FBLSCD autostop centers against the dis-

tance function to the LSOpen autostop centers, the lower part vice

versa. Notice the red lines - while upper table contains no signi�cant

di�erences, in the �rst line of the lower one, we can see that LSOpen

seems to accuse FBLSCD of yielding some false positives. . . . . . . . 71

6.2 Comparing state-of-the-art, FBLSCD autostop and LSOpen autostop

to biological ground truth data. Notice that while LSOpen yields the

most false negatives, it contains the lowest count of false positives.

When considering which of these to use in an application, one has to

pay attention to this tradeo�. . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Analyzing the behavior of LSOpen. Compute 17 LSOpen steps.

Then, take half the step, and observe, how many steps are to be

taken, in order for the results to be closest to former. It seems that

34 is the correct answer, out of three options: 31 yields far too many

positives and 37 too many negatives. . . . . . . . . . . . . . . . . . . 73

12



List of Tables

4.1 Disparity between eikonal and Euclidean distances in discrete case.

Left illustration: compute DF in a small 4x4 pixel image, where top

left pixel is the only source pixel. (1)(2): results for eikonal equation

approximated as stated above, inexact d values (1) and correct ḡ
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2 Introduction

Two-photon confocal laser microscopy technology enables us to view a zebra�sh em-

bryo few hours after fertilization, in vivo, and observe its behavior in the upcoming

hours at the cellular level. Data provided by the microscope are sequences of 3D

frames in time, containing an intensity value for each voxel.

Zebra�sh is an organism of choice for many current in vivo developmental

biology research projects - it is so due to its translucency, ability to accept contrast

dyes, resistance to potential damage caused by mechanical handling and the heat of

microscope light [1]. Images are captured in two channels: in the �rst, we can see

the cell membranes, in the second, intensity blobs representing cell nuclei. We are

working with 3D+time datasets, where we refer to a given pixel by its coordinates,

namely (x, y, z, θ). The confocal laser microscope produces images as 2D slices (with

a position of a pixel in a slice given by x and y coordinates) of 512x512 pixels, and

the depth of the imaging is controlled by coordinate z, which varies from dataset to

dataset. Its maximum is zmax = 104 in the dataset studied. Number of time steps,

θmax, is also a varying parameter, in our dataset θmax = 320. The dataset we are

using is 070418a.

There are usually two types of image understanding problems solved, using this

type of biological data. At �rst, for a given dataset, the task is to quantitatively

describe various biological properties of the organism[2][3][4][5]. Secondly, the goal

is to perform the tracking of cells over time, i.e. to reconstruct the cell lineage

tree[6][7][8].

In either of the two mentioned frameworks, an automatic identi�cation of cells

is part of the image processing pipeline. For this task, we use the state-of-the-art

algorithm, called FBLSCD [9][10], and an alternative method, called LSOpen[11].

There exist also other methods for object detection - see for example [12], [13] or [14]

for reference. In this work, we discuss possibilities of benchmarking these methods,

and describe the design and implementation of a software enabling us to do so.

We will next list the content of following chapters and highlight novelties in
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them in bold.

Chapter 3 covers the image processing problem called object detection. Basic

image features are introduced, together with the outlines of their standard detection

methods.

Subchapter 3.1 describes the state-of-the-art algorithm, Flux-based level set

center detection (FBLSCD). This algorithm is presented as PDE-based scale space

evolution, which forces intensity contours of an image to shrink in inward-normal

direction. It is demonstrated, that it serves well in the role of blob detection method,

and since cell detection is a speci�c case of blob detection problem, we will see that

FBLSCD is capable of performing this task with given data.

In subchapter 3.2, we discuss a challenging problem of setting the parameters

of FBLSCD. There are four parameters to be set: δ as advection term coe�cient, µ

as curvature term coe�cient, R as minimal intensity for the local maximum to be

considered as a cell identi�er and T as the duration of scale space evolution. All of

these terms are data-dependent and quality of their setting directly in�uences the

quality of results the algorithm yields. We try to tackle the challenge of formulating

a fully-automatic way to set the value of parameter T , considering that δ, µ

and R are given. In [10], authors suggested to consider observing local maxima count

evolution (LMCE) and de�ne T as plateau point, but then they were dissatis�ed with

the results it yielded while working with real data. We built upon their experience

by �rst de�ning T as a minimum of quantity we call local maxima count

evolution decline (LMCED), and then we suggested to apply least-squares

polynomial �t to this evolution and de�ne T as its �rst local minimum.

This novelty yields results for T which have minimal variance in the frame-to-frame

sense.

Subchapter 3.3 describes a combination of two image processing viewpoints,

namely PDE-based and morphological approaches, for the purpose of object de-

tection. At �rst, we reduce FBLSCD equation by removing the curvature term by

setting µ = 0 and normalize the advection term by setting δ = 1. This operation can

be seen as morphological level set grayscale erosion [9] [2] and we call it LSErode.
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It can be argued that this operation can di�erentiate between large blobs of cell

nuclei and high-intensity peaks of noise set in the low-intensity backgrounds. How-

ever, in case where there are low-intensity valleys of noise in the cell nuclei objects

present, this method would enhance them, thus dramatically reducing detectability

of a given nucleus. Therefore, we expand upon the concept of LSErode and by

simply switching the sign at the advection term, we formulate a morphological

level set grayscale dilation and call it LSDilate . This method does the exact

opposite to LSErode, namely it shrinks low-intensity noise artifacts in high-intensity

blobs and expands high-intensity noise artifacts in low-intensity background. Mor-

phological image processing school provides a standard concept of combining erosion

and dilation by simply performing these operations in succession: erosion and then

dilation is called opening, while dilation followed by erosion is called closing. By

performing a step of LSErode and then a step of LSDilate, we obtain

morphological level set grayscale opening and call this operation LSOpen .

We will show that this novel method is robust to both types of noise mentioned

above.

In subchapter 3.4, methods of cell detection algorithms evaluation are dis-

cussed. At �rst, we argue that the very large amount of data provided by cell

detection algorithm makes it impractical for human inspector to evaluate the qual-

ity of this result. However, by letting two distinct cell detection algorithms yield

their results, out of which one may be the ground truth data, and comparing these

only in identi�ers in which they di�er, we reduce this workload signi�cantly.

Furthermore, if we manage to not only tell the correspondence of centers in a one-

to-one manner, but also to measure the distance from a center yielded by

the �rst algorithm to the set of centers yielded by the second algorithm

and vice versa, this workload can be reduced even further.

Chapter 4 discusses methods for computing the distance function. Last sub-

chapter of previous chapter can be seen as a motivation for this direction of research.

In the beginning of this chapter, we de�ne the problem and specify requirements for

the solution.
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Subchapter 4.1 studies unconstrained distance function methods - those are

methods, which compute distance d from the set of source points Ω0 in the whole

domain Ω, s.t. Ω0 ⊂ Ω. Here, we analyze 5 commonly-used DF methods: Brute-

force (BF), Time relaxed Rouy Tourin (TRRT), Fast marching method (FMM),

Fast sweeping method (FSM) and Vector distance transform (VDT). In addition

to describing properties of these methods, we also present pseudocodes for each

of them. We try to classify these methods based upon 1) distance de�nition -

eikonal or Euclidean and 2) pixel visit order strategy - multi-visit, wavefront or

sweeping. We formulate our own novel method, which �lls up an empty

gap in this classi�cation, namely a Euclidean wavefront-type method. We

call it Dijkstra-Pythagoras. This method relies on �rst computing a distance

estimation, upon �rst few visits of a given pixel, similarly to Dijkstra-like graph

search algorithms, and then solidi�es a correct Euclidean distance value on the last

visit of a given pixel, using Pythagoras' theorem.

The next subchapter, 4.2, formulates a more complicated problem: the task is

to compute distance from the set of source points Ω0 in the domain Ω, s.t. Ω0 ⊂ Ω,

with addition of respecting set of wall points Ω∞ ⊂ Ω. We call this problem type

constrained distance function computation. It is in this environment, where the

wavefront-type methods behave more reliably than sweeping-type methods. We

have to introduce some modi�cations for the Dijkstra-Pythagoras to

work, namely to implement a visibility test from a given pixel to the

source pixel. We use line rasterization algorithm to perform this task,

and we call this novel method Bresenham-Dijkstra-Pythagoras.

To wrap up the discussion about distance functions, we perform a wide va-

riety of experiments and present them in the subchapter 4.3. We measure precision,

speed and quality of results for unconstrained and constrained cases and also quali-

tative properties of these results to solve maze navigation problem. Here, we can

see that the novel BDP method has a few quantitative and qualitative

advantages over the state-of-the-art method, FMM.

Chapter 5 is a more technical one, where the SliceViewer, a software enabling
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the user to semi-automatically evaluate cell detection results, is introduced and

presented. Software enables user to view 4D data on a 2D computer screen by

introducing two sliders, is capable of visualizing motion in time by making three

distinct channels (red, green and blue) view three consequent frames (previous,

current and next, resp.), and quality of cell detection results can be measured by

classi�cation of correspondencies and di�erences.

And �nally, chapter 6 is a discussion about various experiments performed. In

the �rst experiment of this chapter, we will see a comparison of behavior of FBLSCD

and LSOpen cell detection methods. This experiment shows that while majority of

results yielded by FBLSCD and LSOpen are in accordance, there is also a small

percentage of di�erences, namely LSOpen result sets are missing some

correct cell nuclei which got detected by FBLSCD, but LSOpen results

shows that FBLSCD introduced a few false positives to the result set.

In the second experiment, we also compare the results against a ground truth data

and observe, that both methods perform reasonably similar and well. In the third

experiment, we try to empirically analyze correctness of LSOpen's numerical

discretization and implementation.
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3 Detection of objects in images

In order to solve the vaguely de�ned image processing problem called image under-

standing, image processing softwares/pipelines often choose to extract a system of

signi�cant entities called features, from the image. Using their hierarchy, topology

and spatial relationships, they try to obtain understanding of image content.

Among the features usually considered, are edges, boundaries, corners, blobs

and ridges.

Edges are de�ned as points where there is a boundary between two logical

objects. Quality of edge detection results usually depends on strong gradient mag-

nitude. More elaborate techniques are able to �ll in the missing edges, by extrap-

olating from the present ones, using knowledge of object shape and topology [15].

An edge is a locally one-dimensional structure.

Boundary of an object is a locally one-dimensional structure for 2D image,

similar to an edge. The di�erence is that it is a closed curve and is encompasses a

simply connected region.

Blobs in image processing are understood as clusters of pixels having roughly

the same properties - color, intensity or texture.

Many classes of algorithms aim to detect these features. Some analyze image

using the mathematical operators, such as Laplacian of the image, gradient vector

�eld, hessian matrices, eigenvalues and eigenvectors [13]. Also, the morphological

image processing o�ers a handful of techniques: hit and miss transform, skeletoniza-

tion, pruning [12]. Some special shapes can be found in the image using the Hough

transform. The class of algorithms we are dealing with are PDE-based models.
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3.1 Flux-based level set center detection

Flux-Based Level Set Center Detection (FBLSCD) is, from the image processing

point of view, a blob-detection method. It was �rst introduced in [10]. It is based

upon the di�erence in size of nuclei and noise artifacts - the smallest cellular struc-

tures are still larger than the largest noise structures. In FBLSCD, all contours of

the level set of the image are forced to shrink in the inward normal direction (accor-

ding to the advection term). Furthermore, the speed of this shrinking is enhanced

by the curvature of the contour (according to the curvature di�usion term). Thus, in

theory, the noise artifacts should disappear sooner than the cell blobs do. From the

mathematical point of view, it is formulated as an advection-di�usion-type partial

di�erential equation. Its equation reads as follows:

ut + δ
∇u
|∇u|

∇u− µ|∇u|∇ ·
(
∇u
|∇u|

)
= 0. (3.1)

Initial condition is the input image. Zero Neumann boundary condition is

introduced at the image boundary. First term is the time derivative, δ ≥ 0 in the

second term is the coe�cient of the advection, and µ ≥ 0 in the third term represents

the coe�cient of the curvature di�usion. Scale evolution parameter is t, t ∈ [0, T ],

where T will be called stop time, and we will discuss it in the following chapters. At

time T , local maxima of u larger than some threshold value R are considered. The

set of these points represent the blob center identi�ers, and is considered to be the

output of the FBLSCD algorithm.

