Habilitationsschrift

Interactive Visual Analysis of
Multi-Parameter Scientific Data

ausgefiihrt in den Jahren 2005-2014
zum Zwecke der Erlangung der venia docendi (Lehrbefugnis)
im Habilitationsfach ,, Informatik*

und eingereicht im Mai 2015
an der Technischen Universitit Wien, Osterreich,
Fakultit fiir Informatik,

von Dipl.-Ing. Dr. techn. KreSimir Matkovi¢,
Rotzergasse 20/5, A-1170 Wien, Osterreich,
geboren am 19. August 1968 in Zagreb, Kroatien.
Matkovic@VRVis.at

Wien, im April 2015






Abstract

Increasing complexity and a large number of control parameters make the design
and understanding of modern engineering systems impossible without simulation.
Advances in simulation technology and the ability to run multiple simulations with
different sets of parameters pose new challenges for analysis techniques. The re-
sulting data is often heterogeneous. A single data point does not contain scalars or
vectors only, as usual. Instead, a single data point contains scalars, time series, and
other types of mappings. Such a data model is common in many domains. Interac-
tive visual analysis utilizes a tight feedback loop of computation/visualization and
user interaction to facilitate knowledge discovery in complex datasets.

Our research extends the visual analysis technology to challenging heteroge-
neous data, in particular to a combination of multivariate data and more complex
data types, such as functions, for example. Furthermore, we focus on developing a
structured model for interactive visual analysis which supports a synergetic combi-
nation of user interaction and computational analysis.

The concept of height surfaces and function graphs is a proven and well devel-
oped mechanism for the analysis of a single mapping. The state of the art when a set
of such mappings is analyzed suggested a use of different descriptors or aggregates
in the analysis. Our research makes it possible to analyze a whole set of mappings
(function graphs, or height surfaces, for example) while keeping the original data.
We advance the interactive visual analysis to cope with complex scientific data.

Most of the analysis techniques consider the data as a static source. Such an
approach often hinders the analysis. We introduce a concept of interactive visual
steering for simulation ensembles. We link the data generation and data exploration
and analysis tasks in a single workflow. This makes it possible to tune and optimize
complex systems having high dimensional parameter space and complex outputs.
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Introduction

This thesis presents a subset of my research in the field of interactive visual analysis
of multi-parameter scientific data. The first chapter serves as an introduction to
the field, it provides a brief description of the simulation data and related analysis
tasks, and provides the context for the papers presented in the following chapters.
The papers making up the body of the thesis are listed and briefly described, with a
special emphasis on the contribution of the author made to each individual work.

Simulation is an omnipresent support methodology for engineers and scientists
across many domains. Many physical phenomena in nature, science and technology
can be explored through simulation results. These phenomena include the weather
and climate, blood flow, or the combustion processes in car engines, for example.
The rapid improvements of modern computation technologies make it possible to
simulate systems of increasing complexity having a large number of control param-
eters.

The development of new simulation technologies has always been accompa-
nied by the necessary development of new and matching analysis methods. The
visual analysis of simulation results has established itself as a successful method,
because it makes use of the unique capabilities of the human perception and cogni-
tive system — in addition to the enormous power of computers — to provide a deep
understanding of large and complex data.

Enabled by the dramatic improvement of computing power and simulation tech-
nology, we now observe a transition towards a new kind of simulation: a physical
phenomenon is not only considered by a single simulation, but by a multitude of
simulations with a number of changing parameters. Such a methodology is referred
to as ensemble simulation or multiple-runs simulation. Ensemble simulation has
the great potential to provide a much deeper understanding of the investigated phe-
nomenon, to study the variability and sensitivity of simulation models, and to enable
statements about uncertainties that are always associated with such studies.
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In order to fully exploit the opportunities that emerge from advanced ensemble
simulation, effective and efficient analysis methods are needed. The exploration and
analysis methods have to secure the successful exploitation of the great wealth of
information that is contained in the simulation results.

Interactive visualization is a proven technology for the analysis of ensemble
simulation data and for studying systems by varying a set of controllable inputs
and observing simulated responses (outputs). The research described in this thesis
deals with the interactive visual analysis of simulation data. Most of the data come
from ensemble simulations. Two papers describe the analysis of data representing
path lines’ attributes. Although these are not ensemble simulation data, they are
consistent with the same data model.

1.1 Simulation Data

The simulation can be modeled as a function that maps control parameters to output
values. Simulation solvers generate different kinds of data, ranging from simple
scalars, to curves, surfaces, volume data, or some more complex data types. There
are numerous visualization methods to cope with complex data from a single sim-
ulation run. In the case of multiple simulation runs, i.e., simulation ensembles, the
users typically extract interesting, scalar features from the data in order to ease the
analysis. Traditional data analysis approaches, such as statistics or OLAP tech-
niques [Tho97], usually consider the outputs to be scalar values only, and use data
tables to capture the relations among control parameter values for the same simula-
tion run [CMS99, Sam06].

For a simulation ensemble, the simulation process can be modeled as a function
S that maps the control parameters X = (x1,...,X,) (a control data point in R™) to
the output values y = (y1,...,y,) (an output data point in R") where m is the number
of control parameters and # is the number of outputs.

y =S(x) (1.1)

Due to various physical constraints, the set of feasible control data points C is a
subset of R and the set of feasible output data points O is a subset of R". Therefore,
a simulation ensemble E is a set of pairs of data points (x,y),x € Candy € O.

As stated above, a single simulation run can produce outputs that are not scalars
only. If there are, e.g., time dependent outputs, the above equation does not hold
any more. One solution is to replace time dependent output with a series of fea-
tures. If, for example, the simulation computes a force on a crankshaft as a function
of time, the maximum force might be sufficient for certain analysis tasks. If we
strive for a deeper insight, scalar features are not sufficient any more. We do need
curves themselves in the analysis. Accordingly, an adequate simulation ensemble
data model is needed to deal with more complex data. Our work deals with such
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Figure 1.1: Simulation ensemble data model: control data points — control param-
eters, output data points — computed responses, and extracted features. For each
output data point y’, there can be an output value yz- that is a complex data item
— a curve or a surface. In the figure, yé and y}; are time dependent outputs, i.e.,
curves. Complex data items are replaced by one or more scalar values (features z)
in the feature space. The original output space and the feature space are used in the
analysis.

data. We have extended the data model to include complex data as atomic attributes.
Our simulation ensemble data model uses a two-level data hierarchy for the output
data points (Figure 1.1). The output values can be either scalars, 1D function graphs
(usually time series data), or 2D function graphs or data surfaces. In our previous
work [FMHOS], which is not a part of this thesis, we also represent set-type data as
an atomic dimension.

For each output data point y’, there are some dimensions y! that are data series,
we have a separate set of "sub-points" with its own length and number of dimen-
sions. In this work we focus on curves and surfaces only. In addition to the complex
data item (a curve or a surface), a set of scalar values — features z (such as, the
maximum or the minimum value, or the area under the curve, for example) is also
computed, to create a feature point z’ in the feature space F, a subset of R”, where p
equals the total number of features computed for the data point y'. We use elements
of all three spaces: the x (scalar control parameters), the y’ (scalar and complex
responses computed), and the z’ (scalar features of complex responses), simultane-
ously in the analysis.

1.2 Interactive Visual Analysis of Complex Data

The complex data as described in the previous section pose new challenges for
analysis techniques. A single data point in the resulting heterogeneous data does
not contain scalars only, as usual. Instead, a single data point contains scalars,
time series, surfaces, and other types of mappings. Although, in this thesis, we
deal mostly with engineering data, such a data model is common in many do-
mains. In our research (not only described in this thesis) we have identified the
same data model for: intensive care unit data [MGA ™12, GMA™11], animal trajec-
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tories [MWSB12], bio signals (ECG) [TMS™08], image collections [MGF*09], or
meteorological data [MGKHO7], for example.

Conventional analysis techniques are insufficient to cope with such complex
data. Interactive visual analysis (IVA) facilitates knowledge discovery in complex
datasets by utilizing a tight feedback loop of computation, visualization and user
interaction [KAFT08, KKEM10, TC06]. IVA provides an interactive and iterative
exploration and analysis framework, where the user guides the analysis [Shn02],
supported by a variety of computational analysis tools. This helps the user to
explore and analyze the data, and to understand complex and often hidden rela-
tionships between certain data aspects. The Visual Information Seeking Mantra —
overview first, zoom and filter, then details-on-demand — as identified by Shneider-
man [Shn96], summarizes the most typical pattern in IVA. Interactive visual anal-
ysis is much more than the presentation of data; it supports the user in the analysis
of complex and heterogeneous datasets [KH13, KMDH11, YRWO07]. IVA has been
successfully employed in many domains [KAFT08, TMS*08, DGHO3].

Coordinated multiple views [Rob07] are often used as a proven concept in
IVA. The main idea is to depict various dimensions using multiple views and
to allow the user to interactively select (brush) subsets of the data in a view.
Then all the corresponding data items in all linked views will be consistently
highlighted [DGHO03, MW95]. One of the first examples of linking and brush-
ing of different visualization approaches in different views is a system called
WEAVE [GRW'00]. It was used to interactively analyze and visualize simulated
data of a human heart.

The concept of height surfaces and function graphs is a proven and well devel-
oped mechanism for the analysis of a single mapping. The state of the art when
a set of such mappings is analyzed suggested the use of different descriptors or
aggregates in the analysis. Our research makes it possible to analyze a whole set
of mappings (function graphs, or height surfaces, for example) while keeping the
original data.

Furthermore, we also consider on-the-fly data generation through ensemble
steering. If the dimensionality of the parameter space grows, it is prohibitively
expensive to sample it densely. In order to make the process more efficient we cou-
ple the data generation, data exploration, and analysis tasks in a single workflow.
Additionally, we incorporate automatic optimization methods based on regression
models, to further increase the scalability of ensemble steering.

Finally, we show how I'VA can be used to better understand time dependent flow
data. There are numerous methods how to visualize and analyze such data, and we
have extended the state of the art by a novel approach to studying different path
lines’ attributes, using the same data model, again.

The interactive visual analysis is by no means intended to replace conventional,
automatic analysis methods, based on statistics, machine learning, or data min-
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ing, for example. The interactive visual analysis represents an efficient additional
methodology which helps us to gain insights which are otherwise impossible. Only
a clever combination of automatic and interactive techniques can solve really com-
plex problems.

1.3 Tasks Abstraction for IVA of Simulation Ensembles

During several collaboration projects with domain experts we have identified four
main tasks common to practically all examples of ensemble data exploration and
analysis.

Two main tasks, which an analyst has during ensemble exploration and analysis,
can be summarized as:

e Model Reconstruction: How do the dependent variables (outputs) change
as the values of the independent variables (control parameters) are changed
within a single ensemble? If the simulation is fast, this can be answered with-
out ensemble data by simply running a simulation for the desired control pa-
rameters. In an interactive visual analysis environment we vary independent
variables while studying the corresponding dependent variables deploying a
coordinated multiple views techniques.

e Output Analysis: The desired/expected shape of the output (curve) is (ap-
proximately) known. The goal is to find combinations of control parameters
that produce this shape within a single ensemble. The combinations produc-
ing undesirable/invalid output can be excluded based on how the deviations
from the desired output depend on the control parameters. The correlation
between various outputs is considered. Without ensemble simulation this is
possible only if the inverse of the simulation mapping is known. As most
of the modern solvers use numerical methods, finding an analytical inverse
function is practically impossible in most of the cases.

In case of ensemble steering, where the user can request additional runs of the same
model, or even request a model refinement, two additional tasks have to be sup-
ported:

e Ensemble Growing: Add simulation runs with different control parameter
settings to the currently analyzed ensemble (based on previous findings). The
control parameters can be sampled differently (resolution/distribution/range)
to set up new simulation runs.

o Model Refinement: Create an ensemble for a (partially) refined simulation
model. A new ensemble with a different parameter space is created. After
applying this task all other tasks can be arbitrarily applied.
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Figure 1.2: Three scalar control parameters describing the pressure at the injectors
inlet: Pyyy, Phign, and dT),. These parameters are marked with red numbers one
to three. Two scalar features describing the actuator time signal, 7, and dT, are
marked with numbers four and five.

These are only high-level tasks, and we describe the tasks on a much finer level later
in the thesis. In order to support these analysis tasks we have to provide efficient
means of forming a mental model of data and parameter space to understand the
observed phenomena. Interactive visualization represents a premium choice here as
it amplifies our cognition through exploration of our high-throughput visual channel
and, by doing so, supports the mental model building.

1.4 A Real-World Simulation Ensemble as an Illustrative
Example

In this section we exemplify the above described data model and the
analysis tasks on an example of ensemble simulation of injection sys-
tems [KMG'06], [MGJHO8], [MGS™14]. Besides helping us to answer the two
high level questions in the analysis, the interactive visual analysis additionally sup-
ports the knowledge gaining process of the engineer

The common rail injection represents the standard injection system for modern
Diesel car engines [BDHKO5], [BH97]. It operates at a very high pressure level,
with an electronic control unit which determines the fuel delivery, injection tim-
ing, injection pressure, and rate of injection, for multiple injection strategies. The
modern common rail makes it possible for Diesel cars to achieve a level of perfor-
mance and driving comfort similar to those of gasoline powered models with less
fuel consumption and low exhaust emissions. The common rail system uses a high-
pressure rail, the same for to all cylinders. The high pressure in the rail is used to
precisely inject fuel into the cylinders. Due to high pressures and quick changes in
the system, a modern common rail injection system operates in a condition which
cannot be described sufficiently precise using classical fluid mechanics. The Diesel
fuel cannot be considered incompressible when exposed to high pressure changes in
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Control Parameter Symbol Number of variations
Low pressure on the injector inlet Py 5

High pressure on the injector inlet Phigh 5

Time interval of modulated pressure increase

on the injector’s inlet dT, 5

Time interval of the injector valve opening

and closing dT, 5

Injector valve opening time T, 7

Table 1.1: Five control parameters varied

short time periods. At high pressure, the fluid density, the module of elasticity, and
the speed of sound are significantly altered. Furthermore, in a common rail system
each cylinder and injector is influenced by the others through the rail. This requires
a careful rethinking of traditional system design.

There are three main factors that influence the injection shape: the nozzle ge-
ometry, the injection pressure, and timings of valve opening and closing procedures.
The nozzle geometry cannot be changed at run-time, and it is usually investigated
by injector manufacturers. We focus on the remaining two factors in the analysis.

The independent variables in our ensemble are related to injection pressure and
injector valve timings only. The injection pressure is controlled by the injection
pressure modulation device. The pressure on the injector’s inlet is described by
three independent variables (Figure 1.2). The injection timing is controlled by the
injector valve actuator. We model the timing using opening and closing times and
velocities (Figure 1.2). Such a model results in five independent variables. Table 1.1
shows the varied control parameters and number of variations for each of them. The
total number of variations, i.e., the number of simulation runs we have computed,
equals 5% x 7, or 4375 runs. According to the notion introduced in Section 1.1, the
m =5 and the cardinality of C equals to 4375. For each simulation run the following
time dependent and scalar response are computed:

e injection rate — Qi (1),

e injection pressure — Py,;(t),

needle lift — X,eeqre (1),

amount of fuel flowing back to the fuel tank Q,,, and

e spray penetration depth — L,,.

The y dimensionality equals five, so n = 5, and three out of five output values are
time dependent. Additionally, we also compute the following scalar features, as
they will be needed in the analysis:
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Figure 1.3: Exploring changes in responses as the control parameters change. a. A
Minimum configuration for the IVA. The scatterplot shows two control parameters,
and the curve view shows one of the time dependent response variables. b. The user
brushes the upper left corner in the scatterplot and moves the brush downwards. c.
to g. As the brush moves the corresponding curves are highlighted. The user knows
that dT), is decreasing, while 7, remains low, and can focus on the responses only.

e amount of fuel injected during pilot injection — Q,,, computed as an integral
of Qinj(t), Qp = flz Qinj(t), where t; and 1, represent starting and ending time
of the pilot injection,

e amount of fuel injected during main injection — Q,,, computed as an integral
of Qinj(t), Om = ,;4 Qinj(t), where 13 and #4 represent starting and ending time
of the main injection,

¢ needle opening velocity V,pe,, computed using the slope of Xyeeaze(2),
e needle closing velocity — Vo5, computed using the slope of Xjeeqre(), and

e average injection power — P;,, computed from Q;,;(f) and Xyeeqie (1)

These five scalar values represent scalar features z, in the feature space F with a p
of five, according to the notation introduced in Section 1.1.

The first step is the ensemble computation. The simulation is run for each of
the 4375 combinations of control parameters. Responses, as well as scalar features,
as described above, are computed. The analysis can start. The user explores the
simulation ensemble using a coordinated multiple views system. The coordinated
multiple views include at least two views depicting different control parameters and
output values. The most often used views include a scatterplot, a histogram, parallel
coordinates, or a curve view. The views support linking and brushing — the user
interactively selects some items (simulation runs in our case) in one view, and the
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Figure 1.4: Characteristic shapes of the main injection curves for different combi-
nations of engine speed and load. The injection parameters change at run-time in
order to ensure desired injection characteristics.

corresponding items in all other views are highlighted. The user can now move the
brush and observe what happens with the corresponding items. The selection can
be done either in the control parameters space, or on the response values.

We first explore how changes in control parameters influence output values.
We depict two of the control parameters using a scatterplot, and response variables
under consideration using the curve view, as shown in Figure 1.3 a. We brush the
upper left corner in the scatterplot (high values of d7, and low values of 7,;), and
move the brush towards the lower left corner. We observe changes in the other
views as we move the brush. Figure 1.3 b. shows the brush positions (brushes are
superimposed in this figure to save space), and Figures 1.3 c¢. to g. show what
happens with one time dependent response variable — Q;, (). We examine several
responses in the same way in order to comprehend the system behavior.

The next step is the model reconstruction. We would like to identify control pa-
rameters resulting in a desired model behavior. The optimum curve shape depends
on the engine operating point. Depending on engine speed and load, the desired
shape varies. Figure 1.4 shows desired curve shapes for different operating points.
We depict injection curves in a curve view and use several line brushes to "specify"
the desired curve shape. The line brush selects all curves that cross a user-drawn
line. By combining several lines using Boolean operators we can specify an arbi-
trary shape very fast. Figure 1.5 shows an example. We used five line brushes in
order to specify a desired boot shape. The control parameters are shown in two
scatterplots and one histogram. We can see that, in order to achieve the boot shape,
we have to set 7, to the lowest value, dT), and P,,,, to the upper half of the available
range, Ppg; to the lower half, and, as it can be seen in the histogram, dT, can have
any value.

After the analysis, we have gained valuable insight into the simulation ensem-
ble and into the fuel injection process itself. The most important findings can be
summarized as:
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Figure 1.5: The model reconstruction - the user identifies control parameters for a
desired injection shape. The shape is selected by means of several line brushes in
the curve view. The scatterplots and the histogram show the corresponding control
parameters.

e The amount of injected fuel in the main injection stage can be controlled by
adjusting Pyjgp.

e The amount of pilot injection is controlled mostly by P,,,,, but d7,, also influ-
ences it.

e A right choice of dT, and T, is the key to achieving the desired injection
shapes for various engine operating conditions.

e If pressure increases too fast on the injector’s inlet, the resulting wave can
be reflected into the fuel line, which impairs our control over the injection’s
shape.

Such findings would be practically impossible without interactive visual analysis

and ensemble computation. An additional advantage of the here described approach
is the better understanding of the complex parameters interplay. Engineers get a
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much better insight into system operation and influence of parameter changes. This
illustrative example shows the basic idea only. More comprehensive examples are
provided in the next chapters of the thesis.

1.5 Thesis Overview

The papers that constitute this thesis describe our research on the visual analysis of
complex data. The first paper (Chapter 2) describes an early work on a specific case
where the parameter space is two-dimensional only. We have analyzed a real-world
data set — an engine characteristic diagram with corresponding cylinder pressure
graphs. Chapter 3 describes then the next step in our research. The parameter space
1s now multidimensional, and there are several curves dimensions. We introduced
the term A Family of Function Graphs here, and described the identified analysis
procedures. As the parameter-space dimensionality grows further, computing the
whole ensemble in advance becomes prohibitively expensive. A possible solution is
interactive visual ensemble steering (Chapters 4 and 5). The analysis starts with an
initial ensemble, which is iteratively extended during the exploration and analysis
process. The user interactively selects areas of the parameter space, which have
to be re-sampled. In order to support the user, we also include a regression-model
based optimization, which suggests areas of potential interest. Chapter 6 describes
how we included the simulation-model view in order to amplify the mental model
of the user. Simulation experts are familiar with the simulation model view, and we
used this well-known paradigm as an interface to access abstract views employed in
the analysis. As described above, we do not limit the data-model extension to curves
only. Chapter 7 describes our research on families of surfaces and the corresponding
analysis methodology. In contrast to curves, where it is very efficient to depict many
curves (employing, e.g., density mapping) in order to get insight into a family of
curves characteristics, depicting many surfaces at once does not solve the problem.
We designed an analysis approach based on projections, which allows us to increase
the number of visualized surfaces by abstraction. The approach is illustrated using a
climatological research example, as well as an example from automotive simulation.
Finally, the last two chapters (Chapter 8 and 9) describe how the new data model can
be applied to non-ensemble data. In these chapters we analyze time dependent 3D
flow based on path-lines attributes. For each path-line we compute a set of attributes,
some of them are scalar, and some are time dependent. We analyze the path-lines
attributes data then. We also explored which attributes are the most representative
ones using several representative data sets of various complexity.

11
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1.6 List of Selected Papers

This thesis contains the following papers [MJK*05, KMG'06, MGIH08, MGS™ 14,
MGJ 10, MGKHO09, STH" 09, PLMH12]:

1. K. Matkovié, J. Juri¢, Z. Konyha, J, Krassser, H. Hauser: Interactive Visual
Analysis of Multi-Parameter Families of Function Graphs, in Proceedings
of 3rd International Conference on Coordinated & Multiple Views in Ex-
ploratory Visualization 2005, London UK, 2005

2. Z. Konyha, K. Matkovi¢, D. Gracanin, M. Jelovi¢, H. Hauser: Interactive
Visual Analysis of Families of Function Graphs, in IEEE Transactions on
Visualization and Computer Graphics, vol. 12, no. 6, 2006

3. K. Matkovié, D. Gracanin, M. Jelovié, H. Hauser: Interactive Visual Steering
- Rapid Visual Prototyping of a Common Rail Injection System, in IEEE
Transactions on Visualization and Computer Graphics, vol. 14, no. 6, 2008

4. K. Matkovi¢, D. Gracanin, R. Splechtna, M. Jelovi¢, B. Stehno, H. Hauser,
W.Purgathofer: Visual Analytics for Complex Engineering Systems: Hybrid
Visual Steering of Simulation Ensembles, in IEEE Transactions on Visual-
ization and Computer Graphics, vol. 20, no. 12, 2014.

5. K. Matkovi¢, D. Gracanin, M. Jelovi¢, A. Ammer, A. Lez, H. Hauser: In-
teractive Visual Analysis of Multiple Simulation Runs Using the Simulation
Model View: Understanding and Tuning of an Electronic Unit Injector, in

IEEFE Transactions on Visualization and Computer Graphics, vol. 16, no. 6,
2010

6. K. Matkovi¢, D. Gracanin, B. Klarin, H. Hauser: Interactive Visual Analysis
of Complex Scientific Data as Families of Data Surfaces, in IEEE Transac-
tions on Visualization and Computer Graphics, vol. 15, no. 6, 2009

7. K. Shi, H. Theisel, H. Hauser, T. Weinkauf, K. Matkovié, H.-C. Hege, H.-
P. Seidel: Path Line Attributes - an Information Visualization Approach to
Analyzing the Dynamic Behavior of 3D Time-Dependent Flow Fields, in
Topology-Based Methods in Visualization 11, Springer, 2009

8. A. Pobitzer, A. Lez, K. Matkovié, H. Hauser: A Statistics-based Dimension
Reduction of the Space of Path Line Attributes for Interactive Visual Flow
Analysis, in Proceedings of IEEE Pacific Visualization Symposium (Paci-
ficVis) 2012, Songdo, Korea, 2012

The papers included in this thesis appear unmodified in their original, published
form, except for the typesetting, which has been adapted to conform to the style of
this thesis. No textual changes were performed. The bibliography sections were
joined into a single bibliography at the end of this thesis.
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1.7 Overview of the Selected Papers and Contributions of
the Author

This section briefly describes each of the publications contained in this thesis. The
papers represent a sample of the research work which the author carried out in the
years from 2005 to 2014. In total, the author has co-authored 79 peer-reviewed
papers at the time of writing this thesis.

The publications selected for inclusion in this thesis focus on the author’s work
on exploration, analysis, and developing insight into complex, multi-parameter sci-
entific data. The data represent results from multiple simulation runs or from com-
plex, 3D computational fluid dynamics simulations. In addition to publishing ar-
ticles at the world’s leading forums for visualization research, the author has also
co-authored a book on interactive 3D graphics in Croatian. The book has been ap-
proved as a university text book by the University of Zagreb.

