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Abstract
This paper presents a method for the visual quantification of cerebral arteries, known as the Circle of Willis (CoW).
The CoW is an arterial structure that is responsible for the brain’s blood supply. Dysfunctions of this arterial circle
can lead to strokes. The diagnosis relies on the radiologist’s expertise and the software tools used. These tools
consist of very basic display methods of the volumetric data without support of advanced technologies in medical
image processing and visualization. The goal of this paper is to create an automated method for the standardized
description of cerebral arteries in stroke patients in order to provide an overview of the CoW’s configuration. This
novel display provides visual indications of problematic areas as well as straightforward comparisons between
multiple patients. Additionally, we offer a pipeline for extracting the CoW from Time-of-Flight Magnetic Resonance
Angiography (TOF-MRA) data sets. An enumeration technique for the labeling of the arterial segments is therefore
suggested. We also propose a method for detecting the CoW’s main supplying arteries by analyzing the coronal,
sagittal and transverse image planes of the data sets. We evaluated the feasibility of our visual quantification
approach in a study of 63 TOF-MRA data sets and compared our findings to those of three radiologists. The
obtained results demonstrate that our proposed techniques are effective in detecting the arteries of the CoW.

Categories and Subject Descriptors (according to ACM CCS): I.4.0 [Image Processing and Computer Vision]:
General—Image processing software; I.3.3 [Computer Graphics]: Picture/Image Generation—Display algorithms;
I.3.4 [Computer Graphics]: Graphics Utilities—Software support; J.3 [Computer Applications]: Life and Medical
Sciences—Health

1. Introduction

The human brain is a very delicate structure that is highly
dependent on a well-functioning blood supply. A vascular
disease in the brain can lead to a stroke, which is the sec-
ond most common cause of death and the major cause of
acquired disability in the developed world [The15b]. Stroke
treatment relies on the application of imaging techniques and
the investigations done by the radiologists. The focus lies
hereby on the arterial blood supply, which is guaranteed by
the Circle of Willis (CoW). This arterial circle is depicted
in Figure 1. The radiologist inspects the TOF-MRA data set
(later simply referred to as data set) using traditional display
methods, such as slice-by-slice views and Maximum Intensity
Projection (MIP) to identify the cause of a dysfunction. This
diagnostic process is complicated by its urgent nature and the
time-constraints of the stroke treatment. However, the process

is time-consuming and every patient is viewed as a case of
its own without considering preexistent cases. Side-by-side
comparisons are impeded by the traditional display methods.

3D Time-of-Flight Magnetic Resonance Angiography
(TOF-MRA) is typically used to acquire high-resolution data
sets from stroke patients. This data acquisition modality is
always applied during routine as well as acute cases if time
is sufficiently available, due to its relatively long acquisition
time. In contrast to conventional Magnetic Resonance An-
giography (MRA), the magnetization is applied outside the
scanned object. Consequently, the inflowing blood exhibits
a higher magnetization than the saturated stationary tissue,
resulting in a significantly higher signal for blood vessels.
This method has a high signal-to-noise ratio but turbulent or
slow flow can cause signal loss from the vessel. As a result,
these vessels are represented by only low intensity values.
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Figure 1: A schematic representation of the standard configu-
ration CoW with anatomically-correct labeled arteries and a
subdivision into three subtrees.

As the CoW exhibits a high variability across different
patients, its shape and topology are highly relevant for stroke
treatment. To support stroke assessment in a timely manner,
we propose a standardized visualization of the CoW, rectify-
ing the above shortcomings. The main contributions of our
work are:

• Visual indication of problematic areas of the CoW.
• A standardized visualization of the CoW.
• Efficient comparison of multiple patients.
• Systematic description of the CoW.
• A fully automatic CoW extraction pipeline.

2. Related Work

In this paper we use common image processing methods but
also introduce novel methods that are required for the visual
quantification of the CoW. The standardized visualization of
the CoW relies on a vascular model (we call it vessel graph)
that has to be extracted first. The most closely related meth-
ods and algorithms for the proposed pipeline, as shown in
Figure 2, are described in this section. A general introduction
to medical image processing and visualization is given by
Preim and Botha [PB13]. The CoW received much attention
recently. Hartkamp and Van der Grond [HvdG00] investi-
gated morphological variations of the CoW using MRA. The
standard configuration of the CoW is given in Figure 1. The
authors describe different variations of the standard config-

uration. Bullitt et al. [BGP∗03] evaluated different types of
the tortuosity metric on intracerebral arteries to discriminate
normal from abnormal vessels. Kirbas and Quek [KQ03]
reviewed vessel extraction methods targeted at neurovascu-
lar structures. They divided the algorithms into six main
categories: pattern-recognition techniques, model-based ap-
proaches, tracking-based approaches, artificial intelligence-
based approaches, neural network-based approaches, and
miscellaneous tube-like object detection approaches.