We solve the FBLSCD equation numerically. We discretize the equation in

space, using the �nite volume method. Image voxel serves as a natural choice for

the control volume. We use upwind principle for advection term discretization,

and diamond cell method to discretize the curvature di�usion term. For the time

discretization in time, we use semi-implicit principle. The fully discretized scheme

of eq. (3.1) is following:

21



m(Vijk)
unijk − un−1

ijk

τC
=

∑
N in

ijk

(un−1
i+p,j+q,k+r − u

n−1
ijk )vpqrijk

+ µQ̄n−1
ijk

∑
Nijk

m(epqrijk )
un−1
i+p,j+q,k+r − u

n−1
ijk

Qpqr;n−1
ijk m(σpqr

ijk )
, (3.2)

where n is the present time step, n − 1 is the past time step, uijk is the actual

voxel, ui+p,j+q,k+r is a neighboring voxel (with the property |p| + |q| + |r| = 1), the

set N in
ijk is the set of in�ow voxels, m(Vijk) is voxel size, τC is time step size, vpqrijk

is the upwind scheme approximation of the advection de�ned as vpqrijk = δ ∇u
n−1

|∇un−1| ,

Q̄ijk is approximated gradient modulus in the voxel center, Qpqr
ijk is approximated

gradient modulus on a given voxel face, m(epqrijk ) is the distance between neighboring

voxel centers, m(σpqr
ijk ) is the measure of voxel face. A more detailed derivation and

discussion of the eq. (3.2) can be found in [2] [9].

The FBLSCD behavior is illustrated in the �gure 3.1.
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Figure 3.1: The center detection process, shown in 60x60 pixel part of slice z = 60 of frame

θ = 100. Top left, the intensity function of the original image. Top right, the intensity function

of the �ltered image. The �ltering was performed by the GMCF algorithm [16]. Bottom left, the

intensity after 10 steps of center detection process. Bottom right, the intensity after 30 steps.

3.2 Finding the optimal stop time

In [10], the authors consider the following method of �nding the optimal FBLSCD

stop time: observe the local maxima count evolution (LMCE) over the scale pa-

rameter t, and stop it the �rst time it happens to be non-descending. This method

yielded reasonable results for the input arti�cial images, but didn't work that well

with real data. We observed [11] that this event is not guaranteed to occur at the

representative time, and in some cases it does not happen at all - see �g. 3.2 for

LMCE of frame θ = 100.

A more re�ned way is to �rst compute the LMCE decline sequence (LMCED)

from LMCE, and then consider the �rst time it happens to be below a certain

threshold. We construct the LMCED by taking �rst di�erence of LMCE and mul-

tiply its values by −1, so that the largest values mean the largest decline of local

maxima count in subsequent frames. Note that in the language of the LMCED,
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Figure 3.2: Local maxima count evolution (LMCE) at time θ = 100. While after a while the

decline stops, a proper plateau is never truly formed and it is di�cult to de�ne the stop time.

Figure 3.3: Local maxima count evolution decline (LMCED) at time θ = 0, 100 and 200. If we

were to de�ne stop time as global minimum of LMCED, stop times for given frames would be 19,

26 and 22, respectively.

the original approach was to see it become less than or equal to zero, and call time

of this occurence the stop time. Now this threshold can be larger than zero. This

approach was proposed in [2].

We want to propose a novel approach, namely to consider minimum of LM-

CED. It can still be greater than zero. This strategy is a certain weakening of the

requirement of LMCE's non-descendence, and, formulated as such, it is an automatic

method for �nding the optimal stop time, as no input from the user is required. The

results can be seen in �g. 3.3.

Whatever strategy we choose, a natural requirement for the results it yields is

to not to vary too much from frame to frame along the dataset. This requirement

arises naturally from the fact that the sequence of 3D frames, if viewed as a video,

�ows rather smoothly, from frame to frame, without �ickering or exhibiting any
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Figure 3.4: Global minima of LMCED for the whole dataset θ ∈ [0...320]. Standard deviation is

4.62377.

abrupt intensity jumps. So the transitions of all the parameters between the frames

should be smooth as well.

We found out, that taking the newly proposed minimum of LMCED did not

have this property - it seems to vary from frame to frame with a rather large variance.

See �g. 3.4 for reference. In order to tackle this, we found a least-squares �t of the

LMCED and took the �rst local minimum of this �t. We computed �tting of real

LMCED data by polynomials of degree n ∈ [2...7]. First local minima of the �ttings,

which are computed from each frame's LMCED and are independent of the results

in neighboring frames, happen to have much lower variance from frame to frame

than taking raw LMCED minima. Observe this information for the chosen time in

the �g. 3.5, and see the analysis for the whole dataset in the �g. 3.6.

The open question at this point is, what is the right degree of a �tting poly-

nomial, n. One of ways to choose n is to pick the one which minimizes variance

of optimal time steps in a sequence of frames of the dataset. For FBLSCD, this

happens to be n = 5. Another way is to consider visual inspection of the LMCED

in the sequence of frames, for each n, and let the user pick the correct n.

Thus, we propose a novel way to de�ne the fully-automatic optimal stop time:

by considering the �rst local minimum of the variance-minimizing polynomial �t
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Figure 3.5: Polynomial �ttings of LMCED at θ = 100. Upper row, degrees of �tting polynomial

2, 3 and 4, lower row, degrees of �tting polynomial 5,6 and 7.

Figure 3.6: First local minima of polynomial �ttings of LMCED, for the whole dataset, θ ∈ [0...320].

Upper row, degrees of �tting polynomial 2, 3 and 4, lower row, degrees of �tting polynomial 5,

6 and 7. The corresponding standard deviations are 1.9597, 1.3698, 0.6128, 0.4555, 0.5795 and

2.4477. Thus, 5th degree polynomial �t yields minimal standard deviation.
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of the LMCED data. It is in accordance with the requirement of smoothness of

parameter variation along the inspected sequence and also with visual inspection.

In order to validate this approach, we performed a similar analysis of the

optimal stop time on one more dataset, 070420a. The results yielded by this analysis

can be seen in the �g. 3.7.
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Figure 3.7: The complete optimal stop time analysis for a di�erent dataset, 070420a. First row

- LMCED at time θ = 0, 100 and 200. Second row - Global minima of LMCED for the dataset.

Standard deviation is 5.27447. Third and fourth row - Polynomial �ttings of LMCED at θ = 100,

for n ∈ (2..7). Fifth and sixth row - First local minima of polynomial �ttings of LMCED, for the

whole dataset. The corresponding standard deviations are 4.7886, 1.8622, 1.3320, 1.0179, 1.5174,

3.8109. It is again the 5th degree polynomial �t, which minimizes the standard deviation.
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3.3 Morphological cell detection

FBLSCD can be interpreted as a morphological grayscale erosion with curvature

regularization [14]. Let us observe its behavior with this property in mind, and try

to construct and consider the usage of similar, more general morphological PDE-

based operators.

We have tested FBLSCD with phantom data, where we introduced salt and

pepper noise. We set di�usion coe�cient µ to zero (in [9], δ = 800µ in eq. (3.1)), and

it was observed that while it is able to handle pepper-type noise, salt noise remains

to be present. Reason for this is that advection in FBLSCD is in the direction of

the inward normal, only if we consider level sets of high-intensity blobs surrounded

by low-intensity environment. As soon as we have low-intensity blobs surrounded

by high-intensity environment, behavior of FBLSCD is di�erent - now the advection

happens in the outward normal. This is when salt-type noise is located in the cell

interior - this noise artifact not only remains, but also grows in size [11].

In general, it is a di�cult task to analyze the noise contained in the real data

and �nd a well-suited mathematical/stochastic model to describe it. It is an open

question, if a) this type of artifacts happens to be present in the real data input, and

even if it is, if b) it remains present to certain extent also after the image �ltering.

Nevertheless, we felt motivated to design an algorithm, which can tackle both types

of noisy structures, since a) we want our image processing work�ow to be able to

process a variety of input data with di�erent properties and b) we often want to

skip the noise �ltering step in the work�ows, in order to save computer resources or

preserve data �delity.

We have seen that FBLSCD (namely the implementation of its discretization,

see eq. (3.2)) with µ = 0 and δ = 1 is a level-set based pepper-shrinking and

salt-expanding evolution. This behavior is in fact similar to the grayscale level set

erosion, a well-known morphological image processing operation. Thus, we called

this special case of FBLSCD LSErode. PDE of LSErode looks as follows:

ut +
∇u
|∇u|

· ∇u = 0. (3.3)
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Initial condition is the input image and boundary condition is zero Neumann.

We will now illustrate the process of discretization of LSErode's equation to

obtain a formulation solvable numerically by computer. The discretization will be

performed regardless of problem dimensionality. We will use �nite volume method,

with pixel/voxel/doxel serving as a control volume. We will call this volume uni-

formly to be "pixel", even if we may mean voxel (in 3D case) or doxel (in 4D case).

We will further assume that all sizes are 1: pixel's volume is 1, distance between

two pixel centers is 1, each face size is 1 and each edge size is 1 (imagine a grid of

unit cubes here, where all these properties hold true, in 3D case). We will use two

identities of vector analysis:∫
Ω

f̄ · ∇gdx =

∫
Ω

∇ ·
(
f̄ g
)
dx−

∫
Ω

g∇ · f̄dx (3.4)

and ∫
Ω

∇ · f̄dx =

∫
Γ

f̄ · ν̄dγ , (3.5)

where g is a scalar function, f̄ is a vector function, Ω is integration domain, Γ is

domain boundary and ν̄ is its a unit outward normal vector.

At �rst, we will discretize the equation (3.3) in time, using explicit method:

un − un−1

τ
+
∇un−1

|∇un−1|
· ∇un−1 = 0, (3.6)

where n is the new time step, n− 1 is the previous time step and τ is time step size.

Then, we will integrate over volume of pixel p:∫
Vp

un − un−1

τ
dx+

∫
Vp

∇un−1

|∇un−1|
· ∇un−1dx = 0, (3.7)

where p is the actual pixel and Vp is its volume. Since the volume of the pixel is 1,

the �rst term of (3.7) can be approximated as∫
Vp

un − un−1

τ
dx ≈

unp − un−1
p

τ
, (3.8)

where up is the value of u in pixel p. To approximate the second term, �rst observe

that it has the form similar to (3.4), where f̄ = ∇un−1

|∇un−1| and g = un−1. If we apply
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this identity, we obtain∫
Vp

∇un−1

|∇un−1|
· ∇un−1dx =

∫
Vp

∇ ·
(
∇un−1

|∇un−1|
un−1

)
dx−

∫
Vp

un−1∇ ·
(
∇un−1

|∇un−1|

)
dx.

(3.9)

Now we see that both right-hand-side terms of (3.9) have the form similar to (3.5).

