High-Quality Point-Based Rendering Using Fast
Single-Pass Interpolation

Markus Schiitz
Institute of Computer Graphics
Vienna University of Technology
Vienna / Austria
mschuetz@potree.org

Abstract—We present a method to improve the visual quality
of point cloud renderings through a nearest-neighbor-like interpo-
lation of points. This allows applications to render points at larger
sizes in order to reduce holes, without reducing the readability of
fine details due to occluding points. The implementation requires
only few modifications to existing shaders, making it eligible to be
integrated in software applications without major design changes.

Index Terms—Computer graphics, point clouds, WebGL

I. INTRODUCTION

3D scanning methods such as laser scanning or photogram-
metry produce enormous amounts of point cloud data. Unlike
polygon meshes, point clouds do not contain connectivity
between points, and surface normals are not always available.
Due to the missing connectivity and normals, points are often
rendered using screen-aligned squares or circles. If the size of
these primitives is too small, holes appear, and if the size is too
large, points will occlude each other and reduce the visibility
of high-frequency features such as text.

This paper presents a method that allows using larger
point sizes in order to avoid holes and at the same time,
solve undesirable occlusions by performing a nearest-neighbor-
like interpolation of points. The interpolation is achieved
by rendering points as 3d shapes through manipulation of
fragment depths. Additional passes are not required.

Our method can be seen as a trade-off between the per-
formance of the commonly used screen-aligned square and
circle primitives, and the high quality of multi-pass splatting
algorithms.

II. RELATED WORK

Related works include high-quality point-based rendering
as well as fast Voronoi diagram generation methods.

A. High-Quality Splatting

Previous high-quality splatting methods for the GPU [1]
require three rendering passes. First, a visibility pass builds
a depth map with a small offset. The blending or attribute
pass then builds a weighted sum of all attributes that pass
the depth test. The last pass normalizes attribute values by
dividing the weighted sum of attributes by the sum of weights.
These methods also render points as oriented disks or ellipses.

Michael Wimmer
Institute of Computer Graphics
Vienna University of Technology
Vienna / Austria
wimmer @cg.tuwien.ac.at

The results have a very high quality. The need for three
rendering passes, however, significantly reduces performance,
and rendering oriented disks requires normals, which are not
always available.

Deferred Blending [2] is a GPU-accelerated method that is
able to render opaque point clouds in a single geometry pass
and an additional compositing pass. This method is also able
to render simple transparency effects in a two-pass approach
and higher-quality transparencies in 3 passes.

These methods have in common that they require multi-
ple rendering passes. They achieve high-quality results with
smoothly blended points at a high performance cost.

B. Voronoi Diagram Generation

The results of our method closely resemble Voronoi dia-
grams. In fact, the idea of rendering points as 3D shapes has
already been used in previous works for fast generation of
Voronoi diagrams. Kenneth et al. [3] create two-dimensional
Voronoi diagrams by rendering points as cones and lines as
tents with a cone at each corner.

Jump flooding [4] uses a flooding algorithm to generate
Voronoi diagrams by repeatedly spreading pixels in a texture
until the whole texture is filled. Instead of distributing pixels to
their closest empty neighbors in each step, they are propagated
over larger distances, thus reducing the number of necessary
repetitions.

III. INTERPOLATION SHADER

This section covers the theory as well as implementation
details of our interpolation shader.

The idea behind our method is similar to creating Voronoi
diagrams by rendering points as cone meshes. [3]. However,
instead of using meshes, points are rendered as view-aligned
quads, as commonly used in point cloud renderers. The three-
dimensional shape is achieved by adding an additional offset to
the fragment depth values. This offset depends on the distance
to the center of the quad and the type of weight function.

Figure 1 shows shapes produced by different weight func-
tions. Weights are calculated for each fragment and subse-
quently used as an offset to the depth value. For spheres,
the weight function is not defined for fragments outside the
sphere’s boundaries. These fragments are therefore discarded,

Weight function

sphere 1— (u? 4+ v?)
cone 1-—
: 2 2
paraboloid 1— (u®+v%)
Fig. 1. Shapes produced by different weight functions. u,v € [—1,1]

resulting in circular shapes on screen. The cone and paraboloid
weight functions are well defined for all fragments and can
therefore be used for squares as well.