Pock described in his diploma thesis [Poc04] an auto-
mated segmentation method using a level-set technique for
tubular structures. His work also includes a skeletonization
and graph construction approach. We use a segmentation ap-
proach that is based on the hysteresis thresholding method
by Canny [Can86]. Hysteresis thresholding requires two
parameters: A high and a low threshold value, which can
be estimated by histogram analysis, as described by Con-
durache and Aach [CA05].

The CoW is supplied by three main arteries and can be
divided into three subtrees, each responsible for the blood
transport to a separate area of the brain. The segmentation
result has to be separated into three clusters, in order to re-
flect this natural division of the CoW. In the work of Bul-
litt et al. [BMJ∗05] the authors described a method that is
based on the subdivision of the intracranial circulation into
four vessel clusters.

Vascular structures are commonly modeled as a vascu-
lar graph with edges and nodes that represent segments and
branching points. The centerline extraction or skeletoniza-
tion is a first step in vessel modeling. A skeletonization
approach based on topological thinning was introduced by
Lee et al. [LKC94]. A detailed vessel model is described by
Mistelbauer [Mis13], which is also used in this work.

An automated labeling approach of the CoW is proposed
by Bogunovic [Bog12]. His approach is concerned with iden-
tifying the anatomically correct names of the bifurcations by
using a maximum a posteriori estimation. He evaluated his
automated approach on a set of 50 images of healthy patients
and reported to have labeled 60% of the cases entirely correct.
However, his approach favors sensitivity over specificity and
rather tends to find a false bifurcation than to miss one, which
is a potential weak point.

The CoW can be described by multiple trees (i.e. one tree
per supplying artery) that are connected at their leaves. A
radial graph layout is a fitting choice to display the branching
structure and topology of the CoW comprehensibly. Further-
more, the radial graph is also motivated by the circular layout
of the CoW. Draper et al. [DLR09] described radial design
methods as visualizations that arrange data in an elliptical
fashion and identified different design patterns.

The main purpose of our visual quantification of the CoW
is to create a representation to facilitate human recognition.
Beside the radial graph, there are other approaches that could
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PREPROCESSING

– input: TOF-MRA data set
– output: Location of the CoW
– Skull Detection
– Region of Interest Placement

VESSEL EXTRACTION

– output: centerlines of arteries
– Segmentation
– Clustering
– Skeletonization

VESSEL MODELING

– output: Vessel Graph
– Vessel Graph Conversion
– Pruning
– Labeling

VISUAL MAPPING

– output: CoWRadar
– Radial Graph Drawing

Figure 2: Our fully automatic pipeline for visual quantifica-
tion of the CoW. It consists of a chain of methods that are
subsequently executed. First the ROI is placed inside the data
set to cover a small area around the CoW. Then the arteries
are segmented and the centerlines are extracted. Next, we
create a vessel graph that is visually mapped to a radial graph
layout in order to display the CoW in a standardized manner.

be used for the visualization of the arterial circle. Information
visualization is the field that investigates the computer-aided
creation of abstract representations of otherwise complex
data. It takes the human perception into consideration and de-
scribes different tools for the visual representation that allows
the viewer to understand complex or large amounts of data.
The geometrical properties of the CoW can be visualized by
parallel coordinates, which are described by Inselberg and
Dimsdale [ID90]. Another method is a radar chart that dis-
plays multivariate data on different axes aligned in a circular
fashion. To the best of our knowledge, the visual quantifica-
tion of the CoW has not been attempted before.

3. Medical Background

The human brain has a high oxygen and nutrition demand and
is, therefore, critically dependent on a well-functioning blood
supply. The CoW is responsible for blood circulation to the
brain. An ongoing reduction can lead to a stroke, which is a
medical emergency possibly causing permanent neurological

damage or even death. Radiologists are therefore interested
in the blood supply of the brain tissue and, consequently, in
the CoW. The identification of the collateral blood flow is
especially important for stroke treatment. Investigating the
medical data sets, doctors can find out the source of a stroke
and determine the treatment.