If we apply this identity and assume that un−1 is constant in Vp, we end up with∫
Vp

∇un−1

|∇un−1|
· ∇un−1dx ≈

≈
∑
q∈Np

∫
epq

un−1 ∇un−1

|∇un−1|
· νpqdγ − un−1

p

∑
q∈Np

∫
epq

∇un−1

|∇un−1|
νpqdγ, (3.10)

where Np is the neighborhood of those pixels of p, which share a common face with

it - this is a 4-neighborhood in 2D case, 6-neighborhood in 3D and 8-neighborhood

in 4D, epq is the face area between neighboring pixels p and q and νpq is the normal

vector of this face, pointing outward from pixel p. Further, let us de�ne

vpq =
un−1
q − un−1

p

|∇un−1|pq
, (3.11)

where |∇un−1|pq is a numerical approximation of gradient magnitude on the face

between pixels p and q - here, we use the so called diamond cell estimation - see [2]

for implementation details. Using this de�nition, we can partition Np into N out
p and

N in
p , s.t. Np = N out

p ∪N in
p :

N out
p = {q ∈ Np, vpq > 0} (3.12)

and

N in
p = {q ∈ Np, vpq ≤ 0} . (3.13)

We will approximate terms in (3.10) using the upwind principle:∫
epq

un−1 ∇un−1

|∇un−1|
· νpqdγ ≈ un−1

p vpq if q ∈ N out
p (3.14)

and ∫
epq

un−1 ∇un−1

|∇un−1|
· νpqdγ ≈ un−1

q vpq if q ∈ N in
p . (3.15)
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Thus, we can approximate the �rst right-hand-side term of (3.10) using the upwind

principle and the second right-hand-side term by just applying the fact that Np =

N out
p ∪N in

p :∫
Vp

∇un−1

|∇un−1|
·∇un−1dx ≈

∑
q∈Nout

p

un−1
p vpq+

∑
q∈N in

p

un−1
q vpq−

∑
q∈Nout

p

un−1
p vpq−

∑
q∈N in

p

un−1
p vpq,

(3.16)

which can be further simpli�ed to∫
Vp

∇un−1

|∇un−1|
· ∇un−1dx ≈

∑
q∈N in

p

(un−1
q − un−1

p )vpq. (3.17)

Final fully discrete form of (3.3) then reads as follows:

unp − un−1
p

τ
+
∑
q∈N in

p

(un−1
q − un−1

p )vpq = 0. (3.18)

This linear system is a directly solvable explicit scheme.

We know that there exists a morphological operation called dilation. Erosion

and dilation the basic, atomic operations in morphological image processing theory.

We observed that we can formulate the level-set version of dilation by simply switch-

ing the advection sign in the LSErode.

Its PDE reads as

ut −
∇u
|∇u|

· ∇u = 0 (3.19)

and its fully discrete form, which can be obtained following the similar derivation

principle as in (3.3) - (3.18), but now with vpq containing minus sign in its de�nition:

vpq = −
un−1
q − un−1

p

|∇un−1|pq
. (3.20)

Compare this with de�nition of vpq in (3.11) to see the di�erence. The �nal fully

discretized form of (3.19) is then the same equation (3.18).

Having tested this operation, we have seen, it works as expected - it is a salt-

shrinking and pepper-expanding operation. We called this equation LSDilate [11].

Morphological operator theory gives us a way of combining these equations

together. Similar to morphological opening, which is an erosion step, followed by
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dilation step, we performed a step of LSErode, followed by a step of LSDilate, and

called this non-atomic operation LSOpen. We have computed several LSOpen steps

(an alternating sequence of LSErode and LSDilate steps) and we observed, that with

phantom data, this operation makes both salt- and pepper-type artifacts disappear,

and the local maxima larger than a certain threshold, similar to FBLSCD, are viable

cell center identi�ers [11].

Behavior of LSErode, LSDilate and LSOpen is illustrated in the �g. 3.8.

Notice that LSOpen is not formulated as a standard advection-di�usion equa-

tion, so the way to analyze it theoretically is an open question from mathematical

point of view. We will, however, try to reason about its properties experimentally:

see the third experiment in chapter 6.

33



Figure 3.8: Illustration of cell detection algorithms behavior with noisy phantom images. Upper

left - input phantom image, with cell intensities being quadratic functions of distance to its centers

of varying size, with salt and pepper noise added. Upper right - 10 steps of LSErode. Notice black

spots disappear and white enhance. Lower left - 10 steps of LSDilate. Notice white spots disappear

here, and black spots enhance. Lower right - 10 steps of LSOpen. Both noise types disappear,

and local maxima larger than threshold R tend to denote true cell center positions with increasing

scale parameter t.
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3.4 How to compare various cell detection results?

In order to reason about quality of available cell detection algorithms, one has to

have a way of measuring the quality of results they yield.

At �rst, it is reasonable to inspect the results at �rst visually, e.g. by visualizing

the sets of points representing cell identi�ers, superimposed over the original 3D data

volume.

If the results are visually pleasing, the next step would be to estimate the

number of false positives, false negatives, and the number of multiple identi�ers

yielded for one cell. However, FBLSCD yields approximately 3500 cell identi�ers at

the beginning of the dataset and about 6500 in the end. Dataset is 320 frames long,

so a rough estimation of total cell images present in the video is about 1.6 million.

It is therefore di�cult to check the correctness of each detected identi�er manually.

However, it is worth noting that comparing two di�erent cell identi�er sets is

not that much work, provided they don't contradict each other in too many points.

Then, checking only their di�erences su�ces.

Thus, the �rst method we propose, is not to check each identi�er yielded by

a given method by itself, but instead, compare always two di�erent results of two

di�erent cell detection approaches and only check visually those points in which they

di�er. As we will see in the chapter about the software, we implemented a software

solution enabling us to perform this task e�ciently. As we will see in the experiment

discussion chapter, this method of mutual result comparison reduces the amount of

work to be done by the human inspector signi�cantly.

We have further observed, that the vast majority of identi�er di�erences hap-

pen to be only small shifts, within the same cell nucleus. Therefore, we felt motivated

to not only compare the identi�ers in a binary fashion (i.e. labelling each identi�er as

'corresponding' and 'not corresponding' to an identi�er in the alternative method),

but also to introduce some kind of metric, that would measure the distance to the

closest cell identi�er yielded by the alternative method, for each 'not corresponding'

identi�er.

Therefore, we propose a second reduction of the amount of work to be done
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by the visual inspector: Computing the distance function for each cell identi�er in

one method, �nding the corresponding closest identi�er from this method to each

cell identi�er in the second method via steepest descent, and vice versa, and only

checking di�erences over certain threshold of distance.

We will see that this approach worked well with our data and methods, in the

experiment discussion chapter.

An open question for now is how to e�ciently compute cell identi�er cor-

respondencies and their distances in order to �nd the closest pairs. We will use

distance function to help us. This will motivate us to discuss distance function

(DF) computation in the next chapter.
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4 Methods for computing distance function on a

pixel-based grid

At �rst, let us de�ne the vocabulary, since these de�nitions these terms vary across

scienti�c texts. The mathematical community calls the result of distance computa-

tion to be the distance function (DF) [4][21]. The signal processing community uses

the name distance transform or distance �eld [17][18][25]. To our understanding,

there are no practical di�erences between the meanings of these two terms. Since

this work is classi�ed as an applied mathematics text, we will stick to the former

of the names across the text. A DF method will then be an algorithm, which yields

DF as a result.

We will analyze commonly-used DF methods. Let us classify these based on

A) distance de�nition � distance function found as a solution of the so

called eikonal equation, or Euclidean distance and

B) pixel visit order strategy � multi-visit, wavefront, or sweeping.

Then a new method will be introduced and we will see it �lling an empty

gap in the logic of existing methods. Further, we will use resulting DFs to �nd the

shortest path solution of maze navigation, and demonstrate the usefulness of the

newly proposed method in this environment.

This work limits its scope to analyzing these commonly used DF methods:

Brute-force, Time-Relaxed Rouy-Tourin Scheme, Fast Marching Method, Fast Sweep-

ing Method and Vector Distance Transform. Multiple surveys comparing a broader

range of approaches have been published [17] [18]. The DF application studied in

this article is navigation in a maze-like environment. There are many other appli-

cations of DFs, let us mention biological and medical data analysis [4] [19] [6] and

level-set computational physical simulations [15], just to name a few.

4.1 Unconstrained distance function

Let us introduce computational domain Ω, Ω ⊂ Rn, and Ω0,Ω0 ⊆ Ω, called the

source set. For means of digital image processing, we simplify our task to dimen-
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sionality n = 2, domain Ω being a square grid of pixels, and subset Ω0 being a set

of source pixels. De�ne function d, d : Ω → R called distance. Distance should be

d(a) = 0,∀a ∈ Ω0 (this can be regarded as special Dirichlet-type condition) and the

task of a DF method is to �nd d(b),∀b ∈ Ω\Ω0.

4.1.1 Distance de�nition

Eikonal equation is given by

|∇d| = 1 in Ω\Ω0, d = 0 in Ω0

It says, that the gradient magnitude of the distance should be = 1 everywhere,

except for source pixels, where the value is �xed at 0. If we consider pixel a and a

set of all its 4-neighbors being Na={n, e, s, w}, we can de�ne ∀b∈Na quantities [20]

M b
a = (min(d(b)− d(a), 0))2 ,

and use them to de�ne approximation of gradient magnitude ḡ(a) [20]

ḡ(a) =
√

(max(Mn
a ,M

s
a) +max(M e

a ,M
w
a )). (4.1)

Eikonal-based methods solve a problem ḡ(a) = 1, ∀a ∈ Ω\Ω0.

In Euclidean space, we de�ne Euclidean distance by Pythagoras' theorem.

∀a = (ax, ay), b = (bx, by) ∈ Ω:

d(a, b) =
√

(ax − bx)2 + (ay − by)2.

In continuous formulation of the problem, results yielded by either eikonal

equation or Euclidean distance de�nition are the same. However, on a discrete

grid, they are di�erent: a result obtained by eikonal equation condition fails to yield

correct Euclidean distances, and vice versa: results obtained with Euclidean distance

condition fails to have ḡ = 1, for ḡ de�ned as in eq. (4.1). This is illustrated by a

simple example in tab. 4.1.

Reason for this disparity is non-exactness of discrete gradient approximation.

Eikonal equation only needs information about several closest neighbors of a given
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(1) 0 1 2 3 (3) 0 1 2 3

1 1.707 2.545 3.442 1 1.414 2.236 3.162

2 2.545 3.252 4.048 2 2.236 2.828 3.606

3 3.442 4.048 4.755 3 3.162 3.606 4.243

(2) 0 1 1 1 (4) 0 1 1 1

1 1 1 1 1 0.586 0.855 0.94

1 1 1 1 1 0.855 0.838 0.895

1 1 1 1 1 0.94 0.895 0.901

Table 4.1: Disparity between eikonal and Euclidean distances in discrete case. Left illustration:

compute DF in a small 4x4 pixel image, where top left pixel is the only source pixel. (1)(2): results

for eikonal equation approximated as stated above, inexact d values (1) and correct ḡ values (2).

(3)(4): results for Euclidean distance de�nition, correct d values (3) and inexact ḡ values (4), if

considering ḡ de�ned as in eq. (4.1)

pixel in order to tell this pixel's distance value. Euclidean distance, on the other

hand, requires and uses information about closest source pixel for a given pixel,

which can in fact be anywhere in the image. Thus, we can say that eikonal solvers

in general behave locally, while Euclidean are global. We will further see that the

classi�cation of a method as local or global determines a lot of its properties and

behavior.

4.1.2 Pixel visit order strategy

In this work, we adopt the term multi-visit approach: it is a solution, which doesn't

try to optimize the number of times each pixel is visited. It aims to reduce imple-

mentation time, but usually at the price of computational redundancy. With this

de�nition of multi-visit approach, a multi-visit method can be formulated for both

distance de�nitions, Euclidean and eikonal equation-based.

