
Ein Framework für die
GPU-gestützte Erzeugung und
Gestaltung induktiv rotierter

Muster

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Sebastian Sippl Bakk techn.
Matrikelnummer 0421271

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao. Univ. Prof. Dipl.-Ing. Dr. techn. M. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr. techn. Christoph Traxler

Kurt Hofstetter

Wien, 27. August 2015
Sebastian Sippl M. Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

A Framework for GPU-Assisted
Generation and Composition of

Inductive Rotation Patterns

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Sebastian Sippl Bakk techn.
Registration Number 0421271

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao. Univ. Prof. Dipl.-Ing. Dr. techn. M. Eduard Gröller
Assistance: Dipl.-Ing. Dr. techn. Christoph Traxler

Kurt Hofstetter

Vienna, 27th August, 2015
Sebastian Sippl M. Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Sebastian Sippl Bakk techn.
Löhrgasse 22/13 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. August 2015
Sebastian Sippl

v

Kurzfassung

Die Methode der Induktiven Rotation, die vom Künstler Hofstetter Kurt entwickelt wurde,
ist eine Strategie, um aufwändige künstlerische Muster zu erzeugen. Die Muster werden
generiert, indem wiederholt Rotationen und Translationen auf die Kopien eines sogenann-
ten Prototiles angewendet werden. Inspiriert wurde diese Methode durch aperiodische
Muster wie zum Beispiel die berühmten Penrose Parkettierungen. Die Muster und deren
nichtperiodische Struktur, die durch die Anwendung der Induktiven Rotation entstehen,
haben, sowohl aus künstlerischer als auch aus wissenschaftlicher Sicht, interessante Ei-
genschaften. Im Rahmen einer vorherherigen Masterarbeit, aus der das Programm “The
Irrational Image Generator” hervorging, wurden bereits verschiedene Algorithmen für die
Erzeugung solcher Muster implementiert und erforscht. Dieser Software-Prototyp bietet
jedoch nur wenige gestalterische Möglichkeiten für den Künstler und kann nur Muster
von begrenzter Größe erzeugen. Die limitierte Größe resultiert aus einer Eigenschaft
der Muster: Die Anzahl der Elemente in einem Muster wächst exponentiell mit jeder
Iterationsstufe.
Das Inductive Rotation Framework, ein Software Framework für die Generierung von
Mustern mittels Induktiver Rotation, welches im Rahmen dieser Arbeit entwickelt wurde,
vereinigt neue Erzeugungsalgorithmen für Muster mit verbesserten Werkzeugen, wie etwa
einem Textur-Editor, die Hofstetter Unterstützung während des Muster-Designprozesses
bieten. Einer der bestehenden Algorithmen konnte erfolgreich parallelisiert werden. Da-
mit ist es nun möglich, die Mustererzeugung mittels GPGPU Methoden durchzuführen.
Abhängig von der Implementierung des Algorithmus ermöglicht dies entweder Muster
viel schneller zu erzeugen oder die Maximalgröße der Muster zu erhöhen. Um ausser-
dem die Vor- und Nachteile einer kürzlich entwickelten Methode zu erforschen, die es
ermöglichen soll, Muster im Sinne der Induktiven Rotation durch Ersetzungsstrategien
zu erzeugen, wurde ein weiterer, auf dieser Methode basierender Algorithmus entwickelt
und implementiert. Diese neue Ersetzungsmethode kann jedoch nur eine Teilmenge von
Mustern erzeugen, die der Defnition der Induktiven Rotation von Hofstetter genügen.
Wenn man die Definition der Induktiven Rotation leicht variiert bilden sich Sierpinski
Dreiecke, d.h. fraktale Muster. Die Ähnlichkeit der Induktiven Rotation zu Fraktalen
kann auch beobachtet werden, wenn man das Matrixschema des parallelen Erzeugungsal-
gorithmuses mit Iterierten Funktionssystemen vergleicht, die auch zur Erzeugung von
Fraktalen verwendet werden.

vii

Abstract

The Inductive Rotation Method, developed by the artist Hofstetter Kurt, is a strategy for
generating elaborate artistic patterns by applying translations and rotations repeatedly
to a copy of a so called prototile. The method has been inspired by aperiodic tilings such
as the popular Penrose tilings. The Inductive Rotation Patterns and their nonperiodic
structure is interesting from both a mathematical and from an artistic point of view. In
the scope of a previous thesis different algorithms for the generation of such patterns were
already implemented and researched which resulted in a program called the “Irrational
Image Generator”. However, this software prototype provides only few features which
support Hofstetter in designing patterns, and can only produce patterns with limited
size. The limited size results from a property of the patterns: The number of tiles grows
exponentially with each iteration.
The Inductive Rotation Framework, a software framework for the generation of Inductive
Rotation Patterns, was developed in the course of this thesis and unites new generation
algorithms with an extended tool-set, like a graphical prototile editor which supports
Hofstetter in his pattern design process. One of the existing algorithms was successfully
parallelized and now allows the artist pattern generation via GPGPU methods. Depending
on the implementation this can increase either pattern generation speed or the maximum
pattern-size. In order to research the advantages and disadvantages of a recently developed
tile substitution method for the creation of Inductive Rotation Patterns, the framework
was extended by an algorithm which is based on this new discovery. Following the
definition of the Inductive Rotation Method from Hofstetter, this tile-substitution method
produces only a subset of Inductive Rotation Patterns.
By varying the definition of Hofstetter’s Inductive Rotation Method only slightly, the
Sierpinski gasket, a fractal pattern, emerges. The similarity between the Inductive
Rotation Method and fractals can be observed further by comparing the parallel generation
algorithm’s matrix scheme to Iterated Function Systems (IFSs), which are used to generate
fractals.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

List of Figures xii

List of Tables xiii

1 Introduction 1

2 State of the Art 3
2.1 Tilings of the Plane . 3
2.2 Wang Tiles . 4
2.3 Voronoi Diagrams . 6
2.4 Hyperbolic Geometry . 12
2.5 Fractals . 16

3 Hofstetter’s Inductive Rotation 25
3.1 Method Description . 26
3.2 Previous Work . 29
3.3 Requirements for the New Framework . 31
3.4 Algorithms . 32
3.5 Possible Applications for the Inductive Rotation Method 44

4 Implementation 51
4.1 Technological Requirements for the Framework 51
4.2 An Introduction to Direct Compute . 53
4.3 Implementation Details . 56
4.4 Development Process . 71
4.5 Software Architecture . 72
4.6 User Interfaces . 75

xi

5 Results 83
5.1 Benchmarks . 83
5.2 User Experience . 89
5.3 Inductive Rotation Images . 89
5.4 Comparison and Conclusions . 92

6 Summary 95
6.1 Inductive Rotation . 95
6.2 Previous Work . 96
6.3 Algorithms . 97
6.4 Implementation . 101
6.5 User Interfaces . 106
6.6 Method Comparison . 106
6.7 Discussion and Future Work . 110

Bibliography 111

List of Figures

2.1 Three different possibilities to create plane tilings. The images depict, from left
to right, a periodic tiling with a single prototile, a periodic tiling using three
different prototiles and a nonperiodic tiling created with a set of four prototiles.
Please note that the set of prototiles used to construct the nonperiodic tiling
is not aperiodic. [Coma,Comb,Pal] . 4

2.2 An example for a set of Wang tiles. The edges of Wang tiles are color coded.
In a Wang tiling only tiles with identically colored edges may touch. Multiple
subsets of this specific set of tiles may also produce valid Wang tilings. Cohen
et al. exploit this property to create Wang tilings with their stochastic tiling
algorithm. [CSHD03] . 5

2.3 Comparison of a texture generated by periodic texture mapping (top) to a
texture generated with a Wang tiling algorithm. The texture at the bottom
does not suffer from artifacts originating from the periodicity of the texture.
[Sta97] . 7

2.4 An image showing a sunflower field that was created with the Wang tiling
algorithm from Cohen et al. [CSHD03] . 8

xii

2.5 A Voronoi diagram. The generator points of the diagram are shown as black
dots. Each differently colored cell represents a Voronoi region. Generator
points in the outer regions form simple polylines with infinite areas, while
points surrounded by a sufficient number of generator points form closed
polylines with a finite area. The diagram was generated with a Java applet
[Che10]. 9

2.6 An image depicting a Delaunay triangulation. This specific Delaunay trian-
gulation is the dual graph of the Voronoi diagram shown in Figure 2.5. The
diagram was generated with a Java applet [Che10]. 10

2.7 A visualization of Fortune’s algorithm. The Voronoi diagram is constructed
as the sweep line moves through the set of generator points. The beach
line is constructed from arcs with bases halfway between their corresponding
generator points and the sweep line. Arcs marked in red will collapse in
the next iterations and be converted to edges of a Voronoi cell when they
disappear. The image was generated with a Java-script applet [Hil]. 11

2.8 M.C. Escher visualized hyperbolic geometry by a woodcarving titled “Circle
Limit IV”. The devils and angels have the same size, but since they live in
a hyperbolic space, figures located closer to the border appear smaller when
they are mapped to Euclidean space. [Esc]. 13

2.9 In hyperbolic space the environment of each point is saddle-shaped and has a
constant negative curvature. [Cla]. 14

2.10 A visualization of hyperbolic space with the Poincaré Disk Model. The
visualization is distorted. In hyperbolic space all figures possess the same
size and the distance between them is equal. The dashed edge of the disk
represents infinity. [Cla]. 16

2.11 Two visualizations of uniform Hyperbolic plane tilings. The tilings are denoted
by the Schläfli symbols {5,4} and {4,5} (from left to right). Please note that
there are infinitely many possible uniform tilings of the hyperbolic plane. The
images were generated with a Java applet from [Joy]. 17

2.12 The Pythagoras tree fractal. This fractal is composed of self similar shapes,
which are tree look-a-likes. [Bro]. 17

2.13 The first three steps of a recursive algorithm that generates a Sierpinski
Gasket. The green starting triangle is replaced by 4 small equal-sized versions
of the original triangle and the center triangle is removed. If this step is
repeated recursively with each triangle, the algorithm generates a Sierpinski
Gasket. 19

2.14 A Sierpinski gasket generated by the application of a stochastic algorithm. . 20
2.15 A visualization of the famous Mandelbrot set. This fractal was discovered by

Benoit B. Mandelbrot and represents a map of all connected Julia sets. [Bey]. 22
2.16 Three iterations of an L-System creating a Koch snowflake fractal. The image

to the left shows the graphical representation of the initial string while the
other two images show the result after one and two derivation steps. [Tra] . . 23

2.17 A fractal landscape that was generated using the Diamond Square algorithm.
This algorithm for the creation of fractal landscapes is used by different terrain
generation frameworks. 24

3.1 An Inductive Rotation Pattern created with the 3-way Method by Hoffstetter
Kurt. This specific pattern is titled “CoffeeC” and was generated with a
previously developed IR software package. Image courtesy of Hofstetter [Hofb] 25

3.2 A figure showing the position of the first pivot for the creation of 2-way
Inductive Rotation Patterns. The image also depicts the proportions of
star-shaped prototiles defined by Hofstetter. Image courtesy of Hofstetter [Hofa] 27

3.3 Several figures representing the necessary steps to create a 3-way Inductive
Rotation Pattern. A square shaped tile is copied three times and rotated
around the pivot which is marked as a red dot at the right side of each shape.
This produces the first iteration step (Shape 2 from the left). To generate
another iteration-step the procedure is repeated with the whole pattern and a
new pivot (which is again positioned at the rightmost point in the pattern).
In each step of the procedure the new shapes are placed behind the previously
created shapes. Original Image courtesy of Hofstetter [Hofa] 28

3.4 Visualization of the indexing scheme for the grid based algorithm. The left
side of the figure shows the initial grid with only a single prototile analogous to
the first iteration in Figure 3.3. The prototile is represented as four numbers
which represent the four portions of the prototile’s texture and their rotation.
The bottom image shows all possible grid entries and how these grid numbers
are mapped to the initial texture. The right side of the figure shows the grid
after one iteration. The resulting numbers represent the four prototiles of
the first iteration of a 3-way Inductive Rotation Pattern analogous to second
iteration in Figure 3.3. [Par13]. 30

3.5 Visualization all possible matrix combination for an IFS with two functions.
To generate the points for an IFS-iteration step the initial points are copied
and transformed by each combination of matrices of a certain iteration step.
The Figure shows the initial matrices with a red border. The arrows between
the boxes that contain the composite matrices show how they are constructed.
Arrows originating from matrix combinations of the same iteration are colored
similarly. The resulting structure is a hierarchical graph. 33

3.6 Visualization of all possible matrix combinations for a 2-way Inductive Ro-
tation Graph with two initial matrices. In contrast to an IFS the Inductive
Rotation Pattern is generated by copying and multiplying all initial points
with all matrix combinations up to a certain iteration level. The figure shows
the initial matrices and the new matrices of each iteration with a red border.
The arrows between the boxes that contain the matrix combinations show
how they are constructed. Arrows originating from matrix combinations of
the same iteration step are colored similarly. The resulting structure is a
hierarchical graph. 34

3.7 This figure shows a 2-way Inductive Rotation Pattern after two iteration steps.
The algorithm starts with the red tile. The first iteration introduces the 2
blueish tiles. All other tiles are generated by the second iteration. Similarly
colored tiles, that are created in the second iteration share the leftmost matrix
in their matrix chain. This leftmost matrix is always responsible for the
largest translation of the according tile. The figure also depicts the matrix
chain which is responsible for each tile’s position in the pattern. 37

3.8 This figure shows a 3-way Inductive Rotation Pattern after two iteration steps.
The algorithm starts with the red tile. The first iteration introduces the 3
blueish tiles. All other tiles are generated by the second iteration. Similarly
colored tiles, that are created in the second iteration share the leftmost matrix
in their matrix chain. The leftmost matrix is always responsible for the largest
translation of the according tile. The figure also depicts the matrix chain
which is responsible for each tile’s position in the pattern. 38

3.9 This figure depicts which index corresponds to which tile of a 3-way Inductive
Rotation Pattern. 40

3.10 The component pprojy for Expression 3.7 is computed by first rotating the
vector p by 120° and projecting it onto the y-axis. 41

3.11 3-way IR-Patterns can be created by applying substitution rules. Starting with
four initial seed tiles, the rules T1, T2, T3 and T4 are applied to replace each
tile in every step while keeping the rotation of the original tile, by rotating
the tile given by the rule accordingly. After three steps this yields the tiling
to the right. [FH15]. 43

3.12 A Sierpinski Gasket generated by a variation of the parameters of the Inductive
Rotation Method. This image was generated by setting pr = 3 and using
~ppivot(l) = (2l, 1). 45

3.13 Different fractals that were produced by experimenting with the parameters
of the Inductive Rotation Method. The top left shape was created by setting
~ppivot(l) = (2l − 1.9l, 1) and pr = 5 the other shape was created by setting
~ppivot(l) = (2l + 0.55, 1) and pr = 5 . 46

3.14 The water tile used to produce the Pattern in Figure 3.15 46
3.15 A water texture, created by applying the 5-way Inductive Rotation Method

and the water tile depicted in Figure 3.14 for five iterations. The resulting
pattern contains fewer artifacts than periodic tilings created with the same
prototile. 48

3.16 Comparison of different texture tilings. The images on the left side were created
by stitching together the same texture in x- and y-direction while the images
on the right side were created with the 5-way Inductive Rotation Method.
Images on the left side contain artifacts resulting from the periodicity of the
pattern. While the right side also contains artifacts, they are less apparent
due to their aperiodic nature. 49

3.17 A grass-pattern created with the 5-way Inductive Rotation Method. At a
closer zoom level texture artifacts from overlapping tiles, marked in red,
become more apparent. 50

4.1 Different orders of magnitude for memory access. While the CPU can access
its RAM at a relatively high rate, transferring data between the CPU and
the GPU is slow. The GPU on the other hand can access its memory at a
very rate. [Lun12] . 54

4.2 This figure shows the alignment of thread groups and their respective threads.
Direct Compute dispatches thread groups in a three-dimensional grid with
x, y and z dimensions. The threads of each thread-group are also aligned in
a three-dimensional grid. The figure shows a grid of 6 thread-groups (2 in x
and 3 in y direction) with 64 threads (8 in x and 8 in y direction) in each
thread group. The number of threads in a group should be a multiple of the
wavefront- or warp-size. [Lun12] . 55

4.3 The sprite based algorithm as well as the parallel algorithm compute the
corner coordinates of each tile by adding offset vectors to the previously
computed center coordinate. The offset vectors are computed in advance and
stored in a multidimensional array V. To create a tile, the algorithm accesses
the array at the correct indices and adds the offset vector to the tile center
to get to a corner coordinates of the tile. Texture coordinates of each corner
are stored in a multidimensional array similarly such that the index of each
offset vector a corresponds to the index of the texture coordinate located at
the same corner the offset vector points to. The number of offset vectors
and texture coordinates which are stored depends on the Inductive Rotation
Method. The figure shows the offset vectors which are necessary to compute
the corner coordinates for a tile when the 3-way Inductive Rotation Method is
used. For each of the four possible rotations of the textured tile, four different
offset vectors (drawn in green, black, blue and orange) need to be stored.
However, since two triangles are used to construct a tile some of the vectors
and texture coordinates are stored redundantly. In the image these are always
the top left and bottom right vectors shown in the tiles. 59

4.4 A diagram depicting the input and output buffers for the parallel algorithm
which are used by the compute shader function. The input buffers, which
also need CPU access, contain only a very small amount of data. The output
buffers contain the vertices of the tiles. These buffers, in contrast to all
previous methods, need only GPU access. 61

4.5 To create a mapping between the current thread and a tile index, Expression
4.2 is applied. Thread groups are depicted as boxes in different colors. There
are xmax = 3 thread groups in the x-dimension and ymax = 3 thread groups
in the y-dimension in this example. Each of the thread groups contains three
threads in the example (tmax = 3). The parameter rspilt is set to zero. 63

4.6 This figure explains how a specific thread is mapped to vertex and/or texture
buffers by Expression 4.3. The example uses the same parameters as in Figure
4.5: xmax = 3, ymax = 3 and tmax = 3. This yields the index 18 in the vertex
or texture buffer for a thread with the parameters tindex = 2, tgx = 1, tgy = 2
and rspilt = 0. The Inductive Rotation Pattern is stored in a back to front
order this way, which is necessary for rendering. 64

4.7 Pattern rendering is split into multiple passes with the parallel LOD approach.
This figure shows the first four passes for a 3-way Inductive Rotation Pattern.
The number rspilt determines which tiles are rendered by applying Expression
4.2. These partial patterns were rendered with 1893376 tiles per pass. To
render a composite pattern, the algorithm first computes the necessary number
of tiles for the pattern and renders each partial pattern to the same texture
in a back to front order. This means the pattern with the highest number
rsplit is rendered first. 68

4.8 The figure shows the concept of the parallel LOD algorithm. The “texture
camera”, marked with a red boundary, views a part of the pattern which was
rendered to a large (e.g., 8192 * 8192 texels) texture in advance. If the user
moves the “render camera” out of the boundaries (into the orange area) or
the maximum zoom level is exceeded, the texture is recreated with updated
“texture camera” and “render camera” locations. The view port’s size is about
1/4 of the size large texture without zooming. 69

4.9 Comparison of the resulting pattern of the substitution tiling approach shown
in the right column to a pattern created with the parallel method in the left
column. The substitution method creates a tiling of the plane, containing the
Inductive Rotation Pattern. [Bri] . 70

4.10 A class diagram showing the Inductive Rotation project. The abstract Pat-
ternRenderer class is implemented by all algorithms described in Section 4.3.
This chart was generated with Microsoft Visual Studio 2013. 73

4.11 A class diagram showing the prototile editor project. The PaintWindow class
contains the UI for the prototile editor. The State and Command patterns
from Gamma et al. [GHJV95] are implemented by classes which derive from
the IPaintCommand and IState interfaces. Classes which’s names contain
either Command or State derive from these interfaces and implement specific
drawing commands and states. The buffer class encapsulates logic for undo
and redo operations. This chart was generated with Visual Studio 2013. . . . 74

4.12 A screen shot showing the development UI. In contrast to the WPF GUI
designed for Hofstetter, this UI is used for shader debugging and performing
experimental trials such as stacking banana minions in a Sierpinski triangle.
[Chi]. 76

4.13 A screen shot showing the WPF GUI. Access to frequently used functions is
provided by the toolbar at the top. The button with the pencil starts the
prototile editor. Other options can be accessed by drop down menus. The
user interface also supports loading textures from the clipboard or via drag
and drop. 78

4.14 A screen shot showing the bookmarks feature. Each bookmark stores the
current camera coordinates, render parameters and the active texture. By
accessing the bookmark at a later time, the pattern is restored. Bookmarks
are stored permanently in an XML file. 79

4.15 A screen shot of the prototile editor window. While drawing onto the tile
texture or after translating or rotating the tile, the generated pattern in the
main window reflects the changes to the texture. 80

4.16 An image depicting the “Duplicate Prototile” feature of the prototile editor.
The top window shows the prototile editor before the feature was activated.
The bottom window shows the prototile editor after activating the feature.
The tile from the top window has been copied and reflected for four times.
Hofstetter uses reflected prototiles frequently in his pattern design process. . 81

5.1 This pattern, called Oriental_P, was created by Hofstetter with the Inductive
Rotation Framework. 90

5.2 This pattern, called P_traces, was created by Hofstetter with the Inductive
Rotation Framework. 91

5.3 This pattern, called 8_bears, was created by Hofstetter with the Inductive
Rotation Framework. 92

6.1 A figure showing the position of the first pivot for the creation of 2-way
Inductive Rotation Patterns. The image also depicts the proportions of
star-shaped prototiles defined by Hofstetter. Image courtesy of Hofstetter [Hofa] 96

6.2 3-way IR-Patterns can be created by applying substitution rules. Starting with
four initial seed tiles, the rules T1, T2, T3 and T4 are applied to replace each
tile in every step while keeping the rotation of the original tile, by rotating
the tile given by the rule accordingly. After three steps this yields the tiling
to the right. [FH15]. 100

6.3 This figure shows the alignment of thread groups and their respective threads.
Direct Compute dispatches thread groups in a three-dimensional grid with
x, y and z dimensions. The threads of each thread-group are also aligned in
a three-dimensional grid. The figure shows a grid of 6 thread-groups (2 in x
and 3 in y direction) with 64 threads (8 in x and 8 in y direction) in each
thread group. The number of threads in a group should be a multiple of the
wavefront- or warp-size. [Lun12] . 102

6.4 To create a mapping between the current thread and a tile index Expression
4.2 is applied. Thread groups are depicted as boxes in different colors. There
are xmax = 3 thread groups in the x-dimension and ymax = 3 thread groups
in the y-dimension in this example. Each of the thread groups contains three
threads in the example (tmax = 3). The parameter rsplit is set to zero. 103

6.5 Pattern rendering is split into multiple passes. This figure shows the first four
passes for a 3-way Inductive Rotation Pattern. The number rspilt determines
which tiles are rendered by applying Expression 4.2. These partial patterns
were rendered with 1893376 tiles per pass. To render a composite pattern,
the algorithm first computes the necessary number of tiles for the pattern
and renders each partial pattern to the same texture in a back to front order.
This means the pattern with the highest number rsplit is rendered first. . . . 104

6.6 The figure shows the concept of the parallel LOD algorithm. A part of the
pattern is stored in a large (e.g., 8192 * 8192 texels) texture marked with the
red boundary. The user sees only a part of the pattern, marked as “Camera
Viewport”. If the user’s view port moves out of the boundaries (into the
orange area) or the maximum zoom level is exceeded, the texture is recreated
with updated view port locations. The view port’s size is about 1/4 of the
size large texture without zooming. 105