Point clouds are usually rendered with view-aligned rather
than camera-facing quads. Applying weights as depth offsets
leads to rendering distorted shapes because of the perspective
projection of view-aligned quads. Figure 2 shows how using
a paraboloid weight function results in rendering distorted
paraboloids. In practice, this has shown to work fine and
to significantly increase quality at a low cost despite the
distortion. Figure 3 shows the same points rendered as simple
view-aligned squares and paraboloids. In the latter case, the
point closest to the camera is less likely to occlude all points
behind it.

All of the listed weight functions reduce occlusion prob-
lems. There is a subtle difference, though, and we decided to
chose the paraboloid function for some of its properties. First
of all, it is the simplest one to calculate. It is also defined for
all fragments, unlike the spherical function, and can therefore
be used with square-shaped point primitives as well. But most
importantly, the intersections between paraboloids at different
distances remain straight, whereas the intersections of cones
and spheres appear rounded.

All of the weight functions assume that the radius of the
point is 1 and the generated weights range from -1 to 1. The
final depth offset is obtained by multiplying the weight by
the world-space point radius. If the world-space radius is not
known, it can be approximated by taking the pixel size and
inverting the projection, as described in Section III-A.

|} A s

(a) distortion at center (b) distortion off-center

Fig. 2. The resulting shapes are distorted due to perspective projection.

A. Implementation

The implementation requires field of view in radians and
screen height in pixels as additional uniform inputs to the
vertex shader and the projection matrix as additional input to
the fragment shader. Field of view and screen height are used
to approximate the world-space point radius from the pixel
size of the point primitive. The projection matrix is used to
recalculate the projected depth after modifying the view-space
depth value.

Even if the world-space point radius is known, it may still
be necessary to approximate it from the pixel size instead.
For example, since this method is sensible to overdraw, our
implementation limits the point size to a maximum of 50
pixels. The pixel size is therefore no longer guaranteed to be
the screen projection of the radius.

For the approximation, the projection factor from a world-
space radius to screen-space pixel size is calculated. The pixel
size is then divided by the projection factor to obtain an
approximation of the world-space radius. This also allows
integrating the algorithm into systems that use fixed or camera-
dependent point sizes with no assumptions of point radii.

float projFactor = 1.0 / tan(fov / 2.0);
projFactor = projFactor / -vViewPos.z;
projFactor = projFactor * screenHeight / 2.0;

vRadius = gl_PointSize / projFactor;

The fragment shader provides coordinates that indicate the
fragment position inside the point primitive. To calculate the
weight, these coordinates have to be transformed from an
interval of [0,1] to an interval of [-1,1]. The following code
sample uses the paraboloid weight function.

float u = 2.0 * gl_PointCoord.x - 1.0;
float v = 2.0 * gl_PointCoord.y - 1.0;
float w = 1.0 = (u*xu + v*v);

The weight is multiplied by the radius of the point and
added to the screen-space depth value. The resulting position
is then projected and its projected depth value is used as the
new fragment depth.

vecd pos = vecd (vViewPos, 1.0);

pos.z += w % vRadius;

pos = projectionMatrix * pos;

pos = pos / pos.w;

gl_FragDepthEXT = (pos.z + 1.0) / 2.0;

N4

(a) without depth offset (b) with depth offset

Fig. 3. Top view showing (a) points occluding other points behind them and
(b) using a fragment depth offset to reduce undesirable occlusions.

(a) front

(b) steep angle

Fig. 4. Point centers are indicated by black dots. (a) Front view showing
similarities of the results to a Voronoi diagram. (b) Similarities to Voronoi
diagrams decrease at steep angles.

IV. RESULTS AND LIMITATIONS

In this section, we show images of our results and compar-
isons to screen-aligned squares and circles. We also compare
results to a three-pass high-quality splatting method using
screen-aligned circles because our datasets do not contain the
normals necessary for rendering oriented splats.

The results of this method, as seen in Figure 4, show strong
similarities to a Voronoi diagram.

Figure 5 and 7 show images generated by the differ-
ent rendering methods. Squares and circles both suffer from
occlusions. Camera rotations also cause flickering as points
change their order and occluding points suddenly become
occluded points. The interpolation and high-quality splat-
rendering modes do not suffer from this problem.

