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Clemens Rögner∗∗ Michael Wimmer∗ Johannes Hanika††

Carsten Dachsbacher†

∗Vienna University of Technology †Karlsruhe Institute of Technology

Figure 1: Part of an image sequence, which is upsampled using our algorithm. We produce motion vectors
via a non-local means algorithm, which gives us more precise results.

Abstract

We introduce an image-based approach to increase
the framerate of image sequences generated with
offline rendering algorithms. Our method han-
dles in most cases reflections and refractions bet-
ter than existing image-based temporal coherence
techniques. The proposed technique is also more
accurate than some image-based upsampling meth-
ods, because it calculates an individual result for
each pixel.

Our proposed algorithm takes a pair of frames and
generates motion vectors for each pixel. This allows
for adding a new frame between that pair and thus
increasing the framerate. To find the motion vec-
tors, we utilize the non-local means denoising algo-
rithm, which determines the similarity of two pixels
by their surrounding and re-interpret that similar-
ity as the likelihood of movement from one pixel
to the other. This is similar to what it is done
in video encoding to reduce file size, but in our
case is done for each pixel individually instead of
a block-wise approach, making our technique more
accurate. Our method also improves on work in
the field of real-time rendering. Such techniques
use motion vectors, which are generated through

∗e-mail:croegner|wimmer@cg.tuwien.ac.at@gmx.at
†e-mail:hanika|dachsbacher@kit.edu

knowledge about the movement of objects within
the scene. This can lead to problems when the
optical flow in an image sequence is not coherent
with the objects movement. Our method avoids
those problems. Furthermore, previous work has
shown, that the non-local means algorithm can be
optimized for parallel execution, which significantly
reduces the time to execute our proposed technique
as well.

CR Categories: I.3.3 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Display
Algorithms I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Radiosity;

Keywords: temporal upsampling, image repro-
jection, offline rednering, optical flow, image-based
rendering

1 Introduction

The demand of the CGI Industry for high-quality
images such as the ones generated with global illu-
mination rendering algorithms and increased fram-
erates leads to more computational time to gener-
ate the image sequences. A common approach to
reduce the rendering time is to exploit temporal co-
herence across the frames in the sequence. Many
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different algorithms that utilize temporal coherence
exist.

For example, there are several techniques specifi-
cally tailored for the global-illumination rendering
algorithms at hand. All of them re-use calculations
from a previous point in time to increase the per-
formance. One such an approach was introduced
by [Havran et al. 2003] for Monte-Carlo path trac-
ing. Their rendering architecture updates samples
generated via ray tracing for each frame in relation
to camera- and object movement. In addition to
that, a custom acceleration data structure for ray-
tracing is utilized to create multiple frames at once.
However, tailored approaches, such as the one by
[Havran et al. 2003], are often complex and there-
fore difficult to implement.

A different approach to use temporal coherence is
to work on an image-base, which is often used for
interactive or real-time applications. Those ap-
proaches work with the final results of the ren-
dering algorithms, the images, and generate ad-
ditional frames based on them, so-called upsam-
pling. In general image-based approaches are less
difficult to implement, like the one of [Yang et al.
2011]. They propose two techniques, which rely on
knowledge about the movement of objects within
a virtual scene to generate so-called motion vec-
tors (which describe the positional change across
the two frames). Because of this, their approach,
unlike the previous mentioned one, has problems
handling color changes (the so-called optical flow)
of reflections and refractions, because such surface
types can lead to optical flow that is incoherent with
the objects motion.

Another approach for using image-based upsam-
pling is to utilize the motion compensation of video
coding techniques. To safe memory space, video
encoding, partitions frames into pixel blocks of var-
ious size and searches for possible locations of those
blocks in adjacent frames. This results into mo-
tion vectors for each block. Generating an addi-
tional frame then can be done by moving the block
to its projected position along those motion vec-
tors. Compared to the work of [Yang et al. 2011]
this technique works independently of the objects
movement, but is more inaccurate because not ev-
ery pixel has an individual motion vector and fur-
thermore, parts of the upsampled frame, which can-
not be colored by the existing blocks, have to be
filled via an heuristic.