Wavefront strategies ensure that each pixel is assigned �nal value already in
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Algorithm 1 Brute-Force DF algorithm pseudocode
Require: allocate ∀p ∈ Ω : d(p) = +∞

1: for each pixel p ∈ Ω do

2: for each pixel s ∈ Ω0 do

3: D =
√

(px − sx)2 + (py − sy)2

4: if D < d(p) then

5: d(p) = D

6: end if

7: end for

8: end for

the �rst pass. To make this happen, methods have to pay attention to visiting pixels

in the correct order. Algorithms use min-priority heap data structure for managing

pixel visit order.

Sweeping strategies allow multiple passes of each pixel, but the number of

these sweeps is bound to the dimensionality of the problem - it is 4 sweeps for a

2D problem in total. By altering sweep directions DF is computed for the whole

domain without the need for order-managing priority heap.

4.1.3 Brute-force (BF)

We can trivially formulate a multi-visit method yielding exact results in Euclidean

sense: Set d(a) = ∞,∀a ∈ Ω. For ∀a ∈ Ω, search through ∀b ∈ Ω0, and de�ne

D as Euclidean distance between a and b. If D < d(a), set d(a) := D. Since this

method visits each source pixel for each pixel, its complexity is O(ns), where n is the

number of pixels in Ω and s is the number of pixels in Ω0. The worst-case scenario

of brute-force method occurs when half of the pixels are source pixels: in that case,

s = n/2, and complexity is thus O(n2/2) = O(n2). Algorithm is also presented in

the form of a pseudocode - see Alg. 1.
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Algorithm 2 Time-Relaxed Rouy-Tourin DF scheme
Require: allocate ∀p ∈ Ω0 : d(p) = 0, f(p) = 1

Require: allocate ∀p ∈ Ω\Ω0 : d(p) = 0, f(p) = 0, de�ne D : Ω→ R

1: τ = 0.5

2: ε = 0.0001

3: while number of p s.t. f(p) = 1 < number of p ∈ Ω do

4: for each pixel p ∈ Ω, s.t. f(p) == 0 do

5: (i, j) = p coordinates

6: mi+1,j = [min(di+1,j − di,j , 0)]2

7: mi−1,j = [min(di−1,j − di,j , 0)]2

8: mi,j+1 = [min(di,j+1 − di,j , 0)]2

9: mi,j−1 = [min(di,j−1 − di,j , 0)]2

10: D(p) = d(p) + τ − τ
√

max(mi+1,j ,mi−1,j) + max(mi,j+1,mi,j−1)

11: if |D(p)− d(p)| < ε then

12: f(p) = 1

13: end if

14: end for

15: for each pixel p ∈ Ω do

16: d(p) = D(p)

17: end for

18: end while

4.1.4 Time-Relaxed Rouy-Tourin (TRRT) scheme [4]

This multi-visit method yields discretized solution of eikonal equation, by formula-

ting it as an evolution in time [20], with consecutively raised values in a sedimentation-

like manner. Each pass, all pixels except for the source pixels and those with ḡ = 1

are incremented by a time-relaxed gradient estimation de�ned in eq. (4.1). This

method is fairly easy to implement. Number of times each pixel is visited is pro-

portional to its distance, which is of course not known beforehand. Worst-case

complexity of this method, that is when image is extremely thin, is therefore O(n2).

Algorithm is described in Alg. 2.
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4.1.5 Fast Marching Method (FMM) [21]

This is a wavefront-type method yielding eikonal equation-based results. All pixels

are �xed in only one pass. The visit order is de�ned by causality principle - pixels

which are closer to Ω0 will be visited sooner than those further away. The �rst

ones visited are all x ∈ Ω0. This algorithm assigns labels to pixels, similar to graph

algorithms like breadth-�rst-search or Dijkstra's. A pixel can have 3 types of labels,

meaning 'unvisited', 'to be visited' and 'visited'. Labels can also be interpreted in

terms of �eld �re: 'grass', '�re front' and 'burnt ground' � let us stick with this

intuitive naming convention. All the pixels labeled as '�re front' are contained in a

data structure called min-priority-heap [23]. As pixels change label from 'grass' to

'�re front', they are inserted to the bottom of min-heap, as their states are changed

from 'grass' to '�re front', while min-value pixels are popped from its top as their

states are changed from '�re front' to 'burnt ground'. The behavior of min-heap is

similar to FIFO queue, but unlike in FIFO, ordering of elements in min-heap can

be changed during the waiting process. Worst-case complexity of this method is

O(n log2 n) - each pixel is visited once, therefore n, but in order to do so, it has to

make it all the way from bottom to top of min-priority-heap, which is implemented

as a binary tree. Height of the binary tree containing n elements is log2 n.

FMM is considerably harder to implement than TRRT scheme, since one has

to implement a min-priority-heap data structure and its operations. To see the

pseudocode of this procedure, refer to Alg. 3.

4.1.6 Fast Sweeping Method (FSM) [24]

This is a sweeping method yielding eikonal equation-based results. This method

operates with concept of inializing d(a) =∞, ∀a ∈ Ω\Ω0, and then reducing values

at given pixels until they stop at correct values. We address this updating of values

in non-increasing manner by the term relaxation.

Initialize d(a) = ∞, ∀a ∈ Ω\Ω0 and d(b) = 0,∀b ∈ Ω0. Start from top left

corner and make a sweep through computational domain in right-down direction

(implemented as double for loop with both iterators increasing from 0) and relax all
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Algorithm 3 Fast Marching Method (FMM) DF algorithm pseudocode
Require: values for v are de�ned as: 'grass'=0, '�re front'=1, 'burnt ground'=2

Require: allocate ∀p ∈ Ω\Ω0 : d(p) = +∞, v(p) = 'grass',s(p) =?, allocate heap

Require: allocate ∀p ∈ Ω0 : d(p) = 0, v(p) = '�re front',s(p) = p, heap.pushBack(p)

1: while heap is not empty do

2: p = heap.pop . pops a '�re front' pixel, whose estimate value is minimal of all

3: for each pixel r ∈ Neighborhood4(p), s.t. v(r) ='grass' or '�re front' do

4: (i, j) = r coordinates

5: x = min(di,j+1, di,j−1) . use +∞ whenever out of bounds

6: y = min(di+1,j , di−1,j)

7: a = 2

8: (x == +∞ ? (a−−;x = 0; ) : nothing)

9: (y == +∞ ? (a−−; y = 0; ) : nothing)

10: b = −2 ∗ (x+ y)

11: c = x2 + y2 − 1

12: D = b2 − 4ac

13: T = (−b+
√
D)/(2a)

14: if T < d(r) then

15: d(r) = T

16: if v(r) = 'grass' then

17: heap.insert(r)

18: v(r) = '�re front'

19: else

20: heap.decreaseKey(r, T )

21: end if

22: end if

23: end for

24: v(p) ='burnt ground'

25: end while
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pixels using upwind neighbors, if they carry relaxation information. Make a similar

sweep in right-up direction starting from bottom left corner, in left-up direction

starting from bottom right corner and in left-down direction starting from top right

corner. (by switching respective iterators' behavior in for loops), using always pre-

viously visited neighbors to relax value of d. Since each pixel is passed exactly 4

times for a 2D problem, complexity of this method is O(4n), which is in the O(n)

complexity class of algorithms. (see [24], page 607, remark (4)).

An algorithm pseudocode can be seen in Alg. 4.

4.1.7 Vector Distance Transform (VDT) algorithm [25]

This is a sweeping method yielding Euclidean distance results. Logic of the sweeps is

the same as in FSM, but the globalness and source-awareness of Euclidean method

changes relaxation rules. Now, instead of computing actual value of d directly

from the values of d of the previously visited neighbors, we check their sources. If

Euclidean distance to a source of any neighbor is less than current distance value,

set current value to it, and call that neighbor's source to be also current pixel's

source. Complexity of this method is also O(n).

This Euclidean solver is source-aware, as it not only keeps a record of distance

values for each pixel, but it also needs to address the source pixel guaranteeing this

value for each pixel. Let us introduce source function s, s : Ω → Ω0. ∀a ∈ Ω, we

can get the source of a by referring to s(a).

To study algorithm pseudocode, refer to Alg. 5.

4.1.8 Novel method: Dijkstra-Pythagoras (DP)

Let us now formulate a wavefront-type method - similar to FMM, guaranteeing the

narrow-bandedness of this approach, but unlike FMM, yielding Euclidean distance

results.

For initialization, set d(a) = ∞,∀a ∈ Ω\Ω0 and d(b) = 0,∀b ∈ Ω0. Set

s(a) = undefined,∀a ∈ Ω\Ω0 and s(b) = b, ∀b ∈ Ω0. Label all a ∈ Ω\Ω0 as 'grass'

and all b ∈ Ω0 as '�re front'. Allocate min-heap h and insert all b ∈ Ω0 into it.
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Algorithm 4 Fast Sweeping Method (FSM) DF algorithm pseudocode
Require: allocate ∀p ∈ Ω0 : d(p) = 0, allocate ∀p ∈ Ω\Ω0 : d(p) = +∞

1: function Update(i,j)

2: x = min(di,j+1, di,j−1) . use +∞ whenever out of bounds

3: y = min(di+1,j , di−1,j)

4: D

5: if |x− y| < 1 then

6: D =
(
x+ y +

√
2− (x− y)2

)
/2

7: else

8: D = min(x, y) + 1

9: end if

10: if D < d(p) then

11: d(p) = D

12: end if

13: end function

14: for (i=0; i<idim; i++) do

15: for (j=0; j<jdim; j++) do

16: Update(i,j)

17: end for

18: end for

19: for (i=0; i<idim; i++) do

20: for (j=jdim-1; j ≥ 0; j−−) do

21: Update(i,j)

22: end for

23: end for

24: for (i=idim-1; i ≥ 0; i−−) do

25: for (j=0; j<jdim; j++) do

26: Update(i,j)

27: end for

28: end for

29: for (i=idim-1; i ≥ 0; i−−) do

30: for (j=jdim-1; j ≥ 0; j−−) do

31: Update(i,j)

32: end for

33: end for
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Algorithm 5 Vector Distande Transform (VDT) algorithm pseudocode
Require: allocate ∀p ∈ Ω0 : d(p) = 0, s(p) = p

Require: allocate ∀p ∈ Ω\Ω0 : d(p) = +∞, s(p) = '?'

1: function Update(i,j)

2: p = (i, j)

3: for all r ∈Neighborhood4(p), s.t. s(r) is not '?' do

4: D =
√

(s(r)i − i)2 + (s(r)j − j)2

5: if D < d(p) then

6: d(p) = D

7: s(p) = s(r)

8: end if

9: end for

10: end function

11: for (i=0; i<idim; i++) do

12: for (j=0; j<jdim; j++) do

13: Update(i,j)

14: end for

15: end for

16: for (i=0; i<idim; i++) do

17: for (j=jdim-1; j ≥ 0; j−−) do

18: Update(i,j)

19: end for

20: end for

21: for (i=idim-1; i ≥ 0; i−−) do

22: for (j=0; j<jdim; j++) do

23: Update(i,j)

24: end for

25: end for

26: for (i=idim-1; i ≥ 0; i−−) do

27: for (j=jdim-1; j ≥ 0; j−−) do

28: Update(i,j)

29: end for

30: end for
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Backbone of this approach is a two-fold way of d relaxation. First few times (at

most 8, one for each neighbor), the pixel a can undergo a Dijkstra-like relaxation:

d(a) := d(b) + 1, anytime one of a`s direct 4-neighbors b is being �xed, or d(a) :=

d(c) +
√

2, anytime one of a`s diagonal neighbors c is being �xed, provided that this

new value is < d(a). Sources are handled as s(a) := b or s(a) := c, respectively.

We will see later that this design enables the algorithm to work also in constrained

DF computations. The �rst time the pixel a is touched, it changes label from

'grass' to '�re front' and gets inserted into the min-heap h. Each time d(a) is

relaxed afterwards, its s(a) is updated to current relaxation source, and heap h gets

heapi�ed at a. Eventually, pixel a manages to bubble to the top of the min-heap.