The CoW can be naturally separated into three parts that
we refer to as subtrees. See Figure 1 for the standard configu-
ration of the CoW. Each subtree is primarily supplied by one
main artery. The Left Internal Carotid Artery (LICA) sup-
plies the left anterior subtree, the The Right Internal Carotid
Artery (RICA) supplies the right anterior subtree and the
Basilar Artery (BA) supplies the posterior subtree. Other
important arteries are the A1 segment of the Anterior Cere-
bral Artery (A1), the M1 segment of the Middle Cerebral
Arteries (M1) and the P1 segment of the Posterior Cerebral
Artery (P1). The subtrees are connected into a circle by the
communicating arteries in order to create a collateral blood
supply. The anterior subtrees are connected by the Anterior
Communicating Artery (ACoA) and the posterior subtree
is connected to the anterior subtrees by the left and right
Posterior Communicating Artery (PCoA). The communicat-
ing arteries (ACoA and PCoA) provide valuable information
about the collateral blood circulation and the main arteries
ensure the supply of a major part of the brain.

4. Methodology

We propose the visual indication of problematic areas and
a simple standardized display of a patient’s CoW. In order
to alleviate radiologists from tediously inspecting the entire
data set, we propose a fully automated pipeline that processes
TOF-MRA data sets to create appropriate standardized visual-
izations of the CoW (see Figure 2). We developed a software
solution for the clinical practice that does not introduce addi-
tional working steps.

First and in a preprocessing step, we define the Region of
Interest (ROI) and extract the main arteries of the CoW. In a
second step, we convert the intensity-based representation of
the blood vessels into a graph structure. Our work introduces
a novel method for the systematic labeling of this vessel graph.
Finally, we visually map the vessel graph to a radial layout,
called CoWRadar. It features a standardized visualization of
the CoW and offers a visual indication of problematic areas
as well as a comparison across multiple patients.

4.1. Preprocessing

First, we need to preprocess the TOF-MRA data sets in order
to extract the blood vessel of the CoW. One problem is that
the intensity range of the skull overlaps with the intensity
values of arteries, which leads to problems when using hys-
teresis thresholding for segmentation. Initially, we segment
the skull by shooting rays from the outside of the data sets to
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(a) MIP and volume orientation (b) Detected skull (c) ROI

(d) Segmentation result (e) Labeled vessel graph (f) The corresponding CoWRadar

Figure 3: The figures display the intermediate results of our proposed pipeline. (a) displays the volume orientation. (b) shows the
segmented skull. (c) displays the defined ROI. The segmented arteries inside the ROI are shown in (d). (e) displays the labeled
vessel graph and (f) shows the corresponding CoWRadar.

the inside. The first intensity peak along these rays identifies
the bone, which is then removed (see Figure 3b).

Then, we place a ROI in the shape of a super-ellipsoid,
including the CoW (see Figure 3c). The location and size of
the ROI are based on an empirically defined ratio determined
from the skull. The center position (cx,cy,cz) of the skull-
voxels is computed as the mean of the skull-voxel positions.
The center of the ROI (px, py, pz) is shifted from (cx,cy,cz)
by using the following empirically motivated factors: px =
cx ·1.02, py = cy ·0.78 and pz = cz ·1.2.

This heuristic guarantees the placement of the ROI in close
proximity to all arteries of the CoW. Next, the shape of ROI
has to be adjusted. The goal is to cover the entire CoW, but
not too much of the surrounding tissue. This is done by setting
the semi-axes A, B and C of the suggested super-ellipsoid.
For this purpose, the average Euclidean distance r between
(cx,cy,cz) and the skull-voxel positions are computed. r is
thereby regarded as an approximative radius of the skull.
The semi-axes are then empirically calculated as follows:
A = r · 0.52, B = r · 0.46 and C = Z · 0.52, where Z defines
the extent of the data set along the z-axis. Since the skull

is not entirely covered by the scan, the C-parameter of the
super-ellipsoid is adjusted by using Z instead of r.