Visualization research is a highly collaborative discipline, where researchers
from different domains collaborate in order to solve complex problems. As a con-
sequence, none of the papers in this thesis is a single-author paper. Single-author
papers are the exception, not the rule, in the field of visualization. The author sub-
stantially contributed to each of the included publications. The papers where the
thesis author is not the first author, were written in the scope of the PhD studies of
the first authors. The following sections explain the thesis author’s contributions to
the individual papers in addition to summarizing them.

1.7.1 Chapter 2: Interactive Visual Analysis of Multi-Parameter Fam-
ilies of Function Graphs

In this chapter, we describe a method which can be used to analyze and explore
data sets containing families of function graphs, where each of them corresponds
to a point in a 2D domain. One easily comprehensible example of such a data set
is a diagram of temperature over time measured on a number of places within a
certain geographical area. The geographical map represents the 2D domain, and
the temperature vs. time data at specific points on the map represent additional two
dimensions of the data set. In this case the data is available for some points only
(positions of measuring devices) and can be interpolated for other points. When
interpolating, special attention has to be paid to what is physically plausible; simple
linear interpolation can yield wrong results in many cases.

Data exploration is usually the first step in the analysis. Analysts try to find
locations in the attribute space that generate function graphs which have some in-
teresting or unusual property, or conversely, ones that exhibit some regularity or
follow a certain pattern. This calls for a visualization method that allows the user a
quick and easy, yet accurate exploration of the data. Two simultaneous views of the
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data should be provided: (1) a good overall view of all function graphs to support
navigation in the data set as well as (2) a detailed view which offers more informa-
tion about specific graphs. Picking graphs from the attribute space must be made as
effortless as possible and should require a minimum user interaction.

Our solution includes two linked views: a map view (or attribute space view),
where all function graphs are represented as a point or an icon on the map, and a
linked function graph view. The map view provides additional visualization pos-
sibilities and allows for user interaction. Very positive feedback from the domain
experts, who helped us in this research, encouraged us to proceed with the exciting
research, described in the following chapters.

The author has been involved in the idea development from the very beginning,
he proposed the two-way linking and brushing approach and implemented the idea.
He wrote most of the paper, using feedback from all co-authors. The paper was
presented at the 3rd International Conference on Coordinated & Multiple Views in
Exploratory Visualization, which was held in 2005, in London, UK, and it was pub-
lished in Proceedings of 3rd International Conference on Coordinated & Multiple
Views in Exploratory Visualization 2005.

1.7.2 Chapter 3: Interactive Visual Analysis of Families of Function
Graphs

In this chapter, we describe an approach for the interactive visual analysis of an
especially challenging set of problems that includes several (usually large) families
of function graphs fj(x,7). The research presented in this chapter is a result of a
close collaboration with domain experts. Only such a close collaboration could
help us to identify analysis tasks and, consequently, to develop a corresponding
support methodology. In contrast to the previous chapter, the parameter space is
multidimensional in this case.

We present a new approach for the interactive visual exploration and analysis of
measurement and simulation data. This approach is general enough for a number of
application scenarios that share the same characteristics, including multi-parameter
tuning problems. In order to visually relate the multivariate dependent variables to
their multidimensional reference parameters we suggest a combination of different
kinds of views with specific brushing interactions. All are adapted to work well for
the families of function graphs in order to facilitate the interactive visual exploration
and analysis of such data sets.

The usability of the ideas has been evaluated in two very different settings: the
analysis of road traffic data and the optimization of a fuel injection system. We
describe analysis procedures as well as practical aspects of the interactive visual
analysis, which are specific to this special kind of data. We adopted the well-proven
setup of multiple, linked views with advanced interactive brushing to assess the data.
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Standard views such as histograms, scatterplots, and parallel coordinates are used
to jointly visualize parameters as well as dependent data.

The author has been involved in the idea development from the very beginning,
he proposed the density mapping for the curve view, and implemented the idea.
He also contributed to the writing of the paper. The paper was published in IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 6, 2006.

1.7.3 Chapter 4: Interactive Visual Steering - Rapid Visual Prototyp-
ing of a Common Rail Injection System

Interactive visual steering has been a common goal of the visualization research
community for twenty years, but, interestingly, it is rarely realized in practice. In
this chapter we describe a successful realization of a tightly coupled visual steering
loop, integrating simulation and interactive visual analysis in a prototyping environ-
ment for automotive-industry system design.

In order to realize an interactive ensemble steering framework, a fast simulation
engine is needed. In contrast to the usual, very time consuming 3D CFD simula-
tion, 1D CFD, which is alternatively used in injection system simulation, can be
computed very fast. It is possible to run tens of thousands of simulations. However,
with a high-dimensional parameter space (tens or hundreds of parameters) a brute
force approach, where a simulation is executed for all possible parameter combina-
tions, is often far from feasible. Interactive visual simulation steering represents a
possible solution though.

The model complexity did not allow us to run all possible simulations at the
beginning and to analyze the results then. Such an approach would also result in
numerous unnecessary simulation runs and would waste time and computational
resources. Furthermore, we did not have a complete model at the beginning. It was
gradually built as we gained insight during the design process.

Our research makes it possible to define new simulations using the visualization
tool. The visualization tool is used for the analysis and steering of the simula-
tion. This makes it easy for the domain expert to generate new simulations and to
refine or to filter the simulation dataset. We provide four basic operations: refin-
ing or coarsening some control parameters; narrowing down the control parameter
interval; adding new control parameters; and removing some existing control pa-
rameters. If we represent data in tabular form, the basic operations correspond to
adding and removing rows (refinement and filtering parameters) or adding or re-
moving columns (adding or removing parameters). The domain expert estimates
the coarse boundaries of the parameters, runs a sufficient number of simulations
and sees what parameter values make sense and what values are not allowed based
on the output values.

Our approach, the use of interactive visualization and coordinated multiple
views as a steering mechanism for simulation, proved to be very efficient. In this
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chapter we show how the tight integration of visualization and simulation can sig-
nificantly improve an engineer’s workflow as compared to decoupled systems. The
results, which we achieved for the common rail injection system, strongly suggest
that our approach has a very good potential of being generalized to other, similar
scenarios.

The author has been involved in the idea development from the very beginning,
he carried out numerous interviews with domain experts from the automotive indus-
try, and participated in all discussions, from the first concept to the final solution.
He also implemented the idea and significantly contributed to the writing of the pa-
per, taking all co-authors’ feedback into account. The paper was presented at the
IEEE Visualization 2008 conference in Columbus, Ohio, US, and it was published
in IEEFE Transactions on Visualization and Computer Graphics, vol. 14, no. 6,
2008

1.7.4 Chapter 5: Visual Analytics for Complex Engineering Systems:
Hybrid Visual Steering of Simulation Ensembles

As the number of parameters increases pure interactive navigation in the parameter
space becomes tedious. In order to support the user in identifying relevant areas
in the multidimensional parameter space that need a refinement, we extended the
steering framework by automatic optimization. The new approach is called hybrid
steering, as it integrates interactive and automatic optimization. Hybrid steering al-
lows a domain expert to interactively select data points (in a visualization) in an
iterative manner, approximate the values in a continuous region of the simulation
space (by regression) and automatically find the "best" points in this continuous
region based on the specified constraints and objectives (by optimization). We ar-
gue that with the full spectrum of optimization options, the steering process can be
improved substantially.

The target users of the proposed solution are designers of complex systems that
are based on simulation ensembles. The research described in this chapter is a result
of a long-term collaboration between visualization and simulation experts. In our
opinion, neither group alone could come to such a solution. The newly proposed
approach is inspired by an actual application in the automotive industry.

The main contributions of this research can be summarized as: (1) A case study
demonstrating Hybrid Visual Steering, a novel simulation ensembles steering and
exploration approach. This approach combines interactive exploration and analysis
with automatic optimization based on regression models. (2) The task abstractions
and the supporting visualization system, including two improved views, the Param-
eters Exploration View and the Regression Exploration View. (3) The tight integra-
tion of all relevant components in an interactive workflow. (4) An evaluation of the
proposed approach based on a case study from the automotive industry including
user feedback.
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The author initiated the main idea on hybrid steering. He contributed to the fi-
nally developed concept, was responsible for the communication with the domain
experts and the case study realization. He also implemented the idea and signifi-
cantly contributed to the writing of the paper, taking all co-authors’ feedback into
account. The paper was presented at the IEEE VIS 2014 conference in Paris, France,
and it was published in /EEE Transactions on Visualization and Computer Graph-
ics, vol. 20, no. 12, 2014.

1.7.5 Chapter 6: Interactive Visual Analysis of Multiple Simulation
Runs Using the Simulation Model View: Understanding and
Tuning of an Electronic Unit Injector

Modeling is the first step in the simulation. The common characteristics shared by
most of the models, simple or complex, is that they are created from basic building
blocks. There is a set of control parameters for each block, and based on them, the
state parameters are computed. The state parameters in such a model show how
a block behaves given the values of the control parameters. The connections and
dependencies among the blocks and the overall structure of the model determine
the model’s behavior. A visual representation of the model, usually in the form of
a 2D graph, captures these dependencies and allows an engineer to have a good
understanding of the model.

A simulation produces results that capture the behavior of the model, depend-
ing on the control parameters. However, the connection between the model (and its
visual representation) on the one side and the numerical data (as produced by the
simulation) on the other side is often missing from the analysis. The engineer can
use various visualization techniques and data views to get an insight into the simu-
lation results. However, there is still a gap, both cognitive and visual, that needs to
be closed (in the context of interactive visual analysis). The model view is decou-
pled from the visualization of the results. To mitigate this problem, it is possible to
integrate some of the simulation results of a single simulation run within the display
of the simulation model.

If dealing with multiple simulation runs, the same model is used with varying
values of the control parameters. Closing the gap in such a scenario presents an
even greater visualization challenge and we propose a solution in this chapter. As
there can be thousands or tens of thousands of runs that generate a huge amount of
complex data, a visualization and analysis solution than can cope with this challenge
and bridge the gap between the model and the simulation results is needed.

We propose a new view, the simulation model view, that provides an additional
context for the simulation results to close the gap between the model and data for
multiple simulation runs. In the case of multiple simulation runs, the simulation
model view blocks should show multiple values of the parameters. Moreover, the
descriptive parameters are often time-dependent making the problem even more
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complex. The view provides a 2D graph where each node represents a building
block of the simulation model. The values of both the control and state parameters
are displayed directly within the node in the simulation model view. As the available
screen space is very limited, we propose a three levels of detail approach to achieve
a compromise between the amount of displayed information and the available space
for each block. The simulation model view is integrated into a coordinated multiple
views (CMV) system. The benefits of multiple linked views and composite brush-
ing facilitate the use of the simulation model view, especially when dealing with
multiple simulation runs.

While observing simulation experts, the author initiated the main concept. He
contributed to the main idea, was responsible for the communication with the do-
main experts and for the case study realization. He supervised the model view
implementation by Andreas Ammer, significantly contributed to the writing of the
paper, and took all co-authors’ feedback into account. The paper was presented at
the IEEE Visualization 2010 conference in Salt Lake City, Utah, US, and it was
published in IEEE Transactions on Visualization and Computer Graphics, vol. 16,
no. 6, 2010.

1.7.6 Chapter 7: Interactive Visual Analysis of Complex Scientific
Data as Families of Data Surfaces

In this chapter we introduce families of surfaces. The data model supports surfaces
as atomic units. While it is almost trivial to visualize one such data surface, the
visual exploration and analysis of many data surfaces is a grand challenge, stressing
the users’ perception and cognition.

We propose an approach that carefully integrates different projections and ag-
gregations of the data surfaces at three different levels: one scalar aggregate per
surface, a 1D profile per surface, or the surface as such. The simplest level captures
one surface as one aggregation scalar, such as the surface’s maximum, minimum,
median, or mean, for example. These scalars can be easily visualized using standard
views, such as, e.g., parallel coordinates. In the next step, experts want to investi-
gate the surfaces f(x,y) with respect to each of the two axes of the surfaces. As the
view onto the surface along one axis can be considered as a collection of curves,
we use the curve view to depict the surfaces at this level. Finally, analysts want to
see the surface itself at some point of the analysis. Although we cannot efficiently
visualize whole families of surfaces at once, we can visualize one surface (or a few
of them using a real 3D view, or a 2D height map).

In this chapter we demonstrate the necessity for a flexible visual analysis system
that integrates many different (linked) views for making sense of this highly com-
plex data. To demonstrate the usefulness of the new approach, we exemplify it in
the context of a meteorological multi-run simulation data case and in the context of
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an engineering domain, where our collaborators are working with the simulation of
elastohydrodynamic (EHD) lubrication bearing in the automotive industry.

The author initiated the main concept and refined it in numerous discussions
with Helwig Hauser and Denis Gracanin. He implemented the main idea, signif-
icantly contributed to the writing of the paper, and was also responsible for the
communication with the domain experts. The paper was presented at the IEEE Vi-
sualization 2009 conference in Atlantic City, New Jersey, US, and it was published
in IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6,
2009.

1.7.7 Chapter 8: Path Line Attributes - an Information Visualiza-
tion Approach to Analyzing the Dynamic Behavior of 3D Time-
Dependent Flow Fields

In this chapter we are not dealing with ensemble simulation data. Instead, we have
data from a single simulation run, describing a 3D time dependent vector field. Such
data is complex in itself, and an efficient analysis of a time-dependent field is still
a challenge in industry and research. We describe an alternative approach to the
vector field analysis.

Our approach starts with the extraction of a number of features, both scalar
values and time series, at each point of a regular sampling of the 4D space-time
domain. We have focused on properties describing the (local or global) behavior
of path lines, being either classical and well-established values in vector algebra,
or properties newly suggested in this paper. The result of this step is a path line
attribute data set: a four-dimensional multivariate data set collecting all computed
path line properties. Although this is not an ensemble simulation data, it perfectly
fits to the newly introduced data model.

We interactively drill down using the path lines attributes and then show the se-
lected path lines and the interesting properties facilitating a focus+context visualiza-
tion. In addition to standard 2D views, a 3D view showing the path lines themselves
is also deployed. This way the user is able to do a simultaneous exploration in the
4D space-time domain of the flow and in the abstract path line attribute space. This
results in new insights into characteristic substructures of the flow which leads to a
better understanding of time-dependent vector fields.

The author contributed to the main idea development, especially with respect
of the use of interactive visual analysis. He implemented the necessary extensions
to the ComVis tool. He also contributed to the writing of the paper, in particular
to the parts related to ComVis and to the interactive visual analysis. The paper
was presented at the TopolnVis Workshop 2007 in Leipzig, Germany, and it was
published as a chapter in: Topology-Based Methods in Visualization II, Springer,
2009
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1.7.8 Chapter 9: A Statistics-based Dimension Reduction of the Space
of Path Line Attributes for Interactive Visual Flow Analysis

This chapter represents an extension of the research described in the previous chap-
ter. There are many path line attributes we can compute, and it is not clear which to
select. As the attributes computation can be computationally demanding, a clever
strategy for the choice of parameters is needed. Furthermore, it can be expected that
a brute force approach which would generate many parameters produces a consider-
able information overhead, since many of the attributes are computed from the same
velocity field. In general, different feature detectors may systematically correlate to
each other because they either describe the same aspect of the flow or are related to
each other by physical principles (e.g., velocity and vorticity by the vorticity equa-
tion). From the practical side, a systematic analysis of a data set becomes increas-
ingly challenging the more dimensions it contains. Hence, a canonical question in
this context is: Is there a common subset of the path line attributes that captures
"all" complexity of the data set? Or, in other words, the question we investigated is:
What is the intrinsic dimensionality of the path line attribute space?

In this chapter we investigate several CFD data sets with exploratory factor anal-
ysis, with the goal to find a common set of variables that can be used as a starting
point for a deeper analysis of CFD data. This variable set should capture the under-
lying physical processes in fluids with as little as possible redundancy. The analyzed
data sets span different geometries, constant/non-constant inflows as well as differ-
ent simulation methods to prevent the variable set from being specific for one type of
simulation/geometry/application. In total, we analyzed five different data sets with
different geometries and simulation methods and one analytic data set. For greatest
possible generality, we use only the velocity fields to calculate the path lines and
their attributes. This means that similar factor patterns across the data sets are due
to the common underlying principles of fluid dynamics and not due to similarity in
the data sets. We identified six representative path line attributes.

The author contributed to the main concept and idea development. He espe-
cially contributed to the parts related to the exhaust manifold. He participated in
numerous discussions and supervised Alan LeZ, one of the co-authors, during his
research. The paper was presented at the IEEE Pacific Visualization Symposium
2012 in Songdo, Korea, and it was published in Proceedings of IEEE Pacific Visu-
alization Symposium (PacificVis) 2012.

1.8 Summary

As the systems’ complexity grows, conventional analysis methods are not sufficient
an more. This thesis describes a part of our research on the analysis of complex sim-
ulation examples. The main challenge is not the data size (although, ensembles can
be considered large), but the data complexity. Complex data and multi-dimensional
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parameter spaces still represent a challenge for analysis. The methods described
in this thesis have been evaluated in numerous sessions with domain experts. We
have often tried to quantify the speed-up compared to the conventional workflow. In
many cases the engineers could not explicitly say how much faster they were. They
often estimated a speed-up of at least an order of magnitude. Besides speed-up,
they often pointed out the additional insight they gained through interactive visual
analysis. They often said, that many analysis tasks are simply impossible using a
conventional approach. Probably, the biggest gain is exactly the insight they gain.
Better understanding of the system makes them more efficient in future designs as
well. Based on our research, the AVL company [AVL15] incorporated many of
the newly proposed approaches in their commercially available software suit, which
proves the usefulness of the here proposed methodology.

The research on the parameter space exploration and ensembles analysis is far
from complete. Interestingly, in 2005, when we started with ensemble simulation
analysis, there were just a few papers dealing with multiple simulation runs. The
trend has changed since then, and in the recent years many researchers deal with
the same approach. We are currently researching hierarchical simulation models.
Hierarchical simulation models have certain parts modeled using different levels of
detail. This adds complexity and requires a careful rethinking of the available anal-
ysis methods. The really large ensembles resulting from parameter spaces having
thousands of parameters (which is not unrealistic) pose a great challenge, and will
probably be an active area of research in the near future, as well.
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KRESIMIR MATKOVIC, JOSIP JURIC, ZOLTAN KONYHA,
JURGEN KRASSER, AND HELWIG HAUSER

Abstract

The paper describes a method developed for interactive data visualization and ex-
ploration with applications in the automotive industry. The input data set contains
a large number of function graphs. Each of the graphs is characterized by a set of
basic attributes. The technique that is used for visualization includes two linked
views: a map view (or attribute space view), where all function graphs are repre-
sented as a point or an icon on the map, and a linked function graph view. The map
view provides additional visualization possibilities and allows user interaction. Ad-
ditional features like brushing in both views, graph management, and related issues
like interpolation of the graphs are described.

2.1 Introduction

The amount of information we are being confronted with nowadays increases con-
stantly. Effectively exploring and analyzing huge amounts of data is a challenging
problem, perhaps even more than collecting or processing this data.

Plain data tables or simple 2D charts are not always very useful when it comes
to large data sets. Furthermore, people often look for various correlations and want
to compare specific data. Information visualization tries to make it easier for the
user to analyze and explore large data sets by cleverly and interactively displaying
information [CMSO03, CMS99, Tuf90, Tuf01].

Information to be explored can come from various disciplines and application
areas and there is no universal solution that can fit all of those areas. In this paper we
describe a method which can be used to analyze and explore data sets containing
families of function graphs, where each of them corresponds to a point in a 2D
domain. The data set looks like this: we have a 2D domain and for each point in
this domain (or for some of the points) there is a corresponding graph describing an
attribute in two other dimensions.

One easily comprehendable example of such a data set is a diagram of temper-
ature over time measured on a number of places within a certain geographical area.
The geographical map represents the 2D domain, and the temperature vs time data
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Figure 2.1: Left: an illustrative example of an engine characteristic diagram that
shows torque versus engine speed. The engine’s working point is always within the
area shown in this diagram. The dotted line indicates the motion of the engine’s
working point as the car accelerates. Right: gas pressure in one of the cylinders
versus crankshaft angle at one specific point in the engine characteristic diagram.

at specific points on the map represent additional two dimensions of the data set.
Figure 2.2 illustrates the example.

Another example of a similar data set comes from automotive engine design.
An engine characteristic diagram is a 2D diagram that shows engine speed (in rpm)
on the X axis and torque at the crankshaft on the Y axis. At every engine speed there
is a maximum torque that the engine can produce when the the accelerator is fully
depressed. There is also a minimum torque (with the accelerator not depressed at
all) which is negative and can be used to decelerate the car. While driving a car the
working point of the engine follows a path within the engine characteristic diagram.

An example of the engine characteristic diagram is shown in Figure 2.1. For
each point of this diagram there are several interesting properties to be investigated,
for instance gas pressure in cylinders or main bearing forces as functions of crank
angle.

Time-series are a special kind of function graph. This special case has been dealt
with before. Time Searcher by Hochheiser et al. [HBMSO03] is used to interactively
explore time-series data. Time-boxes are used to specify queries. Time-boxes can
be manipulated to specify various times.

Van Wijk and van Sellow [WS99] have used calendar view together with time-
series data. The main scope was again various time series data. Since data was
gathered for various days, the calendar was used to visualize time-series data ori-
gins. The authors also showed how clusters can help in finding similar time-series
in the data set

Li Zhang at al. [ZZR03] used higher Fourier harmonics to enhance the visual-
ization of time series data.
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Figure 2.2: Left: attribute space view and right: function graph view.

2.2 Motivation

When users work with large sets of function graphs associated with points in the
attribute space they often want to explore the data first. They try to find locations in
attribute space that generate function graphs which have some interesting or unusual
property, or conversely, ones that exhibit some regularity or follow a pattern. They
often have little a priori knowledge about the data set. They do not exactly know
what pattern or property they are looking for, or where the feature is likely to appear
in the attribute space.

This calls for a visualization method that allows quick and easy, yet accurate
exploration of the data. Two simultaneous views of the data set should be provided:
(1) a good overall view of all function graphs to support navigation in the data set
as well as (2) a detailed view which offers more information about specific graphs.
Picking graphs from the attribute space must be made as effortless as possible and
should require minimum user interface action.

After some interesting locations have been identified in the attribute space, an-
other typical task is the detailed comparison of graphs associated with these areas.
In order to perform this efficiently one must be able to observe the specific graphs at
the same time and still not loose the context where the graphs belong [BMMS91].

Working with static 2D charts is obviously not practical if the attribute space
is large. For example, numerical simulations where a large number of parameter-
ized cases are calculated produce large sets of result graphs. These graphs must be
examined in search of model parameters satisfying a certain criteria. It is clearly
impossible to explore a set of thousand function graphs without the possibility of
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navigating the data set interactively. More complex queries like "show me points in
the attribute space whose function graphs fulfill this-and-that criteria" are obviously
even less feasible without interactive visualization methods.

Although displaying the data set as a 3D animated sequence where the time
represents one of the coordinates is an obvious approach, it can only be useful in
some cases. It is suitable to offer an overview of the data set but it is less practical
for interactive navigation. It is even less suitable to show detailed and accurate
information about graphs of specific points in the attribute space. In cases when the
spatial distribution of the data at a specific position in time is less important than the
temporal behaviour of a specific point in the attribute space, this way of displaying
the data may even be inappropriate.

Therefore we suggest a different approach. Naturally, one must note that there
is no perfect solution which could aid all visualization tasks even for one specific
type of data. Existing methods that show animated views for a better overview in
time domain lack numeric accuracy. Sheets of numeric data and charts are accu-
rate but lack overview. We assume that the method suggested in this paper could
complement these existing methods and offer an overview and detailed information
simultaneously.

This is a way to explore the data, in particular when many variants have to
be examined, which is a typical scenario in optimization, for example. Interaction
opens new ways of data exploration.

2.3 Technology Content

The main idea is to have two linked views: the map view and the curve view. The
map view displays the domain (map, engine characteristic,...) while the curve view
displays the data available for each point from the domain (temperature over time,
cylinder pressure over crank angle,...) The map view can contain additional infor-
mation such as glyphs for points where data is available, or a color-map of some
interesting data characteristic (e.g. the maximum, the average, or mean value of
the data) The system is interactive and allows the user to navigate and select points
both in the map view and in the curve view. The curve view can display more curves
simultaneously in 2D or, optionally, in 3D.

Furthermore, the function graph view contains an overview part (showing the
actual position of the selected point in the attribute space) and the graph corre-
sponding to that point. Besides multiple selection in the attribute view, a collecting
principle is described as well. The user can collect various graphs during the explo-
ration, and compare them afterwards.

Finally, we describe an application which is implemented based on above men-
tioned principles. The application is used to visualize engine characteristic diagram.
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It has been developed together with AVL [AVL15], one of the leading companies in
the field of powertrain simulation, measurement and design.