It checks its distance values to sources of all its already �xed neighbors (possibly at

most 8, again, one check for each �xed neighbor) � this time distance is Euclidean.

Then, d(a) = min of these values, s(a) = s of this distance-minimizing-neighbor,

a gets a chance to relax all its 8-neighbors in the Dijkstra way and is �nalized by

being assigned a label 'burnt ground'.

Algorithm ends as soon as h becomes empty. At this time, ∀a ∈ Ω, d(a) =

correct Euclidean distance, s(a) contains correct references to source pixels, and all

a ∈ Ω carry the label 'burnt ground'.

Each pixel can be relaxed in a Dijkstra-way at most 8 times, which has comp-

lexity O(log2 n) per pixel due to heap swaps. Afterwards, it has to check at most

8 neighbor source distances to be �nalized in a Pythagoras-way (thus the name

Dijkstra-Pythagoras) � which has constant complexity O(8 + 8) = O(16) = O(1)

per pixel. The �nal algorithm complexity is O(n. log2 n) � same as FMM. To see

the pseudocode for DP, refer to Alg. 6.

Tab. 4.2 presents an overview of combinations of distance de�nitions and pixel

visiting strategies. We see that Dijkstra-Pythagoras �lls up a logical empty spot in

the chart.
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Algorithm 6 Dijkstra-Pythagoras DF algorithm pseudocode
Require: ∀p ∈ Ω\Ω0 : d(p) =∞, v(p) = 0, s(p) = '?', allocate heap

Require: ∀p ∈ Ω0 : d(p) = 0, v(p) = 1, s(p) = p, heap.insert(p)

1: while heap != empty do

2: a = heap.pop

3: for each pixel b ∈ Neighborhood8(a) , which has v(b) = 2 do

4: r = s(b)

5: Dp =
√

(rx − ax)2 + (ry − ay)2

6: if Dp < d(a) then

7: d(a) = Dp

8: s(a) = r

9: end if

10: end for

11: v(a) = 2 . a set to 'burnt ground'

12: for each pixel c ∈ Neighborhood8(a), which has v(c) = 1 or v(c) = 0) do

13: Dd = d

14: ( c ∈ Neighborhood4(a) ? Dd+ = 1 : Dd+ =
√

2 )

15: if Dd < d(c) then

16: d(c) = Dd

17: s(c) = a

18: (v(c) = 0 ? heap.insert(c) : heap.decreaseKey(c,Dd ) )

19: v(c) = 1 . c set to '�re front' anyways

20: end if

21: end for

22: end while

Multi-visit Wavefront Sweeping

Eikonal equation TRRT FMM FSM

Euclidean distance BF Dijkstra-Pythagoras VDT

Table 4.2: Unconstrained DF methods overview. Column captions - pixel visit order policies, row

captions - distance de�nition. Dijkstra-Pythagoras is a novel method, introduced in this work,

�lling up the logical gap which arised from the classi�cation of existing methods.
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4.2 Constrained Distance Function

Until this point, the novel DP algorithm may have felt like an unnecessary addition

to VDT � after all, they both provide the same numerical results, and VDT is

faster. In this chapter we introduce maze-like concept, where some of the pixels

are impassable. We will see that it is in this case, where wavefront concept is more

suitable than the sweeping one.

4.2.1 Problem formulation

De�ne a set of pixels Ω∞,Ω∞ ⊆ Ω, called wall pixels. These are impassable for the

distance-carrying signal, so the information has to �nd its way around them. In the

maze navigation problem, maze can be thought of as Ω, while Ω∞ denotes maze

walls and Ω0 denotes maze exit(s).

Shortest path �nding methods studied here rely on computing d from Ω0

throughout Ω while respecting the constraints set by Ω∞. Then, it obtains the

path by steepest descent method. Maze entrance (or current standpoint of an agent

of interest in the maze - from our viewpoint, these are interchangeable) can be

interpreted as steepest descent's initial point. We will then see that the cost of

computing optimal paths from other standpoints only requires computing the new

steepest descent procedure - d is computed only once. We identify Ω∞ as a set

of constraints, and we call the DF respecting them to be the constrained distance

function (CDF). A method that can compute CDF would then be called constrained

distance function method (CDF method).

4.2.2 Usability of existing DF methods for �nding CDF

Since number of passes needed in sweeping approaches scales with number of turns

in a maze [24] and it is often hard to estimate this number beforehand, sweeping

approach is not ideal for solving complex mazes. Nevertheless, we try to experiment

with the applicability of FSM in CDF environment - the results will be presented

and discussed later, in the experiments section.
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We don't know if there exists any modi�cation to the brute-force Euclidean

algorithm, which would make it suitable to solve this type of problem.

In maze environments, the localness of approaches based on eikonal equation

is an advantage. Wall pixels can be simply regarded as having d(w) =∞,∀w ∈ Ω∞

and both TRRT and FMM would work without further modi�cations. How about

the newly-introduced DP? Its globalness seems to be a problem. We will, however,

use its source-awareness to overcome it.

4.2.3 Method enhancement: Bresenham-Dijkstra-Pythagoras

Two fundamental questions have to be answered in order for the DP concept to

work. First, how do we check if a given a, a ∈ Ω, can see the given source b, b ∈ Ω0,

without having its view occluded by some pixel w,w ∈ Ω∞? And second, how do

we treat the case when b is not visible from a?

To answer the �rst question, consider using rasterized line algorithms, like

DDA or Bresenham's (whichever is faster on current hardware). By doing so, we

are taking an advantage of pixels forming a square grid similar to screen raster. If

a pixelated line from a to b is drawn, and none of this line's pixels are wall pixels,

we could say b can see a. However, if at least one pixel of this line is a wall pixel,

we have to admit that w prevents b from seeing a. This is illustrated in �g. 4.1.

To answer the second question, consider introducing a concept of quasi-sources.

Maybe a pixel c cannot see the pixel a directly, but what if c sees pixel b, which in

turn sees the pixel a? If the broken line c−b−a is the shortest of all possible broken

lines (considering line break-points to be allowed at pixel centers only) connecting

c to a without violating the visibility condition, we can say that b serves as a quasi-

source for c. To distinguish quasi-sources from sources in Ω0, let us call ∀a ∈ Ω0 the

true-sources. For a given pixel p, there can be a long list of quasi-sources, until we

reach the true-source a. This is illustrated in �g. 4.1, rightmost image.

From implementation point of view, modi�cations to DP algorithms are minor.

Firstly, we have to include visibility check before �nalizing d(a) in the Pythagoras-

way, once a was removed from top of min-heap. Note that we don't have to check
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Figure 4.1: Illustration of CDF behavior. From left to right: (a) Problem formulation � from a

red source in upper left part of the domain, compute d in whole gray domain, but respect the

wall de�ned as 12 pixels in the frame. (b) Examples of pixels which can clearly see the true-source

directly. (c) Examples of pixels where visibility of true-source is occluded by the wall. (d) Euclidean

CDF solution: orange-connected pixels see the true-source directly, green-connected pixels can see

the quasi-source 1 which sees true-source, and blue-connected pixels can see quasi-source 2 which

sees quasi-source 1 which sees true-source. The distance of any pixel to true-source is computed

as the length of the shortest broken line from it to the true-source, with line-breaks allowed only

at the quasi-sources.

visibility when relaxing d(a) in the Dijkstra-way, since sources are set to neighbors

themselves, and it is clear that a pixel can see its 8-neighborhood neighbor, provided

they both are non-wall pixels. For relaxations happening in the Pythagoras-way, we

use the DDA algorithm to get rasterized line. Secondly, whenever a new neighbor

is touched for the �rst time and it is a wall, we have to set it to 'burnt ground'

immediately.

To see the pseudocode, refer to alg. 7. Observe that it contains only minor

additions to unconstrained version - algorithm styling highlights these.

To distinguish this modi�ed version from original Dijkstra-Pythagoras, we call

this wall-aware algorithm Bresenham-Dijkstra-Pythagoras (BDP) due to its usage

of line rasterization technique to tell source visibility.

This algorithm was successfully used to compute constrained distance function

in spatio-temporal 4D tubular cell structures in order to reconstruct cell lineage trees.

For details, see [29].
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Algorithm 7 Bresenham-Dijkstra-Pythagoras DF algorithm pseudocode
Require: ∀p ∈ Ω\Ω0 : d(p) =∞, v(p) = 0, s(p) = '?', allocate heap

Require: ∀p ∈ Ω0 : d(p) = 0, v(p) = 1, s(p) = p, heap.insert(p)

1: while heap != empty do

2: a = heap.pop

3: for each pixel b ∈ Neighborhood8(a) , which has v(b) = 2 do

4: r = s(b)

5: Dp =
√

(rx − ax)2 + (ry − ay)2

6: L = set of pixels of rasterized straight line rendered from a to r

7: if Dp < d(a) and ∀u ∈ L : u 6∈ Ω∞ then

8: d(a) = Dp

9: s(a) = r

10: end if

11: end for

12: v(a) = 2 . a set to 'burnt ground'

13: for each pixel c ∈ Neighborhood8(a), which has v(c) = 1 or v(c) = 0) do

14: if c 6∈ Ω∞ then

15: Dd = d

16: ( c ∈ Neighborhood4(a) ? Dd+ = 1 : Dd+ =
√

2 )

17: if Dd < d(c) then

18: d(c) = Dd

19: s(c) = a

20: (v(c) = 0 ? heap.insert(c) : heap.decreaseKey(c,Dd ) )

21: v(c) = 1 . c set to '�re front' anyways

22: end if

23: else

24: v(c) = 2

25: end if

26: end for

27: end while
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Figure 4.2: Results of one dot experiment. From left to right: input Ω0, resulting d (result yielded

by BF, but the result yielded by e.g. FSM is visually indistinguishable from this one), di�erence

between results of BF and analytical, di�erence between results of FSM and analytical. There is

no numerical di�erence between BF result and analytical solution. Range of di�erence between

FSM result and analytical solution is [0, 0.6355]. Di�erence results are shown rescaled, white color

meaning largest error.

4.3 Distance function experiments

4.3.1 One dot experiment

The �rst experiment was intended as an exercise to validate implementations of

six studied algorithms. We computed DF on a 10x10 pixel image, where the pixel

(5,5) was the only source pixel. We found it interesting that the numerical results

of all Euclidean distance-based algorithms (BF, DP and VDT) were the same, and

the results of all eikonal-based algorithms (TRRT, FMM and FSM) were also the

same, although these were di�erent than the results of Euclidean distance-based set

of algorithms. For this simple example, we computed an exact analytical solution,

by simply setting each pixel's d to Euclidean distance from pixel (5,5). Results are

presented also visually in �g. 4.2.

4.3.2 Dots experiment

In the second experiment, we wanted to measure CPU time consumption and its

dependence on the number of sources. We created three 1000x1000 pixel images,

containing 1,000; 10,000 and 100,000 randomly-placed source pixels, respectively.

The results are presented in tab. 4.3. It can be observed that Brute-Force method

scales roughly linearly with the number of sources. TRRT exhibits negative scaling
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Method BF TRRT DP FMM VDTM FSM

CPU time 1000 source px 10s 9s 2s 1s 1s 0s

CPU time 10000 source px 104s 5s 2s 2s 1s 0s

CPU time 100000 source px 1083s 4s 3s 2s 1s 0s

Table 4.3: Dots experiment shows computational time of studied methods and its dependence upon

the number of source pixels.

w.r.t. the number of sources, and so does Dijkstra-Pythagoras. Other methods

performed quickly and their performance was only slightly a�ected by the number

of sources.

4.3.3 Diagonal line experiment

In the third experiment, we wanted to exploit the qualitative di�erence between

eikonal-based and Euclidean distance approaches as clearly as possible. We created

a 20x20 pixel image, placed a rasterized straight line to be passing from its top-left

corner to the bottom-right one, and we wanted to compute the DF from this line.