As one can see from the statements made above,
upsampling techniques aimed towards renderings

featuring global-illumination effects, either suffer
from their complexity, can not handle certain shad-
ing features (such as transparency and specularity)
properly or lack in accuracy. Therefore, we pro-
pose an image-based method that deals with those
issues.

Our approach uses two rendered frames and ex-
ecutes the following two steps to generate a new
frame: First, it calculates a motion vector for each
pixel in one frame by detecting a similar pixel in
the other. This process is repeated the other way
around, resulting in an additional set of motion vec-
tors. The second step of our techniques is to find
the color for each pixel in the frame that is about
to be generated. This last step can be done in two
different ways as is shown in this paper. However,
the main contribution of this paper is the usage of
an adapted non-local means denoising algorithm to
detect the similarities between two pixel for the first
step. The core functionality of the non-local means
algorithm is to qualify two pixels as similar based
on their surrounding ones. As mentioned before,
this similarity is used to generate the motion vec-
tors between two frames. Therefore, our technique
interprets the similarity between two pixels as the
likelihood that one pixel moved to the position of
the other one. The usage of the non-local means
algorithm is chosen, because it generates results for
every pixel (unlike the usage of the video codings
motion compensation), it makes our technique inde-
pendent of the objects movement (unlike the work
of [Yang et al. 2011]), which leads to a better han-
dling of reflection and refraction compared to previ-
ous work, and furthermore, it can be optimized for
parallel execution to reduce its computational time.

2 Previous Work

In this section we will explain the image-based tech-
niques, which are relevant for our proposed method,
in more detail. All of those methods interpolate
frames (further referred to as I-frames) based on
one are more base frames (so-called B-frames).
When it comes to generating frames out of informa-
tion stored in each pixel from adjacent ones, there
are two general approaches to finding the corre-
sponding pixels as defined by [Scherzer et al. 2011]:

• Reverse reprojection: This approach can be
used, when there is data available for each pixel
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in the I-frame that points to those in the B-
frame. The value of one pixel can then be set
based on the data provided by such a pointer.

• Forward reprojection: The alternative is to
start from the pixels in the B-frame. When
there is a pointer towards the position in the
I-frame, the data stored can then be injected
into the pixels of the I-frame.

In the last part of this section, the denoising al-
gorithm, which our approach utilizes, is explained
(including an optimization for parallel execution).

2.1 Video compression

Video compression standards include some sort of
motion compensation to reduce the file size of the
video. The key idea is to store the motion of im-
age parts so that pixel values of those parts can be
reused in other frames [Wiegand et al. 2003]. As
mentioned before, this can be used to artificially
generate new frames. The motion detection is done
via so-called block matching, which works as fol-
lows: The first step is to partition the frame into
similar sized blocks. The size depends on the cod-
ing standard at hand. The next step is to search
in the other frame for a similar block. This search
is performed within a local range of pixels, which
again can be defined by the codec. The similarity
of two blocks, with the middle pixels a and b and a
size of dx/dy, in two different frames f1 and f2 can
be defined by various measures, for example, the
sum of absolute differences (as seen in Equation 1)
of the per pixel differences (using the color c). The
motion vector then points towards the block with
the highest similarity, which is the block with the
lowest value using the sum of absolute differences
[Wiegand et al. 2003].

SAD(a, b) =
∑
dx

∑
dy

|c(f1, ax + dx, ay + dy)− c(f2, bx + dx, by + dy)|
(1)

The actual upsampling is done by moving the blocks
according to their motion vectors and paint them
into the missing I-frame, in other words a forward
reprojection (as defined by [Scherzer et al. 2011]).
Pixels that cannot be filled by doing so are then col-
ored by using a heuristic, such as interpolating the
colors of the pixels at the same location in adjacent
frames.