2.3.1 Basic Idea

We describe a general framework for interactive analysis and exploration of data
sets containing a family of function graphs each of them belonging to a point in
2D domain. The main idea is to have an interactive visualization method, which
will make it possible to easily select a point in the attribute space and get the corre-
sponding graph. Furthermore, the inverse process, selecting a function graph with a
certain characteristic in order to locate similar graphs in the domain should also be
possible.

2.3.2 Function graphs and interpolation

The data set we are concentrating on consists of a number of function graphs:
fp(x)

Each of the function graphs is characterized by a set of parameters (or attributes)
P ={p1,p2,...,pn}- In a general case this gives N-dimensional attribute space.
The function graphs from the input data set are represented as points in this N-
dimensional space and they are scattered non-uniformly across this space. The
complete input data set can be formalized as:

F={fri}

In this paper we concentrate on a case where 2 out of N parameters are visual-
ized in the attribute view. This gives us a 2D space which can be thought of as a
map. The other linked view displays interactively selected function graphs.

In most cases the function graphs are not defined for each point in the map view.
If the defined points are dense enough, it might be sufficient to choose the nearest
defined point. However, there might be some applications where only few points in
the 2D domain are available. These points can be scattered in the parameter domain
on an unstructured grid and just picking the nearest defined graph when performing
a selection in the map view is not always satisfactory.

The natural solution is to provide interpolated curves at all points within the
map view for which the data is not available [She68]. Of course, the interpolation
can only be done if the nature of the data allows it. The first requirement is that the
data set is continuous.
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Let us introduce the interpolation operator €2 :

fP(x) = Q(}-7P)
= QpF

The unknown function graph fp(x) can be interpolated from the graphs of the neigh-
boring data points with a method that best fits the data.

To enable efficient interpolation, the Delaunay triangulation is performed as a
first step on all the defined points within the 2D map .

If a graph fp at point P needs to be interpolated the following steps are per-
formed:

1. The triangle A (P;, P,, P;) containing the point P is located.

2. The homogeneous barycentric coordinates (11,#,,#3) of the point P are com-
puted. Homogeneous barycentric coordinates are barycentric coordinates
normalized such that they become the actual areas of the subtriangles
AP, Py, Ps), A(Py,P,P3), A(Py, P, P) normalized by the area of the origi-
nal triangle A (P, P», P3). These coordinates are also called areal coordinates
[Cox69].

3. The resulting function graph is computed as the weighted sum of the three re-
lated function graphs using homogeneous barycentric coordinates as weight-
ing factors.

fr(x) =t fp1(x) + 2 fp2(x) + 13 fp3(x)

Using linear interpolation for interpolating temperature data on a map is likely
to be a valid approach, assuming the data is not sampled too sparsely. In this case
trilinear interpolation of the graphs of the three nearest points on the map is an
acceptable way to fill in the missing data.

Interpolating gas pressure curves in an engine characteristic diagram is an inter-
esting example where a more sophisticated interpolation method is required. Using
a simple linear interpolation may lead to incorrect results due to the specific shape
of the curve (Figure 2.3), and possible phase shifts between the cylinder pressure
curves at various engine speeds.

One possible solution to the problem is to align all involved cylinder pressures
by cyclic shifting so that the x - coordinate of the peak value for all involved curves
matches. The phase shift of the resulting graph is interpolated between the phase
shifts that were used for the initial alignment using the same weighting factors
(t1,12,13) (Figure 2.4)

Another solution to this problem is to use interpolation in frequency domain in-
stead of direct interpolation. The function graphs are transformed to the frequency
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Figure 2.3: An erroneous interpolation of cylinder pressure. There is a phase shift
between the pressure graphs (dashed lines) of different crankshaft angles, thus peaks
are at different angles. Simple linear interpolation produces a graph (plain line) with
two local maxima.completely unrealistic of cylinder pressure.

domain first, then the weighted sum using homogeneous barycentric coordinates is
calculated for phase and amplitude data before converting them back to the origi-
nal domain. Both methods are specific and usable for cylinder pressure diagrams
because the nature of the diagram allows and requires such interpolation.

2.3.3 Visual Metaphor

Since there is an attribute space and a family of curves we propose to use two views
for visualization[ WS99].

The attribute space view is used to depict the domain. Points where function
graphs exist are of main interest in the attribute space. If there are just a few points,
all of them will be depicted. In case of large number of points (maybe even more
points per pixel), only a subset will be shown. Furthermore, one characteristic of the
corresponding function graph, such as maximum value, minimum value, average,
etc. can be shown in the attribute space as well. Trilinear color interpolation will
be used to show this characteristic. If the points are too sparse, additional points
have to be inserted into the triangulation in order to avoid the visual artifacts of the
trilinear interpolation. To create these additional nodes the interpolation described
in Section 2.3.2 is used - same as when interpolating the data for the function graph
view.

The second view is used to show function graphs. It shows function graphs in a
plane. Besides the current function graph, all function graphs are shown in light gray
in the same plane as an overview. Furthermore the 2D attribute space is depicted
perpendicular to the plane, and the origin point of the highlighted graph is shown
as well. This additional overview information helps the user in seeing a particular
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Figure 2.4: The correct interpolation of cylinder pressure. The peak values of the
pressure graphs are aligned before linear interpolation. The resulting interpolated
pressure graph has a very natural shape. Compare this to Figure 2.3

graph in the overall context. Note this graph’s source is highlighted in attribute
space itself as well. This dual highlighting helps the user to keep concentrated
on the graph view, and still have an overview of the graph’s location in the attribute
space. Without the overview feature, the user would have to repeatedly change focus
from graph view to the attribute view. Figure 2.2 shows the attribute view, with
the maximum value depicted using a color scale, and the function graph view with
overview and one curve highlighted. A real map image has been used as background
for the attribute view.

2.3.4 Workflow and Interaction

The usual workflow while exploring a data set consisting of family of function
graphs involves two main actions:

e attribute based curve exploration, and

e Jocating graphs in attribute space based on their properties.

This means that user usually browses through the attribute space and observes
the function graphs, and later selects some characteristics in the function graphs and
finds corresponding positions in the attribute space. The straightforward interaction
for the first action is "mouse-over", which depicts a function graph corresponding to
the point that is currently under the mouse pointer. Depending on the mouse pointer
position, this can be either an existing function graph or an interpolated one. This
information should also be displayed to the user.

Seeing only one graph at a time makes it difficult to compare the curves. A
method for selection in attribute space is required. There are numerous possibilities
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Figure 2.5: A 2D display of function graphs that belong to a line in the attribute
space. Note that the overview is depicted as context and the colors of the seven
function graphs match those of the points in the line they are associated with.

Figure 2.6: A 3D display of function graphs that belong to a line in the attribute
space.
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Figure 2.7: A brushing example. In the function graph view the user has highlighted
a rectangle to select very high temperature in July. All points whose temperature
graphs pass through the highlighted rectangle are marked in the attribute view to
display areas of high July temperature.

to select multiple points in attribute space. A line selection method which allows
the user to select a line in the attribute space is the simplest. If we want to have
separable, independent axes in the attribute selection, a rectangle selection with
the axes aligned with the attribute space is needed. With both line and rectangle
selection, the selection can be colored using a color gradient. The color gradient
provides additional information about the sources of the function graphs. The color
range for this gradient is chosen to be distinct from the color coding used in the
attribute view.

When the user selects multiple points in the attribute view, more function graphs
are displayed simultaneously. Each graph is drawn in the color of its selection point.
Figure 2.5 illustrates a simple line selection, using the temperature data set. Note
that the colors of the function graphs are the same as that of the corresponding points
in the selection in attribute space. Having multiple function graphs corresponding
to a line in the attribute space, the resulting curves can be extruded to create a 3D
surface. 3D surfaces can offer new insights into the data. Figure 2.6 shows another
line selection depicted as 3D surface. Note that extrusion to 3D is possible only for
line selections in the attribute view.

It is possible to combine more selections using Boolean algebra, which adds ad-
ditional possibilities to the data exploration and analysis. Selections are very pow-
erful for exploration, but they have a limited lifetime. When the user makes a new
selection the old one is lost. That is why a collection principle is introduced. Col-
lections are actually containers that hold a number of graphs. As the user browses
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the attribute space and finds a graph of interest he can add it to a collection and
continue browsing. Graphs can be added to existing collections at any later point.
Several collections may be defined and used simultaneously, much like having mul-
tiple clipboards in a text editor. It is also possible to create new collections via
Boolean operations on other collections. After the user has created collections he
can simply display and explore them.

Once a selection is made or a collection is displayed, the user can start working
with the function graph view. The user often wants to locate the graphs in the
attribute space having certain characteristics. The use of rectangular brush [AS94,
FS95] for selection of the interesting areas within the function graph view provides
an excellent way to do this kind of analysis. The points corresponding to the graphs
passing through the selected rectangle are highlighted in the attribute space. For
instance, by use of brushing it is easy to find which areas on the map had average
temperatures in July over some threshold. Figure 2.7 shows such an example.

2.4 Application

We have applied the above described principles in the KennfeldView tool developed
together with AVL. The application is implemented in C++ using OpenGL [Ope]
and FOX Toolkit [FOX]. The tool is available on several platforms, including MS
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Figure 2.9: Polyline selection in the attribute space. The data points of the line are
drawn in colors ranging from red to green. Each function graph is drawn in the
same color as the point it is associated with to help the user identify which point the
graph belongs to.

Windows and Linux. Primary application of the tool is the exploration and analysis
of engine characteristic diagrams. After the data is gathered either by simulation or
measurement on real engines, the user loads the data, and starts exploration. The
attribute view can display maximum, minimum, average and mean value of the
corresponding graphs as underlying color map. The KennfeldView supports three
types of interpolation: linear, modified linear and interpolation in Fourier space. A
proper interpolation has to be selected based on the input data. In order to perform
the interpolation the input points in the attribute view are tessellated. The user can
choose to display the tessellation of the attribute view, or the icons on the points
where graph data is available, or both.

Once the data is loaded and interpolation type, color scale and underlying map
are chosen, the user can start data exploration. While moving the mouse pointer
over the attribute view the corresponding graphs are instantly displayed in the graph
view. Single or multiple selection, as described in Section 2.3.4 are supported. If
the user chooses to display multiple selections as a 3D surface (possible only for
line selection) the surface can be displayed either as a surface or a wire-frame. The
camera can be freely moved in this mode. 2D display of multiple selections does
not allow camera movement, but allows brushing in the graph view, which is a very
important feature for engineers.

Let us show how an actual data exploration might look like: we have two data
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sets, the first describing the rate of injection as a function of a crankangle. Rate of
injection indicates how fuel mixture is injected into the cylinder. Figure 2.8 shows a
characteristic injection curve. Two peaks are clearly visible, the first one, so called
pre-injection, and the second one, the main injection. Note that this form of injection
curve is desired and engine designers try to achieve such engine characteristics. On
the left hand side in the figure 2.8 the corresponding attribute space is shown, which
depicts injected fuel mass and engine speed in rpm. The depicted attribute space
represents the working range of the engine. The working point of the engine can be
only be located within the depicted area in the attribute view. The engineers can use
the tool to explore injection curves at various working points and to quickly see if
there are some areas where the curve has only one peak (undesired curve shape), or
has too low pre-injection ratio. Figure 2.9 shows an example of a polyline selection
in attribute space. Note how the color changing from red to green aids the user in
identifying areas that have an undesired (single) peak curve shape in the selection.

An inverse kind of exploration is shown in figure 2.10. In this case we have
selected the area where the pre-injection amount exceeds certain value. We can
clearly see all the areas in the attribute space where function graphs having this
property are located.

Finally, figure 2.11 shows the cylinder pressure in the function graph view and
the working area of the engine in the attribute view described by the load signal
and engine speed. The attribute space determines the domain where the operating
point of the engine may be while the engine is running. The load signal is directly
proportional to the pressure on the accelerator. A rectangle selection with gradient
brush is shown, which is a good way to explore tendencies with this kind of data.

The KennfeldView tool has been recently demonstrated to a group of mechanical
engineers at AVL List GmbH. They had good initial impression about the applica-
tion and are interested in integrating it into one of AVL’s software products.

2.5 Summary and conclusion

We have presented a method to visualize a family of function graphs where each
of them is associated with point in a 2D domain. Such data sets are ubiquitous,
from all kinds of data bound to the map of an area (meteorological data, popula-
tion, pollution, etc.), to special cases in engineering, like the working domain of
the car engine linked to various crank angle dependent attributes at each operating
point. We have described an interactive, dual linked view solution consisting of an
attribute view and a graph view. Users can browse through the data by simply mov-
ing the mouse pointer over the attribute view and explore related function graphs
in the graph view. Brushing in the graph view adds additional dimension to the
exploration by highlighting the locations of graphs with certain characteristics on
the 2D map. The engineers at AVL dealing with engine design are pleased with the
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new interactive solution. It has many advantages over the previously used static 2D
charts. KennfeldView may evolve to become a component of AVL’s software suite.
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Abstract

The analysis and exploration of multi-dimensional and multi-variate data is still one
of the most challenging areas in the field of visualization. In this paper, we describe
an approach to visual analysis of an especially challenging set of problems that
exhibit a complex internal data structure. We describe the interactive visual explo-
ration and analysis of data that includes several (usually large) families of function
graphs f;(x,). We describe analysis procedures as well as practical aspects of the
interactive visual analysis which are specific to this special kind of data (especially
targeting the function graph characteristic of the data). We adopted the well-proven
setup of multiple, linked views with advanced interactive brushing to assess the data.
Standard views such as histograms, scatterplots, and parallel coordinates are used
to jointly visualize parameters as well as dependent data. To support an iterative
visual analysis, we provide means to build up complex composite brushes that span
multiple views and that are constructed using different combination schemes. We
demonstrate that engineering applications represent a challenging area for visual
analytics. As a case study, we describe how technology is used in the optimization
of a fuel injection systems in Diesel engines of passenger cars.

3.1 Introduction

The development of effective visualization and interaction techniques requires the
understanding of the properties of the data and the typical tasks the users want to
perform [TCO5]. Unfortunately, this requirement is not always met, often because
of insufficient collaboration and communication between visualization experts and
the users. The users’ ultimate goal is always to find expected phenomena to sup-
port (or reject) their hypotheses or to discover unexpected results that question their
assumptions or the validity of the data acquisition process. This can lead to the
generation of new hypotheses.

The challenges of data analysis and exploration are associated with very large
data sets, increased dimensionality and the consideration of data semantics, includ-
ing features, focus and context [DGHO03]. Therefore, a visualization tool should be
designed in close collaboration with potential users. Tool developers must be aware
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of the users’ actual requirements, the usual tasks they need to solve, the shortcom-
ings of their previously used tools, and their feedback on new ideas. A part of
that process is a development of intuitive and effective visualization and interaction
techniques based on a common data model. If designed well, the same principles
can be used across several application domains, from real-time data monitoring to
engineering design applications, including simulations.

Modern simulation software can generate massive amounts of data that require
suitable analysis techniques to get an insight into the practical implications of the
results. Simulation is increasingly used to assess the quality and potential of new
designs early in the process (e.g. aircrafts and cars). Building real prototypes is
time-consuming and expensive. Even though measurements on test bed systems
are likely to remain an important way to verify designs in the future, the use of
computational simulation in the design and production process can help to minimize
the costs of the development and shorten the time-to-market for new products.

For example, in the automotive industry many different aspects of new designs
are checked using simulation long before a new car is manufactured. Examples in-
clude mixture formation and combustion, engine cooling and filter re-generation, air
conditioning in the passenger cabin and front shield deicing, as well as many others.
Additionally, the increasing complexity of automotive subsystems, e.g., the power
train, the intake and exhaust system, or the fuel injection subsystem, also requires
simulation for optimization. The tuning of the injection system of modern cars, for
example, is a multi-parameter optimization process. The operation of the injection
system depends on several parameters in a very indirect way, thus optimization by
experience and/or intuition is usually not possible.

In this paper, we present a new approach to the interactive visual exploration
and analysis of measurement and simulation data. This approach is general enough
for a number of application scenarios that share the same characteristics, including
multi-parameter tuning problems. A major challenge (in general) is how to visually
relate the multi-variate dependent variables to their multi-dimensional reference pa-
rameters (independent variables). We suggest a combination of different kinds of
views with specific brushing interactions, all adapted to work well for the families
of function graphs in order to facilitate the interactive visual exploration and anal-
ysis of such data sets. We have investigated the usability of our ideas in two very
different settings: the analysis of road traffic data and the optimization of a fuel
injection system. The road traffic data set serves as an illustrative example for the
introduced technological concepts while the fuel injection system data set provides
a case study, described in detail in Section 3.6.

The remainder of the paper is organized as follows. Section 3.2 provides an
overview of related work. Section 3.3 gives a brief description of the data model
used and the exploration procedures. Section 3.4 describes our proposed tools and
methods for supporting these tasks. Section 3.5 introduces the typical tasks in the
analysis of such data sets. Section 3.6 describes the use of the developed approach
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for a real world automotive engine design task. Section 3.7 provides closing remarks
and directions for future work.

3.2 Related Work

Interactive visual exploration and analysis can benefit from previous results in many
areas. We first address visual analytics and then provide an overview of visualization
techniques for high dimensional data and the linked views principle.

Thomas and Cook [TCOS5] define visual analytics as “the science of analytical
reasoning facilitated by interactive visual interfaces.” It is a wide-ranging field
of science that involves visualization and interaction methods combined with ana-
lytical reasoning, data representation and transformation as well as production and
presentation of the results. Therefore it is difficult to find previously published work
that encompasses all aspects. We are able to collect and generate data at an increas-
ingly fast rate, but capability of analyzing the collected data lags behind [TCO06].
Here we focus on work that describes how users gain insight into data, find expected
and unexpected features and make decisions using visual tools.

Trafton et al. [TKT"00] present a study of how experienced weather forecast-
ers interpret complex visualizations to build their own qualitative mental models of
weather conditions which in turn are the basis of the weather report they produce.
In their experiments they show how the users perform convergent thinking (assem-
bling evidence to support a hypothesis) and divergent thinking (thinking creatively
to identify alternatives) at various stages of their work. Saraiya et al. [SNDO04] eval-
uated five visualization tools to determine which one provides the best insight into
the specific data. Gonzalez et al. [GKO03] describe how an information visualization
system was used by administrative data analysts. Ahlberg et al. [AS94] introduce a
visual information seeking technique which focuses on rapid filtering and progres-
sive refinement of search parameters.

There are numerous publications of having scientific visualization (SciVis) tech-
niques applied to the visualization of simulation data with a perspective of engineer-
ing. Laramee et al. [LGD'05] exemplify a thorough visual analysis of the coolant
flow through the cooling jacket of a car engine by using various different flow vi-
sualization methods to reveal different aspects of the simulation data. Konyha et
al. [KMHO3] propose 3D icons for the analysis of simulation data of chain and belt
drives.

There are simulation data types that are more effectively explored by even more
abstract visualization methods. In these cases the user may be able to gain more
insight if information visualization (InfoVis) techniques are used instead of or to-
gether with SciVis methods. Matkovié et al. [MJJT05] describe a method for the
analysis of a fuel injection system. The time series data from the simulation is re-
duced and described by a set of scalars which results in a highly abstract view of the
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injection system. The case study section of this paper describes in detail how engi-
neers can use the interactive, linked InfoVis views to explore and analyze simulation
data of a fuel injection system.

The body of literature about the visualization of high dimensional data is vast.
Following the terminology of Wong et al. [WB97] we focus on the visualization of
multidimensional data. Keim [Kei00] classifies methods for visualization of high
dimensional data into four groups: geometric projections, hierarchical methods,
iconic methods and pixel-based techniques. In our work we have considered only
geometric projections so far. Geometric projections include two of the most popu-
lar information visualization techniques: scatterplots [TufO1], [Cle85] and parallel
coordinates [ID90], [The00], [FWR99], [Kan01], [HGP99].

Using multiple, interactively linked views of the same data set allows the user
to productively combine the information he or she gathers from the different views.
The Attribute Explorer [TSWB94], [ST98] uses linked histograms to simultane-
ously represent the interaction between attributes and allow the user to narrow the
focus by defining limits on certain attributes. The Influence Explorer [TSDS96]
was developed for the exploration of data computed from a model given sets of pa-
rameter values as input. The user can select a set of points in either the parameter
or the result spaces and see how this set corresponds to points in other dimensions
in both spaces. Gresh et al. [GRW'00] present an approach that links 3D visu-
alizations to statistical representations to facilitate effective exploration of medical
data. Doleisch et al. [DMG™05] have used multiple linked views, including adapted
information visualization views in the analysis of CFD simulation data. Piringer
et al. [PKHO4] interlink 2D/3D scatterplots and histograms with smooth brush-
ing. Schathitzel et al. [SWEO35] link several texture-advected flow visualizations
on slices with the 3D view of the vector field in an attempt to overcome occlusion
problems. Matkovi¢ et al. [MJK*05] use Timebox-like [HS04] brushing to link the
graph of a function to a scatterplot display of its parameter space. More advanced
multiple view visualization systems can be configured freely to suit various data
sets [NSO0] and allow flexible coordination of views [Wea04]. As the number of
linked views and the amount of coordination increases it may become necessary to
visualize the visualization’s structure and operation [Wea05].

3.3 Data Model

Generally speaking, a data model consists of a data definition and a manipulation
language (structuring and operational definitions) [Tho97]. Data definitions that re-
sult from an engineering simulation, a real-world sensor data set, or intelligence
data may be very similar. Consequently, the data sets under consideration share
some common characteristics. The data sets contain values for m independent vari-
ables and n dependent variables.
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The independent variables X = [x1,...,x,,| and their values define a subset / of
the data set. A member of / C R represents a specific set of values x; of inde-
pendent variables. For each x;, the corresponding set of values of dependent vari-
ables is provided. There are two types of dependent variables, regular and function
graphs. While regular variables have a singular value for each x;, function graph
variables use time as an additional independent variable to provide a set of values
for each x;. A function graph can be visualized as 2D plot that shows how the value
of a dependent variable changes over time. In other words, the regular variables
r=[ry,...,r,] depend only on x while the function graph variables f = [fi,..., f,,]
depend on x and time r € R. For a specific set of values x; of independent vari-
ables and fixed time 7; we can define the set of values of dependent variables as
d=[ri(X;), - rn, (%), f1(Xis2)) -+ fu, (Xis2))], nr +ny = n. The dependent vari-
ables and their values (possibly, over time) define a subset D of the data set. For a
given function graph variable, f;(x,?), we define a family of function graphs as a
set of function graphs for each possible value of x, { f;(x;,?)|Vx; € I'}.

Once the data set is defined, the question is how to analyze the data. In our data
model, the manipulation language is an exploration language that enables search
and pattern discovery without modifying the data set. From the visual analytics
point of view, the goal is to discover, in an iterative manner, trends, tendencies and
outliers in the data and to see how patterns in D map to the corresponding subsets
in I and vice-versa. In order to achieve that, data exploration techniques must be
conceptually simple, easily combined and visually intuitive.

The visualization framework is based on the described data model and a set of
visual operators (brushing techniques) and views (histograms, scatterplots, parallel
coordinates, etc.) that are linked together. The design of interactive visual analysis
within this framework is based on the following principles. The analyst can select a
varying number of views. Within each view, the variables of interest can be selected
and the corresponding values displayed. The visual operators are used to select a
subset of “interesting” values for the specific variables in the view. The selection is
immediately displayed in all other views. Families of function graphs are of special
importance in providing a visual space for patterns. Within a family of function
graphs, we would like to select function graphs based on their shapes. It is possible
to use a combination of function graph values to specify the desired shape of a
function graph, i.e. the pattern.

We will use a real-world road traffic measurements data set to illustrate the con-
cepts described in Sections 3.4 and 3.5. The data set is provided by the Traffic
Management Center of Minnesota Department of Transportation [twi] that main-
tains an archive database of road traffic measurements from the freeway system in
the Twin Cities metropolitan area. The data set contains 28 days of measurements
from approximately 4,000 sensors grouped into about 1,000 stations covering ten
main roads. Opposite directions on a road (e.g. north-bound vs. south-bound) are
treated separately, thus effectively creating 20 one-way roads. I consists of the posi-

47



Chapter 3 Interactive Visual Analysis of Families of Function Graphs

o P E
", Brooklyn Parkh, g=mea & e
o (=]
E L 823 8
----i:llT |! W -‘1'.""'"' T HTEE Y
l'lllE-lluli-:llllll luul |?|IIS" Iul?t &I':lLI|

H
s
as

Minn"'ionka
Lo S I
L]
AT pefmnt S ';'
L]

* A B i
4

Gt & '

= a -

Occupancy

Figure 3.1: Left: map of all sensor locations in the Minneapolis freeway system
traffic data. A schematic map is underlayed to provide context information. Each
red dot marks the location of one station (which usually encompasses several sen-
sors, detectors, one per lane). Right: road traffic occupancy graphs. Data from some
sensors (marked with the black rectangle on road 35W in the map) is highlighted in
red. Occupancy is defined as a percentage of time a detector detects vehicles. It is
measured in ten minute intervals. An occupancy value of 0.7 means that for seven
out of ten minutes a sensor detected vehicles.

tions of the sensors, road numbers and weekdays. The sensors report traffic volume
and occupancy, thus D consists of two families of function graphs in this data set.