Due to its nearest-neighbor-like behavior, our method is as
susceptible to noise as squares and circles. The high-quality
splatting methods, on the other hand, blend multiple points
together and therefore reduce the impact of noise, as shown in
Figure 6.

V. PERFORMANCE

All performance tests were done on a notebook with
an Intel Core i7-4712MQ and a NVIDIA GTX 860M. We
used WebGL and the Chrome web browser to render into a
1920x955 pixel canvas element.

Figure 8 shows frames per second (FPS) for different
modes and point sizes. The size parameter is a multiplier. A
value of O results in a size of 1 pixel. With a value of 1, pixel

(b) circles

(a) squares

(c) our method (d) high-quality splats

Fig. 5. Squares (a) and circles (b) suffer from occlusions. Our method (c)
and high-quality splats (d) improve readability of high-frequency details such
as text.

(a) our method (b) high-quality splats

Fig. 6. A limitation of our approach: It does not improve noisy datasets.
High-quality splats are better suited in such cases.

(c) our method

(d) high-quality splats

Fig. 7. Improved readability of text with our method, comparable to high-
quality splats.

FPS

140
129 \

—— squares
90 1

circles
= our method
60
= high—quality splats

size

=

0.5 1

&)

Fig. 8. Performance of squares, circles, interpolation and high-quality splats
(in top-to-bottom order) in frames per second (FPS). A size factor of 1 covers
holes while minimizing overdraw. Lower values cause holes while larger
values increase overdraw.

size is chosen in a way to close holes but minimize overdraw.
Lower values lead to holes and larger values cause increasingly
higher overdraw. Too much overdraw is problematic since
interpolation and high-quality splatting depend on features that
do not allow for early depth testing.

VI. CONCLUSION AND FUTURE WORK

We have presented a single-pass method that significantly
increases quality at a lower impact on performance than
previous high-quality methods that require two or even three
rendering passes. Implementation is simple and requires adding
a few lines of code, as described in Section III-A, to existing
shaders.

It is especially useful for close-up views of datasets with
sharp features such as text or edges.

This method can be seen as a trade-off between the
performance of screen-aligned squares and circles, and the high
quality of multi-pass splatting algorithms.

This method was developed for the WebGL point cloud
renderer Potree [5] with the help of the three.js library. [6].
A reference implementation of this method is available in the
Potree github repository.

Manipulating the fragment depth can disable some GPU
optimizations such as early depth testing. Other possible ap-
proaches to render points as paraboloids are geometry shaders
and instancing. We did not explore these options since WebGL
does not support geometry shaders at this time and instancing
is not supported by three.js.

VII. ACKNOWLEDGEMENTS

This research was supported by the EU FP7 project HAR-
VEST4D (no. 323567) [7]. The statue is part of the Arene
de Lutece dataset, courtesy of HARVEST4D. The point cloud
depicting the Japanese sign is courtesy of Anan Survey [8].

REFERENCES

[1] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, “High-
quality surface splatting on today’s gpus,” in Proceedings of the
Second Eurographics / IEEE VGTC Conference on Point-Based
Graphics, ser. SPBG’05. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2005, pp. 17-24. [Online]. Available:
http://dx.doi.org/10.2312/SPBG/SPBG05/017-024

[2] Y. Zhang and R. Pajarola, “Deferred blending: Image composition
for single-pass point rendering,” Comput. Graph., vol. 31, no. 2, pp.
175-189, Apr. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.cag.
2006.11.012

[3] K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast
computation of generalized voronoi diagrams using graphics hardware,”
in Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, ser. SIGGRAPH ’'99. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1999, pp. 277-286.
[Online]. Available: http://dx.doi.org/10.1145/311535.311567

[4] G. Rong and T.-S. Tan, “Jump flooding in gpu with applications to
voronoi diagram and distance transform,” in Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games, ser. 13D ’06.
New York, NY, USA: ACM, 2006, pp. 109-116. [Online]. Available:
http://doi.acm.org/10.1145/1111411.1111431

[5] M. Schiitz, “Potree,” http://potree.org, accessed: 2015-07-02.
[6] R. Cabello, “three.js,” http://threejs.org/, accessed: 2015-07-02.
[7] “Harvest4d,” https://harvest4d.org/, accessed: 2015-04-16.

[8] “Anan survey,” http://anan.skr.jp/, accessed: 2015-02-14.