Eikonal-based methods solved this task with zero error w.r.t. analytical solution

(to our surprise - notice that these same algorithms are incapable of solving a much

simpler problem, to compute the distance from a single point, exactly). Euclidean

distance methods introduced the largest error in the �rst diagonal below and �rst

diagonal above the main diagonal - using the matrix algebra vocabulary - with error

magnitude descending further from diagonal. The reason for this di�erence lies in

the fact that eikonal solvers tend to interpolate interconnected neighboring source

pixels and see them as forming an interface, while Euclidean distance solvers see

these points as separated and treat them as such.

To diminish this phenomenon, it is suggested to use the so called shell boundary

condition [27]. That means, if we want to compute the distance to an interface with a

very good precision, we should consider including not only the pixels with 0 distance

value into Ω0, but also some narrow band of near-zero-distance pixels, to formulate

an interconnected interface. Notice that in this case, d at these pixels should not be
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Figure 4.3: Results of diagonal line experiment. From left to right: (a) input Ω0 without considering

shell boundary condition - white color of pixel p means that p ∈ Ω0, (b) resulting d (result yielded

by BF) prior to considering shell boundary condition, (c) di�erence between results of BF and

analytical - largest error value is in white and has value 0.293 and black is 0 error, (d) input Ω0

considering a shell boundary condition, (e) resulting d - result yielded by BF - after including shell

boundary condition - this results contain no error w.r.t. exact analytical solution

set to 0, but to their exact, analytically computed value, to achieve the best precision

of DF result - this is an exception to the rule that d(a) = 0, ∀a ∈ Ω0. All algorithms

have to be slightly modi�ed then, at least the initial setting of d(a) = 0,∀a ∈ Ω0,

has to be removed.

We introduce the shell boundary condition by considering main diagonal pixels

to carry value d(a) = 0 and �rst diagonal below and above pixels to carry the exact

value d(a) =
√

2/2 - this is the distance between center of a given pixel and a point

which is a projection of this point on the line passing through the main diagonal.

After introducing this modi�cation, results of all algorithms contained zero error

w.r.t. the exact solution. Results are visualized in �g. 4.3.

In general, formulating a shell boundary condition for arbitrary shape is a

non-trivial task.

4.3.4 Circle experiment

In this experiment, we wanted to measure precision of the results yielded by DF

methods. For a 100x100 pixel image, we calculated an exact analytical euclidean

distance to a circle of radius 25 pixels, centered at [49.5,49.5] - center of this circle

happens to be in the middle of the picture if array indices are zero-based (com-

mon way of indexing arrays in programming languages). We used shell boundary

condition - all pixels, for which the values of analytical solution were < 1, were
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Figure 4.4: Results of circle experiment. From left to right: (a) input Ω0, (b) resulting d - shown

result yielded by BF, but again, results yielded by all other methods are visually indistinguishable

from this one, (c) di�erence between results of BF and analytical, (d) di�erence between results

of FSM and analytical. Range of di�erence between BF result and analytical solution is [0, 0.303].

Range of di�erence between FSM result and analytical solution is [-0.755, 0.355]. Di�erence results

are shown rescaled, darker intensities map to smaller values and lighter intensities are mapped to

higher values.

considered to be the part of the circle, they were included to Ω0 and d was set to

exact analytical value so that no error is introduced in the initialization. Results of

all three Euclidean distance methods are numerically equal also in this experiment.

Results of all three eikonal equation-based distance methods are also numerically

equal. The character of error for Euclidean versus exact and for eikonal versus exact

is demonstrated in �g. 4.4.

4.3.5 Round-cornered square experiment

In this experiment, we wanted to measure result precision with a more complicated

shape, but with one for which we still can tell the analytical solution. We chose a

round-edged square. In an image 200x200 px, we placed 150x150 px square into the

centered position. Roundness of the square corners was achieved by substituting

them by quarters of circles of radius 25x25 px. We used shell boundary condition

also in this case. Results for Euclidean-based methods are all the same, and results

for eikonal-based methods are all the same as well. Results can be seen in �g. 4.5.
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Figure 4.5: Results of round-cornered square experiment. From left to right: (a) input Ω0, (b)

resulting d - result yielded by BF, (c) di�erence between results of BF and analytical, (d) di�erence

between results of FSM and analytical. Range of di�erence between BF result and analytical

solution is [0, 0.751]. Range of di�erence between FSM result and analytical solution is [-0.702,

0.538]. Di�erence results are shown rescaled. In order to understand image scaling, observe that

the median intensity (the color present in the vast majority of pixels) happens to represent error= 0

in both di�erence results.

4.3.6 Maze experiment

To compare the performance of CDF methods, we used them to solve the path �n-

ding problem in a complicated maze. Maze image is 810x810 pixels and its pathways

are 6 pixels wide, and is taken from [30]. Entrance is the upper-left-most pixel; exit

is the lower-right-most. See the input in �g. 4.6.

We measured the time it takes for CDF methods to compute CDF. Results

can be seen in tab. 4.4 - see 'CPU time' row.

Having the DF results, we can compute the path from entrance to exit.

While formulating the steepest descent procedure, the advantage of having a

source-to-source map in case of BDP becomes obvious - unlike in FMM case, we

don't have to take steps in the domain of neighboring pixels, but we can jump from

quasi-source to quasi-source, until we reach the true-source (maze exit).

At �rst, we see that in complicated mazes this dramatically reduces the number

of pixels visited - in this case, only approximately one tenth of pixels was visited

when compared to FMM path reconstruction in this speci�c maze. This property

may be especially useful in problems where we have to compute steepest descent

from many standpoints for a �xed con�guration of maze walls and maze exits.

Secondly, the length of the broken line from entrance to exit is the same number
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as the DF result value - while in FMM these two numbers di�er (in our experiment,

the relative di�erence of these two values was about 2.1% in FMM case). This

property of BDP may prove to be of help in scenarios where the agent has to know

how long the road will take, before he decides to take it.

And thirdly, while to represent the path reconstruction visually, we could take

an advantage of the fact that we have a line rasterization algorithm implemented

and use it not only to tell if two points can see each other w.r.t. constraints, but also

for broken line painting. Note that we couldn't use line rasterization while painting

FMM path though - the problem is that we don't have a notion of which pixels are

the line-breaking ones. As a result, path reconstructed from BDP and visualized

using line rasterization algorithm resembles the movement of an agent in a maze

more closely than the path reconstructed by FMM, which has an 8-way character.

We tried to analyze and compare results of FMM and BDP also quantitatively.

They can be seen in tab. 4.4 and �g. 4.7. Results show, that:

1. BDP's broken line is shorter than FMM's.

2. BDP had to visit approximately 10x less points than FMM in this speci�c

case, in order to reconstruct the steepest descent path, taking advantage of

s(a),∀a ∈ Ω.

3. value of d(a) is the same value as the length of the broken line from a to the

maze exit, in BDP. In FMM, these values are di�erent.

4. Path characters are di�erent: while FMM's broken line has 8-way character,

BDP's path looks like pixelated broken line, which resembles more closely the

shortest path in a maze. This can be seen in the �g. 4.7.

A 4D implementation of BDP algorithm was used to reconstruct cell lineage

trees, by computing CDF in spatio-temporal 4D tubular cell structures and subse-

quent steepest descent computation. More information can be found in [29].
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Figure 4.6: Maze experiment: input image, a maze of 810x810 pixels, pathways are approximately

6 pixels wide, walls are white, entrance is top left, exit is bottom right.

Algorithm FMM BDP

CPU time 1s 2s

Path length 12016.4 11332.9

d(start) 11760.1 11332.9

# of visited points 10265 1201

Path character 8-directional rasterized line

Table 4.4: Comparison of FMM and BDP behavior. BDP's DF value at the start equals the

length of shortest path, while for FMM these quantities are di�erent. Number of visited points

di�ers, since di�erent steepest-descent methods are used: FMM goes pixel-by-pixel, while BDP

goes source-by-source. Therefore, this value for BDP is related to number of corners visited, while

FMM results represents number of pixels in the 8-connected path. The last quality, path character,

is best illustrated by �g. 4.7
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Figure 4.7: Results of maze experiment. Upper row: DF yielded by FMM and steepest-descent

solution, left - full solution, right - zoom. Lower row: DF yielded by BDP and steepest-descent

solution, left - full solution, right - zoom. Compare the di�erent path character of FMM (left)

and BDP (right) - better visible while looking at zooms. FMM's steepest descent has to construct

path in a pixel-by-pixel manner, as it only has local information. BDP's steepest descent can be

formulated using source information and path goes from corner to corner � it has a source-to-source

character. BDP's path was painted using line rasterization algorithm DDA.
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4.3.7 Trying to solve maze with Fast Sweeping Method

In this experiment, we attempt to use Fast Sweeping Method to solve constrained

distance function problem. The algorithm (4) can be easily modi�ed to ignore

relaxation updates for wall pixels. Notice, however, that while 4 sweeps in each of

the diagonal directions are enough to obtain a solution in 2D case for unconstrained

distance function problem, this number of sweeps doesn't assure that signal gets

'sweeped' throughout the whole domain, for this constrained distance function case,

due to the walls preventing it to go around the corners.

Let us call the original approach a 4-sweep: that means making 4 sweeps in

all 4 diagonal directions always in the same order. A natural way to cover larger

part of the computational domain Ω increase the number of 4-sweeps performed in

succession. The only way to tell the number of sweeps which cover the entire domain

beforehand, is to know the character of maze beforehand. In a very complicated

maze, like the one from previous experiment - see �g. (4.6), it is, however, di�cult

to tell the upper bound of the number of sweeps.

We tried to make 1, 10, 100 and 1000 4-sweeps in order to solve this case.

Results can be seen in �g. (4.8). We can conclude that it took several hundreds of

4-sweeps to get the solution, which took about a minute of CPU time. Notice that

both wavefront-type methods, FMM and BDP, studied in the previous experiment,

can obtain the solution of this example faster. This method is therefore suitable only

in cases, where we know the character of maze, so that we can bound the number

of 4-sweeps needed to cover the domain of interest.
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Figure 4.8: Illustration of FSM in CDF environment. Top left: 4-sweep - notice the small black

part in bottom right corner of this image - this is how far signal travels from a single source point

∈ Ω0, in bottom right, until it is stopped by maze walls. Top right: 4-sweep repeated 10 times.

Bottom left: 4-sweep repeated 100 times. Bottom right: 4-sweeps repeated 1000 times. We can

see that it took at least several hundred 4-sweeps to obtain a solution for the whole domain. CPU

time spent obtaining these solutions were 0, 1, 8 and 66 seconds.
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5 Software

This section is written less formally, serving as a combination of developer's diary,

speci�cation of the SliceViewer software, and the user manual.

5.1 State-of-the-art software

In order to visualize the data, we started by using an existing software, a robust

scienti�c data viewer, called ParaView. We identi�ed three viewing options as being

useful:

1. Volume rendering of 3D volume + small 3D spheres centered at FBLSCD-given

cell identi�er. Volume rendering is performed as mapping image intensity to

color tone and transparency

2. Translucent isosurface view (depending on intensity value) + small 3D spheres

3. 2D slice of data + 2D or 3D marks for cell identi�ers

An example of these viewing modes can be seen in the �gure 5.1. We found out,

that the inability of �rst two approaches of showing the interior cells of the organism

volume in detail, due to surface cells occluding the interior ones, happened to be a

major drawback. For the third method, we have seen the speed of �le loading and

data manipulation as being insu�cient. So we decided to create a more speciali-

zed software to serve our needs. We needed it to view spatio-temporal volumes of

3D+time data, and we needed to tackle the challenge of projecting them onto the

2D surface of computer monitor, with as little information loss as possible. For the

sake of simplicity and speed, we decided it was not needed to rotate the view. The

software was meant to show 2D slices based on 2D graphics libraries, and we called

it SliceViewer.