6.7 Comparison of the resulting pattern of the substitution tiling approach shown
in the right column to a pattern created with the parallel method in the left
column. The substitution method creates a tiling of the plane, containing the
Inductive Rotation Pattern. [Bri] . 107

6.8 A screen shot showing the WPF GUI. Access to frequently used functions is
provided by the toolbar at the top. The button with the pencil starts the
prototile editor. Other options can be accessed by drop down menus. The
user interface also supports loading textures from the clipboard or via drag
and drop. 108

6.9 A screen shot of the prototile editor window. While drawing onto the tile
texture or after translating or rotating the tile, the generated pattern in the
main window reflects the changes to the texture. 109

xix

List of Tables

3.1 An example on how to compute the indices k and l for the rotation and
translation matrices. In this specific example the matrices for the tile with
index 22 are sought. To find the indices k the starting number is successively
divided by powers of pr and the remainders of these divisions are kept. The
indices l are found by simply numbering the calculations bottom up. 36

3.2 This table depicts how tile indices are mapped to matrices for the 2-way
Inductive Rotation Method. The first row shows the matrix chains which
correspond to each index of the second row. The numbers in the other rows
represent the matrix indices which are computed according to the indexing
scheme. To compute the numbers in rows k3 to k1 which represent the indices
for the rotation matrices at the different levels, the index is first divided by
9 to get the value for k3, the remainder is then divided by 3 to compute
k2’s value. The remainder of the last division is the value for k1. For larger
indices (>26) the table would be extended by another row labeled k4, k5, ...,
to compute the position of the tile. 36

3.3 Matrices which are needed to construct 2-way and 3-way IR-Patterns for
different numbers of iterations. 39

3.4 Matrices which are needed to construct 5-way IR-Patterns for different num-
bers of iterations. 39

3.5 X-coordinates of 2-way rotation pivots in the first row and the differences
between their values in the second row. 40

3.6 Approximate y-coordinates of 2-way rotation pivots in the first row and the
differences between their values in the second row. Numbers in the third row
show how often the approximate factor pprojy = −0.58 is contained in the
y-diff value above each column. 42

5.1 Measured times for generating 3-way Inductive Rotation Patterns . *This is
the time for recomputing the LOD texture on the GPU, when moving the
camera. This happens when the pattern is recomputed and introduces a lag
of this duration. The lag occurs when the camera moves out of the LOD
texture’s boundary. 85

5.2 Measured times for generating 5-way Inductive Rotation Patterns . *This is
the time for recomputing the LOD texture on the GPU, when moving the
camera. This happens when the pattern is recomputed and introduces a lag
of this duration. The lag occurs when the camera moves out of the LOD
texture’s boundary. 85

5.3 Measured times for generating 2-way Inductive Rotation Patterns . *This is
the time for recomputing the LOD texture on the GPU, when moving the
camera. This happens when the pattern is recomputed and introduces a lag
of this duration. The lag occurs when the camera moves out of the LOD
texture’s boundary. 86

5.4 GPU Times for the parallel algorithm. 86
5.5 Total memory usage when creating patterns with the 2-way Method. The

values in the columns titled VRAM represent the amount of dedicated video
memory used by the algorithms while values in the RAM-column show their
usage of host-machine memory. 87

5.6 Total memory usage when creating patterns with the 3-way Method. The
values in the columns titled VRAM represent the amount of dedicated video
memory used by the algorithms while values in the RAM-column show their
usage of host-machine memory. 87

5.7 Total memory usage when creating patterns with the 5-way Method. The
values in the columns titled VRAM represent the amount of dedicated video
memory used by the algorithms while values in the RAM-column show their
usage of host-machine memory. 88

5.8 Total memory usage for the parallel algorithms. All parallel algorithms have
a constant memory footprint. The values in the VRAM columns represent
the usage of dedicated video memory of the graphics card. The values in the
RAM columns represent the usage of host machine memory. 88

6.1 An example on how to compute the indices k and l for the rotation and
translation matrices. In this specific example the matrices for the tile with
index 22 are sought. To find the indices k the starting number is successively
divided by powers of pr and the remainders of these divisions are kept. The
indices l are found by simply numbering the calculations bottom up. 98

6.2 The pattern generation times for the parallel algorithm compared to the
pattern generation times of the sprite based algorithm. The parallel algorithm
always generates a fixed amount of tiles. The time that the algorithm needs
to create the pattern, however, is not noticeable by the user. 109

CHAPTER 1
Introduction

To create two-dimensional, aperiodic patterns the artist Hofstetter Kurt developed a
method called the Inductive Rotation (IR). A first scientific investigation of IR-Patterns
was conducted by Parzer [Par13], who developed different algorithms for the creation of
IR-Patterns and provided “The Irrational Image Generator”, a program which generates
IR-Patterns. However, this tool provides only pattern generation methods but offers
no features for a convenient artistic design process. Besides, there are other scientific
questions regarding the Inductive Rotation Method: One question is how to efficiently
parallelize pattern generation and split the generation process of large patterns into
multiple threads. The other question is if it is possible to generate Inductive Rotation
Patterns by applying tile-substitution methods. Recent work [FH15] indicates that this
is possible for a subset of these patterns.
The aim of this thesis is the implementation of a new framework for the creation of
patterns with the Inductive Rotation Method. This new Inductive Rotation Framework
should include the features of the precursor software from Parzer [Par13], provide new
features which help to improve Hofstetter’s design process (e.g., a live prototile editor)
and contribute a new method for parallelizing pattern generation. Furthermore, the
thesis investigates the advantages and disadvantages of the substitution method from
Frettlöh and Hofstetter [FH15], provides an overview of currently existing algorithms for
the generation of Inductive Rotation Patterns and gives insights on their structure and
relationship to fractals.
The thesis is structured as follows:
Chapter 2 contains an introduction to related topics such as tilings, fractals and Voronoi
diagrams. Chapter 3 gives an overview of the Inductive Rotation Method, describes
generation algorithms for Inductive Rotation Patterns and provides ideas for possible
applications. Chapter 4 describes the implementation process and provides details of
the software implementation. Chapter 5 contains algorithm benchmarks, user feedback,
images of new patterns and a conclusion. Chapter 6 summarizes the contents of the
thesis.

1

CHAPTER 2
State of the Art

This chapter offers an overview of the state of the art regarding patterns, tilings, fractals
and other topics related to the Inductive Rotation Method. The first section reviews the
definition of mathematical plane tilings and further describes the difference between the
terms periodic and aperiodic in this context. Wang tilings, i.e., aperiodic tilings with
interesting applications for progressive texture generation, are presented in the second
section and Voronoi diagrams, which are reviewed in the third section, are a widely
used and well known partitioning of the plane. Voronoi diagrams create tilings based
on distances from a point set. Hyperbolic geometry, presented in Section 2.4, lives in a
saddle shaped environment and fractals, self similar sets, are discussed in Section 2.5.

2.1 Tilings of the Plane

This section gives a general overview on plane-tilings. Grünbaum and Shephard [GS86],
the two authors of a standard reference book on mathematical tilings, define tilings
as “a countable family of closed sets, which cover the plane without gaps or overlaps”.
Mathematical tilings cover the infinite plane with polygons originating from a set of so
called prototiles. To create a valid tiling, the pattern must not contain any overlaps or gaps.
The following definitions provide the reader with a more comprehensive categorization of
tilings:

• A tiling is called periodic, if it is possible to map each part of the tiling to itself
by applying translations only. This means a translation vector (x, y) with x 6= 0
and/or y 6= 0 exists that when applied yields the same tiling.

• A tiling is called nonperiodic, if it is not periodic.

• A set of prototiles is called an aperiodic tile set, if it is not possible to construct
a periodic tiling from the set.

3

Figure 2.1: Three different possibilities to create plane tilings. The images depict, from
left to right, a periodic tiling with a single prototile, a periodic tiling using three different
prototiles and a nonperiodic tiling created with a set of four prototiles. Please note that the
set of prototiles used to construct the nonperiodic tiling is not aperiodic. [Coma,Comb,Pal]

The Schläfli Symbol is a notation which describes tessellations or regular polytopes in
different coordinate spaces and geometries. For tilings the notation is of the form {p, q},
where p is an integer defining the number of corner vertices of a regular polygon and the
integer q defines the number of polygons touching at each vertex.
In the Euclidean plane there exist exactly three different tessellations by regular polygons
which use only a single prototile. The tessellation by equilateral triangles {3, 6}, squares
{4, 4} and hexagons {6, 3}. Figure 2.1 depicts a periodic tiling with a single regular
polygon, a periodic tiling using a set of regular polygons and a nonperiodic tiling
constructed with a set of prototiles.

2.2 Wang Tiles

Wang tiles, developed by Hao Wang, a mathematician and philosopher from the 20th

century, are quadratic tiles with color-coded edges. To create a valid Wang tiling, copies
of Wang tiles belonging to the set of prototiles are arranged in a way such that only tiles
with matching edge colors touch. This approach produces periodic or aperiodic tilings of
the plane, depending on the chosen set of prototiles. It has been proven mathematically
that it is undecidable if an arbitrary given set of Wang tiles can tile the plane periodically.
This fact was discovered by a student of Wang in the course of researching the so called
domino problem.

2.2.1 Construction of Wang Tilings

There are several algorithms to efficiently construct Wang tilings. A popular method
presented by Cohen et al. [CSHD03] is based on a stochastic scan line algorithm.

4

Figure 2.2: An example for a set of Wang tiles. The edges of Wang tiles are color coded.
In a Wang tiling only tiles with identically colored edges may touch. Multiple subsets of
this specific set of tiles may also produce valid Wang tilings. Cohen et al. exploit this
property to create Wang tilings with their stochastic tiling algorithm. [CSHD03]

First a non aperiodic set of tiles, which can trivially tile the plane, is selected. Figure 2.2
shows such a set of tiles. In this set several subsets of tiles, e.g. tile b or f, can tile the
plane on their own. Cohen et al. then apply the following procedure to generate Wang
tilings.

1. Select any tile from the set and place it in the northwest corner

2. Tile the topmost row from west to east by selecting tiles for which the west edge of
the new tile matches the east edge of the previous tile

3. Select a tile for the next row whose north edge matches the south edge from the
tile in the row above

4. Continue by randomly selecting tiles for this row whose north edges match the
south edges of the tiles from above and whose west edges match the east edge of
the tile to the west. This is always possible because the set described by Cohen et
al. contains tiles with all necessary NW edge-combinations to this end.

5. Repeat step 3 until the desired amount of rows has been generated

Lagae published a summary of algorithms [Lag09] which generate different forms of Wang
tilings. One example are Wang tilings which use color coded corners instead of color
coded edges. To create a valid tiling with these corner coded tiles, the corner-color of
adjacent tiles has to match.

2.2.2 Application of Wang Tilings

Wang tiles have several interesting applications in computer graphics. This kind of
tilings can be used for procedural synthesis of two-dimensional data, like textures or
height-fields. One advantage of this method is that it avoids apparent repetitions and
artifacts occurring through the periodicity of the texture. This leads to more aesthetic
results. Figure 2.3 illustrates this fact by comparing a texture generated with a Wang
tiling to periodic texture mapping. The idea to use Wang tilings for procedural texture
generation was first presented by Stam [Sta97], who applies this method to create realistic
ocean scenes with sea waves and caustics. Stam uses a set of 16 different Wang tiles
to this end. Compared to periodic texture mapping, this method produces less visible

5

artifacts and also conserves GPU memory.
Cohen et al. [CSHD03] devised the stochastic algorithm presented in Section 2.2.1. They
show, how their approach, which is based on Poisson distributions, is used to generate
large sunflower textures and height-fields. These textures are then combined to render
realistic outdoor scenes. Figure 2.4 shows an image generated with this method.
Wei [Wei04] extends the work of Cohen et al. by implementing their algorithm in a GPU
friendly approach. Wei’s scheme generates textures directly, via fragment- or pixel shader
programs.
Kopf et al. [KCODL06] present a technique for rapidly generating large point sets
with a blue noise Fourier spectrum and high visual quality. They use a deterministic,
Wang Tiling based, algorithm with a constant memory footprint. Their algorithm has
applications in global illumination, half-toning, non photo-realistic rendering and other
fields.

2.3 Voronoi Diagrams

While Wang tiles and other tessellations use regular polygons to partition the plane,
the approach of Voronoi diagrams is different. Voronoi diagrams subdivide the plane
into regions based on point distances. While Descartes already had a similar idea in
1644 [Kle04], the mathematical theory behind Voronoi diagrams was first developed and
published by the Russian and Ukrainian mathematician Georgy Feodosecvich Voronoy in
the early 20th century [Vor08]. This section provides an overview of Voronoi diagrams.

2.3.1 A Partitioning of the Plane Based on Point Distances

The construction of a two-dimensional Voronoi diagram requires a set of points which
is located on a single, two-dimensional plane (The extension of Voronoi diagrams to
arbitrary dimensions is left out here for the sake of simplicity). Given a set of n (generator)
points S = {p1, p2, p3, ...} in R2, Voronoi regions are constructed such that each region is
comprised of all points in R2 which are closer to a point pi in S than any other point
in S [Kle04]. To further define the term “close“ a distance measure has to be used. To
this end the Euclidean distance, the Manhattan distance or any other distance measure
can be applied. The points in R2 where the distance to both generator points p and
q is equal form a border of this Voronoi region. Such a set of points is also called a
bisector [Kle04] of p and q and is defined as B(p, q) = {x ∈ R2; |px| = |xq|} . Each
bisector forms two half-spaces and all intersections of the half spaces created by the
bisectors of p’s surrounding generator points form the Voronoi region V R(p, S) of p. As
shown in Figure 2.5, Voronoi regions are either formed by closed polylines or by simple
polylines (points that lie on the border of the generating cloud which are not surrounded
by other points). The set of all Voronoi regions of the generator points in S forms the
Voronoi diagram V (S).

6

Figure 2.3: Comparison of a texture generated by periodic texture mapping (top) to a
texture generated with a Wang tiling algorithm. The texture at the bottom does not
suffer from artifacts originating from the periodicity of the texture. [Sta97]

7

Figure 2.4: An image showing a sunflower field that was created with the Wang tiling
algorithm from Cohen et al. [CSHD03]

2.3.2 Delaunay Triangulation: The Dual graph of Voronoi Diagrams

An interesting fact about Voronoi diagrams is that their dual graph is formed by the
Delaunay triangulation of the same set of generator points. A Delaunay triangulation for
a set of S points in R2 is defined as a triangulation DT (S), with the constraint that no
point of S is located in the circumcircle of any triangle contained in the triangulation
DT (S) [Kle04].
A valid Delaunay triangulation DT (S) for the set of generator points in S can be directly
obtained from the Voronoi diagram V (S) by connecting all points p and q whose Voronoi
regions V R(p, S) and V R(q, S) exhibit a common Voronoi edge in V (S). The inverse
of this process, generating a Voronoi Diagram from the Delaunay triangulation DT (S),
is also possible. Figure 2.6 shows the Delaunay triangulation of the Voronoi diagram
depicted in Figure 2.5.

2.3.3 Construction of Voronoi Diagrams

Besides of computing the Delaunay triangulation for a set of points and then obtaining
the corresponding Voronoi diagram as its dual graph, different algorithms which compute

8

Figure 2.5: A Voronoi diagram. The generator points of the diagram are shown as black
dots. Each differently colored cell represents a Voronoi region. Generator points in
the outer regions form simple polylines with infinite areas, while points surrounded by
a sufficient number of generator points form closed polylines with a finite area. The
diagram was generated with a Java applet [Che10].

Voronoi diagrams directly, exist. One popular example is Fortune’s Algorithm [For86]
which uses a line sweep approach and has a time complexity of O(n logn), where n is
the number of input points. The algorithm is outlined briefly as follows:

Fortune’s algorithm applies a sweep line, which is a line segment, and a beach line,
which is a piecewise curve constructed from intersecting parabolas, to construct Voronoi
diagrams. Each parabola of the beach line belongs to a specific generator point. The sweep
line starts at the top and moves through the point set as depicted in Figure 2.7. While
the sweep line progresses through the set of points, the beach line is updated constantly
by keeping the base of each parabola halfway between the generator point belonging to
the parabola and the position of the sweep line. The points where the parabolas in the
beach line intersect construct the Voronoi diagram’s edges as the algorithm proceeds.
Parabolas are only constructed from points that were already encountered by the sweep

9

Figure 2.6: An image depicting a Delaunay triangulation. This specific Delaunay
triangulation is the dual graph of the Voronoi diagram shown in Figure 2.5. The diagram
was generated with a Java applet [Che10].

line. While progressing the algorithm triggers one of two events if the corresponding
condition is met:

• Point Event: This event is triggered when the sweep line encounters a new point.
This causes a new parabolic arc to appear in the beach line.

• Circle Event: This event is triggered when a parabola shrinks to a point. The
according parabolic arc is removed from the beach line and a Voronoi vertex has
been found.

The algorithm ends when the sweep line encounters the end of the plane and the whole
diagram has been constructed.

Other examples for algorithms that construct Voronoi diagrams are the Divide and
Conquer algorithm by Shamos et al. [SH75] and the Randomized incremental construc-
tion algorithm by Guibas et al. [GKS90]. Hoff III et al. [HKL+99] present an algorithm

10

Figure 2.7: A visualization of Fortune’s algorithm. The Voronoi diagram is constructed
as the sweep line moves through the set of generator points. The beach line is constructed
from arcs with bases halfway between their corresponding generator points and the sweep
line. Arcs marked in red will collapse in the next iterations and be converted to edges
of a Voronoi cell when they disappear. The image was generated with a Java-script
applet [Hil].

11

for the computation of Voronoi diagrams that is based on a Z-Buffer technique and can
be implemented directly on graphics hardware. Glanville [Gla04] generate “Voronoi-like”
regions (which are not guaranteed to be exact Voronoi regions) with their “Texture
Bombing” algorithm. The algorithm is used for procedural texture generation and avoids
visual artifacts, similar to Wang Tilings.

2.3.4 Applications of Voronoi Diagrams

Voronoi diagrams are a well researched topic with applications in many fields. A classical
problem which is solvable by Voronoi diagrams is the nearest neighbor search: For a set
S of points in an n-dimensional space L and a given point l in this space, the closest
point to l in S is sought. This is also sometimes called the “post office problem” in two
dimensions.
Other applications for Voronoi diagrams are found in biology where they are used to
model and analyze the competition of plants, in metallurgy, marketing, robotics and
many other fields [Dry15].
In geometric modeling Delaunay triangulations are used for generating surface meshes,
since they provide an excellent way for constructing triangulations which avoid narrow
triangles. Müller et al. [MCK13] developed an algorithm which is based on Voronoi
diagrams for the creation of dynamic fractures. Their algorithm is used to simulate
realistically looking, real-time destructions of three dimensional objects in simulations or
computer games. Destroyable objects are represented as volumetric approximate convex
decompositions, which are Voronoi decompositions of space.

2.4 Hyperbolic Geometry
Hyperbolic space is a non-Euclidean geometric space which is created by replacing the
definition of the term “parallel”. Two-dimensional, hyperbolic space can be imagined
as a saddle-shaped infinite surface in three dimensional Euclidean space (See Figure
2.9). It is not possible to visualize hyperbolic space directly by creating a hyperbolic
plane in Euclidean space. Therefore, to visualize geometry located in hyperbolic space,
it is necessary to employ a model which maps hyperbolic geometry to Euclidean space.
This section provides an overview of two-dimensional hyperbolic geometry, reviews its
applications and examines hyperbolic plane tilings.

2.4.1 Overview

Hyperbolic geometry originates from attempts to deduce Euclid’s fifth postulate from the
remaining four postulates. This was tried by different mathematicians until the end of
the nineteenth century. This fifth postulate, which is also called the “parallel postulate”
states [SW]:

Given any straight line and a point not on it, there “exists one and only one straight line
which passes” through that point and never intersects the first line, no matter how far

12

Figure 2.8: M.C. Escher visualized hyperbolic geometry by a woodcarving titled “Circle
Limit IV”. The devils and angels have the same size, but since they live in a hyperbolic
space, figures located closer to the border appear smaller when they are mapped to
Euclidean space. [Esc].

13

Figure 2.9: In hyperbolic space the environment of each point is saddle-shaped and has a
constant negative curvature. [Cla].

they are extended.

None of them ever succeeded. Instead of trying to prove the postulate, mathemati-
cians of the nineteenth century started to examine the consequences of its denial. By a
modification of the postulate, Hyperbolic geometry was discovered. The modified fifth
postulate states:

Given a line and a point not on it, there is more than one line going through the
given point that is parallel to the given line.

This modification has interesting consequences [SW]:

• For any infinite straight line L and any point p not on it, there are at least two
infinitely extending straight lines that pass through p which do not intersect L.

• In hyperbolic geometry the sum of all angles in a triangle is always less than 180°.

14

• Triangles which possess the same angles also possess the same area.

• The sum of angles is not equal in all triangles.

• There are no “similar” triangles as in Euclidean space.

Hyperbolic geometry is characterized by a constant negative curvature and can be
imagined as a “saddle” shaped surface, or the infinite surface of a hyperbolic paraboloid.
This is depicted in Figure 2.9. To visualize a hyperbolic plane, a model which converts
its geometry to Euclidean space has to be applied. Different models have been developed
for this purpose: Two examples are the Poincaré Disc Model and the Klein-Beltrami
Model. The Poincaré Disc Model represents points in hyperbolic geometry as points
in the interior of an n-dimensional unit sphere. Figure 2.10 depicts the projection of a
hyperbolic plane to Euclidean space using the Poincaré model. Shapes of the same size
appear larger when they are positioned close to the center of the projection, while they
appear smaller when they are placed close to the border of the projection.

2.4.2 Uniform Tilings of the Hyperbolic Plane

There exist infinitely many possibilities for tessellations with regular polygons in the
hyperbolic plane. This originates from the fact that in hyperbolic geometry the sum of
the angles of a triangle is less than 180°. Figure 2.11 shows different hyperbolic tilings.

To visualize uniform hyperbolic plane tilings the General Replication Algorithm from
Durnham [Dun07] can be applied. It starts with multiple, textured, convex polygons
referred to as the fundamental regions. To construct a tiling it transforms copies of
these regions in the hyperbolic plane, a process called ”replication“ by the author of the
algorithm. The algorithm was inspired by Escher’s woodcarvings titled “Circle Limit”.
Figure 2.8 depicts “Circle Limit IV”.
The steps which lead to the creation of a tiling with this algorithm are outlined briefly
as follows.:

First the central layer, the so called p-gon pattern, is created by reflecting and
rotating one of the initial fundamental regions according to its reflection symmetries.
The algorithm starts with copies of the inner fundamental regions and then continues
recursively with the outer layers. The recursion is terminated after a predefined recursion
depth has been reached. To fill the complete hyperbolic plane the recursion depth would
have to be infinite.

2.4.3 Applications for Hyperbolic Geometry

Hyperbolic geometry and its visualizations were used for artistic purposes like in M.C.
Escher’s woodcarving “Circle Limit IV”, which is depicted in Figure 2.8. Lamping et
al. [LRP95] were also inspired by this painting and created “a technique for visualizing

15

Figure 2.10: A visualization of hyperbolic space with the Poincaré Disk Model. The
visualization is distorted. In hyperbolic space all figures possess the same size and the
distance between them is equal. The dashed edge of the disk represents infinity. [Cla].

large hierarchies” which exploits the properties of hyperbolic space. To explore hierar-
chical graphs like directory trees or XML-files they perform the layout of the graphs,
which represent the data, in hyperbolic space. The advantage of this concept is an
increased perception of the node’s environments, which preserves navigational context
while still providing an overview of the whole tree. Margenstern [Mar09] presents ideas
for applications based on {5, 4} pentagonal grid and {7, 3} heptagonal grid tilings. Two
of Margenstern’s ideas are a pentagonal grid for keyboard layouts and a hyperbolic color
chooser based on a heptagonal grid.