3.4 Tools for Analysis of Families of Function Graphs

We have developed a tool based on premises described in Section 3.3. The com-
bination of basic, highly interactive views is sufficient to carry out a wide range of
sophisticated analysis tasks. Interactivity plays a crucial role in analysis. Important
and novel aspects that support interactive procedures are described in the following.

We currently offer up to six linked views including histograms, scatterplots,
parallel coordinates and function graphs. We do not make any assumptions about
independent and dependent variables in the sense that we would restrict any of the
basic view to display either of them. The inputs of the views can be mapped to
any attribute of the data set, both independent and dependent variables. The user
can arrange the views as desired, can have more than one instance of the same view
type showing the same or different attribute sets. It is possible to temporarily max-
imize one view for more detailed examinations. Histograms, parallel coordinates
and scatterplots are standard, well known views [CMS99], thus we do not describe
them here in detail. However, it is worth mentioning that the point size in scatter-
plot views can optionally be proportional to the number of data items represented
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Figure 3.2: Several occupancy graphs of atypical shape have been selected by the
red line brush. We conclude from very high occupancy values that these graphs
indicate malfunctioning sensors. In the linked map view (scatterplot view of sensor
coordinates) we can see that there are two malfunctioning sensors next to each other.
In another linked scatterplot view weekdays and road numbers are displayed. Each
column represents one direction (for instance, south-bound) of a road. We can see
that these sensor are on road 35E and they did not work for three days.

by a single point. The more items a point represents the larger it is. An example
is shown in Fig. 3.2: larger points indicate more sensors on the road. Similarly,
the sizes of points highlighted in the focus set are also proportional to the num-
ber of items brushed (Fig. 3.11). Thus the ratio of brushed items versus context
represented by a point in the scatterplot is indicated by point sizes.

The function graph view displays a family of function graphs at once. If the
number of function graphs in the family is large then the display can become visu-
ally cluttered and non-informative. In order to represent the characteristics of the
family better, we can (optionally) render the pixels through which more graphs pass
through with higher intensity.

In the following we will describe generic interaction principles and elaborate on
the specific requirements of brushing and linking in various views.

3.4.1 Generic Interaction Features

If the basic views listed above are independent then they provide limited insight
into the data set. However, if areas of focus can be highlighted with applicable
brushing techniques and this focus area is linked to other views then correlations and
dependencies in the data can be revealed. Our system supports interactive brushing
and linking and the number of currently brushed data items versus total is always
indicated. The user can perform brushing in any of the views and all other views
will also highlight the brushed items while the context is shown in a different, less
saturated color. Whenever applicable, the view can be zoomed to show the brushed
region only. The brushes can be resized and dragged to new locations which helps
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Figure 3.3: Snapshot from an interactive visual analysis session of traffic data in
the Minneapolis metropolitan area. The creation order of brushes is indicated by
red numbers. Here we look for locations of high volume morning traffic on a given
road on weekdays. The user has selected the road and weekdays in the scatterplot
(brush 1) and then removed low traffic volume graphs intersecting brush 2 using
SUB operation. The locations are highlighted in the linked map. The road number
(35WSB, i.e. 35W south-bound) is shown on mouse-over. We can see that heavy
morning traffic on south-bound 35W mainly occurs mainly north of the downtown,
1.€., towards it.

in the interactive data exploration. A tabular display of the currently brushed items
can be opened when the user needs detailed numeric information.

With simple brushing and linking it is usually a problem to locate the matching
brushed data items in different views. If more data items are brushed in a view
then all corresponding items are highlighted in other views, but we cannot visually
identify the matching items in the different views. We have applied an optional color
gradient along the brush and used this color gradient in the linked views to establish
visual identification of the correlated data items. This aids the user in discovering
tendencies in the data set. See Fig. 3.9 for an illustration of the gradient brush.

Another improvement is composite brushing, a query tool which is a result of
logical operations performed on brushes. Composite brushing makes it possible to
build queries that specify several overlapping or intersecting ranges of criteria in the
same or different views. We could have chosen to offer AND, OR and NOT opera-
tions to composite brushes and add a formula editor to allow controlling the order of
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operations by bracketing. In contrast, we use composite brushing similar as in the
SimVis system [DGHO3] by offering AND, OR and SUB operations where the first
operand is always the result of the latest composition. This allows a simplified, intu-
itive, and more iterative workflow compared to working with a formula editor. The
user defines the first brush, then (optionally) selects a Boolean operation, adjusts the
composition setting (to either AND, OR, or SUB) and then defines the next brush to
adjust the current selection. Following brushes and operations will be applied to the
result of prior brushes only. Iteratively, every new brush alters the current selection
status according to the composition rule in use. The process continues in this way:
new brushes and operations are applied to the latest state only. Each new brushing
operation provides immediate visual feedback and the user can interactively refine
(using AND and SUB) or broaden (using OR) the current selection and steer the
information drill down. The user can also resize or move any existing brush in the
chain to gain even more flexibility.

Brushing and linking is a powerful feature in understanding how outputs depend
on inputs and finding input parameter sets when desired properties of outputs are
known. Because we treat all parameters in the same manner, one can brush in
views of independent parameters and study how dependent parameters change in
other views, or perform the inverse kind of investigation to find suitable inputs for
specified results by brushing in the views showing output parameters.

Brushing conventional views is quite straightforward. The user can select his-
togram bins, rectangular areas in scatterplot views or ranges of a parallel coordinates
axes. We have introduced a novel brushing tool in the function graphs view and it
will be described in more detail.

3.4.2 Brushing Function Graphs

We suggest two brushing methods to meet the specific requirements of queries on
families of function graphs.

A line brush is a simple line segment drawn in the function graph view. It selects
all function graphs that intersect the line Fig. 3.2 shows an example of selecting sev-
eral graphs that have high and constant occupancy value indicating malfunctioning
sensors. Linking them to the corresponding points in / in the map, we identify those
sensors. It is very easy to exclude outliers in a family of function graphs or to isolate
curves with desired characteristics with just a few line brushes (brush 2 in Fig. 3.3).
Additionally, it is very useful to also provide a polyline brushing opportunity, i.e., a
brush in the form of a polyline which selects all function graphs which intersect any
of the polyline segments. The line brush, together with the above-mentioned com-
position functionality, assists the user when he or she is looking for graphs whose
approximate shape is known. The logical operation can be defined individually for
each line brush which supports very complex queries. An example of composite
brushing is provided in Fig. 3.5. A complex combination of line brushes is used to
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include and remove various graph shapes in the focus set. We have found composi-
tions of line brushes very intuitive and effective in brushing function graphs.

A rectangular brush selects all curves which pass through the rectangle. The
timebox widget [HS04] is an analogy to rectangular brushing. We have enhanced
the original idea by allowing the user to optionally limit the brushing to function
graphs that enter and leave the rectangular brush at given edges. Probably the most
useful ones are those where the function graph is required to enter and leave at
the bottom or on the top edge of the rectangle. These function graphs have a local
maximum or minimum inside the rectangle, which is often a criterion in the analysis
of time series data. This is especially useful if the display of a family of function
graphs is dense and areas of maxima and minima are overlapped by other function
graphs. The rectangular brush can be represented as a composition of line brushes.

3.5 Analysis Procedures

The shapes of the graphs depend on the independent variables x and in practical
cases the shapes usually exhibit similarities for slight variations in the variable val-
ues, albeit this correlation may be quite indirect. For example, complex physical
systems can be considered “black boxes” that return output for an input parameter
set, but their exact dependencies on the inputs are unknown. This can also happen
if a system is simulated using a computer: the boundary conditions can have so di-
verse effects on the results that in the analysis of such systems it is more feasible to
reconstruct the black box by exploration rather than by trying to deduce its internals
from the simulation process. Analysis and exploration of this class of data involves
several types of procedures, including discovering trends and tendencies or finding
outliers in D. For certain data sets, similar analysis of / can also be of interest.
However, in this section we focus on finding patterns and dependencies in the union
of I and D.

3.5.1 Black Box Reconstruction

We call the process of understanding the influence of independent variables on de-
pendent function graph variables black box reconstruction. To accomplish this, we
usually need to have an overview of the entire data set, following the principles
of Schneiderman’s Visual Information Seeking Mantra: overview first, zoom and
filter, then details-on-demand [Shn96]. We are interested in how function graphs
in D change as values of independent variables are changed. We want to fix some
input parameters to reduce the focus area and vary others while studying the cor-
responding output graphs. This is an interactive and iterative data exploration pro-
cess: brushes are created and moved to areas of interest. When we have built up
an overview of the dependencies we want to zoom in on details in both / and D in
order to discover more subtle correlations in the data. In case of function graphs it
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Figure 3.4: Another snapshot of an iterative, interactive visual analysis of the Min-
neapolis traffic data. The creation order of brushes is indicated by red numbers.
First, entries into the freeway system are selected using the union (OR) of four
brushes (labeled 1 to 4) in the top left map. Next, low volume evening traffic is ex-
cluded from the focus by SUBtracting graphs which intersect brush 5. Using logical
AND with brush 6 in the map view we can restrict the investigation to one specific
entry. By dragging this brush to other entries we can quickly change the focus to
one of the four entries. Thereby a comparison of traffic patterns with respect to the
four entries is possible. In this snapshot evening traffic on the south entry is shown.
The highlighted points in the lower middle scatterplot and the linked histograms
reveal that heavy traffic direction is south-bound from Mondays to Thursdays, but
interestingly, shifts to north-bound on Fridays and Saturdays. (road number and
direction are displayed on mouse-over).

is especially important to provide context information so that changes in shape are
more obvious as various ranges of values are brushed.

An example of black box reconstruction is shown in Fig. 3.4. We are interested
in evening traffic characteristics entering the Minneapolis area freeway system. The
freeway system has entrances from North, South, East and West. We first brush
these entry points in the map view with a logical OR combination of four brushes
labeled 1 through 4. Then low traffic volume in the evening is excluded from the
focus set using a line brush with SUB operation (5). Finally, we create a sixth,
larger brush in the map using the AND operation to restrict the focus set to one of
the entries. By dragging this last brush to the other three entries we can quickly
change the focus and compare traffic patterns of the four entry points, while still
being accurate with respect to brushes 1 to 4. After each interaction step all views
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are immediately updated in order to support iterative analysis.

3.5.2 Analysis of Families of Function Graphs

In this kind of analysis we (approximately) know the desired or expected shape of
the function graphs and our goal is to find combinations of independent variables
that produce these shapes. We also want to exclude combinations that produce
undesirable or invalid graphs and we want to find out how the deviations from the
desired shape depend on the input parameters. This could be considered an inverse
investigation to the one in the previous section. However, this kind of analysis
requires that the we have an idea of the operation of the black box so that we avoid
erroneously identifying dependencies that are mere coincidence in reality.

The procedure requires focus+context views of the graphs where criteria can be
defined to select graphs of specific shapes. The desired shapes of graphs can be
characterized by brushing. The typical workflow is locating invalid or undesired
graphs first, as illustrated in Fig. 3.2. We brush them in the function graph view
and find the related values of independent variables, in this case locations of the
malfunctioning sensors. We will exclude these items from further analysis.

The desired properties of a function graph can be defined by line brushes, as
shown in Fig. 3.3. Here we look for locations of high volume morning traffic on
a given road on weekdays. This can be accomplished by selecting the road and
weekdays in the scatterplot (brush 1) and then removing low traffic volume function
graphs using SUB operation (brush 2). The locations are highlighted in the linked
map.

3.5.3 Multidimensional Relations

Another interesting aspect of the analysis is the correlation between various fami-
lies of function graphs. We want to investigate features of one family of function
graphs depending on the properties of a set of function graphs in another family, for
example, relationships between traffic volume and occupancy. This analysis within
multidimensional time series data requires that graph families are displayed simulta-
neously and the user can interactively brush specific groups of graphs in one family
and study the corresponding ones in the other families. We may also want to narrow
the search by specifying filters on the graph’s input parameters x. Furthermore, we
want to be able to define criteria on various families of graphs.

As an illustrative example let us consider the following query on the traffic data:
we look for areas where traffic is strong, but still moving both in the morning and
in the afternoon. These are heavily used roads without traffic jams. If cars drive at
higher speeds then many cars pass over the sensors but with relatively large gaps.
This is indicated by high volume and relatively low occupancy values. In the anal-
ysis tool this is expressed as a combination of brushes in both families of function
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Figure 3.5: We look for roads where traffic is high both in the morning and in the af-
ternoon. First we select heavy morning traffic (1 AND 2), then remove low evening
traffic volume (SUB 3). Data from malfunctioning sensors is removed (SUB 4).
Next we remove high occupancy graphs by subtracting brushes 5, 6 and 7. The de-
sired graph shapes are further refined by removing graphs which intersect brushes 8,
9 and 10. The combined criteria on the two graphs reveals the roads in question on
the map. We can also see in the lower scatterplot view that interestingly, on specific
roads, no points are highlighted on Wednesdays. This means traffic on these roads
does not follow this pattern.

graphs. There is no direct correlation between the two graphs. The investigation is
demonstrated in Fig. 3.5. We brush in the volume and occupancy function graph
views and study the linked map. First large morning traffic volume is brushed us-
ing two line brushes (1 AND 2). Then we remove function graphs with low traffic
volume in the evening (SUB 3). Now we narrow down the search in the occupancy
function graph view. Data from malfunctioning sensors is excluded (SUB 4). Then
we limit the occupancy by removing function graphs which intersect brushes 5, 6
and 7. Now we have a view of the areas where traffic is strong but moving in the
morning and in the evening. We can further refine the desired traffic volume shape in
the morning by removing the function graphs which intersect the three line brushes
(SUB 8). Finally we limit the occupancy to even lower ranges by removing function
graphs that intersect brushes 9 and 10.
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3.5.4 Hypothesis Generations via Visual Analysis

There is a particularly strong need in engineering applications to perform auto-
matic optimization of designs using several simulation iterations with suitably var-
ied boundary conditions. The automatic optimization process must have an ap-
proximate model of the simulation so to know how boundary conditions should be
adjusted in search for an optimum. Visual analysis can be used to create hypotheses
and rules that the automatic optimization can use in its simplified model and also to
find out if the optimization misses some families of function graphs while searching
for an optimum.

Gaining insight into the current design and setting up hypotheses about its op-
eration via visual analysis has a very important additional advantage over pure nu-
meric optimization. When designing a new component, engineers almost never start
from scratch, but the new design evolves from an old one. Because of this iterative
nature of design in engineering, the insight gained from analysis of previous designs
can be useful in improving future ones. This also means that simulation models of
new design are not radically different from that of the old ones and their results
are comparable to some extent. By analyzing the relationships between the two,
tendencies can be found and extrapolated to improve future design.

3.6 Engineering Application: Fuel Injection System Sim-
ulation

The science of visual analytics is also very applicable in engineering applications.
Simulation and measurement data sets are vast, optimization goals are often con-
flicting, the tendencies and dependencies in the data can be indirect and engineers
need to find the best compromise. Designers must make defensible and responsible
decisions because design mistakes can have very expensive consequences if short-
comings are discovered during production. Time-to-market for new designs will be
short, so they must work under time pressure and communicate their findings to col-
laborating teams. In this section we demonstrate the applicability of our approach
to the analysis of Diesel injection system simulation data.

3.6.1 Diesel Common Rail Injection Systems

There are many (often conflicting) goals of Diesel engine design including high
power, good fuel efficiency, meeting emission regulations, low noise levels and
driveability (steady and reliable torque at various engine speeds). The fuel injection
system is the key Diesel engine component to achieve those goals. The following
properties are considered important in the fuel injection procedure:

e high injection pressure for good atomization and combustion,
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Figure 3.6: Control parameters for the simulation. Left: inlet pressure character-
istics are pressure levels Py, Ppgn and the time interval of pressure increase d7T),.
Right: injector valve opening/closing properties are the time 7;,; when the valve
starts to open and the opening/closing time interval d7,,.

flexible timing of the injection,

short pre-injection before the main burst to reduce combustion noise,

accurate control of injected fuel quantity,

ability to inject small amounts of fuel to achieve economical operation and
good emission properties.

A specific type of injection systems, the common rail injection system can be
controlled in a very flexible way, thus it is seen as a very popular option by many
manufacturers. Common rail injection system have several attractive characteristics:
injection pressure and quantity can be controlled with a high degree of flexibility,
multiple fuel injections are possible within one injection cycle and the time and
duration of the injections can be controlled precisely by the engine control unit
based on the engine speed and load. These properties are key factors in meeting
current and future very stringent emission regulations. In our case study we use
the simulation results of a conventional series common rail Diesel fuel injection
system [MJJ+05, BH97].

3.6.2 Fuel Injection Simulation

The fuel injection simulation data is from AVL-List GmbH. The simulation is based
on the theory of 1D fluid dynamics and 2D vibrations of multi-body systems. In
1D fluid dynamics pressure is uniform on pipe slices perpendicular to the axis. The
simulation was run for a number of cases. Each case is represented by its own set of
simulation control parameter values. The software can automatically loop the pa-
rameters over a specified range and run a simulation variant for each resulting case.
The engineers study the resulting output data and attempt to find ideal simulation
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Figure 3.7: A typical shape of the fuel injection rate graph is highlighted in red.
There is a short pilot injection first, followed by the main injection. The graphs
resulting from other combinations of control parameters are gray.

input parameters for various engine operating situations. This data set follows the
model introduced in Section 3.3: I consists of the simulation control parameters and
D consists of the simulation output.

Simulation Control Parameters

The injection shape depends mainly on three factors: the nozzle geometry, injection
pressure and timings for valve opening and closing procedures. The influence of
control parameters related to nozzle geometry has already been investigated in our
previous work [MJJ*T05]. Once a (nearly) optimal nozzle geometry is found and
it goes into production it cannot be changed very often because this would be too
expensive. The focus of fuel injection optimization afterwards is usually on varying
the remaining two factors.

Therefore, the independent variables in our current investigation are related to
injection pressure and injector valve timings only. The injection pressure is con-
trolled by the injection pressure modulation device which is positioned between the
rail and injector. In our investigations this device is not modeled in detail, but we
take the modulated pressure as input. The characteristics of the pressure on the in-
jector’s inlet are described by 3 parameters (Fig. 3.6). The injector valve actuator
that controls the injection timing is described by its opening/closing times and ve-
locities. Although this is a simplified model it allows the simulation of various types
of valve actuators including the popular solenoid type or the more recent piezoelec-
tric ones. Consequently, we have I of 5 dimensions. In parenthesis we indicate the
number of variations for each input parameter.
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Figure 3.8: Pilot injections with high amount of fuel are brushed with a line brush.
As seen in the parallel coordinates view of the independent variables, these all cor-
respond to high Py, values.

1. P,y low pressure on the injector inlet (5),

2. Pyign: high pressure on the injector inlet (5),

3. dT,: time interval of modulated pressure increase on the injector’s inlet (5),
4. dT,: time interval of the injector valve opening and closing (5),

5. T,1: injector valve opening time (7).

The total number of variations of the independent variables is 5* x 7, which means
4375 different sets of simulation boundary conditions.

Simulation Output

For each combination of the independent variables the simulator computes three
sets of time-dependent results: Q;,;(f): injection rate, P;,;(¢): injection pressure and
An(1): needle lift. In other words, there are three families of function graphs in this
data set. Furthermore, the following not time-independent results are computed:
Qp: amount of fuel injected during pilot injection, Q,: amount of fuel injected
during main injection, Q,,: amount of fuel flowing back to the fuel tank, V;,e,:
needle opening velocity, Vo4 : needle closing velocity, L,: spray penetration depth,
P,,: average injection power.

3.6.3 Analysis of Fuel Injection Simulation Data

The typical shape of the injection curve is shown in Fig. 3.7. There are usually
one or two small peaks called pilot injection in the first quarter of the injection
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Figure 3.9: High P, simulation parameters are brushed in the scatterplot diagram
using a gradient brush. The correlation of P, and the amount of pilot injection is
revealed by the color gradient.

procedure in order to reduce combustion noise and NOx emission in combination
with the main injection. As Fig. 3.7 shows, there was one pilot injection in our case.
Arbitrary shaped injection rate graphs cannot be produced in simulation because
of the physical requirements of the combustion in the engine. The engine will not
run properly if the injection rate function graph does not follow shapes similar to
the ones in Fig. 3.7. The goal is to find combinations of simulation parameters that
control the volume of the pilot injection and produce the desired shape of the main
injection.

Analysis of Pilot Injection

We investigate how the amount of fuel and the timing of the pilot injection depend
on the control parameters. We zoom in on the first peak of the Q;,;(t) function
graph and first select function graphs with high peaks using a line brush (Fig. 3.8).
The corresponding items are highlighted in the parallel coordinate view of the input
parameters It is evident strong pilot injections are linked with high P, values.
We suspect that there is a correlation between Pj,,, and the amount of fuel injected
during pilot injection. To support this hypothesis we can brush all P, inputs with a
gradient brush in a scatterplot view. The color gradient from red to green (Fig. 3.9)
establishes visual links between the brushed items in the scatterplot view of the
injection control parameters and the graph view of the injection rate.

Next, we try to find the parameters that determine the timing of the pilot in-
jection. We brush the peaks of the graph with a line brush and examine the parallel
coordinate view of the control parameters. We conclude that time of pilot injection’s
peak depends on dT,,. This hypothesis can be counter-checked in an interactive way.
A brush is panned over the scatterplot diagram of Py, and dT, and the highlighted
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Figure 3.10: Ideal shape of the main injection for various engine operating points
defined by engine speed and load. The shape can be classified into three types:
square (injection rate steeply increases to a maximum level), ramp (the slope is
more gentle) and boot (following a nearly horizontal segment injection rate rapidly
increases to maximum level at the moment of ignition). This classification is some-
what arbitrary, since the shape changes from square to boot in a continuous manner
as the control parameters vary.

injection rate function graphs are studied. We find that large d7, causes the pilot
injection to start later and also to have slightly lower volume. The fully covered
axes of the three other control parameters in the parallel coordinates suggest that
the pilot injection’s shape does not depend on them.

Analysis of Main Injection

The optimal shape of the main injection is different for each particular engine oper-
ating point (Fig. 3.10). The engine control unit (ECU) measures engine speed and
load to determine the current operating point. For each operating point the ECU
contains a lookup table of injection control parameters used to control the injection
system. The goal of the engineers is to find suitable sets of control parameters for
some characteristic points in the diagram and understand how various properties of
the injection rate graph can be controlled. In the following we investigate how suit-
able control parameters can be found for specific main injection shapes. For each
case we also demonstrate some additional dependencies and tendencies in the data
set.

Square Square main injection shape is desirable when load is very low or when
the engine speed and load are both high. We used a combination of three line
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Figure 3.11: Ranges of control parameters that produce square shaped injections.
First the user attempted to select square shaped graphs with brush 1. This brush
selects several not square shaped graphs, too. These are removed by SUBtracting
graphs that intersect brush 2. Brush 3 removes graphs that drop under a certain
threshold in the main injection part. This property is a result of vibrations in the
fuel line, which are to be avoided.

brushes to select square shaped injection rate graphs (Fig. 3.11). The aim of the
rightmost one is to exclude undesired shock wave reflections.

In a similar process to the one used when investigating the pilot injection we
discover that 7 is high for the brushed graphs. That means the injector valve
opens late when the pressure on its inlet is already very high. This leads to a square
shape of the injection rate. As the rightmost brush is created we also observe in the
linked scatterplot diagram that most of the items that have low dT), (time interval of
modulated pressure increase) are removed from the focus. This means d7,, must not
be very low in order to avoid shock wave reflections.

We also study the desired needle opening and closing velocities and the corre-
lations between the injection rate and the needle lift graphs for this case. In order to
do so the high T,; and dT), region of the scatterplot diagram is brushed in Fig. 3.12.
The highlighted points in the Vjo5/Vopen scatterplot diagram show that fairly fast
needle opening and closing is required for square shaped injections. The needle lift
graph (bottom right) is also linked and the color gradient of the brush shows a strong
correlation between the needle lift and the injection rate graphs.

Ramp Ramp-shaped main injection is desirable when the engine speed and load
are in mid-range. In the previous case we have found correlation between 7,; and
the shape of the injection rate graph. We also know that the time interval of the
modulated pressure increase on injector’s inlet should be fairly high to avoid reflec-
tions. Based on this we already start the investigation by brushing cases when the
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Figure 3.12: Required needle movement characteristics for square shaped main in-
jections. Top left: control parameters that produce square shaped injections are
brushed. Top right: red to green gradient shows that earlier valve opening times
cause deviation from the ideal square shape. Bottom left: needle opening and clos-
ing velocities must be fairly high for this shape. Bottom right: the shape of the
needle lift graph is closely correlated to that of the injection rate graph.

injector valve starts opening a little later and we exclude low dT, ranges as shown
in the top left scatterplot diagram in Fig. 3.13.