5.2 SliceViewer

This software was designed to be able to load and view a large amount of 3D+time

data. We chose the Microsoft Visual Studio platform, programming language C++,
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Figure 5.1: Visualizing with ParaView. Left - volume rendering, middle - translucent isosurfaces,

right - viewing as a 2D slice.

and the standard graphics library. The data �les are of type .vtk, containing xmax ∗

ymax ∗ zmax 8bit chars, and there are θmax of them. In the dataset 070418a, zmax =

104, ymax = 512,xmax = 512, and there are 320 time steps recorded. We stored the

data as bitmaps of dimension xmax × ymax), and we would have zmax ∗ nT imesteps of

them. nT imesteps is limited by computer's RAM size. We tested it on a computer with

8GB RAM, and we were able to load approximately 70 time steps of xmax∗ymax∗zmax

data, using 24bit RGB color encoding (one byte for each of the color channels R, G

and B). This limit may be pushed further via color pallette encoding, if needed, or

considering 8bit greyscale pallette.

We required it to be able to view speci�c z-coordinate slice and θ-time without

further computation, so the bitmaps are initialized at the time of loading from HDD.

Two sliders (one for z, one for θ) are used to control the viewed slice. Computational

burden of changing z and θ values of the sliders is therefore slim - GraphicsView

only has to swap the currently shown bitmap for another.

The sketch of the software user interface layout and the detailed view of the

control panel can be seen in the �gure 5.2.

We wanted to make sure the marks representing the cell identi�ers are as clear

to see in the data as possible, but don't cover up much of the data, so we chose

upright equilateral crosses. Using 3D crosses means user can see the presence of the

cross even several slides over- and under its occurence in the z-direction. Lenght of

the 3D cross arm was chosen to be 5 pixels, and the color combination was chosen

red-green, green are arms of the cross from center in the axes directions, red are arms

against axes directions. This combination of colors is well visible in the grayscale
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Figure 5.2: SliceViewer design. Left - miniature of the user interface. Right - detailed view of the

control panel.

environment.

5.3 RGB viewing mode

We wanted to have an option to see time correspondence between time steps, which

is not an easy task to do, in 2D slice approach. Fast reaction time of the viewer when

moving the θ-axis slider is a help towards achieving this goal, but we wanted to see it

even without moving sliders. We took the advantage of having intensities in range

0..255 and, using standard 3-channel RGB color encoding of computer graphics,

created an RGB viewing mode: for a θ, we view a 2D slice in such a way that the

red channel represents slice intensity in the previous frame (θ−1), the green channel

views the current frame (θ) and the blue one views the next frame (θ + 1).

It was interesting to see various cell behaviors visualized in this mode. Cells

standing more or less still are seen as predominantly white-color blobs as the three

channels overlay in the same location, sometimes with colourful edges (caused by

small cell motion). Cells traveling in a certain direction are seen as R-G-B blob

patterns. Cells undergoing mitoses are seen as B-G-R-G-B patterns. The result of

this color encoding is the simpli�cation of the non-automatic human-eye cell mitosis

detection. All this patterns are visualized in the �g. 5.3
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Figure 5.3: RGB mode of the SliceViewer software. From top left to bottom right: Top left - see

two neighboring cells undergoing cell divisions at the same time, each creating two daughter cells

in the circle. Top right - see multiple cells traveling in the direction from top to bottom of the

image, denoted by the arrows. Bottom left - see a few cells standing more or less still, with large

3-channel overlays creating predominantly white areas. Bottom right - a typical view of random

embryo subvolume, where all these types of behavior can be observed.
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Figure 5.4: Basic strategy results visualization, as a comparison. Left - detail of input image with

3D crosses representing results of FBLSCD at time θ = 16 (optimal stop-time for this dataset,

this method and at this frame according to chapter 3.4). Right - the same content, with results of

LSOpen at time θ = 17 (optimal stop-time for this dataset, this method and at this frame) added.

Viewing data this way, user can spot false positives of the �rst method, compared to the second

method. (FBLSCD yields a false positive here, which can be seen in the right image - it is the one

slightly to the right and down from the image center. Notice how di�cult it is to spot it in the

left image, among many other red-green crosses.)

5.4 Mutual comparison of two cell detection results

We speci�ed the requirements for being able co compare two di�erent cell detection

results in chapter 3.4. Slice Viewer therefore enables the user to load two cell

identi�er sets. On loading the �rst of them, crosses are painted in color. On loading

the second, its crosses are superimposed, painted white now. All those points, which

are detected by the �rst strategy, but left undetected by the second, remain painted

in color, while the others are covered over by white. In order to see the vice-versa

results, i.e. points detected by the second and left out by the �rst, user simply loads

the sets in the switched order. This initial mode of comparing two cell detection

strategy results can be seen in the �g. 5.4.

The second requirement stated in chapter 3.4 was for the software to be able

to compare the two sets of points not only binary, but also via a certain metric.

The rightmost part of the main window contains two tables. To compare two center

detection strategies, 1 and 2, at �rst the user clicks the button above the �rst table
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and selects centers of method 1 and distance function of centers found by method

2. Then he clicks the button above the second table and selects centers of method

2 and distance function of centers found by method 1. This way, table shows list of

cell centers by each method, with their ID, x− y − z coordinates, and the distance

to its closest center in the other method, sorted descending w.r.t. distance value.

Having this interface implemented, we already were able to load two results

of di�erent cell detection strategies and perform a basic comparison. At this stage,

the interface was able to highlight the di�erences: for each method, it pointed out

the points detected as cell identi�ers, which were missed by the other method.

In addition to this functionality, we required to not only show missed cells,

but also point out, if one cell was detected by more than one identi�er. So, to the

two tables to the right, we added two more columns - for strategy A, the �rst of

them carrying the ID of corresponding closest point in the steepest descent sense in

the strategy B, and the second column carrying the number of identi�ers in method

B, who consider a given point in strategy A as their closest, in the steepest descent

sense, again. A button to compute steepest descent from each point in the strategy

A results to strategy B results points, and vice versa, was added.

With this last important addition, we were able to not only compare two

methods w.r.t. missing detected centers, but also w.r.t. multiple detected centers.

Both tables are interactive. On selecting an arbitrary table entry, z-dimension

slider is set to this entry's z, a red-green 3D cross is painted in the location, an

orange-cyan 3D cross is painted in the location of its steepest-descent neighbor in

the other strategy result set. Furthermore, all cell centers from the other method,

who call this selected point to be their closest peer, are marked by blue-pink 3D

crosses.

For further reference, see [28].

This �nal user interface is viewed in �g. 5.5.
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Figure 5.5: User interface designed for comparing two cell detection strategy results. Notice the

mutual correspondence of highlighted lines in the right control panel, as well as visual representation

of this event in the main viewer area - pink tip of the second 3D cross can be seen few pixels lower

from the red-green one.
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6 Experiments - comparing cell detection results

The �rst experiment was comparing the state-of-the-art results, according to [2],

with centers obtained as results of FBLSCD with stop time computed automati-

cally, using the algorithm proposed in the chapter 3.3. In addition to this, we also

compared FBLSCD autostop with LSOpen autostop. Both FBLSCD and LSOpen

stop times are chosen as �rst local minima of 5th degree polynomial �t. We com-

pared and classi�ed visually all the centers for which their closest peers in the other

method have distance ≥ 6.0. See the results in the �g. 6.1. Using LSOpen results,

it can be seen that FBLSCD indeed contains some false positives, which would be

di�cult to spot without comparing it to some other method. It depends upon the

application, if this is an acceptable number of errors.

It is worth noting at this point, the di�erent impact of false positives and false

negatives on the results of our goal, which is either computing statistical characte-

ristics of the zebra�sh embryo, or reconstruction of the cell lineage tree. For both of

this goals, there is a feasible method for processing multiple detected cell centers in

one nucleus designed, see [2], [6], resp. A missing cell center in one frame is also a

problem that can be solved with relative ease, in the cell lineage tree reconstruction

task[6]. On the other hand, false positives may cause much more errors in both these

frameworks, therefore, minimizing this type of error seems to be a feasible metric of

the cell detection algorithm's quality.

The second experiment was comparing the state-of-the-art, optimal stop time

FBLSCD and optimal stop time LSOpen results, to biological ground truth data,

which is available for this dataset. Results show that in terms of cell detection

di�erences, the state-of-the-art dataset resembles biological ground truth data the

most closely of all three methods, considering the number of false negatives. While

LSOpen is the furthest from it in this criterion, in the number of false positives it

yields the results closest to the biological ground truth data. Results can be seen in

the �g. 6.2.

Both experiments show however, that FBLSCD may yield some potentially
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Figure 6.1: Visual comparison of di�erent cell detection strategies. Upper table - classi�cation of

dissimilarities between FBLSCD state-of-the-art stop time and automatic stop time. Upper half

of this table compares state-of-the-art centers against distance function to the autostop centers,

lower half vice versa. Lower table - dissimilarities between FBLSCD and LSOpen automatic stop

time results. Upper part of this table compares FBLSCD autostop centers against the distance

function to the LSOpen autostop centers, the lower part vice versa. Notice the red lines - while

upper table contains no signi�cant di�erences, in the �rst line of the lower one, we can see that

LSOpen seems to accuse FBLSCD of yielding some false positives.
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Figure 6.2: Comparing state-of-the-art, FBLSCD autostop and LSOpen autostop to biological

ground truth data. Notice that while LSOpen yields the most false negatives, it contains the

lowest count of false positives. When considering which of these to use in an application, one has

to pay attention to this tradeo�.

harmful false positives, although their number is relatively low.

The third experiment can be seen as an experimental insight into the LSOpen

algorithm's behavioral analysis. This information is of value, since due to composite

character of LSOpen method, we cannot use standard tools of mathematical analysis

to study it theoretically. We computed 17 LSOpen steps with a certain step size.

Then we halved the step size, and wanted to see, which LSOpen step yields the

closest results to the results of the former computation. From steps 31, 34 and 37

of LSOpen halfstep, 34 has the fewest di�erences - 31 halfstep seems to happen

sooner than 17 fullstep, and 37 halfstep seems to be later than the 17 fullstep. It

is therefore reasonable to assume, that halving step size and doubling step count

yields approximately the same results as the original setup. It is a known property

for advection-di�usion-type equations, but it seems to work also for the non-atomic

morphological operation such as LSOpen. Results of this experiment can be seen in

the �g. 6.3.

All the experiments were performed using the SliceViewer software.

72



Figure 6.3: Analyzing the behavior of LSOpen. Compute 17 LSOpen steps. Then, take half the

step, and observe, how many steps are to be taken, in order for the results to be closest to former.

It seems that 34 is the correct answer, out of three options: 31 yields far too many positives and

37 too many negatives.

7 Conclusions

We started by the discussion about the problem of detection of cells in biological

image data, and described the FBLSCD algorithm. We introduced a novel method

for de�ning a fully automatic stop time criterion. We formulated a novel algorithm

called LSOpen, as a fusion of morphological and PDE-based image processing, which

can perform the detection of cells and is robust against the salt-type noise.

Then, we discussed cell detection algorithm benchmarking methods. We argu-

mented, that by not checking just one result set, but comparing two di�erent result

sets by computing their mutual distance, in a de�ned metric, may relieve human

inspector of a signi�cant amount of work. This motivated us to think about ways

the distance function to a set of points can be computed.