2.5 Fractals

The term fractal characterizes a family of shapes which can be found in nature or
are specified by mathematics and algorithms. A common feature of all fractals is their
detailed self similarity and scale invariance. Figure 2.12 depicts an example for a fractal
in 3-D. fractals exist in many different shapes and variations. This chapter provides only

16

Figure 2.11: Two visualizations of uniform Hyperbolic plane tilings. The tilings are
denoted by the Schläfli symbols {5,4} and {4,5} (from left to right). Please note that
there are infinitely many possible uniform tilings of the hyperbolic plane. The images
were generated with a Java applet from [Joy].

Figure 2.12: The Pythagoras tree fractal. This fractal is composed of self similar shapes,
which are tree look-a-likes. [Bro].

17

a short overview on the topic of fractals. The comprehensive work “The fractal geometry
of nature” by Benoit B. Mandelbrot [Man82], who coined the term fractal, offers a much
deeper insight into this topic. Mandelbrot was one of the first scientists who employed
computer graphics to create beautiful visualizations of fractals.

2.5.1 Overview

The term fractal can be traced back to Bernard Bolzano (1830) or Bernd Riemann (1861)
who were already researching fractal curves but did never publish their work [Pic09].
About a century later Karl Weierstrass defined a continuous mathematical function which
was nowhere differentiable and would nowadays be considered as a fractal curve. Other
noteworthy mathematical contributions to the field of fractals were later given by Helge
von Koch (Koch Kurve), Georg Cantor (Cantor Set), Gaston Julia (Julia Set) and several
others. However, before Benoit B. Mandelbrot published his famous book, visualizations
of fractals were only existent in the form of simple hand drawings. Mandelbrot became
popular by applying computer graphics to visualize fractals. He also provided a thorough
definition of the term “fractal” and discovered visualizations of the popular Mandelbrot
Set. This set, which is a fractal itself, serves as a map for other polynomial fractals (Julia
and Fatou Sets).
Keneth Falconer, a mathematician specialized in the research of fractal geometry, identifies
fractals as mathematical structures which feature the following attributes [Fal03]:

• Self similarity: Fractals exhibit self similarity on different scales.

– Exact self-simliarity: The fractal is identical at all scales.
– Quasi self-similarity: The same pattern is approximated at different scales.

The fractal can contain copies of itself at different scales.
– Statistical self-similarity: A pattern is repeated stochastically, by preserving

statistical measures.

• Non differentiable: Fractals are nowhere differentiable.

• Fractal dimension: Fractals do not necessarily need to have a dimension that is an
integer value (1-D, 2-D, 3-D,...). The dimensions of fractals are measured differently
(e.g., with the Box Counting dimenison or Information Dimension) and also serve
as a measure of the fractal’s space filling quality.

• Recursive definition: Fractals can be defined by recursive functions.

2.5.2 The Sierpinski Gasket

The Sierpinski Gasket was discovered by Waclaw Sierpinski in 1915 and serves as a
simple example for the generation of fractals in this section. The following recursive
algorithm produces a Sierpinski Gasket. The number of recursions defines the degree of
self similarity (Higher recursion depths produce more self similar details):

18

Figure 2.13: The first three steps of a recursive algorithm that generates a Sierpinski
Gasket. The green starting triangle is replaced by 4 small equal-sized versions of the
original triangle and the center triangle is removed. If this step is repeated recursively
with each triangle, the algorithm generates a Sierpinski Gasket.

1. Draw the three sides of the initiator triangle.

2. Create four new, equally sized triangles by connecting the centers of the triangle’s
sides.

3. Remove the center triangle.

4. Apply step 2 on the remaining three triangles.

Figure 2.13 shows the first three steps of this algorithm. However, a variety of algorithms
which create Sierpinski Gaskets exist. For example these fractals can also be generated by
applying a stochastic algorithm. Figure 2.14 shows several levels of a Sierpinski Gasket
generated with a stochastic algorithm.

2.5.3 Construction of Fractals

This section presents different methods for the construction of fractals. Popular methods
include iterative/recursive construction, the application of statistical methods and the
utilization of formal grammars to generate fractals. Some of these methods are outlined
in the following sections. Interestingly, as shown in Section 3.5, slight variations in the
definition of the Inductive Rotation Method also result in fractal structures.

Iterated Function Systems

Fractals may be created by recursively applying a set of functions to a point or a geometric
shape in a metric space. Such a system, based on a set of functions, is called an Iterated
Function System, short IFS. Two algorithms based on IFS are described in this section.
A more formal definition of Iterated Function Systems is given by expression 2.1.

I = {X; fn, n = 1, 2, ..., N} (2.1)

19

Figure 2.14: A Sierpinski gasket generated by the application of a stochastic algorithm.

In expression 2.1 X is a complete, metric space and each fn : X→ X defines a contraction
mapping. This definition for IFS was proposed by Barnsley [Bar88]. To construct a
fractal with an IFS, another operator is necessary [Hut81].:

W (A) =
n⋃

i=1
fi(A) (2.2)

The operator W (A) defined in expression 2.2 is called the Hutchinson Operator.The
Hutchinson Operator decodes fractals when applied recursively. Starting with A = S0
each successive Si is computed as:

Sn+1 = W (Sn) =
n⋃

i=1
fi(Sn) (2.3)

A feedback system like this can be implemented in various ways. A popular algorithm
for decoding fractals is called “The chaos game”, introduced by Barnsley [Bar88]. The

20

algorithm starts by picking a random point p0 in the plane. Then, a function from the
set of functions fn ∈ I is selected randomly and applied to the point p0. This generates
the next point p1. Another function from the set is then randomly chosen to compute p2.
After repeating this process for an arbitrary number of iterations the resulting points
approximate the fractal.
An Iterated Function System can also be represented as a graph of affine matrices. Figure
3.5 depicts the graph scheme of an IFS with two different initial matrices.

Iteration of nonlinear Functions

Julia sets are generated by applying rational or polynomial functions iteratively. These
sets were first discovered by Gaston Julia and Pierre Fatou while examining complex
dynamic systems and their behavior. Such systems possess the form {C, f} where f
is a rational or polynomial function. To construct a Julia set the function is applied
iteratively as shown in Expression 2.4. Not all dynamic systems of this form generate
fractals. For example the system {C, z2} yields the unit circle. However, many dynamic
systems of the form {C, z2 + c}, c ∈ C produce fractal sets.

z 7−→ f(z) 7−→ f(f(z)) 7−→ ... (2.4)

The Mandelbrot set is constructed by applying Expression 2.5. It is the set of complex
numbers that does not approach infinity when applying 2.5. An interesting fact about
the Mandelbrot set is that it represents a map of all connected Julia sets. Figure 2.15
depicts the Mandelbrot set.

zn+1 = z2
n + c (2.5)

For the algorithmic construction of the Mandelbrot set each pixel of a 2-D image is
mapped to a complex number c, by using the x and y screen coordinates of each pixel as
a and b in c = a+ bi . The program then iteratively computes the formula z = z2 + c and
determines if the resulting complex number is part of the set. This is done by checking
the condition |z| > 2 after several iterations, for each pixel. If the pixel is not part of the
set the condition evaluates true. The resulting pixels can also be colored according to
the iteration where this condition was fulfilled for the last time to get a more visually
appealing representation. The same algorithm may also construct Julia sets by choosing
different Expressions to compute z and c.

L-Systems

L-Systems, are named after the Hungarian Biologist Aristid Lindenmayer. Lindenmayer
developed these systems for modeling the behavior of plant cells and their growth.
Lindenmayer Systems are parallel rewriting systems that operate on a string of symbols.
The symbols in an initial string are replaced in several derivation steps. In contrast
to Chomsky-Systems, L-Systems replace all symbols simultaneously in each step. An
L-System is defined as the triplet G = (A,ω, P), where:

21

Figure 2.15: A visualization of the famous Mandelbrot set. This fractal was discovered
by Benoit B. Mandelbrot and represents a map of all connected Julia sets. [Bey].

• A is a set of symbols, the alphabet.

• ω is a symbol, or string of symbols defining the initial state of the system.

• P is a set of production rules that define how the symbols in the current string will
be replaced. Production rules have the form (δ → φ). With the meaning that the
symbol δ is replaced by the set of symbols φ in the current replacement step.

L-Systems can also be used to create various fractals. Turtle graphics provides an option
to obtain a graphical representation from a string generated by an L-System.
Turtle graphics uses a relative cursor, the turtle, which accepts different commands and
has three attributes:

• A location (X,Y) in the plane.

• The orientation of the turtle. Movement is performed relative to the turtles
orientation.

• A pen color.

22

Figure 2.16: Three iterations of an L-System creating a Koch snowflake fractal. The
image to the left shows the graphical representation of the initial string while the other
two images show the result after one and two derivation steps. [Tra]

These attributes are represented by a triple of the form (P (x, y), ρ, c), where P (x, y) is
the position of the turtle on the plane, ρ is the rotation angle and c is the color of the
pen, which draws a line as the turtle moves on the plane. To render L-Systems with
Turtle graphics, the alphabet of an L-System is simply mapped to turtle commands for
movement and rotation. A detailed example, for constructing a Koch curve with Turtle
graphics, is given in the following paragraph.
Consider the following L-System described by expression 2.6.

G = ({F,−,+}, F −−F −−F, {(F → F + F −−F + F)}) (2.6)

The first two derivation steps yield the following strings:

1. F + F −−F + F −−F + F −−F + F −−F + F −−F + F

2. F + F −−F + F + F + F −−F + F −−F + F −−F + F + F + F −−F + F −
−F + F −−F + F + F + F −−F + F −−F + F −−F + F + F + F −−F + F −
−F + F −−F + F + F + F −−F + F −−F + F −−F + F + F + F −−F + F

The symbols of each of these iterations are then mapped to drawing commands for the
turtle. F is mapped to the command “draw a line of length d”, where the parameter
d depends on the current iteration number. The symbols + and − are mapped to the
commands “rotate by 60° to the left/right”. Figure 2.16 shows the result of mapping the
first three strings to turtle commands.

2.5.4 Applications of Fractals

Fractals are popular amongst digital artists who use them for the creation of fascinating
art. Besides from their use in arts, there are several other interesting applications of
fractals. In construction, engineers use cables with a fractal arrangement of fibers, which

23

Figure 2.17: A fractal landscape that was generated using the Diamond Square algorithm.
This algorithm for the creation of fractal landscapes is used by different terrain generation
frameworks.

greatly increases the stability of the cables. This technique is employed for the production
of steel cables which are used to construct bridges, such as the golden gate bridge [Fou].
In Electronics, Sierpinski Gasket shaped antennas have proven useful through their ability
to receive and transmit over a big band of frequencies. This facilitates the construction
of more powerful and compact antennas. In computer science applications for fractals
range from compression algorithms to the generation of cities and virtual landscapes.
Figure 2.17 shows a fractal terrain generated by the “Diamond Square algorithm”.

24

CHAPTER 3
Hofstetter’s Inductive Rotation

The Inductive Rotation Method, which was developed by the artist and mathematician
Hofstetter Kurt, defines an algorithm for artistic pattern generation. The method pro-
duces aperiodic patterns, which are located in a 2-D plane and which are composed of
multiple instances of a prototile. Figure 3.1 depicts an example of an Inductive Rotation
Pattern which was created by Hofstetter. The structure of these patterns does not corre-
spond to the definition of mathematical tilings as described in Section 2.1, since there

Figure 3.1: An Inductive Rotation Pattern created with the 3-way Method by Hoffstetter
Kurt. This specific pattern is titled “CoffeeC” and was generated with a previously
developed IR software package. Image courtesy of Hofstetter [Hofb]

25

are overlapping regions between the tiles composing a pattern. This chapter provides a
thorough definition of the Inductive Rotation Method and is structured as follows:

The first section describes the rules for defining Inductive Rotation Patterns. The
second section gives an overview of the goals of this thesis, i.e., the required features for
the new, so called, Inductive Rotation Framework. The next Section,3.2, summarizes
previously developed algorithms for the creation of Inductive Rotation Patterns [Par13].
Two new algorithms for creating Inductive Rotation Patterns, an algorithm that computes
Inductive Rotation Patterns in parallel and an algorithm that applies tile substitution to
create Inductive Rotation Patterns, are described in Section 3.4. Finally, the last part
of the chapter presents new ideas for possible applications of the Inductive Rotation
Method.

3.1 Method Description

To create artistic visualizations Hofstetter experimented with different methods to create
patterns by superimposing tiles in the plane, according to an iterative scheme. In one of
his experiments the Inductive Rotation Method was discovered. The Inductive Rotation
Method is a procedure for pattern generation. The procedure recursively copies and
rotates a prototile to create a set of partially overlapping tiles, the Inductive Rotation
Pattern. The number of rotations is selected according to one of three rules defined by
Hofstetter. Independent of the rule, the angle defining the rotations is always equal and
their sum is always 360°. Hofstetter defines three different rules for creating Inductive
Rotation Patterns:

• The 3-way Inductive Rotation Method performs three rotations with a quad-shaped
prototile.

• The 5-way Inductive Rotation Method performs five rotations with a hexagonally-
shaped prototile.

• The 2-way Inductive Rotation Method performs two rotations with a star-shaped
prototile. (The proportions of the star are depicted in Figure 3.2)

To create a pattern one of these rules is applied iteratively for an arbitrary number of
iterations. The Inductive Rotation Method always starts with a single prototile. In
each iteration all tiles created in the previous step are copied and rotated around a
pivot, according to the number of rotations for the selected rule. The same procedure
is performed for an arbitrary number of iterations with different pivot points (in each
iteration) to create the final pattern. Figure 3.3 depicts a pattern which was created by
applying the 3-way scheme.

Hofstetter defines the pivots for the 5-way and 3-way Methods as the rightmost point
on the x-axis which is also contained in the pattern. This definition causes the pivot’s
x-coordinate to grow exponentially in each iteration. The pivot for the 2-way rotation

26

Figure 3.2: A figure showing the position of the first pivot for the creation of 2-way
Inductive Rotation Patterns. The image also depicts the proportions of star-shaped
prototiles defined by Hofstetter. Image courtesy of Hofstetter [Hofa]

scheme is defined differently: In the first iteration the rightmost vertical midpoint of
the prototile is selected as pivot (the corner-vertex of the star between the two apexes
pointing to the right. See Figure 3.2). The pivot selection procedure is similar for the
following iterations, but instead of the prototile, the rightmost tile in the pattern is
used for pivot selection. In situations with an ambiguity, i.e. when there are multiple
rightmost tiles, the tile with the lowest y-coordinate is chosen. Hofstetter provides a
more detailed definition of the Inductive Rotation Method [Hofb,Kur].

The Inductive Rotation Method was already described in detail by Parzer [Par13].
This thesis uses a slightly different notation which extends the definition of the Inductive
Rotation Method from 2-way, 3-way and 5-way patterns to more general n-way patterns
that are defined by 3 different parameters. Using this definition patterns like the Sier-
pinski Gasket can be created. A fact which clearly shows the affinity of the Inductive
Rotation Method to fractals.

From a mathematical point of view there are different perspectives from which In-
ductive Rotation Patterns can be viewed. Parzer stores the center coordinates of each
tile in a list and uses a list of integers to represent the rotation angle of each tile:

r(k) = k ∗ 2 ∗ π
pr

(3.1)

In Expression 3.1 pr represents the method-specific rotation number, r(k) evaluates
the rotation angle of a tile in degrees and i with 0 ≤ i < pr is an integer which repre-
sents the rotation of the tile. In Section 3.4.1 a different representation, which defines
patterns as chains of matrix transformations, is introduced. Another different mathemat-
ical interpretation of Inductive Rotation Patterns was recently developed by Frettlöh

27

Figure 3.3: Several figures representing the necessary steps to create a 3-way Inductive
Rotation Pattern. A square shaped tile is copied three times and rotated around the
pivot which is marked as a red dot at the right side of each shape. This produces the first
iteration step (Shape 2 from the left). To generate another iteration-step the procedure
is repeated with the whole pattern and a new pivot (which is again positioned at the
rightmost point in the pattern). In each step of the procedure the new shapes are placed
behind the previously created shapes. Original Image courtesy of Hofstetter [Hofa]

28

and Hofstetter [FH15]. They apply substitution tilings with four different rules to cre-
ate Inductive Rotation Patterns. The algorithm in Section 3.4.2 is based on these findings.

To establish a consistent notation, the following parameters are used to define Inductive
Rotation Patterns throughout this document. The first parameters define the position
and orientation of each tile in the pattern:

• The method-specific rotation number pr. This is the number of rotations performed
per iteration plus one for each method. (e.g., for 2-way rotation pr = 3)

• The strategy for choosing the rotation’s pivot in each iteration. This strategy
is expressed as a vector-valued function with the current iteration number as
parameter: ~ppivot(l) = (f(l), g(l)), where f and g are functions which evaluate the
x and y coordinate of each pivot. The exact definitions for these functions are
provided in the next sections.

• The number of iterations: pi

The other parameter defines the shape of each prototile.:

• A list of points defining the geometric shape of the prototile’s polygon pshape.

3.2 Previous Work
This section summarizes algorithms for the creation of Inductive Rotation Patterns which
are the results of previous research. Two algorithms for the creation of Inductive Rotation
Patterns, a grid based and a sprite based algorithm, were developed by Parzer [Par13].

3.2.1 Grid Based Approach

The grid based approach interprets the Inductive Rotation Method in 3-D. To create
an Inductive Rotation Pattern with the grid based approach, Parzer [Par13] represents
the pattern as multiple, layered 2-D grids. Each tile is represented as multiple numeral
entries in one or more layers of the grid. For example when applying the 3-way Inductive
Rotation Method, each tile is represented as four numbers in a grid layer. Hidden parts
of the pattern, which result from overlapping tiles, can be stored in a different grid-layer.
Parzer’s software also allows the artist to visualize each layer independently.
The algorithm creates the pattern iteratively. When an iteration level is requested, a
procedure iterates over the numbers that represent the stored tiles in the 2-D grid. For
each number in the grid, that represent a tile-part, the procedure determines a target
position in the grid and writes the numbers, that define the rotated tile-part, to this
position. To find the number and position that define the rotated tile-part Parzer applies
multiple expressions [Par13].
The number of possible grid entries depends on the selected method. The 3-way Inductive
Rotation Method, for example, requires four different rotations per sub square which

29

Figure 3.4: Visualization of the indexing scheme for the grid based algorithm. The left
side of the figure shows the initial grid with only a single prototile analogous to the first
iteration in Figure 3.3. The prototile is represented as four numbers which represent
the four portions of the prototile’s texture and their rotation. The bottom image shows
all possible grid entries and how these grid numbers are mapped to the initial texture.
The right side of the figure shows the grid after one iteration. The resulting numbers
represent the four prototiles of the first iteration of a 3-way Inductive Rotation Pattern
analogous to second iteration in Figure 3.3. [Par13].

leads to a total of 16 possible integer entries (one for each rotation and sub square).
To render the pattern, the grid representation of the tiles is converted to a coordinate
based representation. The bottom image in Figure 3.4 depicts all possible grid entries
for the 3-way Inductive Rotation Method. The upper images show the 0th and the 1st

iteration steps for the creation of a 3-way IR-Pattern with the grid based algorithm. The
number -1 represents empty cells. Parzer implemented different versions of this approach
to deal with the creation of 2-way and 5-way patterns. While the 3-way pattern uses
a rectangular grid, the versions used to create 5-way and 2-way patterns operate on a
regular grid of triangles.

3.2.2 Sprite Based Approach

The grid based approach has several drawbacks which result in rendering artifacts for
some prototiles and limits the prototile shape to hexagons stars and squares [Par13].
These facts led to the development of the sprite based approach which also excels the
grid based approach in speed and memory usage.
To create an Inductive Rotation Pattern with the sprite based approach [Par13] two
linked list data structures are defined. The first structure contains the rotation of each tile

30

of the pattern as an integer, corresponding to Expression 3.1. The second list contains the
center coordinates of each tile. When the algorithm starts the structures are initialized
with the rotation and position of the prototile. To generate the next iteration level the
algorithm copies and rotates all tiles contained in the pattern according to the selected
rule and merges the copies into the existing data structures in a back to front order.
This scheme works similarly for all Inductive Rotation Methods (2-way, 3-way, 5-way).
Parzer’s sprite based approach does not directly support rendering hexagons or stars.
Hexagon and star shapes can only be achieved through the use of alpha-transparent
prototile textures. The idea of the sprite based approach can be extended and parallelized
as presented in Section 3.4.1.

Computing Rotation Pivots

To compute the positions of the 3-way and 5-way rotation pivots, Definition 3.2 is used
(The original definition by Parzer is slightly different but omitted here for the sake of a
constant notation). For the definition it is also assumed that the width and height of
each tile is two units and that the prototile’s center is located at the coordinate (1, 1).

~ppivot(l) = (2l, 1) (3.2)

The scheme for determining the position of the pivot for the 2-way Method is different.
To find the pivot-positions for the 2-way method, Parzer uses a simple search procedure
that locates the tile with the maximum x and minimum y coordinate as defined by
Hofstetter (Section 3.1).

3.3 Requirements for the New Framework

While the “Irrational Image Generator” already provides sufficient visualization possibili-
ties for IR-Patterns, the software still lacks tools for an efficient and convenient artistic
work flow. Firstly, to improve Hofstetter’s work flow, the artist needs an integrated
prototile editor, which allows Hofstetter to directly manipulate the prototile texture
and then updates the resulting pattern instantly. Secondly, the existing algorithms for
pattern generation can only produce patterns with a limited size. Thirdly, Hofstetter
expressed interest in experimenting with the new tile substitution method from Fret-
tlöh and Hofstetter [FH15]. The following requirements were developed together with
Hofstetter in a first meeting where the implementation goals of the Inductive Rotation
Framework were coarsely defined:

• The program should be able to produce 2-way, 3-way and 5-way Inductive Rotation
Patterns.

• The artist needs an integrated prototile editor which allows him to create prototile
sketches and instantly updates the Inductive Rotation Pattern after editing (e.g.,
after drawing a line).

31

• The framework should provide a stable algorithm which allows the artist to produce
large patterns.

• The framework should contain a tile substitution algorithm, which is based on the
research of Frettlöh and Hofstetter [FH15].

• The software should have a user-friendly GUI to control all functions of the improved
and extended work flow.

3.4 Algorithms

This section provides an overview of all new algorithms, implemented in the Inductive
Rotation Framework. The idea of the first algorithm is to parallelize pattern generation.
This can be achieved by defining a scheme that computes all tile coordinates independently.
The second algorithm implements the newly developed substitution method by Frettlöh
and Hofstetter [FH15].

3.4.1 Parallel Approach

To parallelize the generation of Inductive Rotation Patterns it is necessary to develop
a scheme for an independent computation of a pattern’s tile coordinates. The parallel
approach achieves this by applying a modulo based matrix indexing scheme. The algorithm
expresses each tile’s coordinates as a function of a positive integer index from N0 which
enables to parallelize the tile generation algorithm. Two different implementations
of this algorithm are provided in Section 4.3. The first implementation is a simple,
parallel approach which uses a Direct X 11 Direct Compute program to determine each
tile’s coordinates directly on the GPU. The second implementation splits rendering into
multiple passes which reduces the memory consumption of the algorithm and also allows
the artist the generation of larger patterns. The algorithm’s performance scales with
the quality of the graphics hardware and provides many possibilities for extensions and
improvements.