(a) Scene Assisted (b) Image based

Figure 2: Difference in the data usage of two meth-
ods proposed by [Yang et al. 2011]. The scene-
assisted approach requires a rendering of the de-
sired frame, whereas the image-based approach does
not. In each case the purple cube represents the un-
known shading information, the orange one repre-
sents the shading from the previous frame and the
blue depicts the shading information of the upcom-
ing frame.

2.2 Bidirectional Image Re-
projection

[Yang et al. 2011] propose several methods that use
motion vectors to do the upsampling. In this case,
motion vectors exist for each pixel (unlike in video
compression as seen in the previous section) and can
be calculated through the knowledge of the objects
position in the adjacent frame. The different meth-
ods all vary in the available data (as seen in Figure
2) for the upsampling and hence in the quality of
their result.

The scene-assisted method requires a complete ren-
dering of the scene, but without calculating the
shading. It also needs the motion vectors pointing
to a frame backwards on the time line as well as mo-
tion vectors pointing to the next frame on the time
line. Those motion vectors are then used to look
up the colors in their respective frame. It is there-
fore a reverse reprojection approach, as defined by
[Scherzer et al. 2011]. According to the authors, the
scene-assisted method produces the best results.

The image-based approach proposed by [Yang et al.
2011] does not require any rendering of the I-frame.
In this case, one has to search for the pixel in the
B-frame that will move to the location of a desired
(not yet colored) pixel in the I-frame and therefore
qualifies as a forward reprojection. This is done by
executing an iterative search for the source pixel S
(which has the color information). That search is
initialized by the target pixel T’s (the pixel that
is about to be colored) motion vector mT . This
vector is subtracted from the target pixels location
giving a new pixel N. Then the motion vector of N
is checked if it points towards the location of T. If
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Figure 3: Three iterations of the algorithm by Yang et al. [Yang et al. 2011] which is used to estimate
the movement of a pixel from one frame to another. This technique is also used in our approach.

it does, the pixel that moves to the target pixel is
found. If it does not point to T, the motion vector
of N is taken and subtracted from T. The process is
repeated until a valid pixel that leads to T is found
or a maximal number of iterations is exceeded, clas-
sifying that pixel as indeterminable. An example of
such an iterative search is given in Figure 3. We use
this technique of finding the color in our approach,
as described in Section 3.

2.3 Non-local means video denoising

Image noise is a problem that can be caused by var-
ious things, such as photodiode leakage currents in
cameras. To reduce noise in an image one can apply
so-called denoising methods. [Buades et al. 2005]
introduced such a method, the non-local means al-
gorithm. The algorithm works as follows: For one
pixel the similarities to all other pixel in a spa-
tial neighborhood (the blue-doted area in Figure 5)
around it are calculated. Two pixels are classified
as similar when their surrounding (the orange areas
in Figure 5) matches. The color of the pixels in the
neighborhood are then weighted by the similarity
value and added together to make up the denoised
pixel color. Mathematically, this method can be
described via the Equation 2:

Ox =

∑
K

∑
S ω(x+ s, k + s)σ(s)Pk∑

K

∑
S ω(x+ s, k + s)σ(s)

(2)

whereas

• K: Is the neighborhood around x. In this
neighborhood the algorithm searches for sim-
ilar pixels.

• k: Is one position in the neighborhood K.

• ω: Is the weighting function between the signal
values x and k.

• S: is the surrounding of a pixel on which sim-
ilarity is defined by the algorithm. This will
be refereed to as the similarity area around a
pixel.

• s: is one point in the surrounding.

• σ: is the contributing factor of a point in the
surrounding.

• Pk: Is the color at location k.

The work done by [Goossens et al. 2008] improves
the work of [Buades et al. 2005] by rearranging the
process of calculating the method such that it bene-
fits execution on the graphics processing unit(GPU)
as well as the central processing unit(CPU) and
therefore increases performance.

This is done by iterating over each pixels neighbor-
hood first, because it allows for splitting the sum to
calculate the weight from each point in the neigh-
borhood. This is beneficial for parallel execution
since the similarity measure can now be executed
in several full-image passes, which the memory ac-
cess pattern.