After we analyzed commonly-used distance function methods and studied their

di�erences, we formulated a novel method to compute the distance function. This

one computes distance function to a set of points with the O(n log2 n) complexity,

like the state-of-the-art algorithm Fast Marching Method does, but using exact Eu-

clidean values, not eikonal ones, as Fast Marching Method does. In addition to

this, we proposed an enhancement for this method to work also in an environment

containing walls and corners, relying on the usage of a line rasterization algorithm.
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In various experiments in both unconstrained and maze-like environments, we have

demonstrated the viability of the newly-formulated method. In practice, BDP algo-

rithm was used to reconstruct cell lineage trees in a developmental biology applica-

tion - for details, see [29].

Then, we described the motivation, speci�cation, design and implementation

of the software SliceViewer.

The experiments discussed in the end of the work served as validation for the

aforementioned modi�cations and as a test of the SliceViewer software.
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8 Resumé

Technológia dvojfotónového laserového mikroskopu nám umoº¬uje pozorova´ em-

bryo zebri£ky pruhovanej pár hodín po fertilizácii, a skúma´ jeho správanie po£as

nasledujúcich zopár hodín vývoja, na úrovni samotných buniek. Dáta získané mik-

roskopom sú sekvenciou 3D snímkov v £ase a obsahujú pre kaºdý voxel hodnotu

intenzity.

Zebri£ka pruhovaná je organizmus, s ktorým sa pracuje v mnohých sú£asných

projektoch skúmajúcich otázky vývojovej biológie - najmä v¤aka jeho prieh©adnosti,

schopnosti absorbova´ kontrastné látky, rezistencii vo£i mechanickému po²kodeniu

a vy²²ej odolnosti vo£i teplu zo svetla mikroskopu. Obraz je získavaný v dvoch

kanáloch - na prvom sú bunkové membrány a na druhom bunkové jadrá.

V oblasti porozumenia tomuto biologickému obrazu sa rie²ia dva typy úloh -

prvou z nich je kvantitatívne popísa´ rôzne biologické parametre organizmu a druhou

je realizova´ sledovanie buniek v £ase, £iºe rekon²trukcia rodokme¬ov buniek.

V oboch úlohách je identi�kácia buniek sú£as´ou postupov pre rie²enie. Na

identi�káciu buniek sa zvykne pouºíva´ algoritmus FBLSCD - Flux-Based Level Set

Center Detection, alebo novo navrhnutá metóda LSOpen - morfologické otvorenie

na mnoºine úrovní. Taktieº jestvujú mnohé iné metódy detekcie buniek. V tejto

práci diskutujeme o moºnosti porovnania výsledkov týchto metód, a taktieº pre túto

úlohu navrhneme a implementujeme softvérové rie²enie.

�alej uvedieme zoznam kapitol s krátkym popisom kaºdej z nich.

Kapitola 3 uvádza problematiku v spracovaní obrazu zvanú detekcia objektov.

Sú uvedené základné príznaky, spolu s ná£rtom ²tandardne pouºívaných metód na

ich detekciu.

Podkapitola 3.1 popisuje zvy£ajne pouºívaný algoritmus na detekciu buniek

zvaný FBLSCD. Tento algoritmus je prezentovaný ako evolúcia v ²kálovom priestore

formulovaná ako parciálna diferenciálna rovnica. Táto spôsobuje, ºe izo£iary inten-

zity v obraze sa zmr²´ujú v smere vnútornej normály. �alej je vysvetlené, ako je

táto vlastnos´ vyuºitá na rie²enie problematiky.
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V podkapitole 3.2 diskutujeme o netriviálnom probléme nastavenia správnych

parametrov pre FBLSCD. Identi�kujeme ²tyri parametre: δ ako koe�cient modulu-

júci silu advek£ného £lena rovnice, µ ako koe�cient krivostnej difúzie v rovnici, R ako

prahovú hodnotu, nad ktorou musí by´ intenzita lokálnych maxím, aby boli uznané

za maximá reprezentujúce bunkové jadrá a T , £as zastavenia evolúcie v ²kálovom

priestore. V²etky tieto hodnoty závisia od dát a kvalita ich nastavenia determinuje

kvalitu výsledkov algoritmu. V tejto práci prezentujeme plne automatický spôsob

vo©by parametra T pre dané δ , µ a R. V predchádzajúcich prácach navrhli au-

tori pozorova´ vývoj veli£iny LMCE (Local Maxima Count Evolution), ale neboli

spokojní s výsledkami pre reálne dáta. Stavali sme na ich skúsenostiach tým, ºe sme

de�novali T ako minimum kvantity, ktorú sme pomenovali LMCED (Local Max-

ima Count Evolution Decline). Navy²e sme navrhli aplikova´ ²tatistickú metódu

najmen²ích ²tvorcov na zhladenie rie²enia. Táto metóda minimalizuje varianciu

snímok od snímky a dáva hodnoty T, ktoré sú plynulé naprie£ videom.

V podkapitole 3.3 popisujeme kombináciu dvoch poh©adov na spracovanie

obrazu, konkrétne prístup cez parciálne diferenciálne rovnice a morfologický prístup.

Najprv zredukujeme rovnicu FBLSCD od¬atím krivostného £lena a normalizovaním

advekcie: µ = 0 , δ = 1. Táto operácia sa dá vníma´ ako morfologická erózia

v ²kále ²edi a pomenovávame ju LSErode. Dá sa ukáza´, ºe táto operácia vie ro-

zlí²i´ medzi ve©kými objektami reprezentujúcimi bunkové jadrá a osamelými malými

píkmi vysokej intenzity, reprezentujúcimi ²um v obraze. Problém v²ak nastáva, ak

sa vyskytuje v obraze opa£ný typ ²umu: malé píky nízkej intenzity priamo v út-

varoch reprezentujúcich bunkové jadrá. V tom prípade tento ²um nemizne, ale sa

naopak rozpína, na úkor intenzity samotných jadier, £o dramaticky zniºuje schop-

nos´ algoritmu takéto jadro detekova´. Preto rozvíjame koncept LSErode a formulu-

jeme opa£nú operáciu, zvanú LSDilate, pomocou oto£enia znamienka pri advek£nom

£lene. Táto metóda sa správa opa£ne ako LSErode - ²umy s nízkou intenzitou miznú,

ale ²umy s vysokou intenzitou expandujú. Vyuºívame preto ²tandardný koncept

morfologickej ²koly spracovania obrazu pre kombináciu efektu týchto dvoch metód

- krok LSErode, po ktorom nasleduje krok LSDilate je kompozitná operácia, ktorá
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sa volá morfologické otvorenie - v na²om prípade LSOpen. Ukáºeme, ºe táto nová

metóda je robustná vo£i obom spomínaným typom ²umu.

V podkapitole 3.4 diskutujeme o metódach evaluácie výsledkov detek£ných

algoritmov. Za£neme vysvetlením, ºe vzh©adom k ve©kému mnoºstvu výstupných

dát je prakticky neúnosné, aby tieto dopodrobna evaluoval ©udský in²pektor. Oproti

tomu uvádzame stratégiu, kde in²pektor porovnáva výsledky dvoch metód navzájom.

Toto redukuje mnoºstvo práce v prípade, ak dávajú metódy výsledky ve©mi podobné

a odli²ujúce sa iba v malom percente rozdielov. Navy²e, ak zvládneme porov-

na´ výsledky dvoch metód aj so�stikovanej²ie ako iba binárne, napríklad pomocou

merania vzdialeností medzi jednotlivými identi�kátormi, dosiahneme ¤al²iu reduk-

ciu mnoºstva práce.

V kapitole 4 popisujeme metódy pre výpo£et funkcie vzdialenosti. Posledná

podkapitola predo²lej kapitoly nám slúºi ako motivácia. Na za£iatku tejto kapitoly

de�nujeme problém a ²peci�kujeme poºiadavky, ktoré kladieme na rie²enie.

Podkapitola 4.1 analyzuje funkciu vzdialenosti bez obmedzení. Tu analyzujeme

5 £asto implementovaných a pouºívaných metód: Brute-force (BF), Time relaxed

Rouy Tourin (TRRT), Fast marching method (FMM), Fast sweeping method (FSM)

a Vector Distance Transform (VDT). Okrem popísania týchto metód uvádzame aj

pseudokódy pre kaºdú z nich. Tieto metódy sa pokúsime klasi�kova´ pod©a 1) de�ní-

cie vzdialenosti - táto môºe by´ eikonalová alebo Euklidovská a 2) poradia nav²tíve-

nia pixelov - multi-visit, £elo vlny alebo zametacie. Naformulujeme taktieº novú

metódu, ktorá vyplní prázdne miesto v klasi�kácii dosia© jestvujúcich metód - táto

nová metóda je postavená na Euklidovskej de�nícii vzdialenosti a má charakter £ela

vlny. Nazveme ju Dijstra-Pythagoras (DP). Táto metóda sa spolieha na spo£ítanie

najprv odhadu vzdialenosti, podobným spôsobom ako Dijkstrova metóda v teórii

grafov, a potom sa pri poslednej náv²teve pixela ustáli na správnej Euklidovskej

hodnote, pomocou Pytagorovej vety.

�al²ia podkapitola, 4.2, formuluje zloºitej²í problém: po£ítanie funkcie vzdi-

alenosti s obmedzeniami typu stena a roh, v £oho dôsledku je úloha ekvivalentná

h©adaniu najkrat²ej cesty v bludisku. V tomto prípade uvidíme, ºe algoritmy fun-
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gujúce na princípe £ela vlny sú na rie²enie vhodnej²ie ako zametacie algoritmy. Na

to, aby nový algoritmus DP v tomto prostredí fungoval, je nutné uvies´ mierne

modi�kácie: konkrétne implementova´ test vidite©nosti zdroja. Na vyrie²enie to-

hto problému implementujeme algoritmus na rasterizáciu £iary. Túto novú metódu

nazveme Bresenham-Dijkstra-Pythagoras.

Podkapitola 4.3 obsahuje mnoho experimentov z domény funkcii vzdialenosti.

Meria presnos´, rýchlos´ a kvalitu výsledkov jednotlivých metód na výpo£et funkcie

vzdialenosti. Tu uvidíme, ºe nová metóda BDP má zopár kvantitatívnych a kval-

itatívnych výhod oproti zvy£ajne pouºívanej metóde FMM pre rie²enie problému

bludísk. Jedná sa o záver diskusie o funkcii vzdialenosti.

Kapitola 5 je skôr technickej²ia. Softvér SliceViewer, rie²enie slúºiace na semi-

automatickú evaluáciu výsledkov detekcie buniek, je uvedený a popísaný. Soft-

vér umoº¬uje pouºívate©ovi zobrazi´ 4D dáta na 2D obrazovke po£íta£ového moni-

tora pomocou dvoch beºcov. �alej vie vizualizova´ pohyb v £ase mapovaním troch

snímkov (predo²lý, aktuálny a nasledujúci) na tri farebné kanály (£ervený, zelený,

modrý). No a napokon vie softvér vizualizova´ relatívnu kvalitu algoritmov pomocou

vzájoných kore²pondencii a odli²ností v bunkových identi�kátoroch.

Napokon, kapitola 6 je diskusiou o výsledkoch experimentov. V prvom ex-

perimente tejto kapitoly uvidíme porovnanie správania FBLSCD a LSOpen metód.

Tento experiment demon²truje, ºe kým vä£²ina výsledkov týchto dvoch algoritmov

je zhodná, vyskytuje sa aj malé percento odli²ností. Konkrétne, vo výsledkoch

LSOpen chýba viacero centier, ktoré boli správne detekované pomocou FBLSCD,

av²ak výsledky LSOpen ukázali, ºe FBLSCD uvádza do sady výsledkov zopár iden-

ti�kátorov centier, ktoré v skuto£nosti v dátach nie sú. V druhom experimente

porovnáme výsledky oproti biologickému zlatému ²tandardu. Pozorujeme, ºe obe

metódy dávajú rozumné výsledky. V tre´om experimente sa pokúsime empiricky

overi´ korektnos´ numerickej diskretizácie a implementácie metódy LSOpen.
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