Concept

The algorithm’s concept is easily explained by comparing it to the procedure of generating
fractals with Iterated Function Systems (IFS). To generate the polygons for an iteration
of an IFS, multiple series of transformation matrices are applied to copies of an initial
polygon. A graph based scheme can be used to generate the transformation matrices.
The scheme for an IFS with two matrices is depicted in Figure 3.5. To generate the points
of the fractal for the 0th iteration, the starting polygon’s points are simply multiplied
with the identity matrix. To generate the points for the 1st iteration, all points of the
initial polygon are copied and multiplied with the initial matrices of the IFS B11 and
B12. In each subsequent iteration, in order to find the matrices for level l, all possible
matrix combinations bl of the iteration level l − 1 with the b initial matrices of the IFS

32

Figure 3.5: Visualization all possible matrix combination for an IFS with two functions. To
generate the points for an IFS-iteration step the initial points are copied and transformed
by each combination of matrices of a certain iteration step. The Figure shows the initial
matrices with a red border. The arrows between the boxes that contain the composite
matrices show how they are constructed. Arrows originating from matrix combinations of
the same iteration are colored similarly. The resulting structure is a hierarchical graph.

are formed. For the second level of the depicted IFS this would for example yield the
matrices: B11B11, B11B12, B12B11 and B12B12.To create an approximation of a fractal
from one or more generator points, all combinations of matrices of a single iteration level
are multiplied with the generator points.

The rotations which are needed to place a tile at a certain point in an Inductive Rotation
Pattern can also be seen as a series of transformation matrices. Expression 3.3 shows a
possible combination of matrices to compute the center point of the tile ctile, by applying
a series of matrix multiplications to the generator point, cinit. Each transformation
matrix is identified by two indices l and k. The index l represents the iteration level and
k selects one of a constant number (pr − 1) of rotation matrices.

ctile = cT
initB31B21B11...Blk (3.3)

While the basic concept of using a chain of transformations for pattern generation is
similar to IFSs, the Inductive Rotation Method uses different graphs to produce patterns
which are further referenced to as Inductive Rotation Graphs by this thesis. In contrast to

33

Figure 3.6: Visualization of all possible matrix combinations for a 2-way Inductive Rota-
tion Graph with two initial matrices. In contrast to an IFS the Inductive Rotation Pattern
is generated by copying and multiplying all initial points with all matrix combinations up
to a certain iteration level. The figure shows the initial matrices and the new matrices
of each iteration with a red border. The arrows between the boxes that contain the
matrix combinations show how they are constructed. Arrows originating from matrix
combinations of the same iteration step are colored similarly. The resulting structure is a
hierarchical graph.

IFS the Inductive Rotation Method also inserts new composite transformation matrices
into the graph at every new iteration level. Each of these composite transformation
matrices consists of a rotation matrix multiplied by two translation matrices. In the first
step this works analogous to IFSs. In contrast to IFSs a number of pr − 1 composite
matrices are inserted into the graphs in each new iteration level. The composition of these
three matrices represents the rotation about each step’s pivot. The amount of translation
induced by the translation matrices depends on the current iteration step. The graph
for a 2-way Inductive Rotation Pattern is depicted in Figure 3.6. In the first iteration
the graph consists of the identity matrix only. In each successive iteration a number

34

of (pr − 1) new transformation matrices, representing the rotation around a new pivot,
are added to the graph. Then the combination of all matrix nodes from the previous
iterations with the newly inserted matrices is generated by matrix multiplication. To
generate the whole pattern each node of the graph is multiplied with the initial tile (ctile)
to generate the complete Inductive Rotation Pattern. The definitions in 3.4 show the
sets of rotation and translation matrices for the parallel algorithm.

Rk ∈ {R1, R2, ..., Rpr−1}
Tl ∈ {..., Tpi , T2, T1}

(3.4)

Figure 3.6 depicts all possible combinations of initial matrices for the first steps of
an Inductive Rotation Pattern with a set of two different rotation matrices: {R1, R2},
pr − 1 = 2 (2-way rotation). Expression 3.5 shows how the matrices for an Inductive
Rotation Pattern are generated by using different translation matrices in each iteration
step. The index l represents the current iteration and addresses a specific translation
matrix. Index k represents a matrix from the set of rotation matrices in 3.4.

Blk = T−1
l RkTl (3.5)

The implementation of the algorithms in Chapter 4 uses the techniques presented in the
next sections which are based on the sprite based approach [Par13] and properties of
Inductive Rotation Graphs to compute the successive rotations around the pivots.

The Inductive Rotation Indexing Scheme

To create an Inductive Rotation Pattern an indexing scheme is established. This indexing
scheme uses the idea of numeral system conversion and was inspired by the algorithm that
converts decimal numbers to other numeral systems (binary, octal, hexadecimal) [Tut15].
We successively divide the index of each tile by the number pr in each step to obtain the
matrix indices k and i which are necessary to compute the center and rotation of the tile.
The numbers resulting from the divisions and the remainder of the last division represent
the indices k for the rotation matrices. The indices l for the translation matrices are
found by numbering the calculations top down. The matrices are constructed from left
to right by reading the results (k and l) in the table from bottom up. In the case that
the remainder of a division step equals zero (i.e., k = 0), the matrix Blk of this step is
replaced by the Identity-Matrix. Let us assume we are using the 2-way Inductive Rotation
Method and we want to compute the matrix indices for the tile with index 22. To find
these indices we can use the successive divisions depicted in table 3.1. The calculations in
this table yield the index triple (2 1 1) for k which, together with the triple of the order
of the computations (3 2 1) for l, defines the matrices B32B21B11. When constructing
the matrices the table is read from bottom up and the matrix chain is constructed from
left to right. By multiplying these concatenated matrices with the generator points, the
tile is transformed to the correct position in the pattern. The scheme computes the
translation matrices for any arbitrary tile and method-specific rotation number pr. Table
3.2 shows the mapping of tile indices to matrix indices for the first two iterations of a

35

Number Operation k (Remainder) l (Order)
22 22/3 = 7 1 1
7 7/3 = 2 1 2
2 R : 2 2 3

Table 3.1: An example on how to compute the indices k and l for the rotation and
translation matrices. In this specific example the matrices for the tile with index 22 are
sought. To find the indices k the starting number is successively divided by powers of
pr and the remainders of these divisions are kept. The indices l are found by simply
numbering the calculations bottom up.

2-way Inductive Rotation Pattern. The total number of tiles in an Inductive Rotation
Pattern is ppi

r . Table 3.3 and Table 3.4 show the matrices necessary for computing 2-,
3- and 5-way Inductive Rotation Patterns with the parallel algorithm. Figure 3.7 and
3.8 visualize 2- and 3-way Inductive Rotation Patterns and the respective matrices that
generate the positions of the tiles contained in the patterns. Figure 3.9 shows the tiles of
a 3-way IR-Pattern and their corresponding indices.

Index 0 1 2 3 4 5 6 7 8
Matrix I B11 B12 B21 B21B11 B21B12 B22 B22B11 B22B12

k1 0 1 2 0 1 2 0 1 2
k2 0 1 2
k3 0

Index 9 10 11 12 13 14 15 16 17
Matrix B31 B31B11 B31B12 B31B21 B31B21B11 B31B21B12 B31B22 B31B22B11 B31B22B12

k1 0 1 2 0 1 2 0 1 2
k2 0 1 2
k3 1

Index 18 19 20 21 22 23 24 25 26
Matrix B32 B32B11 B32B12 B32B21 B32B21B11 B32B21B12 B32B22 B32B22B11 B32B22B12

k1 0 1 2 0 1 2 0 1 2
k2 0 1 2
k3 2

Table 3.2: This table depicts how tile indices are mapped to matrices for the 2-way
Inductive Rotation Method. The first row shows the matrix chains which correspond
to each index of the second row. The numbers in the other rows represent the matrix
indices which are computed according to the indexing scheme. To compute the numbers
in rows k3 to k1 which represent the indices for the rotation matrices at the different
levels, the index is first divided by 9 to get the value for k3, the remainder is then divided
by 3 to compute k2’s value. The remainder of the last division is the value for k1. For
larger indices (>26) the table would be extended by another row labeled k4, k5, ..., to
compute the position of the tile.

36

Figure 3.7: This figure shows a 2-way Inductive Rotation Pattern after two iteration
steps. The algorithm starts with the red tile. The first iteration introduces the 2 blueish
tiles. All other tiles are generated by the second iteration. Similarly colored tiles, that
are created in the second iteration share the leftmost matrix in their matrix chain. This
leftmost matrix is always responsible for the largest translation of the according tile. The
figure also depicts the matrix chain which is responsible for each tile’s position in the
pattern.

37

Figure 3.8: This figure shows a 3-way Inductive Rotation Pattern after two iteration
steps. The algorithm starts with the red tile. The first iteration introduces the 3 blueish
tiles. All other tiles are generated by the second iteration. Similarly colored tiles, that
are created in the second iteration share the leftmost matrix in their matrix chain. The
leftmost matrix is always responsible for the largest translation of the according tile. The
figure also depicts the matrix chain which is responsible for each tile’s position in the
pattern.

38

Iteration 2-way 3-way
0 I I
1 B11, B12 B11, B12, B13
2 B11, B12, B21, B22 B11, B12, B13, B21, B22, B23
3 B11, B12, B21, B22, B31, B32 B11, B12, B13, B21, B22, B23, B31, B32, B33

Table 3.3: Matrices which are needed to construct 2-way and 3-way IR-Patterns for
different numbers of iterations.

Iteration 5-way
0 I
1 B11, B12, B13, B14, B15
2 B11, B12, B13, B14, B15B21, B22, B23, B24, B25
3 B11, B12, B13, B14, B15B21, B22, B23, B24, B25B31, B32, B33, B34, B35

Table 3.4: Matrices which are needed to construct 5-way IR-Patterns for different numbers
of iterations.

Computing the Transformation Matrices

To construct the transformation matrices, the parallel algorithm computes each rotation
matrix Rk by the angle determined with Expression 3.1 for each computed index k. To
construct the matrix Blk the transformation matrices Tl for the pivot of each step still
needs to be found. For 3-way and 5-way Inductive Rotation Patterns the translation
matrices Tl for the pivots are simply found by applying Expression 3.2.
An Expression to compute the pivots for 2-way Inductive Rotation Patterns was not
given by Parzer who uses a search method to determine the tile containing the pivot.This
is done by first determining the tiles which are centered at the largest x-coordinates
and then selecting the tile centered at the minimum y-coordinate from this set. This
approach, however, cannot be used with the parallel algorithm since the tile coordinates
have not yet been found when the pivot’s coordinates are computed.
Hence, the Inductive Rotation Framework uses a different method, which computes the
pivot positions before creating the pattern by expressing x-and y-coordinates as summed
terms.
To devise a scheme for computing the coordinates of 2-way pivots, the differences in the x-
and y-coordinates of the successive pivots were analyzed by reverse engineering Parzer’s
algorithm. The center of the initial tile is assumed at point (1,1) for the definitions in
this section.
The pivot’s x-coordinates for the first ten iterations and their differences are depicted in
Table 3.5 (The maximum number of iterations for the 2-way Inductive Rotation Method
that Parzer’s software can produce is 14). When taking a closer look at the sequence of
numbers it can be observed that, in each iteration, the value increases by 3i. Starting
with i = 0 the variable i is incremented by 1 only in every second step. The sequence
starts with the number 5

3 , which is the x-value of vector p, depicted in Figure 3.10, plus

39

Figure 3.9: This figure depicts which index corresponds to which tile of a 3-way Inductive
Rotation Pattern.

the vector pointing to the tile’s center. Combining these observations leads to Expression
3.6.

Iteration 1 2 3 4 5 6 7 8 9 10
x 1.6̇ 2.6̇ 4.6̇ 7.6̇ 13.6̇ 22.6̇ 40.6̇ 67.6̇ 121.6̇ 202.6̇

x-diff 0 1 2 3 6 9 18 27 54 81

Table 3.5: X-coordinates of 2-way rotation pivots in the first row and the differences
between their values in the second row.

x(l) =

5
3 if l = 1
5
3 +

[∑l−2
i=0 3b

i
2 c ∗ ((i mod 2) + 1)

]
if l > 1

(3.6)

The structure of the y-coordinates is different. Firstly, their values change only every
second step. When it changes, the difference to the last value is always m ∗ pprojy. The
value of pprojy = 0.58 is obtained by rotating the vector p by 120 °about the center of
the figure and projecting it onto the y-axis as depicted in Figure 3.10. The values of m,
which are all multiples of 3, are depicted in Table 3.6. The combination of these facts

40

Figure 3.10: The component pprojy for Expression 3.7 is computed by first rotating the
vector p by 120° and projecting it onto the y-axis.

leads to Expression 3.7.

y(l) =

(∑l−1

i=1 3b
i−1

2 c ∗ (i mod 2)
)
∗ pprojy if l ≥ 2

1 if l < 2
(3.7)

Each pivot’s coordinates for the 2-way Inductive Rotation Method are then computed
with Expression 3.8. Expression 3.8 provides the same results as the search method from
Parzer’s software for the iterations 11 to 14, which is the maximum number of iterations
that Parzer’s software can produce for 2-way Inductive Rotation Patterns. The visual
results of the implementation in Chapter 4 provide reason to believe that the Expression
is also correct for higher iteration numbers. A mathematical proof or a geometrical
meaning for this Expression can, however, not be given at this time.

41

Iteration 1 2 3 4 5 6 7 8 9 10
y 1 0.42 0.42 -1.3 -1.3 -6.5 -6.5 -22.0 -22.0 -68.8

y-diff 0 -0.58 0 -1.74 0 -5.2 0 -15.5 0 -46.8
m 1 1 0 3 0 9 0 27 0 81

Table 3.6: Approximate y-coordinates of 2-way rotation pivots in the first row and the
differences between their values in the second row. Numbers in the third row show how
often the approximate factor pprojy = −0.58 is contained in the y-diff value above each
column.

~ppivot(l) = (x(l), y(l)) (3.8)

3.4.2 Substitution Tiling Approach

Tile substitution cannot directly generate Inductive Rotation Patterns. The mathematical
theory, developed by Freetloeh et al. [FH15], produces only 3-way Inductive Rotation
Patterns that are contained in larger tilings. Therefore this method creates, in contrary to
the previous methods, tilings of the plane in accordance with the mathematical definition
(there are no tile overlaps). The tilings, which are created by this method do not represent
Inductive Rotation Patterns themselves, but they contain Inductive Rotation Patterns.
The idea of this approach is to apply a rule-based tile-substitution scheme, consisting
of four different rules, to create Inductive Rotation Patterns. The substitution scheme
is depicted in Figure 3.11. Additionally each of the four different tiles identified by
T1, T2, T3 and T4 needs to be mapped to a sub square of the prototile of an Inductive
Rotation Pattern for visualization. A pattern is represented by squares of 1/4 the size
of the prototile with this approach. The theory works only with squares. To apply the
substitution tiling approach, objects which store the properties of each tile are defined
first. Each instance of these tile objects stores a tile’s background-texture, its rotation,
represented as an integer and its corner vertices.

To create a pattern by tile substitution the following simple steps are executed:

1. Create a set of four tiles, also called seed tiles. Create a linked list data structure
and append the seed tiles. Each of the seed tiles has 1/4 of the prototile’s size.

2. In an iteration step: Replace all tiles according to the given substitution rules (T1
to T4). The rotation of each replaced tile is kept.

3. Perform another iteration if the desired pattern size has not yet been reached.

To execute an iteration step, each element of the linked list data structure is visited and
the following operations are performed:

1. Inspect the tile type (T1, T2, T3 or T4) and select a rule from the rule set.

42

Figure 3.11: 3-way IR-Patterns can be created by applying substitution rules. Starting
with four initial seed tiles, the rules T1, T2, T3 and T4 are applied to replace each tile in
every step while keeping the rotation of the original tile, by rotating the tile given by the
rule accordingly. After three steps this yields the tiling to the right. [FH15].

2. Create four new tiles, according to the selected rule.

3. Inspect the rotation of the current tile that is being replaced.

4. If the rotation of the tile in the rule does not match the rotation of the tile to be
replaced but it has the same color it has to be aligned first. To align it, the left
and right part of the specific rule are rotated until the left side of the rule matches
the rotation of the tile to be replaced. This is done by adding the integer that
represents the tile’s rotation to each of the four sub squares rotations and then
performing a modulo four operation .

5. Compute the corner and texture coordinates of the sub-tiles.

6. Replace the current tile in the linked list data structure with the sub-tiles.

43

3.5 Possible Applications for the Inductive Rotation
Method

This section summarizes different experiments with the Inductive Rotation Method and
provides ideas for future work. The first section shows how the Inductive Rotation
Method can be used to generate fractals, by varying its generation parameters. The
second section was inspired by Wang tilings and uses the Inductive Rotation Method for
procedural texture generation. The third section provides ideas on how to implement
animation features in the Inductive Rotation Framework.

3.5.1 Generation of Fractals

An interesting fact about the Inductive Rotation Method is that it can be used to generate
fractals by variations of its generation parameters. For example the Sierpinski Gasket
is generated by setting pr to three and using ~ppivot(l) = (2l, 1) to determine the pivots
for each iteration. Figure 3.12 shows the result of these settings. Other versions of the
Sierpinski Gasket have also been generated in the experiments. Besides the Sierpinski
Gasket several other structures with fractal properties emerge when the pr parameter
and the ~ppivot(l) functions are varied. Results of experimenting with these parameters
are shown in Figure 3.13.

3.5.2 Texture Rendering

Inspired by Wang Tilings, we conducted several experiments with the Inductive Rotation
Method regarding procedural texture generation. Instead of simply stitching the textures
together in x- and y-direction we used the Inductive Rotation Method to create procedural
textures.
The best results were achieved with textures containing only few, small distinctive features
and a non-periodic, chaotic structure. The water texture depicted in Figure 3.14 which
was used to create Figure 3.15, with 5-way Inductive Rotation, provides an example for
such a texture. In our experiments the 5-way Inductive Rotation Method provided the
best results in all cases. Other experiments are depicted in Figure 3.16. The left side of
the figure shows a texture that was created by simply stitching textures together, while
the images to the right were created with the 5-way rotation method. The zoom level of
both images in the figure is nearly the same.
While the images on the left side suffer from the repeating texture patterns and contain
different visual artifacts, the images on the right side benefit from the asymmetrical
distribution and do not exhibit these artifacts. The image still contains artifacts, which
can be recognized at a closer zoom level, but these artifacts appear at less periodic
intervals. Figure 3.17 shows the grass pattern from Figure 3.16 at a closer zoom level.
The most noticeable artifacts were marked by red boxes in the image. The visual quality
of the generated pattern also depends on the rotation of the prototile texture. To find
the optimal rotation and position for the prototile’s texture, the prototile editor which
is included in the Inductive Rotation Framework proofed to be very useful. This tool,

44

Figure 3.12: A Sierpinski Gasket generated by a variation of the parameters of the
Inductive Rotation Method. This image was generated by setting pr = 3 and using
~ppivot(l) = (2l, 1).

45

Figure 3.13: Different fractals that were produced by experimenting with the parameters
of the Inductive Rotation Method. The top left shape was created by setting ~ppivot(l) =
(2l − 1.9l, 1) and pr = 5 the other shape was created by setting ~ppivot(l) = (2l + 0.55, 1)
and pr = 5

Figure 3.14: The water tile used to produce the Pattern in Figure 3.15

46

which is described in Chapter 4.6, permits the user to change the alignment and rotation
of the initial texture.
To evaluate the performance in terms of quality a through comparison not only to simple
stitching but to more advanced texture generation methods would be necessary. However,
since this technique generally produces discontinuities at tile border it is doubtful that
this method can compete with the state of the art methods.

3.5.3 Artistic Animation

The Inductive Rotation Framework also includes an experimental texture animation
feature. To create animated Inductive Rotation Patterns the position of the image in
the prototile editor is animated by using the WPF (Windows Presentation Foundation)
rendering system. This generates fascinating pattern animations for performing arts.
While the current version contains only an experimental feature that animates the texture
by moving it up and down [Sip], a broader range of transformations could be supported
by a future version of the Inductive Rotation Framework.

47

Figure 3.15: A water texture, created by applying the 5-way Inductive Rotation Method
and the water tile depicted in Figure 3.14 for five iterations. The resulting pattern
contains fewer artifacts than periodic tilings created with the same prototile.

48

Figure 3.16: Comparison of different texture tilings. The images on the left side were
created by stitching together the same texture in x- and y-direction while the images on
the right side were created with the 5-way Inductive Rotation Method. Images on the
left side contain artifacts resulting from the periodicity of the pattern. While the right
side also contains artifacts, they are less apparent due to their aperiodic nature.

49

Figure 3.17: A grass-pattern created with the 5-way Inductive Rotation Method. At a
closer zoom level texture artifacts from overlapping tiles, marked in red, become more
apparent.

50

CHAPTER 4
Implementation

This chapter gives an overview of the development process and provides details on
the implementation of the algorithms introduced in the previous chapter. The first
section describes the technological requirements for the Inductive Rotation Framework
which influenced the decisions concerning software technology. The second section
gives an overview of Direct Compute 5.0, a technology that the algorithms use for
parallel processing on the GPU. Section three describes the implementation details of the
algorithms in depth. The third section is further structured into subsections containing
all details about generation, rendering and editing of IR-Patterns. An overview of the
iterative development process is provided in section 4. Section 5, which also serves as
documentation, visualizes the Inductive Rotation Framework’s software architecture
and points out the functionalities of the important classes of the framework. The last
section contains screen-shots and a description of the Inductive Rotation Framework’s
user interfaces.

4.1 Technological Requirements for the Framework
For the implementation of the Inductive Rotation Framework the following technological
requirements had to be considered:

• Hofstetter uses a Windows operating system.

• A rapid implementation process has to be ensured.

• GPU debugging features are needed.

• GPGPU support is needed.

• A modern user interface library is preferred.

• An IDE with an integrated UI-designer is necessary.

51

Since Hofstetter Kurt uses Windows 7 and 8 as operating systems it was not necessary
to develop the Inductive Rotation Framework as a multi-platform solution. For Windows
the following reasons make the Microsoft .NET Framework an attractive development
platform: It supports software developers with libraries for frequently performed tasks, it
has a stable and relatively bug free code base, all of its standard libraries are very well
documented and the .NET Framework is already installed on most systems running a
Windows OS.
For developing software with the .NET Framework, Microsoft offers the Visual Studio
(2013) IDE. Visual Studio includes many tools which simplify software development and
contains advanced debugging features, including a Direct X Shader debugger.
The IDE supports two different project types for developing user interfaces with inte-
grated WYSIWYG editors. Developers can choose to either work with Windows Forms
projects or WPF (Windows Presentation Foundation) projects if a GUI is needed. WPF
is based entirely on vector graphics and provides a clear separation of design and de-
velopment [Neta]. Windows Forms, the predecessor of WPF, follows several obsolete
paradigms and will not be enhanced by new features in the near future [All].
For software development with the .NET Framework, Microsoft offers different languages.
According to the Tiobe Index [Sof15], the most popular languages supported by the .NET
Framework are, in descending order, C++, C# and Visual Basic (.NET).
In contrast to Visual Basic (.NET), C# offers a subjectively more pleasing C-style syntax.
To access Direct X functionality via the .NET Framework, either the library Slim Dx or
the library Sharp Dx can be used. Slim Dx and Sharp Dx both wrap native Direct X
calls. Differences exist only concerning documentation, where Slim DX’s documentation
is slightly more comprehensive.