The full-image passes that have to be done are the
calculation of the difference between every pixel, re-
sulting in a similarity weight for each pixel. After
that, the sum of those weights has to be calculated
and finally the contribution of the color with the
sum of weights has to be applied to the result. A
normalization of the contribution has to be done
as well, which happens after the iteration over the
neighborhood. To further improve the performance,
the calculation of the sum of similarity weights can
be split into two full-image passes, as it reduces the
number of calculations and improves the memory
access pattern which again benefits the GPU archi-
tecture. Those optimizations to the technique are
also applied to our method, as seen in Algorithm 1.
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3 Algorithm

As mentioned before, our proposed techniques takes
two B-frames (as seen in Figure 4(a)) and generates
motion vectors by applying the non-local means al-
gorithm (the maximum-detection variant as in 3.1)
to the color information of those two B-frames as
shown in Figure 4(b). The resulting similarity value
for a pixel in one B-frame to the pixels in the other
B-frame can be interpreted as the likelihood that
the one pixel moved to the location of the other.
The actual motion vector for one pixel in a B-frame
is then taken from the pixel in the other B-frame
with the highest similarity value. The next step
of this technique is to iterate over all pixels and
search for the sources in the B-frames indicated by
the motion vectors as seen in Figure 4(c). As sug-
gested by [Yang et al. 2011], we perform this search
on the previous and next frame to counter the prob-
lem of occluded areas when only one frame is used.
Hence, our technique requires motion vectors, which
point from one frame to another, and motion vec-
tors, which point the other way around. The search
for the source pixel in one frame can be done using
two different methods:

• Iterative search: This method was described
by [Yang et al. 2011] and is explained in Sec-
tion 2.2. If the iterative search for a pixel does
not succeed, a heuristic to find the color for
that pixel has to be employed. We suggest tak-
ing the result of the first iteration, similar to
what [Yang et al. 2011] suggest in their work.
One reason for such a failed search can be in-
consistent motion vectors generated by the al-
gorithm. Another reason, as stated by [Yang
et al. 2011], can be thin and fast-moving geom-
etry. To avoid the problem of using a heuristic
at all, the method, described next can be used.

• Brute force: Since the non-local means al-
gorithm searches around one pixel in a specific
radius (the neighborhood area), the best-fitting
motion vector has to be within that radius.
The best-fitting motion vector is the one that,
when added to source pixel and multiplied with
the time factor, comes closest to the target
pixel’s coordinates. The time factor describes
the relative position of the I-frame on the time-
line between two B-frames. Compared to the
iterative search, this brute-force method needs
to check more pixels, but does not rely on con-
vergence of the motion vectors. It has to be

mentioned that such a brute-force approach is
only possible because the neighborhood area of
the non-local means algorithm determines the
maximal extent of the motion vectors.

I-FrameB-Frame B-Frame

(a) Starting point

I-FrameB-Frame B-Frame

(b) 1st Step: Finding similar pixel

I-FrameB-Frame B-Frame

(c) 2nd Step: Finding motion vectors and coloring

Figure 4: Our technique in pictures.

3.1 Adpated Non-Local Means Algo-
rithm

The key to finding the motion vector is, as stated
before, the non-local means algorithm. This algo-
rithm qualifies two pixels as similar, based on if
their surroundings match, which is further referred
to as the similarity area S. The search for such
similar pixels is conducted in a certain area around
one pixel, which we call the neighborhood area K.
This principal is depicted in Figure 5. The orig-
inal algorithm for the purpose of denoising takes
the weighted mean of all the pixels in the neighbor-
hood into account to make up the final coloring of
the pixel. Since our approach has to find the posi-
tion of the most similar pixel, we do not calculate
the weighted mean, but rather take the pixel with
the highest similarity. In other words: we conduct a
search for the maximum. This also does not require
any thresholds for the calculation of the similarity,
like it is done in the original version. Those thresh-
olds can also cause a problem when there are sig-
nificant changes in the image sequence that would
require adjustment during it. Furthermore, those
thresholds also requires some knowledge about the
color range at hand. With our maximum-detection
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variant of the non-local means algorithm, we avoid
both problems.

a

b
S

S

K

Figure 5: Schematic of the non-local means algo-
rithm for denoising introduced by [Buades et al.
2005].