The histogram of Py, is also brushed and the intersection of the two brushes
is studied in the injection rate and injection pressure graphs. We observe that the
corresponding graphs of injection rate and pressure are similar in shape but differ in
their maxima as Pp;g, is varied. This is shown in Fig. 3.13

Boot Boot-shaped main injection is desirable for engine operating points of mid-
range engine speeds and high load. From our previous experience we assume that
the injector valve has to be opened very early to achieve this shape. This assumption
is easily verified by brushing the corresponding region in the scatterplot diagram of
T, (injector valve opening time) and dT), as shown in Fig. 3.14.
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Figure 3.13: Top left: brush 1 selects control parameters for ramp shaped main
injections. Bottom left: brush 2 is probed in the histogram of the high pressure
on injector inlet using the AND operation. Top right: injection rate graphs of the
brushed items. Bottom right: injection pressure graphs of the brushed items. By
dragging the brush in the histogram view and studying the linked function graph
view we observe similar shaped graphs with different maxima.

Now we investigate how desired amounts of fuel in the main injection and vari-
ous injection penetration levels are achieved. The scatterplot diagram of these sim-
ulation outputs is brushed and the brushed items are observed in the linked views
in Fig. 3.15. We observe that the brushed injection rate graphs are all boot shaped.
In the parallel coordinates view it is obvious that boot shaped injection does not re-
quire fast injection rate increase, but fast needle closing and injection rate decrease
are still preferred. We also discover that for deep fuel spray penetration and high
injection powers (brushed in green in Fig. 3.15) fast needle closing velocities are
required. The injected fuel mass (Q,,) and the amount of fuel returned to the fuel
tank (Q,,) are both fairly high. This matches our expectations, since we see in the
parallel coordinate view that the P;q, input was also quite high in these cases.

64



Interactive Visual Analysis of Families of Function Graphs Chapter 3

8°150PS,

Tv1 Q_injit)
-

Figure 3.14: If the injector valve is opened very early than the injection rate quickly
increases to the "boot" level. It reaches its maximum when the mixture is ignited in
the combustion chamber.
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Figure 3.15: We investigate the conditions when fuel is injected deep in the com-
bustion chamber and with high power. The corresponding items are brushed in the
scatterplot diagram. The linked graphs show that this requires boot shaped main
injections. The desired needle opening and closing velocities are highlighted in the
parallel coordinate view.

Insight Gained from Analysis

In this example we have gained valuable insight into the fuel injection simulation
data set and thereby into the fuel injection process itself, too.

We found that the amount of injected fuel in the main injection stage can be
controlled by adjusting Py;e,. The amount of pilot injection is controlled mostly by
P, but the time interval of the injector valve’s opening also has some influence
on it. We observed that choosing the inlet pressure and the time when the injector
valve opens is the key to achieving the desired injection shapes for various engine
operating conditions. When pressure increases too fast on the injector’s inlet then
the resulting wave can be reflected into the fuel line which impairs our control over
the injection’s shape.
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By studying the needle lift function graph and the related V; e, and V5 Sim-
ulation outputs we are able define the desired needle characteristics for specific
injection shapes and we also saw how tightly the injection rate and the needle lift
are correlated.

Additional images and supporting videos are available at
http://www.vrvis.at/scivis/graphs—analysis/ .

3.7 Conclusion

Analysis of relationships between families of function graphs is a common task in
many application domains. A novel combination of established visualization tech-
niques, linked views and advanced brushing represents a valuable tool for interactive
visual exploration and analysis of data sets that include multiple families of func-
tion graphs. All parameters are treated the same, providing support for iterative
exploration of the data space. Multiple, linked views enable simultaneous view-
ing of independent and dependent parameters with immediate feedback. One can
brush in the views showing dependent parameters to find the corresponding values
of independent parameters and vice-versa.

Brushing proved to be the most effective of all the interaction techniques pro-
vided. The color gradient is used along the brush and in the linked views to es-
tablish visual identification of the correlated data items. The composite brushing
(AND, OR, and SUB operations) allows us to refine the search and detect or extract
patterns from the application domain. The line brush technique works very well on
families of function graphs. It is intuitive, easy to use and very effective. Fig. 3.5
shows how a composition of nearly a dozen line brushes is used to identify a pattern
in a traffic volume graph of a road.

The process of the composite brush construction captures the essence of visual
analytics procedures: they are interactive and iterative. The initial brush provides
the initial data selection in the current view. That selection is immediately displayed
in the linked views where it can be analyzed from different perspectives to formulate
a hypothesis. That hypothesis is then tested using a a new brush and so on until a
new, possibly unexpected pattern is found. Fig. 3.2 shows a discovery of a pattern
in D (constant high occupancy) that indicates a pattern in / (malfunctioning sensor).
Such discoveries would be more difficult or even impossible without interactive
composite brushes.

Future work will proceed in three directions. First, we will expand the data
model to include input time series and time-dependent input parameters as well as
first and second derivatives of times series. We will explore what impact this has
on the required analysis procedures and try to find tools to support the new tasks.
Finally, we will explore the use of large-scale displays and usability issues related
to manageability and arrangement of large number of views.
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Abstract

Interactive steering with visualization has been a common goal of the visualization
research community for twenty years, but it is rarely ever realized in practice. In
this paper we describe a successful realization of a tightly coupled steering loop,
integrating new simulation technology and interactive visual analysis in a prototyp-
ing environment for automotive industry system design. Due to increasing pressure
on car manufacturers to meet new emission regulations, to improve efficiency, and
to reduce noise, both simulation and visualization are pushed to their limits. Auto-
motive system components, such as the powertrain system or the injection system,
have an increasing number of parameters, and new design approaches are required.
It is no longer possible to optimize such a system solely based on experience or
forward optimization. By coupling interactive visualization with the simulation
back-end (computational steering), it is now possible to quickly prototype a new
system, starting from a non-optimized initial prototype and the corresponding sim-
ulation model. The prototyping continues through the refinement of the simulation
model, of the simulation parameters and through trial-and-error attempts to an op-
timized solution. The ability to early see the first results from a multidimensional
simulation space — thousands of simulations are run for a multidimensional vari-
ety of input parameters — and to quickly go back into the simulation and request
more runs in particular parameter regions of interest significantly improves the pro-
totyping process and provides a deeper understanding of the system behavior. The
excellent results which we achieved for the common rail injection system strongly
suggest that our approach has a great potential of being generalized to other, similar
scenarios.

4.1 Introduction and Related Work

Increasing complexity and a large number of control parameters make the design
and understanding of complex systems (such as automotive engines) impossible
without simulations. Strict emission rules and regulations force car manufacturers
to design improved engines, in very short time [BDHKOS5]. To meet those require-
ments, car manufacturers use simulations as a cost-efficient, and often the only pos-
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sible way to design systems with desired characteristics. They use many types of
simulation, including Computational Fluid Dynamics (CFD).

In this paper, we describe results from a recent project where the need for inter-
active steering emerged. We used interactive visual analysis to support an interactive
design process. In contrast to the usual, very time consuming 3D CFD simulation,
1D CFD that is alternatively used in injection system simulation can be computed
very fast. It is possible to run tens of thousands of simulations for a large set of
parameters. However, the brute force approach, where a simulation runs for all pos-
sible parameter combinations, is often not feasible. Instead, interactive simulation
steering helped us to insure a reasonably short design time. A pure numerical op-
timization is sometimes too complex and a user often gets only the final results,
without proper insight.

The background of this work was the task to design an injection system. We
developed a steering framework to support this task. Our interdisciplinary project
setup provided us with valuable feedback during the design process in terms of the
usefulness of the proposed approach and suggested improvements. We started from
a simple model and gradually made it more and more complex.

One of the important parts of the automotive engine system is the injection
system. The piezoelectric stack actuator is the main component of the injection
system model [GC97]. When an input voltage is applied, the electric field across
the ceramic layers of the stack actuator induces a mechanical strain. The strain
results in an elongation of the stack that exhibits the rate-independent hysteresis
between the electric voltage (force) and mechanical strain (displacement).

We identified tasks that can be generalized to other problems and illustrated how
we designed and tuned the model. The model complexity did not allow us to run all
possible simulations at the beginning and to analyze the results. Such an approach
would also result in numerous unnecessary simulation runs and would waste time
and computational resources. Furthermore, we did not have a complete model at
the beginning. It was gradually built as we gained insight during the design process.
Our approach, the use of interactive visualization and coordinated multiple views
as a steering mechanism for simulation, proved to be very efficient. In this paper
we show how the tight integration of visualization and simulation can significantly
improve an engineer’s workflow as compared to decoupled systems. The excellent
results which we achieved for the common rail injection system and the very pos-
itive feedback from domain experts strongly suggest that our approach has a great
potential and can be generalized to other, similar scenarios.

The decoupling of simulation and analysis can present significant obstacles
and make it very difficult to effectively manage large amounts of simulation
data [PJB97]. We should be able to interactively steer computations, change
simulation parameters or representation and immediately see the simulation re-
sults. Computational steering and interactive visualization emerged in 1980s and
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1990s as some of the most useful visualization paradigms for computational sci-
ence [CRS96].

Many simulations are computationally intensive and may require interpolation
for sensitivity analysis and optimization. Sensitivity analysis and optimization re-
quire the domain expert to interpolate the observed simulation data. This interpolat-
ing function is a metamodel of the underlying simulation model which is treated as a
black box. An example is the Kriging interpolator representing a global metamodel
that covers the whole experimental area [vBKO04]. However, we can also iteratively
refine the simulation model. That way we can refine both the simulation parameter
values and the simulation model.

The simulation output data is often visualized using scientific visualization
methods [HEVLS03]. Using visualization and spatial tools to understand complex
systems is not a new idea. James C. Maxwell, one of the most important physicists
of the nineteenth century [Wes99], often used visual-spatial thinking. An excellent
example of his approach is a construction of 3D clay model of a surface based on
Willard Gibbs” work. We’ve come a long way since those early beginnings. How-
ever, thinking about the science is still at the core of scientific visualization [Joh04].
The most important scientific visualization research problems include perceptual is-
sues, human-computer interactions, global/local visualization, feature detection and
visual abstraction, to name a few [Joh04].

Computational steering integrates modeling, computation, data analysis, visual-
ization, and data input components of a simulation [PJB97]. However, integrating a
simulation within a computational steering can be a very difficult problem. We need
to address four facets of the problem [JPH"99]: control structures, data distribution,
data presentation, and user interfaces. Since computational steering is a highly inter-
active process, the user interface is a critical component of a computational steering
environment [MvWvL99]. Kreylos et al. [KTH"02] describe a system for real-time
interactive visualization of computational fluid dynamics (CFD) simulations that
allows a user to place and manipulate visualization primitives during an ongoing
simulation process. Vetter and Reed [VRO0O] described performance monitoring,
control, and interactive steering of computational grids. Wenisch et al. [WvTB"07]
demonstrated computational steering of CFD simulations on distributed computers.

There is extensive literature about user interface and visualization of simulation
data from an engineering perspective. Laramee et al. [LGD"05] use different flow
visualization methods to show various aspects of the simulation data to support
insight and visual analysis of the coolant flow through the cooling jacket of a car
engine. Konyha et al. [KMHO3] use 3D icons to analyze simulation data of chain
and belt drives. Matkovi¢ et al. [MJJT05] describe a method for the analysis of a
fuel injection system that provides a highly abstract view of the injection system.

Using multiple, interactively linked views of the same data set allows the user
to productively combine the information gathered from the different views [Hen98].
Doleisch et al. [DMG™05] use multiple linked views for analysis of CFD simula-
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tion data. More advanced multiple view visualization systems can be freely config-
ured [NSOO] and provide flexible coordination of views [Wea04]. As the number
of linked views and the amount of coordination increases, it may be necessary to
visualize the visualization’s structure and operation [Wea05].

4.2 Computational/Interactive/Simulation Steering

We used our previously developed coordinated multiple views visualization tool
ComVis [MJJT05] and extended its functionality to interface it with the simula-
tion tool HYDSIM which is a part of the AVL. Workspace [AVL15]. In this way a
steering framework has been established and used in the project.

The initial design goal for the visualization tool ComVis was rapid prototyping
of new visualization techniques within the scientific context. As a consequence the
tool was designed to be flexible in a way that it is easy to add new views and support
new data types. The tool is intuitive to use and supports advanced interactions
(multiple, iterative brushing). As a result, the tool is easy to use for domain experts
from different domains (medical, engineering, etc.), and can use/read generally used
data formats to provide access to existing data.

The simulation tool, HYDSIM, is a modular program for the dynamic analysis
of hydraulic and hydro-mechanical systems. It is based on the theory of fluid dy-
namics (1D) and vibration of multi-body systems (2D). The user defines a model
using 2D graph-like structures with icons and connecting elements. The defined
model provides a general representation of the system topology. For each element
(represented by an icon) the user can specify properties for the particular case. Once
the user completes a definition of the model, the simulation provides output param-
eters values. In a typical workflow, a domain expert analyzes these results and, if
necessary, modifies the simulation model and repeats the simulation until the de-
sired results are achieved. Earlier we pursued an alternative approach to compute
a very large set of simulations runs at once (offline) and analyze the results after-
wards [KMG ™06, MJJT05]. Although this was a significant improvement compared
to the traditional way, we still had to specify all combinations of input parameters
in advance.

Our new framework makes it possible to define new simulations using the vi-
sualization tool. The visualization tool is used for the analysis and steering of the
simulation. That makes it easy for the domain expert to generate new simulations
and to refine or to filter the simulation dataset. Each simulation has a set of con-
trol (input) parameters and a set of output parameters that are computed for a given
input. The main idea is to run many simulations with different control parameter
settings (they are defined by lower limit, upper limit, and step size), and to use
multiple, coordinated views to understand the model and to support the expert in
injection system design.
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Figure 4.1: An iterative approach to prototyping. A combination of the simulation
and visualization tools and related data allows us to design at different levels of
abstraction. We distinguish three levels of the interactive steering process depicted
with loops A, B, and C. The first loop, loop A, is based on the available simulation
results. We explore them, get insight and store results (snapshots). If this is not
sufficient, new simulation results can be generated (loop B). The simulation model
is still not changed, only parameters are being refined. Finally, it is also possible to
change the simulation model (loop C).

We provide four basic operations: refining or coarsening some control parame-
ters (changing the step); narrowing down the control parameter interval (changing
boundaries); adding new control parameters; and removing some existing control
parameters. If we represent data in tabular form, the basic operations correspond
to adding and removing rows (refinement and filtering parameters) or adding or
removing columns (adding or removing parameters).

The domain expert estimates the coarse boundaries of the parameters, runs a
sufficient number of simulations and sees what parameter values make sense and
what values are not allowed based on the output values. In the case of fuel injection
systems, the injected fuel mass was one of the output parameters often used to iden-
tify parameter values that are not allowed. If there is not enough injected fuel or if
there is too much injected fuel, the engine will not run properly.

We use an iterative approach (Figure 4.1). The domain expert uses the simula-
tion tool to create the initial simulation model, specify the initial control parameter
values and produce simulation results (Figure 4.1, steps 1, 2, and 3). Only a part
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of the injection system is modeled in detail while the rest is replaced with modelled
“ideal” values. These ideal values became the target when we refined the model.
The goal is to create a simulation model and to determine the control parameter val-
ues that produce the simulation results that are as close as possible to the idealized
result. We repeat the process at three different levels. The user first designs a very
simple simulation model and sets the parameters. The user then extends the simu-
lation model and provides the parameters for a more complex model that represents
the second level. Finally, the user defines the complete simulation model that makes
it possible to go back and forth between different levels (as it is often the case during
prototyping) and to change already tuned parameters.

The domain expert carries out the interactive steering process at three different
levels. The first level of iterative prototyping focuses on the already generated sim-
ulation results. The expert uses the visualization tool to investigate the simulation
results and, by extensive use of brushing and linking, can get insight and create first
reports (snapshots) about the current prototype results (Figure 4.1, steps 4 and 6).

If the current simulation results are not sufficient, the expert can proceed to the
second level. The second level of iterative prototyping involves refining the control
parameter values (Figure 4.1, step 5), generating new simulation results using the
current simulation model and then returning to the first level of prototyping. The
expert can do it in an interactive way and request new simulation results from the
simulation tool. As new simulation results are computed, the data in the visualiza-
tion tool is automatically updated. During this process visual analysis can proceed
and benefit from better data resolution.

Based on the insight from the data, the expert may decide to refine the simulation
model. At the third level of iterative prototyping the expert uses the simulation tool
to update the simulation model and then returns to the second level of prototyping.
As this is a larger step which makes it necessary to change internal data represen-
tation, the expert has to wait until initial setup is completed and the first results for
new model are ready. This can take a few minutes. Once the first set of simula-
tion results is computed and the visualization tool updates the internal structure, the
whole process becomes interactive again. The simulation results are uploaded on
the fly as they are computed.

In our implementation we always define the model using the HYDSIM tool.
The HYDSIM creates simulation definition files and runs the simulations. As simu-
lations are computed, output files are created, one directory for each simulation run.
Our visualization tool, ComVis, reads the first simulation results, builds the internal
data model, and visual analysis starts. The visualization tool checks for new output
files and loads them when they are available. ComVis offers a possibility to specify
new simulation parameters, as well. If the user requests new simulations from the
visualization, ComVis creates HYDSIM input files and starts HYDSIM. HYDSIM
generates new output files which are then automatically loaded into the visualiza-
tion tool. Model changes are done in HYDSIM, and in these cases ComVis has to
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Figure 4.2: The final injection simulation model and the four main blocks. The
blocks represent logical grouping that has no influence on the model topology. An
actual injector, used for each cylinder in a car engine, is shown on the right. The
control parameters are depicted in red, and the output parameters in blue. The exact
description of the parameters is too long for this caption and can be found in the
main text, instead.

recalculate internal data structures which usually takes a while (minutes). Once the
new model is created, first simulations are computed, the internal data structures
needed for visualization are created, and the process continues in a usual way.

4.3 Rapid Visual Prototyping and the Design of a Common
Rail Injection System

We used the developed prototyping tool to design a common rail injection system.
We selected this task for two reasons, i.e., the availability of fast simulation algo-
rithms and the importance of injection in an overall Diesel engine efficiency and
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emission characteristic.

There are many (often conflicting) goals of a Diesel engine design, including
high power, good fuel efficiency, meeting emission regulations, low noise levels,
and drivability [MahO2]. The fuel injection system is the key Diesel engine compo-
nent to achieve the goals. The common rail injection system has several attractive
characteristics: injection pressure and quantity can be controlled with a high degree
of flexibility, multiple fuel injections are possible within one injection cycle and the
time and duration of the injections can be controlled precisely by the engine control
unit based on the engine speed and load. These characteristics are key factors in
meeting current and future (very demanding) emission regulations.

The common rail injection system consists of two parts, one hydro-mechanical
and one electronic. The hydro-mechanical part determines the simulation model,
while the electronic part determines the actuator control parameters. Our goal is
to design both parts by iteratively adjusting the simulation model and the control
parameter values.

We start by providing the end result of the design process (Figure 4.2). The
reason for that is to provide the context and the basic expertise for the system design,
something that experts already have. The main assembly components of the injector
are the piezo actuator with the hydraulic amplifier (Block 11l from figure 4.2), the
control valve with a certain control volume (Block II) and the nozzle (Block I). The
piezo actuator governs the motion of the control valve. Block IV is the fuel supply
from the common rail, which is not analyzed in this work.

Once the simulation model is created, the expert has to set up the control pa-
rameters (the parameters listed in red in Figure 4.2). For each set of the control
parameters the output parameters are computed (the parameters listed in blue in
Figure 4.2). All of the control parameters in our case are scalar values, and all of
the output parameters are time series data. An additional control parameter is the
actuator (the topmost element in the Figure 4.2) behavior. We model the actuator
curve depicted in Figure 4.3 using a set of scalars, determining the start and duration
of the pilot and main injection, their maximum amplitudes, and opening and closing
times.

The model has 11 control parameters and setting them is the main task of the
injection system design. The actuator curve parameters are also set, but they vary,
based on the crankshaft load and speed, during the actual engine operation. The
electronic control unit (ECU) of a car engine controls these curves. ECU has a
lookup map of all possible curves and selects a curve based on the current crankshaft
load and speed. If a car runs downhill at a certain speed, the crankshaft load can even
be negative, so the actuator curves are chosen accordingly. On the other hand, for a
high crankshaft load and a certain speed, the actuator curves and resulting injection
have completely different shapes. However, a detailed discussion of injection curve
modeling is out of the scope of this paper.
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Figure 4.3: The actuator, the top most element in the model in Figure 4.2, is mod-
eled using these parameters. This is the only set of control parameters that will be
changed during the engine operation. Depending on the operation point (speed and
load), the electric managing unit (EMU) will select the shape of actuator curves.
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Figure 4.4: A simplified model used in the first iteration. We use only one section
and the rest is represented by an ideal actuator. Once the simplified model is tuned,
we gradually extend it to include the rest of the model, as shown in Figure 4.2.

One design option [KMG*06, MJJ*05] is to run the simulation for all possible
combinations of parameters and to explore the system. If we use ten values per
control parameter, there are 10'! possible combinations of control parameter values.
Since we can run about ten simulations per minute (for the model in Figure 4.2), we
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Figure 4.5: Multiple coordinated views show control and output parameters. a) We
brush target values for the injected fuel mass. All combinations of c_turb and m ju
can produce the desired output (second scetterplot) while only some combinations
of d_sac and alpha_seat are possible. b) Further refinement of targets using addi-
tional brushes for pressure and acceleration helps us to narrow possible parameters
and to estimate input parameters for the first step.

would need 10'° minutes, or more then 19,000 years to complete all simulation
runs. It is clear that such simulation time, even on a large cluster, is not feasible.
Instead, we start with a simplified model, use interactive visualization to drill down
the control parameter space, and once the initial control parameters are fixed, the
simulation model is extended.

4.3.1 First Model

We start with a simplified model (Figure 4.4), Block I from Figure 4.2 with the
actuator directly added on the top. This is supposed to be a direct actuator with
simple characteristics. We tune the nozzle first.

We use only four control parameters (Table 4.1). It takes about 12 minutes to
calculate 750 cases (60 simulations per minute for this simpler model). After this
setup time, we explore the first data set to achieve a certain amount of injected
fuel during the pilot and main injection. The target values were set according to
Table 4.2.

We compute the calculated output parameter injected mass as a function of time.
It is a cumulative mass over time. The value at the end corresponds to the totaly
injected mass during injection. As we are interested in the injected mass after the
first pilot injection and after the main injection, we aggregated the injected mass
curves so to have the injected mass after first pilot and the total injected mass. We
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Table 4.1: Control Parameters for the first case.

Parameter Min Max  Step

d_sac 0.7 0.9 0.05
al pha_seat 40 65 5

c_turb 0.8 1.0 0.05
mju 0.7 0.9 0.05

Table 4.2: Target Parameters for the first case.

Parameter Target range (mg)
Pilot injected mass 2-25
Main injected mass 17-22

brush now the scatter plot depicting these two aggregated parameters. Figure 4.5 a
shows this case.

At the same time, other coordinated views show the control parameters (Fig-
ure 4.5a, scatter plots in the first column) causing the targeted injected mass. We
can clearly see that the wanted injected mass is possible only for some combinations
of nozzle diameter (d_sac) and angle of needle seat (al pha_seat), and for all combi-
nations of flow discharge coefficient (mju) and turbulent flow coefficient (c_turb).
We refine the selection by selecting high pressure (as far as possible for the given
target) and the desired needle acceleration. Figure 4.5b illustrates the selections
(brushes 2 and 3). Note the zoomed-in scatter plot of accelerations which helped in
the selection.

The allowed control parameter space has narrowed significantly (Figure 4.5b,
scatter plots in the first column), and the expert can now select the first parameters
(Table 4.3). Note that this is a quite coarse estimation. The parameters are fine-
tuned at a later stage. However, even this coarse case shows which input ranges
make no sense.

Table 4.3: Control Parameters selected for First Model.

Parameter Target range (mg)
d_sac 0.75
alpha_seat 50

c_turb 0.9

mju 0.7
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Figure 4.6: Second Model: The parallel coordinates view of the control parameters
for the target values. Note that only low CV_size values are possible, while there
are many combinations of Z_in/ and Z_out which allow the desired output.

4.3.2 Second Model

We refine the simplified model (Figure 4.4) to create a more detailed model contain-
ing Block II. The actuator with the control valve is placed on top of Block II now.
This actuator is described in Figure 4.3. We tune this part using the fixed control
parameters for Block 1. We are interested in the control volume size (CV _size) and
in the inlet/outlet throttle flow resistance (Z_inl and Z_out). 1,100 simulations are
computed (20 simulations per minute since the simulation time changes with the
model complexity). For the same target values as in the first case, we set the control
volume size to ten. Figure 4.6 shows the parallel coordinates view of the control
parameters for the target values.