Based on these considerations, the following technologies were chosen for the devel-
opment of the Inductive Rotation Framework:

• Windows 7/8

• .NET Framework 4.5 /C#

• Visual Studio 2013

• Windows Presentation Foundation

• Direct X(Slim DX)

Architectural Considerations

Two different paradigms for the development of WPF applications exist. Developers
can either use the classical, event based programming paradigm or apply the Model
View ViewModel architectural pattern [Netb]. Model View ViewModel (MVVM) is a
specialization of Model View Controller (MVC) architecture and directly supported by
WPF. MVVM follows a separation of concerns approach and allows programmers to

52

develop tightly coupled, change resistant code by partitioning the software’s architecture
into View, Model and ViewModel classes. This architecture supports a work flow that
needs less coordination of programmers and designers through the loose coupling of
user interface code and the code for domain logic [Netd]. The MVVM pattern also
increases application testability by allowing programmers to instance classes for UI logic
independently of UI technology. However, the MVVM pattern also tends to introduce
more complexity [Gos] which leads to longer development cycles. The higher complexity
results from the architectural structure which demands more code for algorithmically
trivial parts of the project.
To ensure fast development cycles an event based implementation was chosen for the
Inductive Rotation Framework. However, the Inductive Rotation Framework applies
a ViewModel approach which separates UI logic from domain logic by structuring the
source code into different projects.

4.2 An Introduction to Direct Compute

In graphics applications the processing power of the GPU is normally dedicated to
perform operations on vertices, fragments or geometry. Using the GPU for tasks which
are typically executed on the CPU is referred to as General Purpose Computing on
Graphics Processing Units (short GPGPU). Some of the advantages of GPGPU computing
can be summarized as follows:

• GPUs are optimized for massive parallel computing, allowing the graphics program-
mer to utilize a vast number of threads for parallel computations.

• Results of computations performed on the GPU are stored directly in GPU memory.
This eliminates the need to upload buffers from the CPU’s RAM into the GPU
memory which is a comparatively slow operation. Figure 4.1 depicts the differing
access speeds.

• GPGPU algorithms can be implemented in a scalable fashion which makes them
easy to adapt for future generations of graphics hardware.

Historically, the first successful GPGPU application, for the computation of matrix LU
factorizations was developed in 2005 [DWL+12]. At that time using GPGPU was a
cumbersome endeavor due to the fact that algorithmic problems had to be reformulated
in terms of graphics primitives. The desire to avoid these transformations led to the
creation of several API’s, which were intended to simplify GPGPU programming. The
first popular GPGPU framework was NVIDIA’s CUDA. CUDA works only with vendor
specific (NVIDIA) hardware. Nowadays the most popular GPGPU standard is OpenCL,
which is maintained by the Khronos Group [Gro]. OpenCL is supported by all major
platforms and graphics-card vendors. Direct Compute is a different API which is part of
Direct X since version 10. However, in version 10 Direct Compute has limited features.
The API supports GPGPU on all major vendor’s graphics cards.

53

Figure 4.1: Different orders of magnitude for memory access. While the CPU can access
its RAM at a relatively high rate, transferring data between the CPU and the GPU is
slow. The GPU on the other hand can access its memory at a very rate. [Lun12]

Direct Compute uses so called compute shader functions which enable algorithm develop-
ers to access the GPU. compute shader functions are not directly part of the graphics
pipeline [Lun12], which implies that they are not executed when a frame is rendered (like
vertex, pixel or domain shaders). Instead, these programs are triggered separately by
calling the appropriate Direct X API command.
Modern GPUs possess multiple processing units also called multiprocessors. Each of
these multiprocessors contains several groups of streaming processors which are able to
execute multiple threads at once. Direct Compute algorithms are executed in multiple
thread groups. Each of these thread groups is dedicated to a single streaming processor.
Multiple thread groups can be assigned to a single multiprocessor but it is not possible
to split a thread group amongst different streaming processors. Threads belonging to
the same group can be synchronized and have access to shared memory. According to
Fung [Fun10] for an optimal distribution at least two thread groups should be assigned
to a single streaming multiprocessor to avoid stalls.
Each thread group consists of n threads. The number of thread groups which are

executed simultaneously is directly specified by the programmer. Direct Compute starts
execution when the Dispatch command is called. The Dispatch command accepts three
parameters, x, y and z which represent the dimensions of a three- dimensional grid of
thread groups. Figure 4.2 depicts such a grid of thread groups. The number of threads
in each thread group is also defined as a three-dimensional grid. The maximum number
of threads in a Direct Compute 5.0 thread group is 1024. The number of thread groups

54

Figure 4.2: This figure shows the alignment of thread groups and their respective threads.
Direct Compute dispatches thread groups in a three-dimensional grid with x, y and z
dimensions. The threads of each thread-group are also aligned in a three-dimensional
grid. The figure shows a grid of 6 thread-groups (2 in x and 3 in y direction) with 64
threads (8 in x and 8 in y direction) in each thread group. The number of threads in a
group should be a multiple of the wavefront- or warp-size. [Lun12]

has to be chosen before compiling the compute shader function.
While NVIDIA graphics hardware combines threads into so called warps with 32 threads
each, ATI combines threads into wavefronts with 64 threads each. All threads in a warp
or wavefront are executed simultaneously on different streaming processors. While it is
possible to define thread groups with thread counts that do not represent a multiples of
the warp or wavefront sizes this is not advisable for performance reasons [Lun12].
Direct Compute 5.0 also offers new RWStructuredBuffer<T> objects, which permit
compute shader functions write access to GPU buffers. However, compute shader func-
tions can also use StructuredBuffer<T> objects or constant buffers if they only need
read access. Additionally, Direct Compute 5.0 supports new input semantics such as
SV_GroupID and SV_GroupIndex which provide information about a thread’s group-id
and its position in the thread group.

55

4.3 Implementation Details

This section explains all implementation details of the algorithms presented in 3.4 in depth.
The Inductive Rotation Framework allows the user to select one of these algorithms
for pattern generation. The first subsection contains implementation details for the
sprite based algorithm from Parzer, which has been reimplemented in the Inductive
Rotation Framework. The second subsection describes parallel algorithms which apply
GPGPU methods for pattern generation. The third subsection provides details on the
implementation of the tile substitution algorithm. The fourth subsection describes how
the patterns are rendered and the last subsection outlines details of the pattern editor.

4.3.1 The Sprite Based Approach

The implementation of the sprite based approach follows the idea outlined in Section
3.2.2. To generate an Inductive Rotation Pattern this algorithm first creates two lists
which contain the center coordinates and rotations of each tile. Tile rotations are stored
as a list of integers according to Expression 3.1. To render the pattern using graphics
hardware, this representation must be converted into textured triangles. To render the
tiles in a back to front order the sequence of triangles also needs to be reversed before
they are copied into a vertex buffer and uploaded to the graphics hardware.

Pattern Generation

When the algorithm starts, the two lists (a list of two-dimensional vectors and a list
of integers) which represent the pattern’s coordinates and rotations are initialized with
the vector (1, 1) and the integer 0 respectively. This implies that the first tile of the
pattern will not be rotated and that it is centered at the coordinates (1, 1). The algorithm
performs the following steps iteratively to generate an Inductive Rotation Pattern, until
the requested number of iterations has been reached:

To execute a single iteration step the pivot of the rotation is determined first. To
this end Expression 3.2 is used to generate pivots for the 3- and 5-way IR-Method and
Expression 3.8 is used to generate pivots for the 2-way rotation method. After determin-
ing the pivot, the algorithm continues by rotating each coordinate in the coordinate list
around the pivot. All coordinates are first rotated by the smallest angle defined by the
corresponding Inductive Rotation Method and stored in a temporary list. The procedure
then rotates all coordinates of the coordinate list around the second smallest angle and
appends the resulting coordinates to the temporary list. The algorithm continues with
the next smallest angle until all coordinates contained in the coordinate list have been
rotated by all angles defined by the corresponding rule.
The list of integers is updated in a similar fashion. Each number stored in the integer
list is simply incremented by m = 1 and then a modulus division by pr is performed with
each result. The resulting numbers are then also appended to a temporary list. This
procedure is repeated for pr − 2 times and in each subsequent iteration the number m is

56

incremented by 1. After each of these steps the results are appended to the temporary
list. Finally, the temporary list is appended to the list of integers.
This completes the necessary steps for a single iteration. The procedure is also depicted
as pseudo code in Listing 4.1 for better understanding.

1 void Crea t e I t e r a t i on ()
2 {
3 Vector2 p ivot = pivotFactory . FindPivot (i t e r a t i o n s) ;
4
5 Lis t<Vector2> s p r i t e s = new List<Vector2 >() ;
6 Lis t<int> ro t a t i o n s = new List<int >();
7
8 f loat increment = (f loat) (2 ∗ Math . PI / pr) ;
9 f loat ang le = increment ;

10
11 for (int i = 1 ; i < pr ; i++)
12 {
13 for (int j = 0 ; j < coords . Count ; j++)
14 {
15 s p r i t e s .Add(rotateAround (coords [j] , p ivot , −ang le)) ;
16 ro t .Add((r o t a t i o n s [j] + i) % pr) ;
17 }
18 rotat ionAng le += increment ;
19 }
20
21 coords . AddRange(s p r i t e s) ;
22 r o t a t i o n s . AddRange(ro t) ;
23
24 i t e r a t i o n s++;
25
26 }

Listing 4.1: C# code that creates the new tiles for an iteration of the IR algorithm. The
lists for the already existing tiles coords and rotations are extended when the function
is called. The FindPivot function returns the pivot for the current iteration. The
rotateAround function contained in the inner loop accepts a point to rotate, a point to
rotate around and a rotation angle as parameters.

Upon completion the next iteration is executed if the requested amount of iterations has
not yet been reached. To reduce computation times for subsequent executions of the

57

algorithm the lists are kept in memory. This is only possible if the user does not select a
different Inductive Rotation Method between the calls (i.e. if pr does not change).
Before the pattern can be rendered (as described in Section 4.3.2), the list of center
coordinates and integers (rotations) must be converted into quads which are represented
by two triangles. The sprite based as well as the parallel algorithm use a mask texture and
texture transparency to create the shapes (star, hexagon) for 2-way and 5-way Inductive
Rotation Methods. The position of each (quad shaped) tile’s corners is found by adding
different offset vectors, which depend on the tile’s rotation, to the center coordinate of a
tile. This concept is depicted by Figure 4.3.
These offset vectors are computed only once and in a way such that each tile has a

width w and height h of two units. When the offset vectors are computed and stored
in the multidimensional array, a second multidimensional array containing the texture
coordinates of the corners that correspond to offset vectors is also created. the Hofstetter
defines special proportions for 5-way and 2-way Inductive Rotation Methods, such that
the height of each tile corresponds to h =

√
3 for the 5-way Inductive Rotation Method

and h = 4√
3 for the 2-way Inductive Rotation Method. To take this into account the

offset vectors are modified such that they match these definitions. After computing the
offset vectors they are stored in an array. To get the correct offset for a tile, the array is
accessed at the index that represents the tile’s rotation. After computing the corner and
texture coordinates of each tile and uploading them to the vertex and texture coordinate
buffers the pattern is ready to be rendered.

4.3.2 Pattern Rendering

After generating an Inductive Rotation Pattern with the above algorithm, or as described
later with the algorithms below, the pattern is rendered. A vertex shader and a pixel
shader are used to perform alpha blending, camera movement, stenciling operations and
aspect ratio transformations. The pixel shader optionally also combines the tile textures
with a stencil texture [Netc] that hides a specific region of the tile’s texture or sets it to
a semi transparent level. This method is necessary to achieve the different tile shapes
(hexagon, star) for the 2-way and 5-way Inductive Rotation Methods. If desired, the pixel
shader can also replace the hidden texture part by white color. This feature is necessary
to achieve the same results as the “Irrational Image Generator” from Parzer [Par13].

4.3.3 Parallel Approach

The implementation of this algorithm is based on the definitions presented in Section
3.4.1. It uses the same data representation as the sprite based approach from the previous
section: Tile rotations are represented by a list of integers and only the center coordinates
of the tiles belonging to a pattern are stored. However, the expressions introduced in
Section 3.4.1 create the basis to parallelize the computations needed to obtain these data.
All necessary calculations are performed by Direct Compute 5.0 directly on graphics
hardware. Two variations of this algorithm are presented in the following section: A
parallel algorithm which computes the pattern representation once and then stores it

58

Figure 4.3: The sprite based algorithm as well as the parallel algorithm compute the
corner coordinates of each tile by adding offset vectors to the previously computed center
coordinate. The offset vectors are computed in advance and stored in a multidimensional
array V. To create a tile, the algorithm accesses the array at the correct indices and adds
the offset vector to the tile center to get to a corner coordinates of the tile. Texture
coordinates of each corner are stored in a multidimensional array similarly such that the
index of each offset vector a corresponds to the index of the texture coordinate located
at the same corner the offset vector points to. The number of offset vectors and texture
coordinates which are stored depends on the Inductive Rotation Method. The figure
shows the offset vectors which are necessary to compute the corner coordinates for a
tile when the 3-way Inductive Rotation Method is used. For each of the four possible
rotations of the textured tile, four different offset vectors (drawn in green, black, blue
and orange) need to be stored. However, since two triangles are used to construct a tile
some of the vectors and texture coordinates are stored redundantly. In the image these
are always the top left and bottom right vectors shown in the tiles.

59

in GPU memory and another version of this algorithm which splits pattern generation
into multiple passes. While the first version increases pattern generation speed compared
to the sprite based approach, the latter version permits rendering larger patterns while
maintaining a constant memory footprint.

Mapping Rotations to Integers

The implementation of the parallel algorithm follows the implementation of Parzer’s
[Par13] sprite based algorithm and uses the same representation for tile-coordinates and
rotations. Similarly to Parzer’s algorithm it represents each tile only by its rotation and
center and applies Expression 3.1 to compute the rotation matrices/angles in each step.
To work, the parallel algorithm, however, needs a scheme to directly map the index of a
tile to the integer that represents a tile’s rotation.
The indexing scheme from Table 3.1 can be used in the following way to directly map a
tile index to the integer that represents its rotation:
The integer representing the rotation of tile is obtained by summing the indices of the
rotation matrices used to compute the center coordinate of the tile and performing a
modulo division by pr.
For the tile with index 22 in the example above this results in 2 + 1 + 1 mod 3 = 1
(see Table 3.1), meaning that the tile’s rotation is represented by the integer 1. The
corresponding angle is computed by applying Expression 3.1.

Pattern Generation

To generate Inductive Rotation Patterns with the GPGPU algorithm, several input and
output buffers are set up in advance. First of all, an input buffer holding the pivots
for the algorithm is generated. The content of this buffer needs to be regenerated if
pr changes. Next, an input buffer containing powers of pr is created. This buffer is
necessary since the internal pow HLSL function yields incorrect results for large numbers
for unknown reasons. For example, calculating 68 results in the number 1679617 on the
GPU, while performing the same calculation with the 32-bit float data type provided by
the .NET Framework yields 1679616. Despite the inaccuracies being very small, they
lead to significant computational errors which produce incorrect visual results.
Another buffer, containing the precomputed offset vectors for the corners of each tile,
is created next. Computing these vectors on the GPU is possible but the Inductive
Rotation Framework re-uses the already existing code of the sprite based approach to this
end. Finally, the last input buffer which contains four integer variables representing the
current run (described later), pr and the number of thread-groups in x- and y-direction
(the algorithm uses a 2-D grid for thread group layout) is generated.
Besides the input buffers, the algorithm also needs two output buffers for vertices and
texture coordinates. These buffers, however, do not need CPU access since they are only
used for passing data to the vertex and pixel shaders for rendering. Figure 4.4 provides
a detailed overview of all necessary buffers for the parallel algorithm. To compute an

60

Figure 4.4: A diagram depicting the input and output buffers for the parallel algorithm
which are used by the compute shader function. The input buffers, which also need CPU
access, contain only a very small amount of data. The output buffers contain the vertices
of the tiles. These buffers, in contrast to all previous methods, need only GPU access.

Inductive Rotation Pattern with the parallel algorithm some other definitions need to be
established:

imax = tmax ∗ xmax ∗ ymax (4.1)

itile = tindex + tgx ∗ tmax + xmax ∗ tgy ∗ tmax + rspilt ∗ imax (4.2)

ivbuf = (imax − 1− tindex − tgx ∗ tmax − xmax ∗ tgy ∗ tmax) ∗ 6 (4.3)

Expression 4.1 evaluates the number of threads on the GPU. Expression 4.2 maps thread-
ids to tile indices and Expression 4.3 is used to compute the starting index in vertex and
texture coordinate buffers. The variables and constants in the expressions above have
the following meaning:

• tmax is the number of threads running in a thread group. The current implemen-
tation uses a constant value 1024 for tmax (which is the maximum of possible
threads).

61

• xmax and ymax represent the maximal number of thread groups in x and y dimen-
sions.

• imax is the number of threads in all groups.

• itile is the index of the tile to which the thread id gets mapped to.

• ivbuf is the start index in the vertex and texture buffer where the tile corner
coordinates and texture coordinates will be stored.

• tindex is the integer index of the thread in a thread group. This value is obtained by
the shader semantic SV_GroupIndex. In the current implementation the variable
has a value ranging from 0 to 1023.

• tgx and tgy are the coordinates of the threads group in the thread-group grid. These
values are obtained by the shader semantic SV_GroupThreadID, an integer vector
with three dimensions. In the current implementation however, the z coordinate is
not used (and therefore always set to one).

• rspilt is an integer value which is read from the constant buffer. This value can
be used to split pattern generation into multiple passes. Only the parallel LOD
algorithm described later makes use of this variable.

To generate an Inductive Rotation Pattern each thread performs the following tasks to
generate the corner coordinates of a tile:

1. Map the id of the current thread to a tile index by Expression 4.2. Figure 4.5
visualizes this process.

2. Compute the tile’s center coordinate by a chain of transformations as described in
Section 3.4.1 by using the tile index.

3. Map the id of the current thread to a starting index in the (output) vertex buffer
by applying Expression 4.3. This expression maps tiles to the vertex and texture
buffer in a back to front order, which is necessary for rendering the pattern later.

4. Compute the integer that represents the rotation of the current tile as described in
Section 4.3.3 by using the tile index. Use this index to access an the array of offset
vectors and texture coordinates similar to the sprite based algorithm (see Figure
4.3).

5. Use the center coordinate and the offset vectors to compute the tile’s corner positions
and store them them as six consecutive entries which represent two triangles in the
output vertex buffer, beginning at the index computed in the previous step. This
is explained in more detail by the example by Figure 4.6.

6. Generate the texture coordinates for the vertices and store them in the texture
coordinate buffer. This works similar to filling the vertex buffer in the previous
step.

62

Figure 4.5: To create a mapping between the current thread and a tile index, Expression
4.2 is applied. Thread groups are depicted as boxes in different colors. There are xmax = 3
thread groups in the x-dimension and ymax = 3 thread groups in the y-dimension in this
example. Each of the thread groups contains three threads in the example (tmax = 3).
The parameter rspilt is set to zero.

After the execution of all threads the vertex and texture buffers are merged and copied
to the vertex shader’s input buffer for rendering. Listing 4.2 and 4.3 show the compute
shader functions for computing a tile’s rotation and position by its index. These functions
are executed by each thread to create the corner coordinates of each tile and store
them. The steps for computing the tile coordinates for a pattern are the same for
both versions of the compute shader algorithms that are presented in the next section.
However, the way in which the pattern is stored and rendered differs for both algorithms.

63

Figure 4.6: This figure explains how a specific thread is mapped to vertex and/or texture
buffers by Expression 4.3. The example uses the same parameters as in Figure 4.5:
xmax = 3, ymax = 3 and tmax = 3. This yields the index 18 in the vertex or texture
buffer for a thread with the parameters tindex = 2, tgx = 1, tgy = 2 and rspilt = 0. The
Inductive Rotation Pattern is stored in a back to front order this way, which is necessary
for rendering.

1 int ComputeRotationDesc (int index , int pr)
2 {
3 int f i n a lRo t a t i on = 0 ;
4
5 int d i v i s o r = pr ;
6
7 while (index > 0)
8 {
9 f i n a lRo t a t i on += index % d i v i s o r ;

10 i t e r a t i o n /= pr ;
11 }
12
13 f i n a lRo t a t i on %= pr ;
14
15 return f i n a lRo t a t i on ;
16
17 }

Listing 4.2: The compute shader Function for finding the rotation of a tile with a given
index. The first parameter is the index of the tile and the second parameter is pr. The
function returns an integer representing the rotation of the tile.

64

1
2 f l o a t 2 ComputeTileCoord (int index , int pr)
3 {
4 int p i vo tO f f s e t = 0 ;
5
6 f l o a t 2 t i l eCoord = f l o a t 2 (1 , 1) ;
7
8 f loat increment = 2 ∗ PI / pr ;
9
10
11 while (index > 0)
12 {
13 p i vo tO f f s e t++;
14 f loat ro tat ionAng le = ComputeRotationDesc (index , pr) ;
15 rotat ionAng le ∗= increment ;
16 t i l eCoord = RotateAroundPoint (t i l eCoord ,
17 p ivo tBu f f e r [p i v o tO f f s e t] ,
18 −ro tat ionAng le) ;
19 index /= pr ;
20 }
21
22
23 return t i l eCoord ;
24
25 }

Listing 4.3: The compute shader function for finding the center coordinate of a tile.
The function accepts the index of a tile and pr as parameters and returns a 2-D vector
representing the center of the tile. The function successively rotates a tile until it has
been placed at the desired position. The pivotBuffer array used in the code contains the
pre-computed pivots of the pattern.

Versions of the Parallel Algorithm

There exist two variations of the parallel algorithm that use the procedure described
above to generate Inductive Rotation Patterns:

The first implementation executes the algorithm with a grid of thread groups con-
taining 43 thread groups in x-dimension and 43 thread groups in y-dimension which
facilitates the creation of a total of 43 ∗ 43 ∗ 1024 = 1983376 tiles. This number is
sufficient for 10 iterations with the 3-way Method, 8 iterations for the 5-way Method and
13 iterations for the 2-way Method. The complete pattern is created immediately when

65

pr is changed and stored directly in a vertex buffer in the GPU’s memory where it is
kept for rendering until a different IR-Method is selected.

The second implementation is a more complex version of the parallel algorithm. To
enable the visualization of larger patterns than with the previous methods a different way
to view patterns was implemented. The pattern is first rendered at a high resolution into
a 8192 ∗ 8192 texels wide texture from a specific point of view. The position, size and
zoom level for this texture are stored in an object that is further called “texture camera”.
The user sees only a part of this texture but views it at a very high resolution (how high
depends on the zoom level). The zoom level, position and dimensions of the user’s view
port are called the “render camera” furthermore. The user can navigate freely in the
large texture until the “render camera” hits a boundary of the “texture camera”. If this
happens the pattern is rendered with updated locations of the “texture” and “render
cameras”. To enable zooming, the Inductive Rotation Pattern is also rendered with
updated camera settings after each fifth zoom steps of the “render camera” (This is the
default value. The value can be changed through the options dialog of the application.).
The overall concept of the algorithm is also depicted in Figure 4.8.
By saving intermediate results to a texture the total amount of GPU memory for the
algorithm is bounded, a difference to all non-parallel methods which run out of memory
after a certain amount of iterations. This new approach allows the artist to generate
about 12 times larger patterns than with the previous methods. However, the total
size of patterns is still limited by the amount of time it takes to render them to the texture.

The steps to generate the pattern when the pattern needs to be recreated can be
summarized as follows:

1. Render the pattern into the large texture that is about four times larger than the
view port.

2. Execute a compute shader pass to compute the first part of the pattern. This is
done by setting the variable rsplit = 0 in Expression 4.2

3. Render the pattern to the initially created texture as described in Section 4.3.2.

4. Increment rsplit by one and execute step 2 and 3. Do this until the complete pattern
has been rendered into the texture.