The detected ROI covering the CoW specifies the scope of
our subsequent approach. By adjusting the axes-lengths, size
and roundedness of the super-ellipsoid the differently shaped
CoWs can be covered.

4.2. Vessel Extraction

The arteries are represented by voxels and their intensity
values inside the ROI. In order to create a vascular model,
we distinguish between artery and background voxels. We
extract the vessel centerlines, which are good abstractions for
the arteries due to their tubular structure.

The arteries are segmented using hysteresis thresholding
and the result is shown in Figure 3d. The segmentation re-
sult is then partitioned into three clusters in order to reflect
the natural subdivision of the CoW into three subtrees. We
thereby project the segmentation result along the x-, y- and
z-axis, reducing the data sets to three image planes, which
are shown in Figure 4. The orange part is associated with
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(a) Coronal plane (b) Sagittal plane (c) Transverse plane (d) Clustering result

Figure 4: The three image planes of the segmentation result. (a) displays the coronal plane, where the left and right anterior
parts are marked. (b) displays the sagittal plane, which is used to mark the P1 segments in the posterior subtree. (c) shows the
transverse plane where the posterior part is marked. (d) shows the result of the clustering.

the right anterior subtree, the cyan part with the left anterior
subtree and the violet part is associated with the posterior
subtree. The separation into clusters is performed in these
three planes by using reference points, which are based on
the shape and location of the super-ellipsoidal ROI.

px, py and pz describe the respective coordinates of the
super-ellipsoid’s center and A, B and C describe the semi-
axes of the super-ellipsoid in the x, y and z direction. The
pixels in the image planes are assigned to the closest reference
point. In the coronal plane the right and left anterior reference
points are at (px +A, pz) and (px−A, pz). Using the image
planes, a rough estimation of the BA’s location can be done.
As the coronal plane in Figure 4a shows, the BA is normally
in between the two carotid arteries. This circumstance is
exploited to get a better approximation of the location of the
BA on the x-axis. For this reason, a ray casting method is
additionally applied. Rays are shot from left and right. After
the first object is hit, the ray terminates if it hits a background
point. Finally, the center cBA of the left (cyan) and right
(orange) areas are calculated as an approximation of the BA’s
location on the x-axis. The sagittal plane is used to assign
the P1 segments to the posterior cluster. The reference points
are at (py +B, pz−C) and (py−B, pz +C) and the result
is shown in Figure 4b. In the transverse plane the posterior
reference point is defined by (cBA, py +B), the left anterior
reference point is at (cBA +A, py−B) and the right anterior
reference point is at (cBA−A, py−B). The result is shown in
Figure 4c.

The segmentation result is then clustered according to
the results from these image planes. However, some small
parts are incorrectly assigned. To address this issue, we apply
the following approach: We determine the largest connected
components of each of the three parts and set them as the
initial areas. Then, these initial areas grow in a breadth-first
manner and absorb parts that do not belong to another initial
area. The result is displayed in Figure 4d, which shows the
correct separation of the segmentation result into the three
subtrees.

(a) Transverse MIP (b) Coronal plane (c) Clustering result

Figure 5: The detection of an absent main artery using the
coronal plane. (a) shows the transverse MIP with an arrow
pointing to the location of the missing LICA. (b) shows that
the cyan area is much smaller than the orange area. (c) dis-
plays the CoW separated into two clusters instead of three.

This approach allows us to quickly spot the absence of a
main artery. In such a case, a major part of the brain is under-
supplied with blood, which is a highly relevant information
for the domain experts. The main arteries are the largest arter-
ies of the CoW. Their presence can be detected by comparing
the different (colored) parts in the image planes with each
other. The transerve MIP in Figure 5a shows an example data
set with a missing LICA according to the domain expert. If
the left or right part in the coronal plane is relatively small,
then we assume that a main artery is missing, as illustrated in
Figure 5b. Compared to the example in Figure 4a, this CoW
is not symmetric since the LICA is missing. The area of the
cyan left anterior part is smaller than the area of the orange
right anterior part as shown in Figure 5b. As a result, the
CoW is separated into two clusters instead of three in order
reflect this irregular blood circulation (see Figure 5c).

In order to provide a sufficiently smooth segmentation
for the subsequently performed skeletonization, we apply
morphological operations such as closing. We use the skele-
tonization approach by Lee et al. [LKC94] to extract the
centerlines of the arteries of the CoW.
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4.3. Vessel Modeling

Until now, the arteries are still represented by voxel intensity
values. In this section we describe methods to create a model
that represents the arteries and their branching points. This
model is then used as the basis for the visualization.