If we look at the mass rate curve view now, a new, interesting phenomenon can
be observed (Figure 4.7). Note the width of curves at injections. There are some
curves starting later and some starting on time. The actuator on the top is fixed, i.e.,
it has always the same input curve (Figure 4.3). This means that some of the param-
eter combinations can cause an injection delay. Injection delay is the time period
between the injection reaction and the actuator action. In our case this is the differ-
ence between the start of the pilot (or main) injection as depicted in the curve view
and the actuator starting times (P_first or M_first). This is a surprising finding,
since we did not expect that this delay would show up at this stage of modeling.

The injection delay is an unwanted behavior and we have to be sure that it does
not happen in the final model. Compared to the first, simplified model, the control
volume which is placed just above needle top is not directly connected to the actu-
ator any more. It is working in close correlation with two orifices (inlet and outlet)
that supply the volume with fuel and drain it. We have to be sure that delay is as
small as possible at this stage of modeling.

The correlation between the mass flow rate through the nozzle (mass_rate)
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Figure 4.7: Mass_rate curves for the second model. a) Many curves of different
widths, showing significant delays for some parameter combinations. b) The selec-
tion corresponds to the maximum values of CV _size, such curves would result in
insufficient fuel mass. Note also that pilot injections are completely missing in this
selection.

curves and the control volume size (CV _size) is easy to detect. Simple brushing
shows that the larger the control volume size is, the narrower (less injected fuel)
the curves are. Figure 4.7 depicts the curves selection for the maximum values of
CV_size. The inlet and outlet flow resistance (Z_in/ and Z_out) are more chal-
lenging and to investigate this problem we refine the model. New limits and step
sizes are selected using the visualization tool and new simulations are initiated. The
control volume size is set to the minimum, CV _size = 10, and new flow resistance
parameters Z_inl and Z_out are set (Table 4.4). The simulation tool is started and
the visualization gets updated as new simulations are computed. The visualization
tool checks if new data is available and automatically loads it. Since we do not
change the model in this case, the update of the internal data and its representation
is straightforward. During this process we continue the visual analysis and explo-

Table 4.4: Refined Control Parameters for Second Model in order to investigate
injection delay.

Parameter Range Step
Z_inl 1,0-2.0 0.025
Z_out 20-3.0 0.025
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selection is shown in red. The mass_rate curves have a desired shape now. The
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Figure 4.9: Two scatterplots showing the control parameters for the final model.
We further refine the Area_Bypass and Area_Valve parameters. The red points
correspond to selected desired output parameters.

ration. In this particular case, approximately 1,680 new simulations are computed,
and iteratively loaded. Of course, the user can stop the simulation or request another
refinement at any time.

We used the multiple view setup to observe what is happening. The target values
for the injected mass, pressure in the SAC volume P_sac, and the needle accelera-
tion are set, and flow resistance parameters show a linear dependency. Figure 4.8
shows the flow resistance parameters on the top and the mass rate curves in the bot-
tom. Note the much denser parameter space due to the refinement. After a detailed
exploration, we are able to remove the influence of the parameters on the delay. We
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understand what is going on, the delay turns out to be logical, and the parameters
are set to 1.6 and 2.6 for Z_inl and Z_out.

4.3.3 Third Model

We are ready for the final step now where we further extend the model. It now corre-
sponds to the model in Figure 4.2. Note that the control parameters for Block I and
Block II are set (but they can be changed) and we tune the last part now. There
are four parameters in the last block: the bypass flow resistance (Res_Bypass),
the outlet flow resistance (Res_QOutlet), the effective flow area at the bypass seat
(Area_Bypass), and the effective flow area at the valve seat (Area_Valve).

Due to the model complexity we now calculate approximately ten simulations
per minute. 900 parameter variations are set and we start the visual exploration.
In contrast to the simple parameter refinement, the step change here represents a
model change. Internal data structures in the visualization tool have to be changed.
This is considered to be a larger step and the user has to wait a few minutes for the
first results. Once the simulation software computes the initial results, parameter
refinement can be done on the fly. During parameter refinement we continue the
visual analysis and the data is automatically updated. The target values for the
injected fuel mass (pilot and main) remain the same. The actuator is still fixed.

Figure 4.9 shows the parameters after the target values were selected. Two
parameters have no significant influence, the target values can be achieved with
all possible combinations of the flow resistances Res_Bypass and Res_Outlet. We
set the values to 2.0 and 1.0, respectively. The other two parameters show a far more
interesting behavior. A wide range of parameter values are initially investigated. It
is successively refined as we realized where we need more information.

Figure 4.10 shows the parameters as computed at the end. We use two itera-
tions, we refine the parameters once and then refine a subrange of parameters once
more. This represents parameter refinement, and the data in the visualization tool
is updated as new simulations are computed. During computation we continue the
visual analysis. Output values are used to steer the refinement. Based on the output
values we decide where to refine input parameters.

Figure 4.11 shows an example of the output parameter values as they are com-
puted in various steps. Resulting outputs from various iterations are highlighted in
the figure in order to illustrate results from various iterations.

Figure 4.12 shows the target injected mass, the corresponding pressure, control
parameters, and mass rate curves. Note the scatterplot on the far left showing the
same data (also in Figure 4.11) as the scatterplot from the very first model (Fig-
ure 4.2). The scatterplot in Figure 4.12 is zoomed in and shows the data from the
final iteration only. We are far off the target values at the beginning and by succes-
sive refinement and simulation steering we achieve a finer granularity around the
target area.
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Figure 4.10: Combinations of the control parameters as created during the iterations.
We have a coarse mesh of parameter values at the beginning, and we refine them
twice during the process. All combinations of the control parameters are shown
here, we can hide unwanted iterations during the analysis, if necessary.
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Figure 4.11: Six scatterplots showing output parameters as computed during six
iterations of simulation steering. We can see there are many scattered values in the
beginning. We then used interactive brushing in other views to get insight on how
these output parameters are changing. Finally we can identify the desirable area,
and the simulation results are refined in that area.

4.3.4 Final Model

We now set the final control parameters. Any of the data points of the injected mass
shown in Figure 4.12 can be selected. They all result in a desired behavior. We
have to select one set, however, as they can not be changed later. Due to the wanted
pressure and needle acceleration, we select the effective flow area at the valve seat
— Area_Valve and the flow discharge coefficient — mju to be 0.071 and 0.54,
respectively. Our injector now is set.

The actuator on the top used to drive the injection in a real setup was fixed up
to now. As stated before, the ECU of the engine will change the actuator during
operation. Our parameters, on the other hand, remain the same. They cannot be
changed at runtime.
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Figure 4.12: The final model. The target injected mass on the left is defined using
a quite narrow range here. The corresponding pressure, input parameters and mass
rate curves are shown. Everything seemed to be correct in this simulation model.

The last task is to check if the parameters also yield satisfying output for various
actuator curves. We vary the actuator settings and again several times refine the
parameters. Eventually we are satisfied and want to see all the response curves for
all the combinations of actuator parameters (1,600 combinations are chosen).

To our great surprise, we see that some curves exhibit a very unusual behavior.
The curve views in figure 4.13 show the response curves for Needle_acceleration,
and pressures in the nozzle and control volumes, P_nozle and P_control, with the
undesired peaks marked with red ellipses. Those peaks indicate system oscillations
at specific points. Any oscillation in system is dangerous and undesired. The ampli-
tude of any oscillation may rise above system limits for some unknown situations.

Now we have to find the reason for these oscillations in order to predict and
avoid such a behavior. Furthermore, especially for the fuel injection system, any
kind of secondary oscillations may open the nozzle at the wrong time and lead to
fuel inflow in the combustion chamber and an undesirable combustion process.

To investigate the oscillations further, we isolate the peaks using a line brush
in the curve view. The tool allows to simply draw a line across the curves, and all
curves crossing the line will be selected. The composite brushing functionality is
supported as well.

The scatter plot in Figure 4.13 shows pilot and main injection intervals, P_Int
and M_Int, with the peaks selected. An unexpected and very interesting finding is
the pattern at which peaks appear at 3 M_Int values. It shows oscillating behavior
in the parameter space. We can easily skip those values, and program the ECU not
to use these parameter values.

However, puzzled by this discovery, we want to investigate this phenomenon
further. We go back one more time. The parameters with most influence up to
now: mju, Area_valve, Area_Bypass and M_int are varied once more. Undesirable
peaks are present again, but the control parameters are chosen to be far away from
the settings which caused them. The previously set parameters are changed, and the
injector is finally set. Table 4.5 shows the final values of the control parameters.
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Figure 4.13: With the final model fixed, the actuator curves are varied. Quite sur-
prisingly, there are unwanted peaks in the output curves for multiple parameters.
Red ellipses show these peaks. It is not intuitively clear why and when they occur,
and we explored it in more details. The assumption that all parameters are set and
that actuator variations are just a routine fails and we had to go several steps back
and run new simulations. Corresponding values of M_int are shown in the scatter
plot on far right. Note the puzzling oscillating behavior.

4.4 Conclusion

The coupling of interactive visualization with the simulation back-end facilitates
fast prototyping of a system under development. We start from a non-optimized
initial prototype and the corresponding simulation model and through an iterative
process, going back and forth between different levels of abstraction, we refine the
simulation model and design a system that meets the requirements. In doing so we
are significantly reducing the number of simulation runs.

The brute force approach requires to run simulations for all possible combina-
tions of the control parameter values which is not computationally feasible. The
described approach requires only several thousands simulation runs to find a design
that meets the requirements.

The interdisciplinary setup of this project allowed to develop this steering so-
lution in the context of a real-world problem. It was very rewarding to see how
the tool facilitated new discoveries (Section 4.3.4), even quite surprising ones. The
discoveries provided much better insight and allowed us to anticipate and address
oscillation problems and thus create a much better design. Engineers still only sel-
dom use interactive visualization and usually analyze simulation results using static
2D charts, depicting few simulation runs simultaneously in most cases. They also
use automatic optimization methods, but our approach offers completely new view
and insights.

The three levels of iteration (simulation data, control parameters values, simu-
lation model) provide different levels of interactivity. While viewing the simulation
data is done in real-time, changing the simulation model introduces a noticeable
delay. However, since we can go back and forth between different levels, instead
for waiting for the simulation model update to propagate to the simulation data, we
use the simulation data level and continue our analysis until new simulation data are
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Table 4.5: Final control parameters. The Block IV parameter values are not analyzed
at this stage (listed for the sake of completeness).

Param. Name  Description Final Value
11 d_sac  Sac diameter 0.75mm
1.2 alpha_seat Needle seat angle 50degrees
13 c_turb  Turbulent coefficient 0.9
14 mju Flow discharge coefficient at nozzle holes 0.6
111 CV _size  Size of control volume 10mm’
112 Z_inl Inlet flow resistance in control volume 1.6

11 3 Z_out Outlet flow resistance out of control vol. 2.6
111 1 Res_Bypass Flow resistance through bypass 2.0
111_2 Res_Outlet Flow resistance through outlet 1.0
111 3 Area_Bypass Bypass effective area 0.032mm?
111_4 Area_Valve Valve effective area 0.07mm?
1V_1 HPP_Length Length of high pressure pipe (fixed) 300mm
1V_2  RV_Size Common Rail volume size (fixed) 30em?

generated. This approach is rather general and applicable to a wide range of design
problems.

We plan to explore a variety of design problems and related solutions to identify
some design patterns. We will further improve the interactivity of the developed
tool. Some semi-automatic support for drill-down, possibly involving approaches
to (semi-) automatically detect a region which seems to be out of the range of inter-
est will be researched as well. Finally, we will explore a collaborative, multi-user
version of the tool to “share” the design process among several experts.
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Abstract

In this paper we propose a novel approach to hybrid visual steering of simulation
ensembles. A simulation ensemble is a collection of simulation runs of the same
simulation model using different sets of control parameters. Complex engineering
systems have very large parameter spaces so a naive sampling can result in pro-
hibitively large simulation ensembles. Interactive steering of simulation ensembles
provides the means to select relevant points in a multi-dimensional parameter space
(design of experiment). Interactive steering efficiently reduces the number of simu-
lation runs needed by coupling simulation and visualization and allowing a user to
request new simulations on the fly. As system complexity grows, a pure interactive
solution is not always sufficient. The new approach of hybrid steering combines
interactive visual steering with automatic optimization. Hybrid steering allows a
domain expert to interactively (in a visualization) select data points in an iterative
manner, approximate the values in a continuous region of the simulation space (by
regression) and automatically find the “best” points in this continuous region based
on the specified constraints and objectives (by optimization). We argue that with the
full spectrum of optimization options, the steering process can be improved substan-
tially. We describe an integrated system consisting of a simulation, a visualization,
and an optimization component. We also describe typical tasks and propose an in-
teractive analysis workflow for complex engineering systems. We demonstrate our
approach on a case study from automotive industry, the optimization of a hydraulic
circuit in a high pressure common rail Diesel injection system.

5.1 Introduction

Recent advances in computation technologies provide an opportunity to compute
large simulation ensembles — multiple simulation runs of the same simulation
model using different sets of control parameters. Parameter spaces of complex en-
gineering systems, if not carefully sampled, can result in prohibitively large simula-
tion ensembles.
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Current emission regulations and efficiency goals are great challenges for auto-
motive systems designers. In order to meet strict time constraints and reduce the
time to market, system designers of modern automotive systems need powerful de-
sign tools to understand the systems, their behavior, and their responses to changes
of the design parameters. In this paper, we present a case study dealing with an
injection system, i.e., one of the key components of modern car engines. Target
users of the proposed solution are designers of complex systems that are based on
simulation ensembles. This paper is a result of a long-term collaboration between
visualization and simulation experts. We, a team of visualization, simulation, and
injection experts, developed the proposed approach, inspired by the actual applica-
tion in the automotive industry. Our collaboration included numerous interviews
and common sessions. We had regular meetings on a weekly basis for more than
six months. One of the injection experts with more then 15 years experience in sim-
ulation, also coauthors the paper. Additionally we observed and interviewed four
more simulation experts. Hence, when we say we throughout the paper, we mean
the whole team, the visualization and the simulation experts. In our opinion, neither
group alone could come to such a solution. The new approach is the result of a long-
term research effort to address and overcome the described obstacles in the design
of a complex system. Although we developed the newly proposed approach with
experts from the automotive industry we are confident that the proposed approach
can be used in other domains where complex simulation data in high dimensional
parameter spaces have to be explored and understood.

Properly specifying the simulation parameters is a tedious task, and, at the same
time, crucial for the effective utilization of simulation. There is an inherent trade-
off between the simulation accuracy and its speed. Better accuracy requires more
simulation points (i.e., simulation runs) to better cover the parameter space. More
simulation runs increase the simulation time and lengthen the design process. A
system designer needs help to navigate the simulation space and explore the most
promising combinations of simulation parameters. With proper support, the de-
signer can be more efficient and productive.

Simulation results often have a complex structure and a simplified representa-
tion. A common workflow includes the extraction of certain scalar features prior
to the analysis. These features are then studied in the automatic and interactive
analysis. Current state of the art techniques also support the consideration of com-
plex data in interactive studies [KMG™06], but these techniques do not support an
automatic analysis at the same time. Our work targets the interactive hybrid visual
steering of a simulation ensemble which combines simulation and optimization with
interactive visual steering to provide an integrated design environment.

The identified tasks for an integrated, hybrid steering environment are summa-
rized in Table 5.1. These tasks are abstractions of the observed real-world practices
and concrete tasks/activities in the automotive design workflow. Supporting these
tasks is the key requirement that guided the development of our integrated, hybrid
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Table 5.1: Hybrid steering tasks abstractions.
A Explore and Analyze the Ensemble
Al | Parameters’ Sensitivity | Identify simulation results for
certain control parameters
and explore the parameters’
sensitivity.
A2 | Model Reconstruction | Identify control parameters for
a desired output.
A3 Comparison Compare output results related
to different areas of the
parameter space.

R Compute the Regression Model

R1 Model Validation Show the model accuracy across
the parameter space.

R2 Model Definition Partition the parameter space

and define relevant parts for
the regression model building.
R3 | Automatic Optimization | Automatic optimization using
the regression model.

D Generate the Data
D1 Initial Parameter Select regions in the parameter
Space Sampling space to be initially sampled.

D2 | Interactive Refinement | Select regions in parameter
space which have to be

resampled.
D3 | Automatic Optimization | Choose refinement regions based
Refinement on automatic optimization.

steering environment and our hybrid visual steering approach.

The main contributions of this paper are: (1) A case study demonstrating Hybrid
Visual Steering, a novel simulation ensembles steering and exploration approach.
This approach combines interactive exploration and analysis with automatic opti-
mization based on regression models; (2) The task abstractions (Table 5.1) and the
supporting visualization system, including two improved views, the Parameters Ex-
ploration View and Regression Exploration View. (3) The tight integration of all
relevant components in an interactive workflow; and (4) An evaluation of the pro-
posed approach based on a case study from the automotive industry including user
feedback.

We build on our previous work [KMG106, MDG*13, MGJ*10, MGJH11,
MGIJHOS8] which integrates multiple simulation runs and visualization and focuses
exclusively on the interactive exploration and steering. Here we introduce the adap-
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Figure 5.1: Overview of the proposed approach. Standard simulation: A collec-
tion of control parameter values is used for a single simulation run to determine
and visualize simulation results (extracted scalar features). Ensemble simulation:
Design of experiment methods are used to create several collections of control pa-
rameters. The resulting output values are aggregated and visualized together with
the control parameter values. Automatic optimization: Aggregated parameter val-
ues are used to create a regression model which is used for optimization using the
defined optimization constraints. This approach is usually decoupled from visual
analysis, or visualization is used to show optimization results only. Complex sim-
ulation results: All complex simulation results are visualized. Ensemble steering:
During visual exploration additional control parameter values for new simulation
runs are selected by means of visualization. Hybrid steering: A unified approach
which enables the exploration of parameters, complex results, extracted features
and optimization results. Furthermore, it uses results from automatic optimization
to guide the user during interactive visual steering. The hybrid steering also supports
regression model building and optimization constraints and goals specification, all
within the same framework.
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Figure 5.2: Simulation ensemble data model: control data points, output data points
and features. For each output data point y’, there can be an output value yz- that is
a time series (a curve). The time series is replaced by one or more scalar values
(feature f) in the feature space.

tive exploration of the simulation space, based on regression modeling and the use
of optimization to find an optimum within a subset of the simulation space. This
new approach covers the spectrum between a fully automatic simulation and the
manual adjustment of simulation parameters.
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5.2 Related Work

Simulations are usually computationally intensive and are often combined with in-
terpolation for sensitivity analysis and optimization. An example is the Kriging
interpolator, representing a global metamodel that covers the whole experimental
area [VBKO4]. However, we can also iteratively refine the simulation model, in
addition to the refinement of the simulation parameter values.

If data analysis is a postprocessing step after a simulation batch is com-
pleted, errors invalidating the results of the entire simulation may be detected
too late [PJB97]. Computational steering and interactive visualization started
in 1980s and 1990s as useful visualization paradigms for the computational sci-
ences [CRS96] enabling users to interactively steer computations, change simula-
tion parameters and instantly see the simulation results. The simulation results are
usually presented using scientific visualization methods [HEvLS03].

Computational steering integrates modeling, computation, data analysis, visu-
alization, and data management components of a simulation [PJB97]. However, in-
tegrating simulation within computational steering can be a very difficult problem.
We need to address four facets of the problem [JPHT99]: control structures, data
distribution, data presentation, and user interfaces. Since computational steering is
a highly interactive process, the user interface is a critical component [MvWvL99].
This early simulation steering approaches usually deal with a single simulation run
which lasts for a long time. The idea is to monitor simulation execution and to
change some parameters if preliminary results seem to be wrong. We do rely on
basic simulation steering principles, but we deal with simulation ensemble steering.
Our simulation can be computed relatively fast, and we steer the ensemble creation,
not a single simulation run.

In each iteration of computational steering the user can define a region of interest
in the parameter space that should be explored in more detail. Additional simulation
runs are needed to cover that region, constituting a new “simulation experiment’.
The design of such an experiment, i.e., the selection of the simulation points in the
region of interest, is very important since we would like to reduce the number of
simulation runs while providing a good coverage of the region of interest [Kle07,
Ony09].

While the support for a user controlled simulation is at the very core of com-
putational steering, there is very limited support for user controlled optimiza-
tion [BP10]. Very often there is no clear or unique optimal solution. A user has
to analyze, in an interactive fashion, trade-offs and interdependencies between ob-
jectives [PGR99, SBC*04, TMHO09]. Using an analytical representation of the ob-
jective function the user can explore the values of the objective function in the re-
gion of interest [MMO6]. Such values can be dynamically updated in all views
and brushes (selections) [PTMBO09]. All these solutions are not integrated in an
interactive steering environment. They focus on optimization based on a batch of
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precomputed simulation runs. In our case, we use optimization as a guideline in
interactive steering in a fully integrated workflow.

The simulation data consists of discrete simulation points while the region of
interest is usually a continuous space. We can use the simulation points to “span”
that space using a surrogate (regression) model that approximates simulation results
over the entire region of interest. The number of grid points in full grid methods
depends exponentially on the number of dimensions. However, using sparse grids
can reduce the dimensionality problem under some smoothness conditions. The
sparse grid method, originally developed for the solution of partial differential equa-
tions [Zen91], is also used for interpolation and approximation. The properties of
the hierarchical representation and approximation properties of sparse grids are dis-
cussed by Bungartz and Griebel [BG04b]. Improvements over the classical sparse
grid approach include spatially adaptive refinement, modified ansatz functions, and
efficient regularization techniques [PPB10].

Simulation steering and dealing with ensemble simulations require control over
multiple heterogeneous simulation runs. World lines [WFR ™ 10] integrate simula-
tion, visualization and computational steering to deal with the extended solution
space by representing simulation runs as causally connected tracks that share a
common time axis. The user has to select parameter combinations for new runs,
there is no automatic support in selection of the new design points. Konyha et
al. [KMG™106] and Matkovic et al. [IMGJ " 10, MGJH11] use interactive visual anal-
ysis for engineering problems with large parameter spaces. This is a purely inter-
active solution without an automatic support for steering. Berger et al. [BPFG11]
employ statistical learning methods to predict results in real-time at any user-defined
point and its neighborhood. The user is guided to potentially interesting parameter
regions and the uncertainty of predictions is shown using 2D scatterplots and par-
allel coordinates. Booshehrian et al. [BMPM12] present a parameter space explo-
ration approach from the fishery domain. These systems are not coupled with sim-
ulation, they operate on a set of predefined simulation runs. Engel et al. [EGG™12]
describe a novel interactive visual framework for dimensionality reduction of high-
dimensional single particle mass spectrometry data. Bergner et al. [BSM*13]
present ParaGlide, a visualization system designed for interactive exploration of
parameter spaces of multidimensional simulation models. They do initiate new data
generation from the visualization, but the selection of points is based solely on user
input, there is no support from automatic methods.

Machine learning techniques such as support vector machines [BGV92, CV95,
SS04b] or relevance vector machines [TipO1] can be used to create linear, quadratic
or nonlinear surrogate models. The validation of a surrogate model is difficult in
general [PBK10]. We assume that our regression models are validated.

Although the related work covers parts of our proposed solution, none of these
approaches, according to our best knowledge, integrates all components in a unified
framework.
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5.3 Simulation and Visualization

Figure 5.1 illustrates our Hybrid Visual Steering approach and its evolution. The ba-
sic workflow in simulation includes model definition, setting of control parameters,
simulation, feature extraction from complex simulation results, and the visualization
of the extracted features. Feature extraction is necessary if the simulation produces
complex data that is not suitable for standard direct visualization. The blue parts
in Figure 5.1 correspond to such a traditional procedure. Advances in computation
make it possible to compute many runs for the same simulation model with different
sets of control parameters — a simulation ensemble.

In this case the parameter space has to be sampled and different combinations
of control parameters have to be chosen. This is a well-known problem (design of
experiment) for which there are several available techniques. A simulation ensem-
ble results in a combination of multiple complex simulation results and multiple
scalar features (red parts in Figure 5.1). If an automatic optimization is desired,
a regression model can be computed based on the control parameters and the ex-
tracted scalar features. This step is usually decoupled from the visualization (light
red parts in Figure 5.1). In our previous work we have demonstrated that also com-
plex simulation results can be integrated in the visual analysis [KMG™06, MGJ*10]
(green parts in Figure 5.1). Ensemble steering makes it possible to select new sets
of control parameters from the visualization [MGJHOS] (purple parts in Figure 5.1)
in an iterative, interactive manner.

When the simulation space is very large, the iterative design process can be time
consuming and tedious. We would like to help the domain expert by automatizing
this process as much as possible. Therefore, we couple automatic optimization with
the visualization in a hybrid visual steering environment (orange parts in Figure 5.1).
Our framework supports all identified tasks for a complex system design.