5. Finally, display the pattern to the user by rendering the texture onto a quad.

To split the computation of the pattern into multiple passes, the value of the variable
rsplit in Expression 4.2 is varied from index 0 to an index which depends on the number
of iterations and pr. Figure 4.7 shows the patterns that result from varying variable rsplit

from 0 to an end index 3 for a 3-way Inductive Rotation Pattern. To find the number
of passes rmax (the maximum for rsplit) to generate an Inductive Rotation Pattern,

66

Expression 4.4 is applied. In Expression 4.4 l repreesnts the currently selected iteration
level and imax is the maximal number of threads in all groups.

rmax = pl
r

imax + 1 (4.4)

The current implementation uses 16∗16 thread groups with 1024 threads each to compute
a total of 262144 tiles in an iteration of the algorithm. The “texture camera” uses a
texture with a size of 8192 ∗ 8192 texels. This is about four times larger than the “render
camera’s” view port. Larger textures and thread numbers decreased the performance on
the tested hardware.

4.3.4 The Substitution Tiling Approach

When the algorithm is initialized, mappings between the sub-tiles T1...T4 described in
Section 3.4.2 and the prototile texture are created. This is performed by splitting the
texture of the prototile into four equally sized sub squares and assigning each sub square
to a sub-tile Ti. The algorithm described in Section 3.4.2 is then applied to create the
pattern.
To render the tiles after the pattern has been created, the rotations which are stored
as integers are converted to angles by Expression 3.1. Figure 4.9 compares a pattern
created with the substitution tiling approach to a pattern which was created with the
parallel algorithm. The Inductive Rotation Pattern is contained in the tiling and marked
with red boxes for better visibility. There is no simple method to remove the tiles which
do not belong to the Inductive Rotation Pattern. Additionally, this method can only be
applied to square shaped tiles (and textures).

4.3.5 Pattern Editing

To edit prototile textures, a prototile editor GUI was created. After the user completes
an operation in the prototile editor window, the manipulated texture is uploaded to the
GPU’s memory and the pattern is updated. This is implemented by an event which is
triggered after finishing an image manipulation command (rotate, translate, draw,...).
The prototile editor window uses the WriteableBitmapEx library to enable fast bitmap
manipulation [Wri]. All paint commands which use the mouse are encapsulated in State
Objects [GHJV95]. This approach simplifies handling of state specific information and
collocates code belonging to certain states to the same classes. Commands which are
executed by menus and/or shortcuts implement the IPaintCommand interface. This
interface is an implementation of the Command Pattern [GHJV95] which simplifies the
source code for undo and redo operations. The application maintains two command
stacks (done/undone) for this purpose. To conserve memory, the paint commands store
only pixel differences when applying any of the operations. Rotation and translation
of the image in the canvas is performed by manipulating the transformation matrices
of WPF controls. The prototile editor also contains an experimental animation feature
which is based on WPF’s (storyboard) animation system.

67

Figure 4.7: Pattern rendering is split into multiple passes with the parallel LOD approach.
This figure shows the first four passes for a 3-way Inductive Rotation Pattern. The
number rspilt determines which tiles are rendered by applying Expression 4.2. These
partial patterns were rendered with 1893376 tiles per pass. To render a composite pattern,
the algorithm first computes the necessary number of tiles for the pattern and renders
each partial pattern to the same texture in a back to front order. This means the pattern
with the highest number rsplit is rendered first.

68

Figure 4.8: The figure shows the concept of the parallel LOD algorithm. The “texture
camera”, marked with a red boundary, views a part of the pattern which was rendered
to a large (e.g., 8192 * 8192 texels) texture in advance. If the user moves the “render
camera” out of the boundaries (into the orange area) or the maximum zoom level is
exceeded, the texture is recreated with updated “texture camera” and “render camera”
locations. The view port’s size is about 1/4 of the size large texture without zooming.

69

Figure 4.9: Comparison of the resulting pattern of the substitution tiling approach shown
in the right column to a pattern created with the parallel method in the left column.
The substitution method creates a tiling of the plane, containing the Inductive Rotation
Pattern. [Bri]

70

4.4 Development Process

To ensure an efficient development phase, development was performed iteratively and
with a user centered approach. This means that after a first analysis and implementation
phase, test and development cycles were done in parallel. After each cycle, the desired
features from Hofstetter’s tests were implemented into the next version of the Inductive
Rotation Framework.

As a first step a simple prototype, V 0.1 containing an implementation of the sprite
based algorithm (from Section 3.2.2) was developed. V 0.1 contains no graphical user
interface. However, its GUI was used until the end of the development phase for shader
debugging and experimenting with variations of the Inductive Rotation Method .
With the first prototype built, it was possible to further research the structure of the
generated patterns and develop an idea for the parallel algorithm from the last section.

V 0.2 includes the basic version of the parallel algorithm. V 0.2 also possesses a
basic user interface which is largely based on the “Irrational Image Generator”’s GUI.

In the next iteration step V 0.3 which contains two new, major features was developed.
Firstly, to improve Hofstetter’s work flow, the Inductive Rotation Framework was en-
hanced with the prototile editor UI (described in Section 4.6). Secondly, V 0.3 contains
the algorithm that produces patterns with the substitution method.

In the next test cycle all features which were necessary to produce exactly the same
patterns as “The Irrational Image Generator” were added and lead to V 0.4. These
features include an option to replace transparent areas by white color and the option
to apply mask textures for the creation of hexagon and star shapes. Additionally a
bookmarking feature (described in Section 4.6) that can be used to store viewpoints and
fly back to them later, was implemented for this version.

Version 0.5 extended the prototile editor with duplication and reflection features (see
Figure 4.16), with an option for printing the pattern and with an option for saving
pattern images at different resolutions.

The final version of the Inductive Rotation Framework is called “Inductive Rotation - by
Hofstetter Kurt”. The implementation contains all features of the previous versions with
an improved user interface, redo operations, a paint bucket tool (to fill areas containing
similar colors), the option to copy images from the clipboard, support for drag and drop
and many other UI improvements.

71

4.5 Software Architecture
The code was structured into five different projects to achieve maximum code re-usability
and to follow the principles of “Don’t repeat yourself” (DRY) [Ven]:

• Inductive Rotation

• Inductive Rotation User Interface

• Inductive Rotation WPF User Interface

• Prototile Editor User Interface

• Graphics Utilities

The Inductive Rotation project is the core piece of the software. It contains code for
generating Inductive Rotation Patterns, different camera classes, code for the bookmarking
feature and pivot creation. Both user interfaces, described in Section 4.6, inter operate
with this project. This section describes the responsibilities of the project’s classes in
detail and serves as documentation.
The Inductive Rotation User Interface project implements a simple UI, which offers no
widgets. The Inductive Rotation WPF User Interface project contains all code for the
WPF GUI. This GUI is completely operable by widgets, while important features can
also be accessed by keyboard shortcuts.
The Prototile Editor User Interface project implements the prototile editor and the
Graphics Utilities projects contains classes and support methods used in all other projects.

The Inductive Rotation Project

Figure 4.10 gives an overview of the classes in the Inductive Rotation project. The core
class of the framework is the abstract PatternRenderer class. It exposes a Render Method
that is used by either one of the user interfaces to render the current pattern in the
drawing loop of the application. Furthermore, this class exposes public properties to
access TextureHandler and Camera classes as well as a property to set the number of
iterations. Implementations of this abstract class are provided by the CSPatternRenderer
class which is an implementation of the parallel algorithm described in Section 3.4.1,
the IterativePatternRenderer class which implements the sprite based algorithm from
Section 3.2.2 and the SPatternRenderer class which realizes the substitution algorithm
from Section 3.4.2. To a achieve clean, modular class design the framework provides
the IMultiModeRenderer interface which is implemented by all rendering classes that
support multiple Inductive Rotation Methods (i.e., 2-way/3-way/5-way).

Texture operations are handled by classes implementing the ITextureHandler inter-
face. A basic implementation of this interface is the SimpleTextureHandler class, which
contains methods for uploading textures, controls texture transparency (on/off) and
texture aspect ratio settings. A part of the logic for enabling and disabling texture

72

Figure 4.10: A class diagram showing the Inductive Rotation project. The abstract
PatternRenderer class is implemented by all algorithms described in Section 4.3. This
chart was generated with Microsoft Visual Studio 2013.

73

Figure 4.11: A class diagram showing the prototile editor project. The PaintWindow class
contains the UI for the prototile editor. The State and Command patterns from Gamma
et al. [GHJV95] are implemented by classes which derive from the IPaintCommand and
IState interfaces. Classes which’s names contain either Command or State derive from
these interfaces and implement specific drawing commands and states. The buffer class
encapsulates logic for undo and redo operations. This chart was generated with Visual
Studio 2013.

74

transparency is also implemented via pixel shader operations for efficiency reasons. The
MaskableTextureHandler class extends basic texture handling logic by the already de-
scribed masking feature.

The ICamera2D interface provides a contract for classes that implement 2-D cam-
eras. The Inductive Rotation Framwork contains the Camera2D implementation which
supports zooming and panning operations. A more sophisticated implementation of
this interface is given by the LODCamera2D class. This class is used in conjunction
with the CSPatternRenderer class for the LOD approach described in Section 4.3.3.
Another important interface is IPivotFactory. Classes that implement this interface
control the pivot generation strategy. The classes ExponentialPivotFactory and StarPiv-
otFactory implement this interface and use the formulas presented in Section 3.2.2 for
pivot generation.

The Prototile Editor Project

Figure 4.11 depicts the classes from the prototile editor project. PaintWindow is the
project’s main class. This window used to display the prototile texture and provides
access to methods for editing and painting via menus. The implementation is split
into the PaintWindow.xaml file and the PaintWindow.cs file to separate design and
implementation. The PaintWindow class also provides a callback interface which enables
other classes to register for updates to the texture. The IDrawState interface and its
implementations (...State) define the State Pattern [GHJV95] whose classes encapsulate
logic for paint operations and state management. The IPaintCommand interface and all
of its implementations (...Command) are responsible for encapsulating the logic for redo
and undo operations [GHJV95].

Other projects

The rest of the code is structured into three projects: Two user interface projects and a
utility project. The Graphics Utilities project contains all code which is used by more than
one project. It is further structured into Math, Slim DX, WPF and WriteableBitmapUtils
namespaces. The two UI libraries contain mostly event handling logic and (xaml) GUI
definitions.

4.6 User Interfaces
The Inductive Rotation Framework provides two user interfaces. The first user interface,
a development UI, contains no widgets and is controllable by keyboard commands only.
Hofstetter does not use this interface. Instead the UI serves for testing and experimenting.
The UI compiles and loads in a short amount of time, and can be used to test new features
quickly. This project was also used for debugging vertex, pixel and compute shaders, since
this is not possible with WPF GUIs due to technical limitations. The non-graphical UI
furthermore can also generate patterns that do not strictly follow the Inductive Rotation

75

Figure 4.12: A screen shot showing the development UI. In contrast to the WPF GUI
designed for Hofstetter, this UI is used for shader debugging and performing experimental
trials such as stacking banana minions in a Sierpinski triangle. [Chi].

76

Method. Any rotation about an arbitrary fraction of 360° is possible. Additionally this
interface allowed us to experiment with different pivot generation strategies. Figure 4.12
depicts this user interface.

The second UI, the WPF GUI, which is depicted in Figure 4.13 was created with
WPF and tailored to meet Hofstetter’s needs. All features of the program are controllable
by widgets. The controls which Hofstetter uses frequently are located in the main toolbar
from where they can be accessed easily. The main toolbar is comprised of a check-box
for switching the alpha channel of the texture on and off, a check box for enabling and
disabling aspect ratio settings and a check box that enables or disables the texture-mask.
The toolbar also contains a drop-down menu for changing the Inductive Rotation Method,
a slider for selecting the number of iterations. To reduce the amount of controls in the
main toolbar labels showing the camera position and zoom level were positioned at the
bottom of the window. Access to the prototile editor window, which is described later in
this section, is provided by a button with a pen symbol. Less frequently used features
were put into different drop down menus contained in the main-menu bar. The main
menus are labeled File, Edit, Options and Bookmarks. The File menu allows the user to
load new prototiles, provides access the quick save feature, which stores the contents of
the view port in a “png” file. The menu also contains the Print feature which sends the
pattern to a printer and the Save option that also stores the pattern in a “png” format
but additionally allows the artist to select a resolution for the resulting image. The Edit
menu contains an option to paste a new prototile texture into the window, which replaces
the currently selected prototile and the Option menu provides access to the program’s
settings window, where different parameters can be adjusted. Furthermore, the options
menu permits to switch the currently active render mode (sprite based, parallel, ...) via
a sub-menu. The bookmarks menu allows the artist to store the current camera position
and pattern parameters as well as the prototile texture as bookmarks. The Bookmark can
be accessed at a later time to quickly navigate back to the stored position. Bookmarks
can be deleted by simply right clicking and selecting the delete option. The Bookmark
menu is depicted in Figure 4.6. The main view port of the window shows the generated
pattern and provides navigational features via the mouse (zoom and drag). The prototile
editor window, depicted in Figure 4.15, provides a simple texture editor. Similar to
the main user interface, the window features a toolbar for frequently used operations
as well as several drop down menus for functions that are used less frequently. Five
different buttons allow the user to select an interaction mode, which is triggered when
the user presses the left mouse button in the view port of the prototile editor window.
The possible interaction modes include drawing lines, free-hand drawing, using a paint
bucket (fill) and rotating and translating the textures. Each operation is previewed
by a semi-transparent shape which shows the potential result of the operation. If the
line-drawing mode is selected, the user can draw lines by pressing the left mouse button
at the start position and then dragging the cursor to the desired end position. The line is
drawn by releasing the mouse button. Translating the texture works similarly. Holding
the left mouse button starts the translation and releasing the mouse button confirms the

77

Figure 4.13: A screen shot showing the WPF GUI. Access to frequently used functions is
provided by the toolbar at the top. The button with the pencil starts the prototile editor.
Other options can be accessed by drop down menus. The user interface also supports
loading textures from the clipboard or via drag and drop.

translation. All operations are aborted by pressing the right mouse button. Rotations
are also started via the left mouse button. Another left click confirms the rotation. To
enable the precise selection of a rotation angle, the operation can also be paused with
the right mouse button. While paused, the user has different options. The rotation can
be resumed, aborted or changed by typing the angle directly into a text box.
The drop-down menus for less frequently used functions are labeled File, Edit and Options.
The File menu allows the user to create new textures with a specified width and height
and permits loading and saving textures. The Edit menu provides access to Undo and
Redo operations, the experimental animation feature, options to re-size and clear the
texture as well as a special feature, requested by Hofstetter, which duplicates and/or
reflect the texture. Possible results of this so called “Duplicate Prototile” feature are
shown in Figure 4.16. The Options menu contains two features that can be enabled or
disabled:

78

Figure 4.14: A screen shot showing the bookmarks feature. Each bookmark stores the
current camera coordinates, render parameters and the active texture. By accessing the
bookmark at a later time, the pattern is restored. Bookmarks are stored permanently in
an XML file.

• “Continuous Update” is an experimental feature which immediately reflects texture
changes in the pattern, instead of using the end-of-state (mostly mouse up) event
which is the default. Currently this feature can only be used with small textures
and a limited number of iterations.

• The other feature labeled “Increase Image Quality” improves the rendering quality
of the final pattern. This increases the texture size by factor five and drastically
slows down rendering. However, this feature compensates quality loss in several
cases where WPF’s control renderer fails to produce high quality images.

79

Figure 4.15: A screen shot of the prototile editor window. While drawing onto the tile
texture or after translating or rotating the tile, the generated pattern in the main window
reflects the changes to the texture.

80

Figure 4.16: An image depicting the “Duplicate Prototile” feature of the prototile editor.
The top window shows the prototile editor before the feature was activated. The bottom
window shows the prototile editor after activating the feature. The tile from the top
window has been copied and reflected for four times. Hofstetter uses reflected prototiles
frequently in his pattern design process.

81

CHAPTER 5
Results

This chapter analyzes the algorithms and their implementation, provides user feedback,
new patterns and ideas for future work. The first section of this chapter presents
benchmarks of the algorithms from the previous section. These benchmarks measure
pattern generation times and memory usage of the different algorithms and compare their
performance. For a more comprehensive comparison, the algorithms from the chapter
section are compared with Parzer’s sprite based algorithm (written in C++) from Section
3.2.2. The second section reflects Hofstetter’s personal experience with the Inductive
Rotation Framework. The third section presents some new patterns that were generated
with the Inductive Rotation Framework by Hofstetter. The last section discusses the
results of the benchmarks section, the advantages and disadvantages of the different
algorithms and provides ideas for improvements and future work.

5.1 Benchmarks

This section presents benchmarks for all algorithms described in the previous chap-
ter. This section also provides updated benchmarks of Parzer’s sprite based algorithm
from Section 3.2.2. These were generated on the hardware described below with the
software created in the course of Parzer’s thesis [Par13]. All tables in this section
show either execution times for GPU or CPU, depending on the algorithm, as well as
VRAM (Video RAM) and RAM usage for all algorithms and Inductive Rotation Methods.

Benchmarks were conducted on a machine with the following hardware:

• Intel Core i5-2500 with 3.30 GHz and 4 cores

• 8 GB RAM

• AMD Radeon HD 6800 with 1024 MB (GDDR5) RAM

83

All benchmarks were performed with a 64 bit version of Windows 7 Home Premium.
Time and RAM usage were measured with 32-bit “Release” versions of the software.
Device creation code and shader compilers also use the release flag in these versions.

Since pattern creation and rendering is handled differently by the algorithms (sprite
based/parallel LOD/parallel), the comparison is based on the total time each algorithm
needs to create a pattern and upload its coordinates into GPU memory. This implies,
that the rendering times are excluded in all tables. Please note, that the parallel LOD
method marked with an asterisk(*) needs to regenerate the pattern in all situations
described in Section 4.3.3.
CPU Times for C++ code were measured using the QTime class while the Stopwatch
class was applied for analyzing CPU Times in the .NET Framework. GPU Times were
measured with Direct X “time-stamp queries”. Generation times for the sprite based
approaches, the parallel LOD algorithm and the substitution algorithm for all different
Inductive Rotation Methods are depicted in Tables 5.1, 5.2 and 5.3.
Tracking the exact memory usage in the .NET Framework is difficult. The reason for
this is that the .NET Framework uses a garbage collection algorithm which facilitates
programming but does not allow the developer to directly control memory management.
The benchmarks in this section represent only an approximation of the algorithm’s true
memory usage (except for the C++ code).
Memory usage of the host machine was measured using the Sysinternals Process Explorer
tool [Sys15]. GPU memory usage was measured using GPU-Z [Tec].

GPU-Z measures two types of GPU memory usage:

• Dedicated GPU memory usage (GPU memory with fast access times). In the
columns titled VRAM this is the value on the left side of the plus sign.

• Dynamic GPU memory usage (memory of the host machine with slower access
times). In the columns titled VRAM this is the value on the right side of the plus
sign.

Memory usage for the sprite based algorithms and the substitution algorithm for all
different Inductive Rotation Methods are depicted in Tables 5.5, 5.6 and 5.7. Both parallel
algorithms use the same amount of memory independently of the selected parameters.
These times are summed up in Table 5.8.
The parallel algorithm is set to compute a pattern with a fixed set of tiles for all three
Inductive Rotation Method which means it produces only three different times which
are summed up in table 5.1. The benchmarks were performed using a single pass with
43∗43 = 1849 thread groups and 1024 threads per group to compute the pattern (1983376
tiles in total). The benchmarks for the parallel LOD algorithm were generated by using
16 ∗ 16 = 256 thread groups and 1024 threads per group for pattern creation.

84

Iterations sprite based (Parzer) sprite based (.NET) Substitution Parallel LOD*
1 < 1 ms < 1 ms < 1 ms 7 ms
2 < 1 ms < 1 ms < 1 ms 7 ms
3 < 1 ms < 1 ms 3 ms 7 ms
4 < 1 ms < 1 ms 22 ms 7 ms
5 < 1 ms 1 ms 48 ms 7 ms
6 1 ms 4 ms 195 ms 7 ms
7 3 ms 24 ms 888 ms 7 ms
8 17 ms 113 ms 4140 ms 7 ms
9 67 ms 608 ms - 15 ms
10 225 ms 2705 ms - 41 ms
11 805 ms - - 149 ms
12 - - - 628 ms
13 - - - 2667 ms

Table 5.1: Measured times for generating 3-way Inductive Rotation Patterns . *This is
the time for recomputing the LOD texture on the GPU, when moving the camera. This
happens when the pattern is recomputed and introduces a lag of this duration. The lag
occurs when the camera moves out of the LOD texture’s boundary.

Iterations sprite based (Parzer) sprite based (.NET) Parallel LOD*
1 < 1 ms < 1 ms 6 ms
2 < 1 ms < 1 ms 6 ms
3 < 1 ms < 1 ms 6 ms
4 < 1 ms 1 ms 6 ms
5 1 ms 14 ms 6 ms
6 11 ms 86 ms 6 ms
7 59 ms 675 ms 12 ms
8 303 ms 4215 ms 48 ms
9 - - 294 ms
10 - - 1896 ms

Table 5.2: Measured times for generating 5-way Inductive Rotation Patterns . *This is
the time for recomputing the LOD texture on the GPU, when moving the camera. This
happens when the pattern is recomputed and introduces a lag of this duration. The lag
occurs when the camera moves out of the LOD texture’s boundary.

85

Iterations sprite based (Parzer) sprite based (.NET) Parallel LOD*
1 < 1 ms < 1 ms 9 ms
2 < 1 ms < 1 ms 9 ms
3 < 1 ms < 1 ms 9 ms
4 < 1 ms < 1 ms 9 ms
5 < 1 ms < 1 ms 9 ms
6 < 1 ms < 1 ms 9 ms
7 < 1 ms 1 ms 9 ms
8 1 ms 5 ms 9 ms
9 4 ms 23 ms 9 ms
10 15 ms 101 ms 9 ms
11 43 ms 405 ms 9 ms
12 114 ms 1302 ms 30 ms
13 335 ms 3803 ms 72 ms
14 828 ms - 210 ms
15 - - 635 ms
16 - - 2590 ms
17 - - 8089 ms

Table 5.3: Measured times for generating 2-way Inductive Rotation Patterns . *This is
the time for recomputing the LOD texture on the GPU, when moving the camera. This
happens when the pattern is recomputed and introduces a lag of this duration. The lag
occurs when the camera moves out of the LOD texture’s boundary.

Inductive Rotation Method Max Iterations Time
2-way 13 48 ms
3-way 10 58 ms
5-way 8 71,8 ms

Table 5.4: GPU Times for the parallel algorithm.

86

Iterations sprite based (Parzer) sprite based (.NET)
RAM VRAM RAM VRAM

1 68 MB 30 MB 36 MB 8 MB
2 68 MB 30 MB 36 MB 8 MB
3 68 MB 30 MB 36 MB 8 MB
4 68 MB 30 MB 36 MB 8 MB
5 68 MB 30 MB 36 MB 8 MB
6 68 MB 30 MB 36 MB 8 MB
7 68 MB 30 MB 37 MB 8 MB
8 70 MB 30 MB 40 MB 8 MB
9 73 MB 30 MB 46 MB 9 MB
10 81 MB 30 MB 71 MB 13 MB
11 106 MB 30 MB 122 MB 24 MB
12 191 MB 30 MB 274 MB 56 MB
13 372 MB 30 MB 775 MB 152 MB
14 840 MB 30 MB - -

Table 5.5: Total memory usage when creating patterns with the 2-way Method. The
values in the columns titled VRAM represent the amount of dedicated video memory
used by the algorithms while values in the RAM-column show their usage of host-machine
memory.