Therefore, our adapted non-local means algorithm
works as follows: For each pixel a in B-frame A
conduct a search in B-frame B for similar pixel
b, which are in the neighborhood area around the
same pixel-location of a in frame B. To calculate
the similarity value of pixel a and pixel b, compare
their surroundings, the similarity area. This com-
parison is done by calculating the difference of each
pixel in the similarity area and adding those dif-
ferences up. Save the location of pixel b with the
highest similarity as the location to which pixel a is
most likely to have moved to. Algorithm 1 depicts
the workings of our proposed non-local means vari-
ant, which includes the performance improvements
for parallel execution proposed by [Goossens et al.
2008], as described in Section 2.3.

It has to be noted, that ξ(a, b) in Algorithm 1 de-
scribes the so-called similarity measure, a function
that calculates the difference between two pixels (a
and b) and returns one if they are equal and zero
otherwise. This definition comes from the original
version of the non-local means algorithm by [Buades
et al. 2005] and is kept for convenience. The actual
content of this function is described in the following
section. Furthermore, we investigate if the usage of
a weighting function for the differences of the simi-
larity area’s pixels based on the distance to the cen-
ter improves our technique. In our implementation
we used a so-called Gaussian kernel mapping (as in
Equation 3) with a variance of 0.5 times the size
of the similarity area and a mean that is equal to
the coordinate of the center pixel of the similarity
area. Werther such a weighting is useful for a spe-
cific image sequence or not, is discussed in Section
4. It has to be mentioned that although the sim-
ilarity measure is commutative (ξ(a, b) = ξ(b, a)),
the non-local means algorithm is not, because the

Algorithm 1: Maximal similarity detection

Input: Two images A and B, both of size WH.
Output: An image-like structure L that will

contain the motion vectors for the pixels
movement from A to B

L[WH]⇐ 0;
V[WH]⇐ 0;
for kxy in neighborhood K do

W[WH]⇐ 0;
Wsum[WH]⇐ 0;
WsumTmp[WH]⇐ 0;
for xy within WH do

W(x, y) = ξ(A(x, y),B(x+ kx, y + ky))
end
for xywithin WH do

for sx in similarity area S do
WsumTmp(x, y)+ = W(x+sx, y)∗K(sx)

end

end
for xy within WH do

for sy in similarity area S do
Wsum(x, y)+ =
WsumTmp(x, y + sy) ∗K(sy)

end

end
for xy within WH do

if Wsum(x, y) > V(x, y) then
L(x, y) = kxy;
V(x, y) = Wsum(x, y);

end

end

end
return L
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neighborhood area of a does not cover the same area
as the one around b.

3.2 Similarity Measure

As mentioned earlier our approach works by com-
paring the color values between two pixels a and
b. Because ξ(a, b) has to return just a single scalar
(as described in the previous section), a mapping
from the color components to that single value has
to be found. The implementation used throughout
this thesis has three color components: red, green
and blue. To put this into a more general context,
the amount of color components of one color rep-
resentation is C. A color is then defined as similar
to another, if all color components are somewhat
similar to each other. Therefore, the product of all
the color component’s differences is used to make
up the similarity measure.

Since the similarity measure returns zero when the
two pixels are not similar to each other, and the dif-
ference between two values of a pixel is zero when
they are similar, a corresponding mapping of one
scalar has to be used to achieve the desired return
value of 1. A normal distribution function with
a mean of zero can be such a mapping. Because
only the most similar pixels, those with the high-
est values, are used for the upsampling in the end,
the actual value of the variance for such a normal
distribution does not matter. Equation 3 shows a
mapping of value x with the normal distribution
function using the mean m and the variance v.