Integrated design environments are not readily available for industrial design.
Tools are used separately or as partially integrated tools which significantly reduces
efficiency. The integrated design environment we developed for the common rail
injection design resulted, according to the domain expert, in a speed up factor of at
least ten compared to the conventional approach where all tools are used separately.
We also talked with four more domain experts at the AVL company working on
optimization, timing drive, hybrid vehicle, and crankshaft design. They informally
evaluated our integrated design environment prototypes and estimated a similar po-
tential for speed up.

5.3.1 Formal Background
We often model the simulation process as a function S that maps the control parame-

ters X = (xy,...,X,) (a control data point in R™) to the output values y = (y1,...,yn)
(an output data point in R") where m is the number of control parameters and r is
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the number of outputs. Due to the physical constraints of the simulated system, the
set of feasible control data points C is a subset of R” and the set of feasible output
data points O is a subset of R"”. A simulation ensemble E is a set of pairs of data
points (x,y),x € Candy € O.

Traditional data analysis approaches, such as statistics or OLAP techniques
[Tho97], usually use a relatively simple multi-dimensional model [CMS99, Sam06]
(simple with respect to the types of data dimensions) using data tables to capture
relations among control parameter values for the same simulation run. While the
control parameters are almost always numerical, scalar values, the output values
also often include time/data series so O is no longer a subset of R".

Since simple data tables [CMS99] are not sufficient, we need an adequate simu-
lation ensemble data model to deal with more complex data. Our simulation ensem-
ble data model uses a two-level data hierarchy for the output data points (Figure 5.2).

For each output data point y’ and y; that is a data series, we have a separate
set of “sub-points” with its own length and number of dimensions (parameters).
Our discussion is limited to two dimensions. We can select one of the data series
dimensions as the independent variable (e.g., time) and the other dimension as the
dependent variable. Such data series can be considered a function of one variable
and represented as a curve. The curve is replaced by one or more scalar values

. ;. i
(features f) to create a feature point z' in the feature space F, a subset of R",
/
n > n.

In other words, the scalar values y' from y’ are directly used in the feature space
as the corresponding values z; in z’ while each data series value y'; from y* is replaced
by one or more scalar values (features f) in z'.

5.3.2 Regression Model

If we can approximate the mapping S from the control parameter values to the simu-
lation results using a regression model, we can estimate the simulation results much
faster, compared to actually running the simulation. In order to estimate S, a number
of simulation runs are executed to get a set of input-feature pairs (simulation ensem-
ble), {(x,z)} as training data. A regression model R is built from the training data
as the surrogate model of the simulation.

After the regression model is trained, we can then use it to estimate the sim-
ulation results for arbitrary input values. Or, more importantly, it can be applied
in an optimization process, of which the goal is to obtain a set of control param-
eters so that the simulation results satisfy a set of desired constraints, such as the
maximization of a linear combination of the output variables.
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5.4 Integrated Interactive Steering Workflow

Hybrid Visual Steering integrates simulation, optimization, and visualization in a
unified framework enabling the user to conduct simulation ensemble steering. After
the computation of a set of initial runs the user explores the simulation ensemble,
and detects a region of interest. New simulation runs are conducted to adaptively
increase the resolution of the simulation points in that region and augment the sim-
ulation ensemble. Automatic optimization supports the user in identifying regions
of interest. However, since the proposed optimum values are based on regression
models (approximation) built based on scalar features extracted from actually more
complex simulation data (again, an approximation), we can not rely on them. The
user needs a hint on the regression model accuracy in the detected region, and de-
pendent on this accuracy more or fewer additional runs will be computed. The
overall workflow can be summarized as:

e Conduct simulation runs based on the design of experiment in the preceding
iteration (for the first iteration create an initial design of experiment).

o Integrate the new simulation runs with the existing data (if there are any).
e Visually analyze the data and select an objective function.

e Set a regression model to explore the objective function.

o [dentify a region of interest.

o Use optimization to determine (seemingly) optimal value(s).

o If the result of this optimization is not satisfactory, create a new design of
experiment with an increased resolution.

The realization of a hybrid visual steering framework also represents a technical
challenge. All components do exist in current design processes, but they are not
coupled in a unified framework. Furthermore, not all of the components support
the identified tasks, and they have to be extended. The following components are
needed to realize an integrated hybrid visual steering environment:

e Design of Experiment (DOE) Component: supports the specification of a
subspace of possible input values (a shape in a multi-dimensional space) and
the specification of a distribution of points within this space.

o Simulation Component: simulates the phenomena of interest at a compara-
bly accurate level.

e Analysis and Exploration Component: supports feature extraction, ad-
vanced interaction, and the visualization of complex and scalar simulation
results. In the case of steering, it also supports the interactive selection of
subspaces in the parameter space, and the specification of new design points.
Finally, it also controls regression model building, evaluates it, and shows
optimization results.
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Figure 5.3: Parameters Exploration View: a) Histogram for one parameter. Note
that bins which are shown empty might also contain just a few items which are not
visible if the display resolution is too low. b) Empty bins are shown in a different
color (grey). This design was preferred by domain experts over highlighting non-
empty bins. c¢) Histogram showing brushed runs (red) in relation to the overall
distribution (blue). d) Constraints bar below the histogram that is used to specify
optimization constraints. e) Six parameters shown in the view. f) Six parameters
with constraints and optimum values. Some items are brushed and they are shown
in red.

e Regression Model Building Component: builds a regression model from (a
subset of) the already computed simulation runs.

e Automatic Optimization Component: computes an optimum using the re-
gression model, subject to the interactively specified constraints.

We use AVL’s [AVL15] Design Explorer which supports DOE definition, regression
model building, and automatic optimization and AVL’s CruiseM for simulation. We
extend the existing interactive analysis and exploration component to support all
analysis tasks listed in Table 5.1. We exploit the well-known principle of coordi-
nated multiple views and integrate all components in a unified framework.

5.5 Tasks and Steering Design

We have identified three main groups of tasks (Table 5.1). Each group of tasks has
specific requirements. The main questions are how to visualize control parameters
and simulation results, how to design the interaction, both for ensemble exploration
and for optimization constraints as well as goals definition, and how to specify new
points in the parameter space. Based on our accumulated experience and the cur-
rent state of the art in exploratory visualization, we rely on the coordinated multiple
views principle. The main idea is to depict multiple dimensions using several views
and to allow the user to interactively select (brush) subsets of the data in a view.
Consequently, all the corresponding data items in all linked views will be consis-
tently highlighted.
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5.5.1 Control Parameters Visualization

There are several possibilities for sampling the parameter space. The parameter
space can be continuous, or discrete. However, even if the parameter space is con-
tinuous, we only select a limited, discrete set of parameters, resulting in a discrete
parameter sample.

As we deal with a multi-dimensional parameter space, well-known techniques
from visualization can be used. In the case of a continuous parameter space, parallel
coordinates are often used [PBK10]. Projections to 2D using scatterplots are also
frequently used. Furthermore, histograms and bar charts are also regularly used to
show values of different parameters [BMPM12].

We needed a view which supports the identified tasks (Table 5.1, tasks A1-A3,
R1-R3, D1-D3). We can abstract the tasks on a finer level when it comes to the
parameter space visualization and identify general task requirements:

e Show the distribution of each parameter (A1-A3, R2, D1, D2).

Show the distribution of brushed simulation runs (A1, A2, A3).

Support the interactive specification of optimization constraints for the pa-
rameters (R3).

Initiate regression model building (R2).

Show the automatically computed optimum values (A3, R3).

Keep track of the automatic optimization process (R3).

None of the standard views supports all these requirements. We designed a new
view — the Parameters Exploration View which meets the design requirements. It
is inspired by the attribute explorer [ST98]. We add additional bars for specifying
optimization constraints and additional interaction capabilities.

The basic idea is to show each parameter as a histogram with a user defined bin
count. Figure 5.3a shows the histogram for one parameter. Basic information, like
the parameter name, its range, and the maximum number of counts across all bins
are shown on the left. We do not show this information under the histogram as we
stack histograms vertically. There are five bins in the histogram in Figure 5.3 that
seem to be empty. As the number of runs per bin can vary, and the histograms have
a limited vertical space, some non-empty bins can occupy only one or even less than
one pixel. We realized that it is important to mark really empty bins.

During an informal user study with five engineers at the AVL company, we
presented them with two alternatives, explicitly marking empty bins and explicitly
marking non-empty bins. All engineers preferred the solution where empty bins are
marked with a gray rectangle. Figure 5.3b shows such a solution. We see that there
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are only four empty bins. There is a bin with just a few runs, which is not marked
as empty. This information cannot be seen in Figure 5.3a.

The view is fully integrated in the coordinated multiple views environment and
also shows the brushed runs. Figure 5.3c shows one histogram showing brushed
runs (red) in addition to the overall distribution (blue).

When designing a complex system the user wants to test various hypotheses
and adjust optimization constraints. The optimization constraints change during
the analysis process. We add a constraints bar below the histogram (green bars in
Figure 5.3d) to support the interactive specification of constraints. The constraints
bar is used to specify constraints for each parameter. As we binned the parameters a
simple click in the constraints bar sets the constraints to the specified bin. The user
can extend the constraints bar by additional clicks or simply by dragging one side
of any rectangle in the bar. The dragging includes additional bins per default, but it
can also be set to specify ranges not aligned with the borders of the bins.

Figure 5.3e shows the Parameters Exploration View for six control parameters.
The computation of a new regression model is also initiated from the Parameters
Exploration View. In the left part of the view, which we call view control (not
shown in Figure 5.3), there are two buttons which start the process. One initiates
the use of all simulation runs and the other computes the regression model based on
the brushed runs only. The user can also choose a regression building method.

We also want to show the computed optimum values. We depict them as a poly-
line, passing through all histograms, similar to a parallel coordinates polyline. The
line passes through the constraints bar as well. The lines are depicted in two colors,
depending if they are a result from a regression model that was computed based on
all runs or only on a subset of all runs. As the user hovers over the optimum line,
corresponding constraints are shown in the constraints bar. The user can also hide
the optimum lines if they are not of interest. There is a list of all computed optimum
values (not shown in the figures) with user specified names, so the user can activate
hidden optima on demand. Figure 5.3f shows the view for six parameters with an
automatically computed optimum. The view does not only show brushed values but
can be used to brush as well. A simple click on a bin selects the corresponding
parameter values.

5.5.2 Simulation Results Visualization

Both parameters and the simulation results have to be shown together. As described
in Section 5.5.1, we deal with a complex data model where scalars and curves are
considered as elementary data units. In the case of an ensemble, this means that for
each dimension we have a collection of scalars (as usual) or a collection of curves.
We call all curves in an ensemble that belong to the same dimension a family of
curves [KMG™06].
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When it comes to the exploration and analysis of ensemble simulation data
(tasks Al, A2, and A3), we have to show the simulation results. Standard views,
such as scatterplots, parallel coordinates, or histograms are most often used during
our study. For more complex outputs, in particular for the families of curves, we
use a curve view which depicts all curves simultaneously also employing a certain
density mapping, when needed. Brushing is extensively used in the exploration of
such ensemble simulation data. Having all complex outputs depicted, we can easily
realize the reconstruction of a model (task A2) which is a tedious or impossible task
using analytical methods only.

We use regression models that are evaluated and tuned. There are multiple meth-
ods for evaluating and tuning a regression model (a detailed description is beyond
the scope of this paper). We are dealing with a high-dimensional space and many
time-dependent state variables are represented by aggregates. Although the model
is tuned, it is practically impossible to find a model which fits all simulation points.
Therefore, we also need to show the accuracy of the regression model (task R1). If
an automatically computed optimum belongs to an area where the regression model
is not a good approximation of the simulation results, we need more simulation runs.

In order to show the model’s accuracy, we simultaneously show simulation re-
sults and approximated results (from the regression model) in the Regression Ex-
ploration View. The Regression Exploration View uses a projection of the high-
dimensional output (solution) space (simulation results and regression model re-
sults) onto a plane determined by two selected output values (a scatter plot). During
the design process a designer should always explore several such projections (dif-
ferent pairs of output values).

There are several ways to visualize pairs of points in the scatterplot. We
showed different designs to five experts from the AVL company. We did not end
with a uniquely preferred solution, as different tasks require different approaches.
Throughout the following examples the simulation based points are orange and the
regression model based points are blue. Of course, the user can also configure these
colors.

The first idea is to show the pairs of points and connecting lines. Figure 5.4a
shows such a case. In an ideal case the orange and the blue points would overlap
and there would be no lines. In a realistic case the lines depict the accuracy of the
regression model. The lines help in deciding if a computed point is a good enough
approximation in a certain region. In case of many points (Figure 5.4a) there is a
large overlapping problem and the user gets just a rough impression of accuracy.
However, during a drill-down process in the analysis, the number of relevant pairs
is reduced and the view becomes more useful. Figure 5.4b shows the same view for
a subset of points. The lines are easier to identify now, and there is in general less
clutter.

We also enable the user to show only simulation or only approximation points,
and then, to use color coding and point size to encode the accuracy (the line length
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in the other solution). The view is less cluttered as it has less points (Figures 5.4c
and 5.4d). We also offer a design where only color or only point size is used, but
all domain experts preferred the combined approach. Figure 5.4e shows the same
data as in Figure 5.4c using color only. The user can turn the context on or off. The
context use was very task specific, users sometimes preferred to see the context and
sometimes they wanted no context.

Furthermore, the users are also considering the direction and magnitude of the
lines. Inspired by the work of Turkay et al. [CPH12, TLLH13], we also show only
the deviation lines. In this case all start points are moved to the origin, and the lines
and the end points are shown. In an ideal case there would be no lines, again. With
this setup, it is easy to brush all lines that have a certain slope and/or magnitude.
Figure 5.4f shows such a visualization. Figure 5.5 shows two different areas, one
where the model is more accurate (Figure 5.5a) and one where differences between
the simulation and the regression are much bigger (Figure 5.5b). Figure 5.5b also
shows the context.

5.6 Case Study

We use an example from the automotive industry to evaluate our proposed approach.
Together with five domain experts we conducted several analysis sessions in order
to optimize a common rail Diesel injection system. All of these experts have a long
(10-20 years) experience in automotive simulation. The sessions were conducted
at AVL [AVL15], one of the worldwide leaders in powertrain measurement and
simulation systems.

Modern simulation software can be used to simulate injection systems and to
help engineers to understand and tune injection parameters. Many phenomena can
not be easily measured experimentally and the only way to get more information is
through computational simulation. We used the AVL CruiseM simulation software
to simulate a complete injection system [AVL15]. We simulate an injection system
consisting of four injectors. The injectors are produced by only few manufacturers.
Hence the engine manufacturers have to tune them according to their specific needs.
The whole system, including the rail and high-pressure pipes, is also different for
each engine. The simulation model has more than 200 elements. Each element in
the simulation model has several control and state variables. In this case study we
focus on 6 parameters and explore different simulation results.

The main principle of a common rail system is the use of a high-pressure rail,
common to all cylinders. The high pressure in the rail is used to precisely inject fuel
into the cylinders. Electronically controlled actuators open and close the injectors.
Sometimes, in one cycle, the main injection is preceded by a pilot injection, or
even several of them. All this happens at least several hundred times per second.
A more detailed description of common rail injection is beyond the scope of this
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Figure 5.4: Regression Exploration View: A projection of the high-dimensional
data points on a plane determined by two output values, X_max and Q_inj_max.
The simulation results are shown in orange. The regression model results are shown
in blue. a) Simulation points and corresponding regression model points are con-
nected by a line to make the difference between them visually explicit. The view is
cluttered due to the large number of points. b) Only brushed points are visualized.
As there are much less points, clutter is also reduced. The context shown in gray can
be turned off. ¢) and d) Alternative visualizations where only simulation points (c),
or only regression points (d) are shown. The length of the lines (inverse accuracy
of the model) is coded using color and point size at the same time. All points are
shown (as in ¢). e) Only color is used to code the accuracy, the view c¢ is preferred by
domain experts. f) All lines are drawn from the origin which eases to brush points
having a large deviation, or which deviate in a certain direction.

paper [BDHKOS, BH97].

Due to high pressures and quick changes in the system, a modern common rail
injection system operates in a condition which cannot be described sufficiently pre-
cise using classical fluid mechanics. Furthermore, in a common rail system each
cylinder and injector is influenced by the others through the rail. This requires a
careful rethinking of traditional system design. Figure 5.6 shows a modern injec-
tion system for a four-cylinder engine.

When tuning an injection system, engineers have a set of goals they have to
meet. If the process values are not within a certain range, the engine will either run
inefficiently or not at all. These results include mass injection rates, injection pres-
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Figure 5.5: Two interesting areas are brushed. a) The regression model is quite
accurate here. b) A much less accurate area is identified.
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Figure 5.6: A modern common rail injection system used in Diesel engines of cars.
There is one injector for each cylinder, and a common rail which utilizes high pres-
sure (over 1500 bar) to precisely control the injectors’ opening and closing.

sures (for each injector and the overall system), and the pilot and main injections
time intervals. Corresponding control parameters for the desired ranges have to
be explored (task A2, model reconstruction). A poor injection automatically leads
to poor combustion, thereby increasing consumption, pollution, and power loss. An
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additional challenge in the design of a common rail injection system is to understand
and prevent the appearance of unwanted pressure oscillations. Modern systems op-
erate at a pressure of over 1500 bar. The oscillations can lead to amplitude jumps
of over 400 bar. Such large oscillations can cause an undesirable behavior of in-
dividual injectors and introduce differences among the injectors. This results in a
reduced efficiency and an increased emission — exactly the opposite of the design
goals.

In this case study, we are interested in the high-pressure pipe geometry and the
common rail itself. We have studied the geometry of the common rail and the high
pressure pipes and the influence of the common-rail pressure and the pilot injection
timings on the overall system performance.

There are four injectors with pilot and main injections, four high-pressure pipes
and the common rail. We need advanced tools to comprehend the behavior of such
a complex system. We assume that the individual injectors are tuned, and we study
(for two pilot injections and the main injection) the injection pressure, the amount
of injected fuel, the needle opening velocity and the needle closing velocity.

We are exploring the system at the individual cylinder level and at the overall
system level. At the cylinder level we aim at the following:

o Small differences among injection pressures of the individual pilot injections.

e Small differences among the amounts of the injected fuel during the individ-
ual pilot injections.

e Maximum possible needle opening and closing velocities for two pilot injec-
tions and the main injection.

o Good damping of pressure oscillations that can occur within the high-pressure
pipe.

On the overall system level we are looking for minimum possible differences among
injection pressures for the individual cylinders and among the injected amounts of
fuel for the individual cylinders. Besides these goals, the injection curves have to
be of certain shapes, depending on the engine operation regime.

5.6.1 [Iterative Analysis

After creating the model we need to decide which parameters will be varied. We
focus on the six most relevant parameters: L_[line and D_line (the length and diam-
eter of the high pressure pipe), V_rail and rail_pressure (the volume of the rail and
the pressure inside the rail), V_inlet (the volume of a junction between the rail and
the high pressure pipe) and pilot_start (the starting time of the first pilot injection
measured in degrees of crankshaft rotation).
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Figure 5.7: The initial view configuration (more than 2700 records). The Parameters
Exploration View is shown in the upper left corner. The other views depict selected
state parameters studied during the analysis.

We vary each control parameter and compute 2700 simulation runs. One simu-
lation run takes approximately 200 milliseconds on a standard single core desktop
PC. Several simulations can run simultaneously when multiple cores are available.

More than 30 output values (time series — functions of the crank angle) are
computed per run. Once the simulation values are computed, more than 30 features
per run are computed as well. Some of the features are computed from one curve
(e.g., its maximum), and some are based on several curves. Table 5.2 shows a small
subset of the computed scalar features.

All values of each run are computed for two revolutions of the crankshaft (720
degrees). The result is a complex data set where each record has some scalar at-
tributes and some time series attributes (all state parameters). Since the computation
of the regression model and the optimization expect scalar values, extracted scalar

Table 5.2: Scalar features of time series simulation values.
State parameter Explanation

P_m_diff Absolute difference between the maximum pressure during
the main injection for the first and the third cylinder.

m_m_diff Absolute difference between the injected fuel mass during the
injection into the first and the third cylinder.

K d3 A damping value.

P3_pt_diff Absolute difference between the maximum pressure for the
first and the second pilot injection (third cylinder).

m3_pt_diff Absolute difference between the injected fuel mass during the

first and the second pilot injection (third cylinder).
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features are used to approximate the model.

After the computation of the initial set of runs we started the data exploration
and analysis. Not all of the runs generate feasible results. Some the high pressure
parameter combinations result in a too low injected fuel mass, for example. Fig-
ure 5.7 shows the initial setup of our analysis. The Parameters Exploration View is
placed in the upper left corner and it remained there during the whole session. The
other views are often reconfigured, depending on the current analysis goals.

Three of the five users had experience with interactive visual analysis prior to
this case study. One user reported after the study that "Seeing all results at once,
although some are not feasible, represents a great advantage. I can see results in
context now, and not each run separately as up to now.” In order to explore how
outputs change when control parameters change (task A1) we use brushing. By
moving the brush across the parameter space all corresponding outputs are high-
lighted consistently. Another user commented "Seeing how outputs change when I
move the brush adds additional quality to conventional sensitivity analysis. I get a
much better impression now."

The model reconstruction task focuses on finding parameters which result in
desired values for scalar outputs, and certain curve shapes for curve outputs. Curve
shapes are crucial for an efficient injection. For model reconstruction (task A2), we
simply select the desired values of the scalar outputs and the desired curve shapes.
This is practically impossible to do analytically becomes very intuitive now. We
brush desired shapes and undesired shapes as well. Some oscillations occur for
some combinations of control parameters and it is important to understand when this
happens. We also use multiple composite brushing. The user can select different
subsets in different colors and interactively change any selection. This proved to
be perfect for various comparisons (task A3), as stated by one user "Comparing
several scenarios is straightforward using multiple brushes. Similar comparisons
are simply impossible using a conventional workflow where we analyze each run
separately, and compare the results afterwards.”

We identify the area in the parameter space where a possible optimum could
be. Automatic optimization is used to find the optimum instead of trying to regu-
larly fill in the range with new design points (which would result in many additional
simulation runs). The automatic optimization can be started from within the tool.
The parameters view is used to specify which runs are included and the regression
model is created. From now on all scalar values can be computed using the re-
gression model. We specify the optimization constraints and compute the optimum
based on the regression model. All these steps are performed in the integrated envi-
ronment that was appreciated by a user: "I could never set up optimization so fast. 1
also see all results together with the initial runs."”

We run the simulation (not the regression model) for the optimum point. The
simulation tool is started automatically, a new run is computed, and the simulation
results are loaded in the visualization tool. All outputs are computed by the sim-
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ulation for the computed optimum point. Of course, these values differ from the
values computed using the regression model. While the regression model is only an
approximation we know it is precise enough to indicate the region of the optimum
in the specified subspace. However, we are aware that the optimum is computed
using an approximation, so we propose to compute additional points in the neigh-
borhood of the optimum. For each additional point a simulation run is needed.
The number of additional points can be specified dependent on model accuracy in
the optimum’s neighborhood. In this case we generate 244 new points around the
optimum. The points are mostly in the constrained space, but we allow a slight devi-
ation if the optimum is on a border. The points are generated using the full-factorial
algorithm [Puk06].

The computed optimum point is depicted in the Parameters Exploration View
and in the other views. If better points exist, they are displayed and can be selected
by the user. One user commented: "The suggestions of where to refine the parame-
ter space based on optimization speeds up the steering. The model accuracy shown
indicates the quality of the optimization results. Seeing all runs all the time is simply
unmatched in a conventional workflow. I can also see all curves which are normally
not available when an optimization based on scalar features is conducted. I would
estimate a speedup of at least an order of magnitude when designing complex sys-
tems."”

Figure 5.8 illustrates a typical workflow from an analysis session.

5.6.2 Regression Model Modification

The following example illustrates how the regression models influence the com-
puted optimum. At one stage, we had 3188 simulation runs in the ensemble, as
we had continuously added runs to the ensemble. We computed an optimum and
additional points in the neighborhood. We wanted to minimize P_m_diff. The scat-
terplot in Figure 5.9a shows the scatterplot where P_m_diff is on the x axis. The
computed minimum is dark green and all points from the optimum’s neighborhood
are pink. We clearly see that there are better points in the neighborhood. The same
data in the parallel coordinates (Figure 5.9b) shows two clusters among the pink
items on the first axis, P_m_diff. The optimum is rather high, and it seems as if the
upper cluster is attracting the optimum.