The centerlines are converted into a graph representation
of the vascular system using the rules of Pock [Poc04]. The
output is a representation of the CoW, which we refer to
as vessel graph. The vessel graph has to be postprocessed
in order to remove noise introduced during the segmenta-
tion and skeletonization steps. This assures a more accurate
representation of the vasculature by the vessel graph.

Labeling usually refers to the assignment of the anatom-
ically correct names to the segments of the vessel graph.
However, we developed a different approach in collaboration
with our domain expert. We know that during the diagnosis
the radiologist is less interested in the anatomical names of
the segments but more in how the brain is supplied and conse-
quently in the topology of the CoW. Neuro-radiologists can
easily derive the identity of an artery by considering its con-
nection to the supplying main artery. Therefore, we propose
a systematic labeling of the vessel graph, starting at the main
arteries, which we refer to as root segments. Each segment
can be labeled from each main artery as long as there is a
connection. A label consists of zero to three terms, depending
on its connections to the main arteries. A labeling term is
thereby described by the regular expression:

[R|L|B][0−9]+[a− z] (1)

The letters R, L and B specify the root segment where R
stands for the RICA, L for the LICA and B for the BA. The
subsequent numerals specify the number of branching points
between a segment and its root segment. Lower case charac-
ters at the end indicate the branch index, which enumerates
the child branches. This approach is demonstrated on an ex-
ample tree in Figure 6, assuming that the tree is the right
anterior subtree. Per definition, the root segment is the R0a
segment. With each branching point, the numeral increases.

Figure 3e shows a vessel graph labeled with our approach.
The effectiveness of our labeling approach is illustrated on the
example of the segment with the label R2aL4b. The R2a term
indicates that this particular segment is two branching points
away from the RICA. The L4b allows the viewer to assume
that there is a connection between the left and right anterior
subtree and the segment is four branching points away from
the LICA. Therefore, it can be assumed that there is an ACoA
to connect the anterior subtrees. Since the enumerator of the
right labeling term is smaller than the left one, it indicates
that this segment is located on the right anterior subtree.
Furthermore, the fact that this segment is not labeled from the
BA is a clear indication that there is no connection between
the anterior and posterior part. The PCoAs are absent on both
sides. This relevant information can be extracted from the
single segment label.

Figure 6: Illustration of the labeling method on a tree example.
Assuming this is the right anterior subtree, the root segment
is per definition R0a. The numeral increases with the number
of branching points. Additionally, the labeling direction can
be interpreted as the primary direction of the blood flow.

Figure 7: Detailed view of the attributes shown inside the
RICA node of the CoWRadar from Figure 3f. These at-
tributes are displayed in diagrammatic form inside the nodes
with multiple circular arcs. The inner arc depicts the intensity
range of the segment and the outer arc depicts its length.

Finding the starting point of the labeling is crucial in our
approach. For each subtree, the root segment must be detected.
We determine the root arteries heuristically by analyzing the
following seven attributes of each segment:

1. Length l: The main arteries are longer than the other
segments.

2. Position on the z-axis u: The main arteries supply the
CoW from below. Therefore, their position on the z-axis
is likely to be lower than the other arteries of their subtrees.

3. Centrality on the x-axis v: This attribute is used for iden-
tifying the BA since it has a medial position on the x-axis.
We thereby use the cBA value from the coronal plane. The
centrality is calculated from the average distance of a seg-
ment to the cBA by only considering the x-components of
the positions.

4. Distance to the centroid of the cluster d: The cluster
centroid is usually close to its main artery since the main
artery is the largest one in the subtree.

5. Intensity values b: Due to the properties of MRAs, the
main arteries have the highest intensity values. b is the
average intensity value along the pathway of the segment.
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6. Vertical alignment a: The main arteries run vertically
upwards until they bifurcate into the CoW. A segment
is approximated by a vector and a is calculated from the
angle between this vector and the z-axis.

7. Affiliation to the respective subtree s: We use the clus-
tering result to determine the corresponding subtree of a
vessel segment. This is a three-dimensional vector where
each component defines the affiliation to the three sub-
trees.