φ(x,m, v2) =
1

v
√

2 ∗Π
e−

1
2 (

x−m
v )2 (3)

Again, because only the highest values are of inter-
est to do the job, the fraction before the exponen-
tial component in Equation 3 can be disregarded.
The resulting similarity measure for our technique
can be seen in Equation 4, whereas ci(p) returns
the value of the particular color component i of the
pixel p.

ξ(a, b) =

C∏
ci=1

φ(ci(a)− ci(b),m, v) (4)

As mentioned before, the mean value m of the nor-
mal distribution has to be zero for the difference of
two color components. The variance v is set to 0.25
in the actual implementation of the algorithm due
to the range of color values of the rendering software
at hand. However, the actual value of the variance

0 60

0 3600

20 40

1200 2400Frame #

Seconds

Scene 2
Movement and Texture

Scene 1
Reflection

Scene 3
Refraction and detailed Geometry

Figure 6: This figure shows the test sequence along
the time-line with an image example for each scene.
Scene 1 shows two rotating objects with reflective
surfaces, each one with a different magnitude of
specularity. Scene 2 features a scaling and rotat-
ing cube with a detailed diffuse texture. The last
scene features a rotating transparent cube.

does not matter, because we detect the maximum
and the variance does not affect that.

It has to be noted that a conversion to luminance
would result in a loss of dimension, potentially in-
creasing the possibility of an error. To be more
specific: The proposed similarity measure returns
a small value when one of the color components is
significantly different. Calculating the luminance
before or after the subtraction in Equation 4 would
not have that property.

4 Parameter finding

To apply our proposed algorithm to an actual im-
age sequence, one has to set the parameters for the
non-local means algorithm, namely the size of the
neighborhood area and similarity area. To test our
algorithms performance and show what has to be
done to run it, we generated a sequence consisting
of three scenes, each with different materials, as can
be seen in Figure 6.

4.1 Neighborhood Area

The neighborhood area defines the maximal amount
of movement from frame to frame that can be detect
by our algorithm in screen space. When this value is
too small, our algorithm produces so-called ‘ghost-
ing’ artifacts. A bigger size than the minimal does
not effect the algorithm itself, but only the time to
generate the frames, hence it increases the compu-
tational cost. Finding the correct value of maximal
movement across the image sequence (which relates
to the minimal neighborhood size) cannot be done
analytically (due to the unpredictability of the light
transport), which requires the usage of heuristics.
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One can simply make an elaborate guess to set the
neighborhood size. Another heuristic is to calcu-
late the maximal extend of motion vectors that are
generated by the objects expected movement, like
it is done in the work of [Yang et al. 2011]. In our
implementation of the algorithm, we use the latter
heuristic and add 20% of the maximal movement
in pixels across to B-frames to make up the final
radius of the neighborhood area. For our test scene
(as described in Section 5) this gave us a sufficient
size of the neighborhood area, so that no ‘ghosting’
artifacts occur.

4.2 Similarity Area

To discuss this parameter setting, a few definitions
have to made before-hand: A correct pixel is the
ground-truth target pixel (in one frame) for one
source pixel (in another frame). A false pixel then
is a target pixel which is not the ground-truth pixel.
In other words: a source pixel moves to the correct
(target) pixel in another frame.

The size of the similarity area affects the algorithm
as follows: The area has to be big enough so that the
non-local means algorithm can detect differences in
the area between the correct pixel and others. On
the other hand, the similarity area should not be too
big, so that there is still room for a change within
the area of the correct pixel.

Overall, this problem of finding the optimal area
size is similar to choosing the degree for polynomial
fitting. The size of the similarity area relates to
the number of degrees chosen to make up the poly-
nomial. Hence, the right value between over- and
under-fitting has to be found.