Iterations sprite based (Parzer) sprite based (.NET) Substitution
RAM VRAM RAM VRAM RAM VRAM

1 68 MB 30 + 18 MB 37 MB 8 + 3 MB 40 MB 8 + 3 MB
2 68 MB 30 + 18 MB 37 MB 8 + 3 MB 40 MB 8 + 3 MB
3 68 MB 30 + 18 MB 37 MB 8 + 3 MB 40 MB 8 + 3 MB
4 68 MB 30 + 18 MB 37 MB 8 + 3 MB 40 MB 8 + 3 MB
5 68 MB 30 + 18 MB 37 MB 8 + 3 MB 41 MB 8 + 3 MB
6 69 MB 30 + 19 MB 38 MB 9 + 3 MB 50 MB 9 + 3 MB
7 72 MB 30 + 19 MB 46 MB 9 + 3 MB 80 MB 9 + 3 MB
8 83 MB 30 + 22 MB 70 MB 14 + 5 MB 202 MB 32 + 10 MB
9 128 MB 30 + 37 MB 160 MB 32 + 9 MB 605 MB 104 + 10 MB
10 308 MB 30 + 97 MB 504 MB 104 + 9 MB - -
11 828 MB 30 + 141 MB - - - -

Table 5.6: Total memory usage when creating patterns with the 3-way Method. The
values in the columns titled VRAM represent the amount of dedicated video memory
used by the algorithms while values in the RAM-column show their usage of host-machine
memory.

87

Iterations sprite based (Parzer) sprite based (.NET)
RAM VRAM RAM VRAM

1 68 MB 30 + 18 MB 36 MB 8 + 3 MB
2 68 MB 30 + 18 MB 36 MB 8 + 3 MB
3 68 MB 30 + 18 MB 36 MB 8 + 3 MB
4 68 MB 30 + 18 MB 36 MB 8 + 3 MB
5 71 MB 30 + 18 MB 41 MB 8 + 3 MB
6 78 MB 30 + 19 MB 60 MB 14 + 1 MB
7 127 MB 30 + 22 MB 180 MB 35 + 9 MB
8 386 MB 30 + 92 MB 791 MB 128 + 9 MB

Table 5.7: Total memory usage when creating patterns with the 5-way Method. The
values in the columns titled VRAM represent the amount of dedicated video memory
used by the algorithms while values in the RAM-column show their usage of host-machine
memory.

Parallel Parallel LOD
RAM VRAM RAM VRAM
38 MB 354 + 3 MB 38 MB 310 + 3 MB

Table 5.8: Total memory usage for the parallel algorithms. All parallel algorithms have a
constant memory footprint. The values in the VRAM columns represent the usage of
dedicated video memory of the graphics card. The values in the RAM columns represent
the usage of host machine memory.

Discussion

The conclusion from the tables in this section is that the sprite based algorithms excel
the parallel algorithms at fewer iterations. However, this speed bonus is not noticeable
by the user when comparing the algorithms. The only computation which the parallel
algorithm needs, happens when the user switches the Inductive Rotation Method. The
maximum time the algorithm consumes for this task (71,8 ms) is almost not noticeable for
the user, while the sprite based algorithms need more time to compute higher iteration
numbers. This happens more often when the user switches between pattern modes and
iterations, especially at higher iteration levels. The parallel LOD algorithm on the other
hand allows the artist to create and navigate in patterns which are 12 times larger than
with the previous methods before the algorithm gets too slow on the tested hardware. As
described in Section 5.4, the parallel LOD algorithm still provides a lot of potential for
future optimizations which could further improve the maximum pattern size and lower
the overall pattern generation times. The Substitution algorithm provides no competitive
results at the current stage of its implementation.

88

5.2 User Experience

The Inductive Rotation Framework was specifically designed for a single person, the artist
Hofstetter Kurt. Hofstetter expressed the desire that the Inductive Rotation Framework
will not be made publicly available and we will follow this request. This also means it
was not possible to do research on user experience with a broad range of users. However,
Hofstetter expresses his personal experience with the Inductive Rotation Framework as
follows:

Hofstetter Kurt, May 2015:

“The Inductive Rotation Framework and its extensions provides tools to create IR-Patterns
more easily by means of getting a better strategical knowledge to design prototiles. Using
the embedded prototile editor to interactively create IR-Patterns, in particular getting
immediate display response of any interaction (like editing by drawing, coloring and / or
moving) opens not only a new way of pattern generation by means of intuition but also
provides a better understanding how the tiles fit together and how they communicate with
each other. Thus, in particular, the software gives new insights into the development of
complex IR-Pattern-structures. Furthermore a new field of experimentation with dots,
lines, curves, colors and movement comes into being. In this context I would like to note
that such experiments were necessary for the creation of Oriental_P (see next section)
which is the result from an extensive process of interactively editing and shaping oriental
ornaments. In addition, the immediate on screen response that follows any free-hand
translation of prototiles provides a moving pattern experience, which stimulates to replace
static prototiles with moving images. Interdisciplinary experiments with these kinds
of patterns have already been started by Barbara Doser, an artist who creates abstract
sequences of patterns for video-art.”

5.3 Inductive Rotation Images

This section depicts three Inductive Rotation Patterns which were created by Hofstetter
with the Inductive Rotation Framework. Figures 5.1, 5.2 and 5.3 show different patterns
created by Hofstetter with support of the prototile editor included in the Inductive
Rotation Framework.

89

Figure 5.1: This pattern, called Oriental_P, was created by Hofstetter with the Inductive
Rotation Framework.

90

Figure 5.2: This pattern, called P_traces, was created by Hofstetter with the Inductive
Rotation Framework.

91

Figure 5.3: This pattern, called 8_bears, was created by Hofstetter with the Inductive
Rotation Framework.

5.4 Comparison and Conclusions

The fundamental algorithm, described in Section 3.4.1, which was devised in the scope of
this thesis has proven useful for the parallelization of pattern generation. Section 3.4.1
provides the mathematical basis for a variety of possible implementations. Two possible
implementations were presented in Section 4.3.3.
The simple parallel algorithm produces large patterns significantly faster than the iterative
C++ version. The parallel LOD algorithm on the other hand provides a way for visualizing
about 12 times larger patterns than before. The algorithm, however, involves a recreation

92

of the pattern in all cases described in Section 4.3.3 and still offers many possibilities for
improvement, yet the implementation of this features lies beyond the scope of this thesis.:

• Currently, the LOD implementation is very simple. If the LOD level switches,
the whole pattern has to be recomputed. This can be improved by exploiting the
nature of the pattern: If the LOD level switches, the algorithm could determine the
position of the view port in the pattern and compute only the visible parts. To this
end the view port could be recursively tested against a tree structure, containing
oriented bounding boxes (OBB), which enclose the whole pattern.

• Instead of computing the rotation matrices/angles in every thread, as the current
algorithm does, the matrices can be computed in advance and stored in a cache
for re-use. This will increase the pattern-generation speed especially for higher tile
indices.

• The current implementation maps the computation of a tile’s coordinates to a
single thread. This is not optimal, since the threads that compute coordinates of
tiles with higher indices need to execute more operations than the threads that
compute tile coordinates with lower indices. Using a smarter distribution strategy
would also improve the speed of the algorithm.

• The number of threads and thread-groups should be optimized for different hard-
ware.

While the parallel algorithms improve the aspects of pattern generation mentioned above,
the parallel (as well as the sprite based) algorithm are limited to generating patterns
on a single layer. Hence it is not possible to visualize “hidden layers”, which store
the overlapping pattern parts, like the grid based algorithm from Section 3.2.1 does.
Furthermore, producing different tile shapes has to be achieved by applying mask textures
if using the parallel or sprite based approaches, while the grid based algorithm supports
different tile shapes out of the box.

The practical usefulness of the substitution algorithm for artistic purposes is questionable
because of the following facts:

• The method is only applicable for 3-way patterns.

• The IR-Pattern cannot be easily isolated from the rest of the tiling.

• Textures with an aspect ratio different from 1:1 (square-textures) cannot be dis-
played easily.

The prototile editor and the other new features proved very useful to Hofstetter. From
a technical point of view, the prototile editor’s performance bottleneck is uploading
textures to the GPU. This is a very expensive operation which needs to be performed
after each texture manipulation. If editing smaller patterns the parallel implementation
provides better performance (This is due to the fact that the pattern does not have to

93

be recreated, if the texture changes) than the parallel LOD algorithm. Interestingly, if
working with huge patterns (e.g., eight iterations for 5-way patterns), the parallel LOD
algorithm performs better on the tested hardware (less lagging). The reason for this is
that the parallel LOD algorithm limits the usage of GPU memory.

94

CHAPTER 6
Summary

To create artistic patterns the artist Hofstetter Kurt developed the Inductive Rotation
Method. This method uses one of several rules, defined by Hofstetter, to copy and rotate
a prototile in order to create a pattern. Pattern creation is executed iteratively and the
number of tiles raises exponentially with this method. The resulting patterns exhibit a
nonperiodic structure. Hofstetters Inductive Rotation is reviewed in Section 6.1. The
previously existing algorithms for the creation of Inductive Rotation Patterns [Par13],
which are reviewed in Section 6.2, were not parallelizeable and the UI of the predecessor
software was limited to pattern generation. Recent research [Hofb] has pointed out that
3-way Inductive Rotation Patterns can also be created by applying tile substitution.
In the course of this thesis a new framework for the creation of Inductive Rotation Patterns
was developed. For this Inductive Rotation Framework a new, parallelizeable algorithm
has been implemented. The mathematical core of this algorithm, a sophisticated indexing
scheme, is reviewed in Section 6.3 . This scheme can be applied in different ways. Section
6.3 also describes the tile substitution method. The different implementations of these
algorithms are described in Section 6.4.

6.1 Inductive Rotation
This section reviews the definition of the Inductive Rotation Method [Hofb,Kur]. The
method is applied to a textured prototile. Inductive Rotation copies and rotates the tile
around different pivots in several iterations. The rotation angles the Inductive Rotation
Method uses are different fractions of 360°. Hofstetter defines three different Inductive
Rotation Methods:

• The 3-way Inductive Rotation Method copies and rotates square shaped prototiles.
This is done three times in each iteration, with rotation angles of 1

4 ,
2
4 and 3

4 of 360°.
The pivot for this operation always has y = 0 and its x coordinate is the rightmost
point inside the pattern.

95

Figure 6.1: A figure showing the position of the first pivot for the creation of 2-way
Inductive Rotation Patterns. The image also depicts the proportions of star-shaped
prototiles defined by Hofstetter. Image courtesy of Hofstetter [Hofa]

• The 5-way Inductive Rotation Method copies and rotates a hexagon shaped prototile.
This is done five times in each iteration, with rotation angles of 1

6 ,
2
6 ,

3
6 ,

4
6 and 5

6
of 360°. The pivot for this operation always has y = 0 and its x coordinate is the
rightmost point inside the pattern. This method uses a hexagon with equal side
lengths as prototile.

• The 2-way Inductive Rotation Method copies and rotates a star shaped prototile
with six spikes. This is done two times in each iteration, with rotation angles of 1

3
and 2

3 of 360°. The pivot for this method is chosen in a different manner. While
in the first rotation the corner point of the first star between the two right apices
(shown in Figure 6.1) is selected, for subsequent iterations the corner point of the
star which is positioned at the rightmost and lowest position in the pattern is used.
This method uses a star shaped prototile which is depicted in Figure 6.1.

6.2 Previous Work

Two algorithms were previously developed for the creation of Inductive Rotation Patterns
by Parzer [Par13]. The first algorithm used a grid of either triangles or squares to
represent the pattern and stores the tile rotations in a multidimensional array as integer
numbers. To perform the necessary copy and rotate steps, the algorithm uses several
expressions (see reference [Par13]) to compute the new positions and rotations in the array
in each iteration. To render the pattern, the algorithm transforms the numbers stored in
the grid into rotated and translated triangles or quads. The grid based algorithm also
stores the hidden portions of the grid in different layers of the array to display them, if
desired.

96

The grid based approach has several drawbacks which result in rendering artifacts
for some prototiles. Another limit of the algorithm is that the prototile shapes are also
limited to hexagons, stars and squares [Par13]. These facts led to the development of the
sprite based approach which also excels the grid based approach in speed and memory
usage. Parzer’s sprite based approach stores the sprite representation of each tile in a
list. The algorithm works iteratively. In the first iteration it rotates all tiles stored in the
list around the pivot and appends the new tiles to the list. The procedure is repeated
with the list that was created in the first iteration for further iterations if the desired size
for the Inductive Rotation Pattern has not yet been reached. An important fact which
has to be considered when displaying the pattern to the user is that the tiles have to be
rendered in a back to front order, starting at the end of the list.

6.3 Algorithms
This section summarizes all new algorithms for Inductive Rotation Pattern generation
which were developed and implemented for the Inductive Rotation Framework. The first
algorithm provides a way to parallelize Inductive Rotation Pattern generation and the
second algorithm is based on the substitution method of Frettlöh and Hofstetter [FH15].

6.3.1 Parallel Approach

The parallel approach is a scheme to compute the position and rotation of each tile by
using a series of concatenated transformation matrices. This approach can be executed
in parallel. The approach also removes a disadvantage of the previous methods, i.e.,
the necessity to store the tile coordinates of each iteration in order to compute the
coordinates for subsequent iterations. The algorithm creates patterns by applying
multiple series of matrix transformations which place the tiles of an Inductive Rotation
Pattern at their designated positions in the pattern. Each series of matrix multiplications
ctile = cT

initB31B21B11...Blk places the prototile with the starting position cinit at its
designated position in the pattern ctile. Each matrix Blk represents a rotation around a
pivot. To find the Blk matrices that place a tile in the pattern, all translation matrices
Tl, that represent the translations from the tile’s center to the pivots and the rotation
matrices Rk for the rotations around the points need to be found. These matrices are
then used to construct the matrix Blk by applying Expression 6.1.

Blk = T−1
l RkTl (6.1)

The different angle’s for each rotation matrix Rk is represented by Expression 6.2. The
expression maps the integer k to a rotation angle for matrix Rk.

r(k) = k ∗ 2 ∗ π
pr

(6.2)

To determine the rotation angle which is needed to construct a matrix Rk and to determine
the matrices Tl for the pivots, an indexing scheme is established. The indexing scheme

97

uses the same idea as the algorithm for converting numbers between different bases of
numeral systems. Interestingly, this conversion scheme corresponds naturally to the way
Inductive Rotation Patterns are constructed. The idea of the scheme is depicted by the
example in Table 6.1.
To determine the indices for the matrices Blk which are needed to construct the chain
of rotations for a tile in an Inductive Rotation Pattern, the index of the tile sought is
successively divided by pr. Hereby the remainder of each division is kept and the order
of the division operations is noted. The example in Table 6.1 shows this procedure for a

Number Operation k (Remainder) l (Order)
22 22/3 = 7 1 1
7 7/3 = 2 1 2
2 R : 2 2 3

Table 6.1: An example on how to compute the indices k and l for the rotation and
translation matrices. In this specific example the matrices for the tile with index 22 are
sought. To find the indices k the starting number is successively divided by powers of
pr and the remainders of these divisions are kept. The indices l are found by simply
numbering the calculations bottom up.

tile with index 22 using the 2-way Inductive Rotation Method. The results in the table
are interpreted from bottom up to construct the chain of multiplications from left to
right. For the index in this example the results is the chain of matrix multiplications
B32B21B11. In the case that the remainder of a division step equals zero (i.e., k = 0),
the matrix Blk of this step is replaced by the Identity-Matrix.
Each rotation matrix Rk for the Blk matrices is constructed from a rotation angle
by applying Expression 6.2 with index k as argument. Each translation matrix Tl is
constructed by applying a corresponding pivot rule. For 3-way and 5-way Inductive
Rotation Patterns, the translation matrix Tl is constructed by Expression 6.3. Pivots for
3-way and 5-way Inductive Rotation Patterns were already described by Parzer [Par13]
in this way.

~ppivot(l) = (2l, 1) (6.3)

A closed expression for the pivots of 2-way Inductive Rotation Patterns, however, was not
given by Parzer who used a search method to find the pivots for each iteration. To find
a closed expression for these pivots, the positions that Parzer’s software determines for
2-way Inductive Rotation pivots were examined. While at the current stage of work no
geometrical meaning of the following expressions can be given, they are able to reproduce
all the pivot coordinates from Parzer’s software in a coherent way and also produce
correct looking results for iteration levels that exceed the capacity of Parzer’s software
(more than 14 iterations). Expression 6.4 computes the x-coordinate and Expression
6.5 computes the y-coordinate of a pivot for a 2-way Inductive Rotation Pattern at an
iteration level l. A vector with the x- and y-coordinate of a pivot for a 2-way Inductive

98

Rotation Pattern at iteration level l is computed by Expression 6.6.

x(l) =

5
3 if l = 1
5
3 +

[∑l−2
i=0 3b

i
2 c ∗ ((i mod 2) + 1)

]
if l > 1

(6.4)

y(l) =

(∑l−1

i=1 3b
i−1

2 c ∗ (i mod 2)
)
∗ pprojy if l ≥ 2

1 if l < 2
(6.5)

~ppivot(l) = (x(l), y(l)) (6.6)

With the established indexing scheme described above and the different Expressions for
finding the rotation matrices Rk and the Expressions for finding the pivot’s translation
matrices Tl, the position of each tile can now be determined independently without
knowing the exact position of any other tile in the pattern. Two possible implementations
of this scheme are presented in section 6.4.

6.3.2 Substitution Tiling Approach

Another algorithm for generating Inductive Rotation Patterns is presented by Frettlöh
and Hofstetter [FH15]. This algorithm, however, cannot directly generate Inductive
Rotation Patterns. The mathematical theory, developed by Freetloeh et al. [FH15] ,
produces only 3-way Inductive Rotation Patterns that are contained in larger tilings.
Therefore this method creates, in contrary to the previous methods, tilings of the plane in
accordance with the mathematical definition, with no overlapping tiles. The tilings, which
are created by this method do not represent Inductive Rotation Patterns themselves,
but they contain Inductive Rotation Patterns. The idea of this approach is to apply a
rule-based tile-substitution scheme, consisting of four different rules, to create Inductive
Rotation Patterns. The substitution scheme is depicted in Figure 6.2. Additionally each
of the four different tiles identified by T1, T2, T3 and T4 needs to be mapped to a sub
square of the prototile of an Inductive Rotation Pattern for visualization. A pattern is
represented by squares of 1/4 the size of the prototile with this approach. The theory
works only with squares. To apply the substitution tiling approach, objects which store
the properties of each tile are defined first. Each instance of these tile objects stores a
tile’s background-texture, its rotation, represented as an integer and its corner vertices.

To create a pattern by tile substitution the following simple steps are executed:

1. Create a set of four tiles, also called seed tiles. Create a linked list data structure
and append the seed tiles. Each of the seed tiles has 1/4 of the prototile’s size.

2. In an iteration step: Replace all tiles according to the given substitution rules (T1
to T4). The rotation of each replaced tile is kept.

3. Perform another iteration if the desired pattern size has not yet been reached.

99

Figure 6.2: 3-way IR-Patterns can be created by applying substitution rules. Starting
with four initial seed tiles, the rules T1, T2, T3 and T4 are applied to replace each tile in
every step while keeping the rotation of the original tile, by rotating the tile given by the
rule accordingly. After three steps this yields the tiling to the right. [FH15].

To execute an iteration step, each element of the linked list data structure is visited and
the following operations are performed:

1. Inspect the tile type (T1, T2, T3 or T4) and select a rule from the rule set.

2. Create four new tiles, according to the selected rule.

3. Inspect the rotation of the current tile that is being replaced.

4. If the rotation of the tile in the rule does not match the rotation of the tile to be
replaced but it has the same color it has to be aligned first. To align it, the left
and right part of the specific rule are rotated until the left side of the rule matches
the rotation of the tile to be replaced.

5. Replace the current tile in the linked list data structure with the sub-tiles.

100

6.4 Implementation
The Inductive Rotation Framework implements four different algorithms for creating
Inductive Rotation Patterns. The user can switch between the different pattern generation
algorithms interactively. The first algorithm is an implementation of Parzer’s sprite based
pattern creation algorithm [Par13]. The algorithm has been reimplemented in C#. The
other three, newly implemented algorithms are described in the next sections.

6.4.1 Parallel Approach

Two different versions of the parallel approach were implemented as Direct Compute
algorithms. Both algorithms map the computation of each tile’s coordinates to single
threads which are executed in parallel on the GPU by Direct Compute. The threads of a
Direct Compute application are stored in three-dimensional grids. Each of this grids is
called a thread group. Thread groups themselves are also stored in three-dimensional
grids. These relations are depicted in Figure 6.3.
To map a tile id to a thread, our implementation uses Expression 6.7 and 6.8. Expression
6.7 computes the total number of threads the implementation and Expression 6.8 maps a
tile index to the each different thread.

imax = tmax ∗ xmax ∗ ymax (6.7)

itile = tindex + tgx ∗ tmax + xmax ∗ tgy ∗ tmax + rspilt ∗ imax (6.8)

In the expressions above the variables have the following meaning:

• tmax is the maximal number of threads running in a thread group. The current
implementation uses a constant value 1024 for tmax (which is the maximum of
possible threads).

• xmax and ymax represent the maximal number of thread groups in x and y dimen-
sions.

• imax is the number of threads in all groups.

• itile is the index of the tile to which the thread id gets mapped to.

• tindex is the integer index of the thread in a thread group. This value is obtained by
the shader semantic SV_GroupIndex. In the current implementation the variable
has a value ranging from 0 to 1023.

• tgx and tgy are the coordinates of the threads group in the thread-group grid. These
values are obtained by the shader semantic SV_GroupThreadID, an integer vector
with three dimensions. In the current implementation however, the z coordinate is
not used (and therefore always set to one).

101

Figure 6.3: This figure shows the alignment of thread groups and their respective threads.
Direct Compute dispatches thread groups in a three-dimensional grid with x, y and z
dimensions. The threads of each thread-group are also aligned in a three-dimensional
grid. The figure shows a grid of 6 thread-groups (2 in x and 3 in y direction) with 64
threads (8 in x and 8 in y direction) in each thread group. The number of threads in a
group should be a multiple of the wavefront- or warp-size. [Lun12]

• rspilt is an integer value which is read from the constant buffer. This value can
be used to split pattern generation into multiple passes. Only the parallel LOD
algorithm described later makes use of this variable.

These parameters allow the programmer to change the number of thread groups dynam-
ically and to split pattern generation into multiple passes. Figure 6.4 shows how tiles
indexes are mapped to thread ids by Expression 6.8 for an example with the parameters
xmax = 3, ymax = 3, tmax = 3 and rspilt = 0.
As already mentioned above, the parallel algorithm was implemented in two different
variations. The first implementation uses the parameters tmax = 1024, xmax = 43,
ymax = 43 and rsplit = 0 for the grid of thread groups. This generates a total of 1983376
tiles which is enough for either 10 iterations for a pattern with the 3-way Method, 8

102

Figure 6.4: To create a mapping between the current thread and a tile index Expression
4.2 is applied. Thread groups are depicted as boxes in different colors. There are xmax = 3
thread groups in the x-dimension and ymax = 3 thread groups in the y-dimension in this
example. Each of the thread groups contains three threads in the example (tmax = 3).
The parameter rsplit is set to zero.

iterations for a pattern with the 3-way Method or 13 iterations for a pattern the 2-way
Method.
The second implementation uses a more sophisticated approach. Since the size of the
vertex buffer is limited, the previous approaches can only produce patterns with a number
of tiles that fit into the vertex buffer. To render patterns that are too large to fit into
the vertex buffer, the rendering process is split into different passes and the intermediate
results are stored in a texture. After each rendering pass, the results of the pass are
merged with the texture. This way rendering large Inductive Rotation patterns can be
split into multiple passes. This concept is also depicted in Figure 6.5. A large texture
(the implementation uses 8192 * 8192 texels) is used to store the pattern. Only a part of
this texture (about 1/4 at the regular zoom level) is shown to the user. The user can
navigate in the texture and zoom in or out. Figure 6.6 illustrates this. In the cases where
the user navigates out of the boundaries of the created texture, the pattern is recreated
and rendered into the texture from a different point of view, with the pattern texture
centered at the position of the user’s view port. Handling texture zoom works similarly.
After a, user definable, maximal number of zoom in or zoom out operations the Inductive
Rotation Pattern is also recreated and rendered at the new position of the user’s view
port to avoid blurry looking tiles. With this approach we were able to generate patterns

103

Figure 6.5: Pattern rendering is split into multiple passes. This figure shows the first
four passes for a 3-way Inductive Rotation Pattern. The number rspilt determines which
tiles are rendered by applying Expression 4.2. These partial patterns were rendered with
1893376 tiles per pass. To render a composite pattern, the algorithm first computes the
necessary number of tiles for the pattern and renders each partial pattern to the same
texture in a back to front order. This means the pattern with the highest number rsplit

is rendered first.