Finally, we calculate the rank for each segment in the
vessel graph to be selected as one of the root segments. For
each subtree, the segment with the highest associated rank
is selected as the root segment by using the following rank-
function:

Ci, j = sgn(si, j) · (li ·L j +ui ·U j + vi ·V j

+di ·D j +bi ·B j +ai ·A j) (2)

Ci, j is the rank of segment i to be selected as the root of
subtree j, for j = 1,2,3. The variable si, j is the component j
of the affiliation vector s of segment i. It describes to which
subtree the segment i can be assigned to. The above calculated
attributes have different ranges. Therefore, we standardize the
ranges between 0 and 1 in order to equalize their influence.

sgn(·) is the sign function. si, j is only positive, if a segment
is part of a subtree. This guarantees that the RICA can only
be considered as a candidate for the root segment of the right
anterior subtree, the LICA for the left anterior subtree and the
BA for the posterior subtree. The influence of the attributes
is regulated by the weights L j, U j, V j, D j, B j, A j. The three
main arteries LICA ( j = 1), RICA ( j = 2) and BA ( j = 3)
differ in size, location, alignment and shape and are there-
fore not determined by the same attributes. For this reason,
the weights have to be adjusted accordingly. We empirically
determined L1 = L2 = 0.4, U1 = U2 = 0.2, V1 = V2 = 0,
D1 = D2 = 0.5, B1 = B2 = 0.5, A1 = A2 = 0.2 as weights
for the LICA and RICA root segments. Hereby, the centrality
attribute v is eliminated since the LICA and the RICA are
in the lateral part of the ROI. For the BA root segment, we
use the following weights L3 = 0.3,U3 = 0,V3 = 1,D3 =
0.3,B3 = 0.4,A3 = 0.8. Hereby, u is eliminated since the BA
is not the lowest segment in the posterior subtree. Usually,
the two vertebral arteries are below the BA.

4.4. Visual Mapping

The vessel graph contains information about different prop-
erties of the CoW, which have to be communicated to the
viewer. Figure 3e displays the labeled vessel graph together
with the MIP from the transverse view. This display is dis-
advantageous since the content can not be fully perceived
without changing the viewing direction. In this section we
propose a visual mapping to abstract the CoW in such a way
that it can be easily comprehended by the radiologist. Our
visualization supports the physician to observe the overall

configuration of the CoW, while still retaining sufficient de-
tails for an extensive analysis.

Our proposed visual abstraction displays the CoW in a sim-
ilar way as before, namely in a radial graph layout. The CoW
consists of subtrees that are connected with each other at the
leaves. We chose a circular layout that offers an effective way
of displaying the subtrees inside different sectors. Figure 3f
demonstrates our approach, which we refer to as Circle of
Willis Radar/Radial Visualization (CoWRadar).

We convert the labeled 3D vessel graph into a dual 2D
graph representation, i.e., segments are represented by nodes
and branching points by edges. Neuro-radiologists are primar-
ily interested in the blood supply and collateral circulations,
which can be easily observed in a dual graph. Furthermore,
other important attributes of the segments are visually better
encoded inside a node than an edge.

The main arteries are located at the center of the radial
graph, at the zero level. Increasing level numbers indicate
the direction of the blood flow. Every level is represented by
a concentric circle, starting from the center and simultane-
ously reflecting the distance of a segment to its corresponding
main supplying artery. In essence, we visually encode the
subsequent three different Levels of Detail (LODs) that suc-
cessively provide more information:

1. Low: The overall blood supply to an affected region of
the CoW can be derived from the global arrangement of
the node within a single sector. An empty sector can be
immediately spotted, representing a problematic blood
circulation in this region. This is a time-crucial and life-
saving aspect and is, therefore, encoded at the lowest LOD
to be as fast perceivable as possible (see Figure 9).

2. Medium: At this LOD, the branching structure can be
observed from the nodes and edges in the CoWRadar.
Important are the edges connecting two sectors, since
these indicate collateral blood circulation. This is a major
aspect to conclude if a certain region is still supplied with
blood despite being not connected to its spatially closest
main artery [HvdG00]. Again, this can be easily observed
in our CoWRadar (see Figure 3f).