One way of finding the best value for the similarity
area is simply by trial and error for a few exemplary
frames of the sequence. The same is true to deter-
mine if a Gaussian kernel should be applied to the
similarity area. Again, an analytical solution for
finding the right value for the size is not possible.
For our test image sequence (as described in Sec-
tion 5), we chose a radius of 5 without the use of a
Gaussian kernel weighting after conducting a trial-
and-error test, which is shown in Figure 7. Note
that a Gaussian kernel might be useful for another
sequence.
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Figure 7: Tests for the size of the similarity area to
use in the testing sequence. The blue line depicts
the mean squared errors without a Gaussian kernel
and the orange line shows a weighting of the area
with the kernel.

5 Results

After fixing the parameters for the image sequence
at hand, we can conclude the following about the
results of our proposed technique.

5.1 Objective Comparison

To evaluate the performance of our technique in
comparison to the ground-truth frames, we choose
the mean-squared error measure to do so. In ad-
dition to the ground-truth comparison we are able
to show how our method performs compared to the
work of [Yang et al. 2011] with the same metric. A
fair comparison with the usage of the motion com-
pensation in video coding is not possible, due to the
quality loss (color- range and depth) of the coding
techniques themselves. Furthermore, we compare
our work to the scene-assisted method proposed by
[Yang et al. 2011] and not the other, since the for-
mer method provides better results in terms of qual-
ity according to the authors.

From Figure 8 it can be seen, that our proposed
technique deals significantly better with trans-
parency than the previous work by [Yang et al.
2011]. However, the scene-assisted technique deliv-
ers a lower mean squared error for some frames with
the reflective surfaces (the reason for this will be
explained in the following section), but for the ma-
jority of those frames their performance can be con-
sidered equal. This similar performance is mainly
due to the fact that those surfaces are not of perfect
specular nature (unlike the transparent cube), but
rather semi-specular, which reduces the problems of
the technique by [Yang et al. 2011]. When it comes
to the second scene, featuring the moving diffuse
cube with the detailed texture, our technique deliv-
ers similar results as the scene-assisted method as
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Figure 8: This figure shows the mean squared error difference to the ground-truth frames. The blue line
depicts the performance of our method with the iterative search, while the orange line is the one with the
brute force method. The green line shows the performance of the scene-assisted method of [Yang et al.
2011].

well. When looking at the graph one can notice the
spikes in the differences to the ground-truth frames
for all techniques in every scene. Those occur when
a side of a cube appears in one frame that was not
visible in the previous one. In general, this always
happens when new geometry appears in the frame.
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Figure 9: This figure shows the times to generate
each frame in seconds on an Intel Core i7-4770K
CPU with four 3.50GHz cores. The biggest neigh-
borhood area size for our test sequence is 67.

Figure 9 shows the time to generate each frame in
seconds on an Intel Core i7-4770K CPU with four
3.50GHz cores. The time is on average 12.6% higher
for the brute force variant of our proposed tech-
nique. The reason for the different times to gener-
ate each frame is the size of the neighborhood area,
which is calculated via the heuristic mentioned in
Section 4.1.

5.2 Perceptional Findings

Although the mean squared error provides a good
measure to depict which technique performs better
in comparison to the ground-truth frames, a visual

inspection of resulting frames reveals the artifacts
that the techniques produce.

Figure 12 shows the improvement of our method
compared to others, when it comes to handling
transparent objects. The scene-assisted method by
[Yang et al. 2011] produces ghosting artifacts all
across the glass cube, which is the result of their
motion vectors not pointing in the same direction
as the path of the image features would suggest, as
can be seen in Figure 10. Using the motion compen-
sation of video coding techniques for upsampling,
results in a slight blur across the cube and some
false edges due to the block based matching for find-
ing the motion vectors. As can be seen from the
comparison with the other techniques, our method
preserves the edges better than others, but still pro-
duces a little bit of noise around those. Apart from
that, our method has troubles restoring the fine de-
tail on the right side of the glass cube, but again,
does it better than the other techniques.