104

Figure 6.6: The figure shows the concept of the parallel LOD algorithm. A part of
the pattern is stored in a large (e.g., 8192 * 8192 texels) texture marked with the red
boundary. The user sees only a part of the pattern, marked as “Camera Viewport”. If
the user’s view port moves out of the boundaries (into the orange area) or the maximum
zoom level is exceeded, the texture is recreated with updated view port locations. The
view port’s size is about 1/4 of the size large texture without zooming.

with a sizes that are about 12 times larger than patterns generated with the previous
methods. Larger patterns need more time to be recreated, which induces serious lags at
the events described above (user leaves texture/zoom level exceeded).

6.4.2 Substitution Tiling Approach

The substitution tiling approach is implemented by first creating mappings between the
sub-tiles T1...T4 described in section 6.3 and the prototile texture. The prototile texture
is split into four equally sized sub squares to this end. Each sub square is then assigned to
a sub-tile Ti. Then the substitution tiling approach described in 6.3 is applied to create

105

the pattern. After executing an arbitrary number of replacement steps, the resulting
tiling that contains the Inductive Rotation Pattern is rendered. Figure 6.7 compares an
Inductive Rotation Pattern to a tiling that was generated with the substitution tiling
approach. The pattern on the left side was generated with the parallel algorithm while
the tiling on the right side was generated with the substitution tiling approach. The area
marked in red contain the Inductive Rotation Pattern.

6.5 User Interfaces
The Inductive Rotation Framework can be accessed by two different user interfaces. The
first user interface is keyboard-controlled and was mainly used in the development phase.
It is mentioned here, however, because it can produce patterns that do not strictly follow
Hofstetter’s Inductive Rotation Method. The second user interface, which is depicted in
Figure 6.8, contains widgets to control the generation of Inductive Rotation Patterns and
several display settings. Drop down menus allow the user to switch between different
render modes, access settings, paste textures from other programs and to save the image
displayed in the view port. To interactively design tiles, the user can either use custom
image editing software or the integrated prototile editor. When custom image editing
software is used, the pattern will update when the prototile texture is saved to disk. To
use the integrated prototile editor the user clicks a button with a pen symbol at the
center of the top toolbar in Figure 6.8.
When the user clicks the pen symbol, the prototile editor window which shows the

prototile’s texture opens. Figure 6.9 shows the WPF GUI with the open prototile editor
window. The user can perform different image editing operations in the prototile editor
which are then directly reflected in the Inductive Rotation Pattern. This allows the user
to create Inductive Rotation Patterns intuitively. Figure 6.9 shows a pattern that has
been created with the prototile editor by drawing and rotating a square in a few simple
steps. The prototile editor offers multiple basic commands like drawing, a fill function
and texture translation and rotation.

6.6 Method Comparison
The performance for the algorithms was compared using the following hardware:

• Intel Core i5-2500 with 3.30 GHz and 4 cores

• 8 GB RAM

• AMD Radeon HD 6800 with 1024 MB (GDDR5) RAM

CPU Times for C++ code were measured using the QTime class while the Stopwatch
class was applied for analyzing CPU Times in the .NET Framework. GPU Times were
measured with Direct X “time-stamp queries”. Memory usage of the host machine was
measured using the Sysinternals Process Explorer tool [Sys15]. GPU memory usage was

106

Figure 6.7: Comparison of the resulting pattern of the substitution tiling approach shown
in the right column to a pattern created with the parallel method in the left column.
The substitution method creates a tiling of the plane, containing the Inductive Rotation
Pattern. [Bri]

107

Figure 6.8: A screen shot showing the WPF GUI. Access to frequently used functions is
provided by the toolbar at the top. The button with the pencil starts the prototile editor.
Other options can be accessed by drop down menus. The user interface also supports
loading textures from the clipboard or via drag and drop.

measured using GPU-Z [Tec].
The sprite based algorithm from Parzer, which was developed in C++, excels both the
sprite based and the substitution approach, which are developed in C# in terms of
generation time and memory usage. The algorithm’s single iteration steps, however,
cannot be directly compared to the pattern generation method of the parallel algorithm,
which always generates a fixed number of (1983376) tiles. The time that the sprite based
algorithm in C++ needs for generating this number of tiles was compared to the times
that the parallel algorithm needs for this task in Table 6.6. The parallel LOD algorithm,
which has to regenerate the pattern at the different events described above, provides the
user lag free navigation in 2-way patterns for up to sixteen iterations. In 3-way Patterns
the navigation works lag free for up to twelve iterations and in 5-way patterns for up to
9 iterations. Viewing larger patterns works, but introduces subjectively too much lag at
the events described in Section 6.4, when the pattern is recreated.

108

Figure 6.9: A screen shot of the prototile editor window. While drawing onto the tile
texture or after translating or rotating the tile, the generated pattern in the main window
reflects the changes to the texture.

Inductive Rotation Method Max Iterations parallel sprite based (C++)
2-way 13 48 ms 335 ms
3-way 10 58 ms 225 ms
5-way 8 71,8 ms 303 ms

Table 6.2: The pattern generation times for the parallel algorithm compared to the
pattern generation times of the sprite based algorithm. The parallel algorithm always
generates a fixed amount of tiles. The time that the algorithm needs to create the pattern,
however, is not noticeable by the user.

Video-RAM (VRAM) usage of both parallel algorithms is about 400 MB at all times.
Both algorithms also use about 40 MB of system RAM at all times. The RAM usage of
all other algorithms grows exponentially.

109

6.7 Discussion and Future Work
Two new algorithms for the generation of Inductive Rotation Patterns were presented
in the previous sections. While the substitution approach does not have any practical
advantages for generation of Inductive Rotation Patterns, it is the only approach that
generates tilings in a mathematical sense. This, however, presents a disadvantage since
the Inductive Rotation Pattern is contained in this tiling and there is no simple way to
isolate the Inductive Rotation Pattern from the tiling.
The indexing scheme that the parallel approach uses provides a promising mathematical
basis for a variety of possible parallel generation algorithms. Two implementations called
the parallel and the parallel LOD algorithm were presented in the previous sections. The
parallel approach generates a large number of tiles in a short amount of time as shown in
the previous section. The parallel LOD algorithm enables the user to visualize about 12
times larger patterns than with the previous approaches.
The maximum pattern size for Inductive Rotation Patterns, however, is still limited.
The pattern size and generation speed could probably be increased by the following
improvements in future implementations:

• Currently, the LOD implementation is very simple. If the LOD level switches,
the whole pattern has to be recomputed. This can be improved by exploiting the
nature of the pattern: If the LOD level switches, the algorithm could determine the
position of the view port in the pattern and compute only the visible parts. To this
end the view port could be recursively tested against a tree structure, containing
oriented bounding boxes (OBB), which enclose the whole pattern.

• Instead of computing the rotation matrices/angles in every thread, as the current
algorithm does, the matrices can be computed in advance and stored in a cache
for re-use. This will increase the pattern-generation speed especially for higher tile
indices.

• The current implementation maps the computation of a tile’s coordinates to a
single thread. This is not optimal, since the threads that compute coordinates of
tiles with higher indices need to execute more operations than the threads that
compute tile coordinates with lower indices. Using a smarter distribution strategy
would also improve the speed of the algorithm.

• The number of threads and thread-groups should be optimized for different hard-
ware.

110

Bibliography

[All] Jonathan Allen. A WPF Q & A. http://www.infoq.com/news/2014/04/
WPF-QA. Accessed: 2015-01-30.

[Bar88] Michael Barnsley. Fractals Everywhere. Academic Press Professional, Inc.,
San Diego, CA, USA, 1988.

[Bey] Wolfgang Beyer. File:mandel zoom 00 mandelbrot set.jpg. http:
//commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.
jpg?uselang=de. Accessed: 2015-03-30.

[Bri] Matt Brice. Alan Turing: Imitating genius. http://www.valuewalk.com/
2015/02/alan-turing-imitating-genius/. Accessed: 2015-03-30.

[Bro] Cameron Browne. Pythagoras Tree. http://www.cameronius.com/graphics/
box-trees-figures/box-trees-fig-2.jpg. Accessed: 2015-01-30.

[Che10] Paul Chew. Voronoi Diagram / Delaunay Triangulation. https://www.cs.
cornell.edu/home/chew/Delaunay.html, 2010. Accessed: 2015-01-30.

[Chi] Chiquita. Galleries. http://minionslovebananas.com/
galleries-images-wallpapers/. Accessed: 2015-01-30.

[Cla] Bryan Clair. Hyperbolic Geometry. http://euler.slu.edu/escher/index.php/
Hyperbolic_Geometry. Accessed: 2015-01-30.

[Coma] Wikimedia Commons. File:tiling regular 3-6 triangular.svg. http://commons.
wikimedia.org/wiki/File:Tiling_Regular_3-6_Triangular.svg. Accessed:
2015-01-30.

[Comb] Wikimedia Commons. File:tiling semiregular 3-3-3-3-6 snub hexago-
nal.svg. http://en.wikipedia.org/wiki/File:Tiling_Semiregular_3-3-3-3-6_
Snub_Hexagonal.svg. Accessed: 2015-01-30.

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang
tiles for image and texture generation. ACM Trans. Graph., 22(3):287–294,
July 2003.

111

http://www.infoq.com/news/2014/04/WPF-QA
http://www.infoq.com/news/2014/04/WPF-QA
http://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg?uselang=de
http://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg?uselang=de
http://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg?uselang=de
http://www.valuewalk.com/2015/02/alan-turing-imitating-genius/
http://www.valuewalk.com/2015/02/alan-turing-imitating-genius/
http://www.cameronius.com/graphics/box-trees-figures/box-trees-fig-2.jpg
http://www.cameronius.com/graphics/box-trees-figures/box-trees-fig-2.jpg
https://www.cs.cornell.edu/home/chew/Delaunay.html
https://www.cs.cornell.edu/home/chew/Delaunay.html
http://minionslovebananas.com/galleries-images-wallpapers/
http://minionslovebananas.com/galleries-images-wallpapers/
http://euler.slu.edu/escher/index.php/Hyperbolic_Geometry
http://euler.slu.edu/escher/index.php/Hyperbolic_Geometry
http://commons.wikimedia.org/wiki/File:Tiling_Regular_3-6_Triangular.svg
http://commons.wikimedia.org/wiki/File:Tiling_Regular_3-6_Triangular.svg
http://en.wikipedia.org/wiki/File:Tiling_Semiregular_3-3-3-3-6_Snub_Hexagonal.svg
http://en.wikipedia.org/wiki/File:Tiling_Semiregular_3-3-3-3-6_Snub_Hexagonal.svg

[Dry15] Scot Drysdale. Voronoi diagrams: Applications from archaology to zoology,
February 2015. Accessed: 2015-01-30.

[Dun07] Douglas Dunham. An algorithm to generate repeating hyperbolic patterns.
ISAMA, Texas A and M, May 2007.

[DWL+12] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson,
and Jack Dongarra. From Cuda to OpenCL: Towards a performance-
portable solution for multi-platform GPU programming. Parallel Comput.,
38(8):391–407, August 2012.

[Esc] Maurits Cornelis Escher. Circle Limit IV. http://www.mcescher.com/
gallery/mathematical/circle-limit-iv/. Accessed: 2015-01-30.

[Fal03] Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Appli-
cations. Wiley, 2 edition, November 2003.

[FH15] Dirk Frettlöh and Kurt Hofstetter. Inductive rotation tilings. Proceedings
of the Steklov Institute of Mathematics, 288(1):247–258, 2015.

[For86] Steven Fortune. A Sweepline Algorithm for Voronoi Diagrams. In Proceed-
ings of the Second Annual Symposium on Computational Geometry, SCG
’86, pages 313–322, New York, NY, USA, 1986. ACM.

[Fou] Fractal Foundation. Fractal applications. http://fractalfoundation.org/
OFC/OFC-12-1.html. Accessed: 2015-01-30.

[Fun10] James Fung. Direct Compute Lecture Series 210: GPU Optimiza-
tions and Performance. http://channel9.msdn.com/Blogs/gclassy/
DirectCompute-Lecture-Series-210-GPU-Optimizations-and-Performance,
2010. Accessed: 2015-01-30.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[GKS90] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized
incremental construction of Delaunay and Voronoi diagrams. In Proceedings
of the Seventeenth International Colloquium on Automata, Languages and
Programming, pages 414–431, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

[Gla04] Steven Glanville. Texture bombing. In Randima Fernando, editor, GPU
Gems, pages 323–338. Addison-Wesley, 2004.

[Gos] Joe Gossman. Advantages and disadvantages of m-v-vm. http://blogs.msdn.
com/b/johngossman/archive/2006/03/04/543695.aspx. Accessed: 2015-01-
30.

112

http://www.mcescher.com/gallery/mathematical/circle-limit-iv/
http://www.mcescher.com/gallery/mathematical/circle-limit-iv/
http://fractalfoundation.org/OFC/OFC-12-1.html
http://fractalfoundation.org/OFC/OFC-12-1.html
http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-210-GPU-Optimizations-and-Performance
http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-210-GPU-Optimizations-and-Performance
http://blogs.msdn.com/b/johngossman/archive/2006/03/04/543695.aspx
http://blogs.msdn.com/b/johngossman/archive/2006/03/04/543695.aspx

[Gro] The Khronos Group. The open standard for parallel programming of
heterogeneous systems. https://www.khronos.org/opencl/. Accessed: 2015-
01-30.

[GS86] Branko Grünbaum and Geoffrey Colin Shephard. Tilings and Patterns. W.
H. Freeman & Co., New York, NY, USA, 1986.

[Hil] Raymond Hill. Javascript implementation of Steven J. Fortune’s algo-
rithm to compute voronoi diagrams. http://www.raymondhill.net/voronoi/
rhill-voronoi.html. Accessed: 2015-05-08.

[HKL+99] Kenneth E. Hoff, III, John Keyser, Ming Lin, Dinesh Manocha, and Tim
Culver. Fast Computation of Generalized Voronoi Diagrams Using Graphics
Hardware. In ACM SIGGRAPH 1999 Papers, SIGGRAPH ’99, pages
277–286, New York, NY, USA, 1999. ACM.

[Hofa] Kurt Hofstetter. The inductive rotation by hofstetter kurt. http://
hofstetterkurt.net/NIP/inductive-rotation-description.pdf. Accessed: 2015-
03-30.

[Hofb] Kurt Hofstetter. NEW IRRATIONAL PATTERNS. http://hofstetterkurt.
net/ip. Accessed: 2015-03-30.

[Hut81] John Hutchinson. Fractals and Self-Similarity. Indiana University Mathe-
matics Journal, 30(5):713–747, 1981.

[Joy] David E. Joyce. Hyperbolic tesselations. http://aleph0.clarku.edu/~djoyce/
poincare/PoincareApplet.html. Accessed: 2015-01-30.

[KCODL06] Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski.
Recursive Wang Tiles for Real-time Blue Noise. In ACM SIGGRAPH 2006
Papers, SIGGRAPH ’06, pages 509–518, New York, NY, USA, 2006. ACM.

[Kle04] Rolf Klein. Algorithmische Geometrie. Springer, 2004.

[Kur] Hofstetter Kurt. Introduction. http://hofstetterkurt.net/InductiveRotation/
Introduction.pdf. Accessed: 2015-06-30.

[Lag09] Ares Lagae. Wang Tiles in Computer Graphics. Synthesis Lectures on
Computer Graphics and Animation. Morgan & Claypool Publishers, San
Rafael, CA, USA, March 2009. Editor: Brian A. Barsky, Series ISSN:
1933-8996 (print) 1933-9003 (electronic), Volume: 4, Number: 1.

[LRP95] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique
based on hyperbolic geometry for visualizing large hierarchies. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’95, pages 401–408, New York, NY, USA, 1995. ACM Press/Addison-Wesley
Publishing Co.

113

https://www.khronos.org/opencl/
http://www.raymondhill.net/voronoi/rhill-voronoi.html
http://www.raymondhill.net/voronoi/rhill-voronoi.html
http://hofstetterkurt.net/NIP/inductive-rotation-description.pdf
http://hofstetterkurt.net/NIP/inductive-rotation-description.pdf
http://hofstetterkurt.net/ip
http://hofstetterkurt.net/ip
http://aleph0.clarku.edu/~djoyce/poincare/PoincareApplet.html
http://aleph0.clarku.edu/~djoyce/poincare/PoincareApplet.html
http://hofstetterkurt.net/InductiveRotation/Introduction.pdf
http://hofstetterkurt.net/InductiveRotation/Introduction.pdf

[Lun12] Frank Luna. Introduction to 3D Game Programming with Direct X 11.
Mercury Learning & Information, USA, 2012.

[Man82] Benoit B. Mandelbrot. The fractal geometry of nature. W.H. Freeman, 1
edition, August 1982.

[Mar09] Maurice Margenstern. Navigation in tilings of the hyperbolic plane and
possible applications. CoRR, 2009.

[MCK13] Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Real time
dynamic fracture with volumetric approximate convex decompositions. ACM
Trans. Graph., 32(4):115:1–115:10, July 2013.

[Neta] Microsoft Developer Network. Introduction to WPF. https://msdn.microsoft.
com/en-US/en-en/library/aa970268%28v=vs.110%29.aspx. Accessed: 2015-
01-30.

[Netb] Microsoft Developer Network. The MVVM pattern. https://msdn.microsoft.
com/en-us/library/hh848246.aspx. Accessed: 2015-01-30.

[Netc] Microsoft Developer Network. What is a Stencil Buffer. https:
//msdn.microsoft.com/en-us/library/bb976074.aspx?f=255&MSPPError=
-2147217396. Accessed: 2015-01-30.

[Netd] Microsoft Developer Network. What is databinding? https://msdn.
microsoft.com/en-us/library/ms752347.aspx#what_is_data_binding. Ac-
cessed: 2015-01-30.

[Pal] Luis Blackaller Kyle Buza Justin Mazzola Paluska. Aperiodic Tilings.
http://black.mitplw.com/tiles/aperiodic.html. Accessed: 2015-01-30.

[Par13] Simon Parzer. Irrational image generator. Master’s thesis, Institute of
Computer Graphics and Algorithms, TU Wien, Favoritenstrasse 9-11/186,
A-1040 Vienna, Austria, June 2013.

[Pic09] Clifford A. Pickover. The Math Book. Sterling Publishing Company, Inc.,
2009.

[SH75] Michael Ian Shamos and Dan Hoey. Closest-point problems. In Proceedings
of the 16th Annual Symposium on Foundations of Computer Science, SFCS
’75, pages 151–162, Washington, DC, USA, 1975. IEEE Computer Society.

[Sip] Sebastian Sippl. Inductive rotation - Animated pattern. https://www.
youtube.com/watch?v=zP-H99P7lnA&feature=youtu.be. Accessed: 2015-
05-16.

[Sof15] Tiobe Software. TIOBE index for may 2015. http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html, 2015. Accessed: 2015-05-25.

114

https://msdn.microsoft.com/en-US/en-en/library/aa970268%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-US/en-en/library/aa970268%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/bb976074.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/bb976074.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/bb976074.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/ms752347.aspx#what_is_data_binding
https://msdn.microsoft.com/en-us/library/ms752347.aspx#what_is_data_binding
http://black.mitplw.com/tiles/aperiodic.html
https://www.youtube.com/watch?v=zP-H99P7lnA&feature=youtu.be
https://www.youtube.com/watch?v=zP-H99P7lnA&feature=youtu.be
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[Sta97] Jos Stam. Aperiodic texture mapping. Technical report, European Research
Consortium for Informatics and Mathematics (ERCIM), 1997.

[SW] Matthew Szudzik and Eric W. Weisstein. Parallel Postulate. From
mathworld–a wolfram web resource. http://mathworld.wolfram.com/
HyperbolicGeometry.html. Accessed: 2015-01-30.

[Sys15] Sysinternals. Process Explorer. https://technet.microsoft.com/en-us/
/sysinternals/bb896653.aspx, 2015. Accessed: 2015-01-30.

[Tec] TechPowerUp. Techpowerup gpu-z. http://www.techpowerup.com/gpuz/.
Accessed: 2015-05-30.

[Tra] Christoph Traxler. Classic Fractals by L-Systems. http://www.cg.tuwien.
ac.at/courses/Fraktale/PDF/fractals8.pdf. Accessed: 2015-03-30.

[Tut15] Tutorialspoint. Number System Conversion. http://www.tutorialspoint.
com/computer_logical_organization/number_system_conversion.htm,
2015. Accessed: 2015-06-30.

[Ven] Bill Venners. Orthogonality and the dry principle. http://www.artima.com/
intv/dry.html. Accessed: 2015-01-30.

[Vor08] Georges Voronoi. Nouvelles applications des paramétres continus à la
théorie des formes quadratiques. Deuxième mémoire. Recherches sur les
parallélloèdres primitifs. Journal für die reine und angewandte Mathematik,
134:198–287, 1908.

[Wei04] Li-Yi Wei. Tile-based texture mapping on graphics hardware. In ACM
SIGGRAPH 2004 Sketches, SIGGRAPH ’04, pages 67–, New York, NY,
USA, 2004. ACM.

[Wri] WriteableBitmapEx. Writeablebitmapex. http://writeablebitmapex.
codeplex.com/. Accessed: 2015-01-30.

115

http://mathworld.wolfram.com/HyperbolicGeometry.html
http://mathworld.wolfram.com/HyperbolicGeometry.html
https://technet.microsoft.com/en-us//sysinternals/bb896653.aspx
https://technet.microsoft.com/en-us//sysinternals/bb896653.aspx
http://www.techpowerup.com/gpuz/
http://www.cg.tuwien.ac.at/courses/Fraktale/PDF/fractals8.pdf
http://www.cg.tuwien.ac.at/courses/Fraktale/PDF/fractals8.pdf
http://www.tutorialspoint.com/computer_logical_organization/number_system_conversion.htm
http://www.tutorialspoint.com/computer_logical_organization/number_system_conversion.htm
http://www.artima.com/intv/dry.html
http://www.artima.com/intv/dry.html
http://writeablebitmapex.codeplex.com/
http://writeablebitmapex.codeplex.com/

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Tilings of the Plane
	Wang Tiles
	Voronoi Diagrams
	Hyperbolic Geometry
	Fractals

	Hofstetter's Inductive Rotation
	Method Description
	Previous Work
	Requirements for the New Framework
	Algorithms
	Possible Applications for the Inductive Rotation Method

	Implementation
	Technological Requirements for the Framework
	An Introduction to Direct Compute
	Implementation Details
	Development Process
	Software Architecture
	User Interfaces

	Results
	Benchmarks
	User Experience
	Inductive Rotation Images
	Comparison and Conclusions

	Summary
	Inductive Rotation
	Previous Work
	Algorithms
	Implementation
	User Interfaces
	Method Comparison
	Discussion and Future Work

	Bibliography