3. High: The highest LOD offers the possibility to inspect
the attributes inside the nodes, which are shown in dia-
grammatic form (see Figure 7). They allow the radiologist
to compare attributes of different segments with each other.
For example, length and intensity values are displayed to
provide additional information. The length allows the radi-
ologist to distinguish between the different segments. Ar-
teries are further differentiated by intensity values because
of various reasons. The main arteries are the brightest in
the CoW. Low intensity values could indicate a stenosis.

The CoWRadar shown in Figure 3f can be interpreted as
follows. The connection between the left anterior and right
anterior sector is established by the ACoA, which we labeled
as R3aL2b. This label consists of two labeling terms, the R3a
term indicates that this segment is three branching points

c© The Eurographics Association 2015.



H. Miao et al. / CoWRadar: Visual Quantification of the Circle of Willis in Stroke Patients

away from the RICA segment and the L2b term indicates
that it is two branching points away from the LICA. Further-
more, each segment in the anterior subtrees is labeled from
both, the RICA and LICA root segment and therefore, carries
two labeling terms. The missing third label implies that the
posterior subtree is not connected to the anterior subtrees.
Consequently, we can assume that the PCoAs are missing on
both sides.

The attributes used for the identification of the main arter-
ies as described above can be visualized within the nodes –
circular charts – normalized to the respective maximum value
of all segments. This layout offers a compact representation
of information, while minimizing the covered space and re-
taining the overall topology of the CoW. An example is given
in Figure 7, showing the root segment R0aL5b of the right
anterior tree. The inner arc displays the range of the intensity
values, whereas the outer arc shows the length of the segment.
It can be seen that the RICA is a fairly long segment, encoded
in the outer circle. The inner circle conveys the minimum
and the maximum intensity value of the segment. These two
attributes play an essential role in selecting the root segment,
since they characterize the main arteries. The individual cir-
cular arcs could encode different attributes, depending on the
information the radiologist is interested in.

5. Implementation

All steps in the proposed pipeline were implemented in a
software solution for the radiologists. We developed the soft-
ware as an extension to the AngioVis framework [The15a].
The methods have been implemented on the CPU. We use
OpenGL and Qt to render the geometrical elements in the
visualization. The software processes the data sets automati-
cally and requires the radiologist only to read-in the data set
and start the pipeline. Currently, a data set is processed in
55 seconds on average. The measurements were done on an
Intel Core i5 with 3.4 GHz and 16 GB system memory.

6. Results and Discussion

The data sets were acquired across patients with various dis-
eases such as brain tumors or other cerebrovascular diseases,
but the majority being stroke patients. The sizes of these data
sets are between 448× 512× 64 and 512× 512× 156 vox-
els. All data sets have been automatically processed using
our proposed approach, without any manual interventions or
adjustments.

The first example (see Figure 8) scored good results and
demonstrates the effectiveness of our visualization. In this
data set, according to the gold-standard, all arteries of the
CoW are present except for the left PCoA. As the transverse
MIP (see Figure 8a) shows, the left PCoA is the only artery
missing as indicated by the yellow arrow. The separation
into the three subtrees is shown in Figure 8b and Figure 8c
presents the CoWRadar. Nearly all segments are correctly

(a) Transverse MIP (b) Clustering result

(c) CoWRadar

Figure 8: In this patient 91% of the arteries could be correctly
identified using our proposed method. (a) shows a transverse
MIP indicating a missing left PCoA (yellow arrow). (b) illus-
trates the clustering result and (c) shows the CoWRadar with
the ACoA (yellow arrow) connecting both anterior subtrees.

identified. The arc-shaped connection between the two an-
terior subtrees indicates the presence of the ACoA (yellow
arrow in Figure 8c). The right P1 segment could not be iden-
tified due to low intensity values. The right PCoA is correctly
detected but not represented by a connection to the posterior
sector since the right P1 segment is not correctly identified.

The second example (see Figure 9) demonstrates the limita-
tions of our proposed method. According to the gold-standard,
the LICA is missing as shown in Figure 5a. The only other
missing artery is the ACoA. We correctly identified the miss-
ing LICA, but our approach does not detect the remaining
arteries of the left subtree since the root segment is missing.
This means that the left M1 and A1 segments will not be
detected by default.
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Figure 9: The figure displays the CoWRadar of the example
data set in Figure 5. In this patient only 58% of the arteries
could be correctly identified with our proposed method.