The performance of our technique for the semi-
specular surfaces in the first scene is for some
frames, as mentioned earlier, not as good as the
previous work. As can be seen from Figure 13, our
method produces ‘tearing’ artifacts on the edges of
the cube, when a sudden change in color for a signif-
icantly large amount of pixels occurs (not in terms
of mean rapid movement, but rather in terms of
a ‘flash-like’-appearance of new color). Figure 14
shows a sequence of another five frames that high-
light this problem of our approach as well. In such a
case, the method of [Yang et al. 2011] has less trou-
bles since it does not rely on the actual coloring to
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Figure 10: Non-linear motion poses a problem for
our approach, since the linear motion vectors can
not compensate for such movement.

find the motion vectors, although a slight ‘border’-
effect can be observed with their approach. Up-
sampling via video encoding has the same problem
as our technique, but since it classifies the motion
vectors as not usable (due to the low similarity of
the blocks) and therefore uses a blending heuristic
to generate the new frame, the visual error is not
as severe compared to our method. When such a
change in color for a sufficient amount of pixels does
not occur, our proposed technique performs equally
to the scene-assisted method, as mentioned in the
previous section and as can be seen in Figure 8.

Another problem of our approach is non-linear mo-
tion. Since the camera path in our test sequence
is generated via catmull-rom splines, the linear
motion-vectors of our technique can lead to false
positioning of the scene, as can be seen in Figure
10. This is also a problem of the upsampling using
video coding, but is not a problem for the scene-
assisted approach by [Yang et al. 2011].

6 Conclusion

We proposed an algorithm that upsamples frames
from an image sequence generated with global-
illumination rendering algorithms to reduce the
overall time for computing that sequence. Our tech-
nique generates motion vectors by calculating the
similarity of two pixels via the non-local means al-
gorithm. The motion vectors then can be used to
generate a new frame. One of the advantages our
algorithm over previous work is that our method
does not rely on knowledge about the movement of
objects in the scene. This property leads to a bet-
ter handling of reflections and refractions in some
scenarios than other methods.

However, our method has problems with rapid ap-
pearance of new geometry or color. Furthermore,
our algorithm requires some trial and error testing
for finding the correct parameters to be applied to
an image sequence.

For future work, we would like to find ways to qual-
ify areas of the frames that may cause artifacts as
such, which then could be used to perform a ground-
truth rendering of those areas.
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(a) Our method (b) Scene assisted (c) Frame 2351

Figure 11: Comparison of the motion vectors generated with our method (left figure) and with the
approach by [Yang et al. 2011] (middle figure). Apart from the different length of the motion vectors,
one can also notice a different alignment of the motion vectors from our method compared to the one of
[Yang et al. 2011]. The motion vectors point from the white towards the red. The right figure shows the
part of frame 2351 from our test sequence that is used for this comparison.

(a) Ground-truth frame (b) Our method (brute force) (c) Scene-assisted method (d) Video coding upsampling

Figure 12: Glass cube in frame 2351 of the test sequence with various upsampling techniques. The
scene-assisted method by [Yang et al. 2011] produces ghosting due to false motion vectors. Upsampling
via video encoding results into slight blurring and some artifacts around the edges. Our method does not
suffer from the problems of the other methods, but produces some noise around the edges and can not
handle the right side of the cube well, compared to the ground-truth frame.

(a) Ground-truth frame (b) Our method (brute force) (c) Scene-assisted method (d) Video coding upsampling

Figure 13: Glass cube in frame 611 of the test sequence with various upsampling techniques. Our method
produces a ‘tearing’ artifact due to a flash-like color change on the surface. Upsampling via video coding
uses a heuristic in such a case and the scene-assisted method of [Yang et al. 2011] is not affected by such
a color change.



12 REFERENCES

(a) B-frame #842 (b) I-frame #843 (c) B-frame #844 (d) I-frame #845 (e) B-frame #846

Figure 14: Sequence produced with our proposed technique (brute-force variant). ‘Tearing’ artifacts
appear due to rapid color change across a major part of the surface. One can also observe the ghosting
in Subfigure (b) as a result of the bottom side of the cube, which was not visible in the previous frame.