7. Evaluation

We conducted a study consisting of 63 TOF-MRA data sets
that were investigated by an expert neuro-radiologist and
three volunteering radiologists. The neuro-radiologist, being
much more experienced than the three radiologists, created
the gold-standard. The task was to identify the presence of
the twelve cerebral arteries of the CoW. We compared the
findings of our approach and the findings of the radiologists
to the gold-standard and calculated the sensitivity, specificity
and negative predictive value to compare the results.

The separate evaluation of the main arteries and the en-
tire CoW is motivated by the way our approach works. We
proposed a method that automatically identifies the main ar-
teries by certain attributes. However, the remaining arteries
are not directly identified but labeled with our systematic
labeling approach. Our method displays their connections
to the main arteries and the branching structure that lies in
between, hence the arteries are visually described.

The sensitivity metric, or true positive rate, measures the
proportion of existing segments that could be correctly iden-
tified. The specificity metric, or true negative rate, measures
the proportion of missing arteries that could be detected as
absent. Finally, the negative prediction rate is the proportion
of the correctly classified absent arteries. In order for our pro-
posed method to be considered to have good performance, all
three of these metrics have to be analyzed. The visualizations
of the 63 data sets were presented to the domain expert for in-
terpretation and verification if the arteries could be correctly
detected by our approach.

(a) Sensitivity

(b) Specificity

(c) Negative predictive value

Figure 10: The evaluation shows that the performance of
our automatic approach is slightly below the radiologists’.
(a) Sensitivity: Almost all main arteries could be correctly
identified. (b) Specificity: A specificity of 93.04% for the
entire CoW indicates that our approach performs better in
detecting missing arteries than radiologists. (c) Negative pre-
dictive value: It seems in general to be quite low.

The sensitivity values are shown in Figure 10a. The sensi-
tivity value demonstrates the ability of our proposed method
to detect the presence of arteries. 80.66% of all present ar-
teries could be detected correctly, which is slightly below
the performance of the radiologists. The value is mainly de-
creased by arteries that are represented with low contrast.

Figure 10b shows the specificity values. According to the
gold-standard, the RICA is absent in two and the LICA is
absent in one data set. All three cases have been correctly
classified by our proposed method. The specificity is there-
fore 100%. The specificity of the participating radiologists
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is in general lower compared to our method. This is because
of increased false positives. The radiologists have the high-
est number of false positives in the communicating arteries,
which means they tend to identify the presence of a commu-
nicating artery when the gold-standard states the opposite.
The main reason for the slight decrease of specificity for all
arteries is caused by a false connection between the left and
right anterior subtree.

Our approach seems to favor specificity over sensitivity.
This means, a segment is rather detected as missing than as
being present. However, these two values do not demonstrate
how precise our approach is in detecting the missing arteries
by taking the false negatives into account. This is given by
the negative predictive value, which is shown in Figure 10c.
The reason for the low value is the same as for the sensitivity
value. Since the number of absent arteries is relatively small
compared to the number of present arteries, the influence of
the false negatives is much larger on the negative predictive
value. However, this value is in general quite low.

8. Limitations

According to the evaluation our proposed method performs
well in the detection of absent arteries. This is potentially of
great interest for the diagnostic process since they are often
the cause of problems.

Our approach mostly deviates from the gold-standard in
those cases where the arteries are represented by relatively
low intensity values. In such cases, the arteries are not seg-
mented and consequently not represented in the CoWRadar.
Another limitation of our approach is given by the way how
our labeling works. If a segment is disconnected due to locally
low intensity values, our approach stops the labeling at this
point. This causes the remaining segments in the respective
subtree to be left unlabeled or assigned to the wrong subtree.

9. Conclusion and Future Work

We proposed an automated pipeline for the visual quantifica-
tion of the CoW in stroke patients. Thereby we developed a
novel method for the systematic labeling of the vessel graph.
In addition, we proposed heuristics for the identification of
the main arteries based on seven attributes of each segment
in the vessel graph. The CoW is finally visually represented
in a standardized manner in order to provide a preliminary
assessment of the CoW’s configuration as well as a visual in-
dication of problematic areas. This can be used as an interface
for comparisons across multiple patients.

Concluding, the evaluation demonstrated the feasibility
and practicability, especially considering the heterogeneity
of the samples in our study. Our domain expert stated that
the findings of our proposed fully automatic method are as
good as those of a beginner radiologist. This shows that our
approach is worth to be investigated further.
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