It is possible that we have a high gradient which influences the regression model.
A new regression model is computed based on a subset of the points only. The
points with high P_m_diff values are excluded, and new optimum is computed. The
scatterplot (Figure 5.9c) and parallel coordinates (Figure 5.9d) show the original
optimum and the new optimum in light green. The new model fits much better and
the new optimum is smaller (remember that we wanted to minimize P_m_diff). We
also computed the optimum using a model based on even more neighboring points
but the outcome was almost the same. The curve shapes for the new optimum are
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Better points are brushed in the scatterplot. We have to check if the curve shapes are
still acceptable. In this particular case, the curves have acceptable characteristics, and
one of the points is selected as an optimum.

The simulation tool is used to compute values for the optimum point (curves have to be
computed). Additinally points in the neighbourhood of the optimum are also computed.
All points are vit Points in the nei are shown in pink, and computed
optimum in dark green. The x-axis of the scatterplot shows P3_pt_diff. There are better
points then the computed optimum. 4. 5.

Figure 5.8: An example of a typical analysis iteration. 1. The Parameters Explo-
ration View is used to set the initial ranges of the control parameters. 2. A regression
model is computed based on the already computed simulation runs. Time series data
are aggregated. 3. The Parameters Exploration View shows the first computed op-
timum. The green poly-line connects the optimal control parameters. 4. Left: the
points in the neighborhood of the computed optimum are simulated and depicted in
pink. Right: the corresponding curves. It is obvious that there are better points than
the automatically suggested one. 5. We additionally check if the curves have ac-
ceptable shapes. Left: the selected points and the optimum are highlighted. Right:
the corresponding curves.

examined and verified by users: "Hybrid steering makes us aware of automatic
optimization limits. We can easily see if results are right or not, and we can quickly
refine the model if needed. I used steering before, but the addition of automatic
optimization improves it significantly."

5.7 Discussion and Conclusions

The new Hybrid Visual Steering approach represents an integrated design environ-
ment for simulation, visualization, and optimization. The development of this ap-
proach would have been impossible without a close collaboration with domain ex-
perts through numerous sessions over several months. The improvements and time
savings are significant when compared to the conventional approach. The integrated
design environment manages complex data (no tedious file conversions), keeps track
of the process and of all optima found during the process.

We illustrated the approach on the common rail injection system design but the
approach is not limited to the injection design only. We talked to the domain experts
working on different automotive systems (timing drive, crankshaft balancing, and
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Figure 5.9: a) A scatterplot showing the first optimum (P_m_diff), dark green. b)
The parallel coordinates showing the first optimum, dark green. ¢) The scatterplot
showing the first and the second optimums (P_m_diff), light green. d) The parallel
coordinates showing the first and the second optimums, light green.

overall driving comfort) and they anticipate similar potential speed ups for their
design problems. The approach can be applied whenever there is a complex system
that can be represented by a simulation model with a multidimensional parameter
space (either continuous or discrete), and relatively fast simulation. The simulation
could be any algorithm that computes something based on control parameters. We
are currently exploring applying the approach to image segmentation in the medical
domain. We are also planning to extend the system for air flow simulation and traffic
simulation.

The initial discussions we had with experts from all these domains make us con-
fident that Hybrid Visual Steering can be applied in many scientific and engineering
domains. Of course, the individual components of the system (simulation tool, re-
gression model building tool, optimization, and visualization) should be modified
according to the specific domain, but the main methodology and the workflow (see
Section 5.4) remains the same. The modifications should be done in consultation
with the domain experts as every domain has its own requirements, conventions and
standards.

The interplay between the parameters of complex systems is so intricate that
the expert’s intuition and knowledge can not be represented by an automatic sys-
tem. Hence it is important to have an interactive system. Only human experience,
knowledge, and imagination, supported by automatic methods can yield the best-
possible results.

In this paper we described our experiences with the injection system design.
Initially, the common rail injection system design process was done using a number
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of isolated tools. It was necessary to create an integrated design environment (Fig-
ure 5.1) that supports simulation, visualization and optimization. The evaluation of
the proposed approach by five domain experts demonstrates the viability of the pro-
posed approach, advantages over the existing design practice, and its usefulness in
everyday industrial design. The integrated design environment which was deployed
in the context of the case study is currently used by AVL. The intent is to make it a
standard part of AVL’s commercially available software suite.
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Abstract

Multiple simulation runs using the same simulation model with different values
of control parameters usually generate large data sets that capture the variational
aspects of the behavior of the modeled and simulated phenomenon. We have iden-
tified a conceptual and visual gap between the simulation model behavior and the
data set that makes data analysis more difficult than necessary. We propose a simu-
lation model view that helps to bridge that gap by visually combining the simulation
model description and the generated data. The simulation model view provides a
visual outline of the simulation process and the corresponding simulation model.
The view is integrated in a Coordinated Multiple Views (CMV) system. We use
three levels of details to efficiently use the display area provided by the simulation
model view. We collaborated with a domain expert and used the simulation model
view on a problem in the automotive application domain, i.e., meeting the emission
requirements for Diesel engines. One of the key components is a fuel injector unit
so our goal was to understand and tune an electronic unit injector (EUI). We were
mainly interested in understanding the model and how to tune it for three different
operation modes: low emission, low consumption, and high power. Very positive
feedback from the domain expert shows that the use of the simulation model view
and the corresponding analysis procedures within a CMV system amount to an ef-
fective technique for interactive visual analysis of multiple simulation runs. We also
developed new analysis procedures based on these results.

6.1 Introduction

The importance of computational simulation and simulation models in engineering
cannot be overemphasized. The design and development of new products mostly
follows the standard simulation workflow. First a model is developed for the phe-
nomenon under consideration and then that model is used as a basis for simula-
tion [BINN10].
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The common characteristics shared by most of the models, simple or complex,
is that they are created from basic building blocks with well defined behaviors spec-
ified by a set of control parameters. The state parameters in such a model show how
a block behaves given the values of the control parameters. A simulation usually de-
termines the values of the state parameters at different instances of time. The values
of the state parameters are exchanged among the blocks in the simulation model.

The connections and dependencies among the blocks and the overall structure
of the model determine the model’s behavior. A visual representation of the model,
usually in the form of a 2D graph, captures these dependencies and allows an engi-
neer to have good understanding of the model.

A simulation produces a set of values for the state parameters (simulation re-
sults) that captures the behavior of the model (given the values of the control pa-
rameters). However, this connection between the model (and its visual represen-
tation) on one side and the numerical data (as produced by the simulation) on the
other side is often missing from the analysis. The engineer can use various visual-
ization techniques and data views to get an insight into the simulation results and
relate those results to the underlying model. However, there is still a gap, both
cognitive and visual, that needs to be closed (in the context of interactive visual
analysis). To mitigate this problem, it is possible to integrate the simulation re-
sults (a single simulation run) within the display of the simulation model (e.g., as
done in Simulink [Sim]) or by “anchoring” the information display on the system
model [MHSGO02].

When dealing with multiple simulation runs, the same model is used with vary-
ing values of the control parameters. Closing the gap in such a scenario presents an
even greater visualization challenge and no solution has yet been proposed. There
can be thousands or tens of thousands of runs that can generate a huge amount of
complex data. We need a visualization and analysis solution than can cope with this
challenge and bridge the gap between the model and the simulation results.

In this application paper, we propose a new view, the simulation model view,
that provides an additional context for the simulation results to close the gap be-
tween the model and data for multiple simulation runs. The view provides a 2D
graph where each node represents a building block of the simulation model. Each
block has the control parameters that are used to tune the simulation and the state
parameters that are determined through the simulation run. The values of both the
control and state parameters are displayed directly within the node in the simulation
model view.

If there are multiple simulation runs, the simulation model view blocks should
show multiple values of the parameters. Moreover, the descriptive parameters are
often time-dependent making the problem even more complex. The simulation
model view is integrated in a coordinated multiple views (CMV) system. The
benefits of multiple linked views and composite brushing facilitate the use of the
simulation model view, especially when dealing with multiple simulation runs.
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We have evaluated our approach in the context of an application from the au-
tomotive industry. Diesel engine powered heavy-duty trucks need to meet lower
exhaust emission levels to comply with emission regulations [CMNT04]. In addi-
tion, there are demands to increase the engine torque, the rated power output, and
to reduce the engine fuel consumption. One of the key engine components that
determines the emission levels and the engine performances is the Fuel Injection
Equipment, more specifically the Electronic Unit Injector (EUI). Figure 6.1 shows
a schematic of an advanced two-actuator EUIL.

We modeled, simulated, and analyzed the Delphi E3 EUI [GTBO03]. The Delphi
E3 EUI (Figure 6.2, left) has two independent, fast response precision actuators that
can change the injection pressure level and adjust fuel delivery timing and duration.
This approach provides the unique ability to achieve full pressure control at low and
high engine speeds.

The main goal of the evaluation was to understand the injector and to tune it for
three different operation modes: low emission, low consumption, and high power.
Several domain experts (one of them is a coauthor of this paper) used the proposed
approach to analyze the effectiveness of the approach. The simulation model view,
as a part of a CMV system, received a very positive feedback, and domain experts
were able to do the analysis much more efficiently.

The remainder of the paper is organized as follows. Section 6.2 provides an
overview of the related work. Section 6.3 describes the application domain. The
new simulation model view is described and discussed in Section 6.4. Section 6.5
provides an illustration of the visual analysis using the simulation model view. Sec-
tion 6.6 concludes the paper.

6.2 Related Work

Visualization of large, high-dimensional, and time-dependent data sets is an impor-
tant, large, and very active area of research [Tuf01]. Large data sets need to be
presented in a visual form and analysts need to interact with the data [KeiO1]. Data
visualization techniques should be well suited for the given data set, have limited
visual overlap, be easy to learn, and recall. One goal is to reduce the cognitive load
when performing analysis tasks while providing good integration with traditional
techniques (including simulation) to improve the data exploration process.

A combination of different views, combined with advanced interactive brushing,
supports iterative visual analysis by providing means to create complex, composite
brushes [DGHO03]. Those brushes span multiple views and they are constructed
using different combination schemes.

The information mural view [JS98] provides a miniature version of the infor-
mation space using visual attributes (gray-scale shading, intensity, color, and pixel
size) and antialiased compression techniques. The view alleviates problems due to
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the limited number of pixels on the screen and the resulting information bandwidth
constraints.

The table lens view [PR96, TR97] uses a focus+context (fisheye) technique for
tabular information and displays important label information and multiple distal
focal areas. The view is used for visualizing and making sense of large tables using
a graphical mapping scheme for displaying table contents by fusing symbolic and
graphical representations into a single, user customizable coherent view. The user
can control the number of colors used and the color mapping.

6.2.1 Time-Dependent Data

Time-dependent data is a very important category of data sets. Brushing the time
axis to display details of the selected time frame is one very common and use-
ful interaction technique used with static representations. Miiller and Schumann
provide an overview (taxonomy) of the visualization methods for time-dependent
data [MS03] and discuss general aspects of time-dependent data. The time factor re-
quires a special treatment during visual exploration. They distinguish between two
cases based on the time dependency of the visual representations, time-dependent
(dynamic) and time-independent (static) representation. In addition, they discuss
data versus event visualization and conventional versus multivariate display. Mul-
tivariate data visualization techniques include the ThemeRiver, Spiral Graph and
several special visual metaphors such as Calendar View, SpiraClock, Lexis Pencils
and others.

The ThemeRiver visualization [HHWNO2] shows thematic changes in a large
collection of documents in the context of a time line. The collection (time line,
selected content, and thematic strength) is shown as a river (flow, composition, and
changing width). Colored currents in the river represent individual themes.

Aigner et al. [AMM™08] provide an overview of visual methods for analyzing
time-oriented data and discuss general aspects of time-dependent data.

6.2.2 Application Domain

An advanced electronic unit injector with two electronically controlled valves can
provide a very flexible choice of fuel injection characteristics. Single-cylinder en-
gine tests have demonstrated the potential of such EUI systems for a heavy-duty
diesel engine [GTBO3].

The optimization of the Fuel Injection Equipment system is very important in
order to understand the evolution of pressure during the injection event, the multiple
injection interactions with injector and cam features [CMN"04]. The modeling of
the simulation of the Delphi E3 EUI shows how the full integration of the modeling
work in the design process contributes to the understanding and the optimization of
injection system features and its engine environment design.
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Figure 6.1: Controlling fuel injection with an EUIL. SCV controls pressure gradient
and level. NCV controls needle opening and closing. Both of them are electroni-
cally controlled.

6.3 The Electronic Unit Injector

Strict emission regulations and the need to make engines as efficient as possible
represent two main constraints in automotive engine design today. Engineers work
hard on improving existing engines in order to meet these constraints. An optimally
tuned injection system is one of the key components of an efficient modern engine.

There are several different types of injection systems in cars and vehicles. Cur-
rently, the two most important ones for Diesel engines are common rail and unit
injector systems. The common rail systems have a fuel pressurized to the injection
pressure in a fuel rail which feeds the cylinder. The rail is common to all cylinders.

The unit injector systems have the high pressure fuel pump integrated with the
injector. There is one injector/pump per cylinder that is installed into the engine
cylinder-head assembly.

The predecessor of the modern unit injector system was the patent from 1911
which shows the working principle of the unit injector. It took a long period of time
until the technology was advanced enough to enable reliable and cheap production
of unit injectors. The production started with unit injectors for large locomotive en-
gines and heavy duty engines. In 1998 unit injectors started appearing in passenger
cars.

In this work, we analyzed the Delphi E3 Diesel EUI [CMN"04, GTB03]. This
is an advanced Diesel fuel injection system with two independent, fast-response
precision actuators that can change the injection pressure level and adjust the fuel
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Figure 6.2: The Delphi E3 Diesel EUI (left), the corresponding model view (mid-
dle), and a description of one of the NCV blocks from the model (right).

delivery timing and duration. This technology gives the unique ability to achieve
full pressure control at low and high engine speeds.

The main parts of an EUI are: the nozzle, the needle with its return spring, the
needle control valve (NCV), the spill control valve (SCV), the plunger, the plunger
spring, and the electrical connector.

We first briefly describe the basic functionality of the unit injector. Figure 6.1
shows a basic schematic of the injector. The fuel comes into the pressure cham-
ber. At the beginning of the pumping (used to increase the pressure) fuel escapes
through the normally open SCV. The fuel can freely flow to the fuel gallery which
is connected to the fuel tank.

When the electronically controlled SCV closes, the fuel pressure builds up in
the system (and when it opens the fuel spills and the pressure drops).

The electronically controlled NCV controls whether the pumped fuel pressure
is applied to the nozzle needle. The needle has a spring which pushes it down, and
the fuel pressure can be used to support the spring and to apply much higher force
to the needle (in the closing direction). The NCV allows the timing of the opening
and the timing of the closing of the nozzle needle to be determined electronically.

If the NCV is activated throughout a period when the SCV is closed then the
nozzle opens and closes according to the nozzle opening pressure and the nozzle
closing pressure, set by the nozzle needle return spring only. This mode of operation
and injection characteristic is the same as that produced by the single-actuator EUI
system.

If the SCV is closed before the NCV is activated, then the fuel pressure can be
pumped up to a much higher level before the NCV is then activated to allow the
nozzle needle to open. Because the pressure applied to the needle (in the closing
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direction) is controlled by the SCV, a much higher pressure is needed to open the
needle. If, towards the end of injection, the NCV is deactivated before the SCV is
opened, the needle can be closed very fast with a high needle closing pressure.

The two EUI valves have the capability to precisely control multiple injection
events. Accordingly, the needle opening pressure, the injected quantity, the hy-
draulic separation, and the needle closing pressure are dependent on the way the
SCV and the NCV are activated. All of those events can be controlled for a pilot,
main and a post injection. However, the discussion of these three types of injection
is beyond the scope of this paper. The results presented in this paper apply to all
types of injection.

6.4 The Interactive Model View

Every simulation begins with a model definition. There are different ways of how
such a model can be defined, based on its complexity and the tools used. Many
simulation tools allow to compose a model from basic building blocks. Each block
has some control parameters and computes a couple of state variables. The blocks
are connected and create the joint simulation model. The blocks exchange state
parameters with their neighboring blocks (represented by connection lines).

Figure 6.2 (left) shows a real EUI while Figure 6.2 (middle) shows a part of the
simulation model of that injector. The model was created using the AVL HYDSIM
software [AVL15], a 1D CFD simulation tool. It is well suited for the modeling of
injection systems, where all flow phenomena primarily occur along lines and valves
(1D Flow). The calculations are very fast and the computed results are comparable
with much more time-consuming 3D calculations (in case of injection systems).

The engineer carefully chooses the blocks and sets the value of the parameters so
that the model represents a real injector as closely as possible. A lot of experience
is needed in order to model real injectors (or any other complex device). Each
block has several control parameters that can be set, which makes the overall system
design very challenging.

Figure 6.2 (right) shows one of the NCV blocks and its parameters. There is
an icon for each block type which helps the engineers to quickly identify a block.
Based on the control parameters (determine the block’s behavior and characteris-
tics) and the defined model, the simulation software computes the values for the
state parameters for each block. Those can be scalar values, but mostly they are
time-dependent values, i.e., time series. As we analyze the simulated injection, we
are interested in injection over time, usually over one cycle (one full crankshaft
revolution [MGKHO09]).

In the case of multiple simulation runs, the engineer defines the model, first,
and then runs the simulation for various combinations of the control parameters.
The amount of computed data increases drastically this way. We need advanced
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tools to support the engineers in the process of analyzing this data. The current
state of the art approaches [KMG™06, MGKHO09] use an interactive visual analysis
methodology and complex automatic optimization in order to understand the data.

We use a Coordinated Multiple Views (CMV) system that supports multiple,
linked views. A user can choose from over a dozen predefined settings and views or
configure all the views and set various parameters, e.g. point size or color, to better
display the parameters.

A time-dependent parameter across all simulation runs is called a family of
curves. Our CMV system supports this data model and uses the curve view to
display a family of curves. The curve view displays all curves in a family simul-
taneously using transparency to display the density of the curves. When combined
with linked views and brushing techniques it can be used to display curves in focus
and those forming the context.

Brushing is one of the essential features of every CMV systems [DGHO03]. Our
CMYV system supports both single and multiple (iterative and composite) brushing.
The composite brushing enables a user to combine several brushes using Boolean
operations in a iterative way. The user selects a Boolean operation to be applied to
the current selection and the new brush. The user can easily broaden (OR) or narrow
(AND, SUB) the selection in an intuitive way. In the curve view we can use a line
brush to select a subset of curves. Similarly we can use an angular brush to select a
subset of slopes and the corresponding subset of curves [HLDO2].

Although such an approach is of great help for the engineers, there is a problem
that the analysis of the results is usually decoupled from the original model. The
engineers use different, mostly also linked views to display the results, but there
is no notion (except for the labels) of where the results come from (in terms of
the corresponding blocks in the model). For example, if an output dimension is
called “volume rate”, the engineer has to link it (mentally and by training) to the
corresponding valve, nozzle, or orifice.

6.4.1 Blocks with Three Levels of Detail

In order to close the gap between the simulation model and the simulation data, we
propose to integrate the simulation model view into a CMV system. We suggest to
enhance the block icons so that they display control parameters and state variables
from multiple simulation runs. As the available screen space is very limited, we
propose a three levels of detail approach (Figure 6.3). We have decided to use the
left side of the icon for the control parameters and right side for the state variables
(Figure 6.4). We use the three different levels of detail to achieve a compromise
between the amount of displayed information and the available space for each block.
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Figure 6.3: Three levels of details for representing blocks in the simulation model
view. The first level shows only histograms, the second level adds a 2D scatter
plot and the third level shows curve views. The space required grows as the level
increases, so the third level is shown in a separate floating view.

The First Level

The control parameters are usually scalar values that can be displayed using a simple
histogram. Note that we have multiple runs, which means that the control parame-
ters values can be varied between the simulation runs. The user wants to see which
control parameters were varied. Each histogram bin displays the number of runs
with a certain value of the respective control parameters. The bins can be equally
high (if we run the same amount of runs for each value of control parameters) or
they can differ. The constant parameters are simply shown as text. Due to a limited
display size we show no more than three parameters at once. The user can easily
select which three parameters should be shown.

The right side (showing the values of the block’s state parameters) is more com-
plex since state parameters usually have time-dependent values. This means that the
results from a single simulation run are already time series. For multiple runs we
then have a family of curves, one curve for each run. One possibility of displaying
a family of curves is to use a curve view [KMG"06]. However, due to a limited
display size, it is not possible to show small curve views in a block.

We again use a histogram. We have to aggregate each curve in order to get a
scalar value. We allow minimum, maximum, average, and integral aggregates for
that operation. The user can select the desired aggregate type for each histogram.
Just as on the control parameter side we allow up to three histograms. The user can
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select which state parameters are shown. Figure 6.3 shows an example for the first
level view where two state parameters are shown, pressure (press) and volume
rate (vol).

The Second Level

At the second level, we double the block size in both dimensions. We have more
display area but still there is not enough space to display all curves. Aggregates are
used at this level, as well. Since there is a little more space now, the user can choose
to show up to twice as many (six) histograms. A smaller number of histograms are
displayed in a higher resolution. This depends on the data, the number of param-
eters, and the task the user wants to solve. Figure 6.3 shows an example for the
second level.

Besides histograms, a scatterplot of two state variables can also be shown. In-
terestingly, in the presented case the engineer never used this option. In general,
we used scatterplots a lot, but we did not want them in the blocks. It was not in-
teresting to see correlation of two state parameters in the same block. We used
scatterplots, however, as separate views to compare related state parameters from
different blocks.

The Third Level

Due to the limits in the available display area, it is not possible to increase the
block size further. Instead, we introduce a new floating view that consists of a map
of the model with the originating block and all state parameters displayed using
the curve views in a vertical layout (optionally, the user might select a horizontal
layout). Figure 6.3 shows the third level of detail. This is the highest level, i.e. all
information is displayed and the user interacts with the curve views. Due to the size
of the floating view it is impossible to integrate it in the model view directly.

Therefore, we provide a map as the first view which helps the user to relate it
easily to the originating block. The map can be hidden if the user needs more space
for the curves. The floating view label remains the only link to the block in this
case. The number of state parameters shown are easily set by the user.

Figure 6.4 shows the interactive model view with the blocks showing their val-
ues. Some of the blocks are displayed using the first or the second level of details.
The blocks used for analysis (Section 6.5) are labeled using capital letters A through
I. The corresponding control parameters (red) and state parameters (blue) for the la-
beled blocks are shown on the right. The interactive model view is fully integrated in
a CMV system. This means that the user will use other views (such as scatterplots,
parallel coordinates, histograms, curve views, ...) to display selected parameters
and to analyze them.
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Figure 6.4: An example of the simulation model view. We can see all the blocks and
their control (red) and state (blue) parameters. The first and second level of details
are used.

The main idea of the CMV system is to identify some feature in one view (and
brush something) and then highlight other parameters from the brushed records in
other views, as well as in the enhanced blocks. Figure 6.5 shows a scatterplot where
the user has brushed high average values of block A volume rate and low values of
block D volume rate integral. The zoom into the model view shows the correspond-
ing values of all control parameters and state parameters directly highlighted in the
blocks. The integrated simulation model view helps the user to link the values to
the blocks. This way the user better understands the model and related processes.

6.5 Interactive Visual Analysis of an Electronic Unit Injec-
tor

We now describe the use of the proposed approach in the analysis of an EUI The
analysis was done with a domain expert (one of the coauthors) from a company
dealing with the development of simulation software and offering services in the
car engine design support.

We focus on the shape of the injection curve as generated by an EUIL The mixing
process of fuel and air heavily depends on the way the spray develops when injected
into the cylinder. The engineers try to shape the injection rate curves in order to
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Figure 6.5: Whenever the user brushes an interesting subset of the data in any of the
views, the simulation model view updates accordingly (being an integral part of the
CMV system). Here we can see that the lower right part of the scatterplot (block D
in Figure 6.4) has been brushed and all histograms reflect the brushed data in the
simulation model view.
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Figure 6.6: Ideal injection curves for the low consumption, low emission, and high
power modes of operation.

achieve desired engine performance. The injector can be tuned for various goals.
The three typical modes of operation are low consumption (fuel efficiency), low
emission, and high power. Figure 6.6 shows characteristic injection shapes for these
three modes for heavy-duty Diesel engines.

We are interested in how injector points can be adapted to enable the three dif-
ferent engine modes.

In order to understand the injector and to find out about opportunities for im-
proving it with respect to the operation modes, we considered 4,320 simulation runs
for different values of the control parameters. Due to some additional constraints
introduced by the domain expert, we had a total of 2,880 simulation runs.

The simulation model view introduced in Section 6.4 was used. The domain
expert was mostly interested in flow resistance tuning (this is the most influential
parameter for the injector behavior) and we have varied the following flow resistance
parameters: the flow resistance for blocks B, E, H. I. Furthermore we have varied
three parameters controlled by the electronic control unit (ECU), the closing starts
for block G and the opening starts for blocks G and H.
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Table 6.1: Control parameters for the 4,320 possible simulation runs (2,880 simula-
tion runs performed).

Block Parameter Values
H flow resistance 1.0;2.0;3.0;4.0
I flow resistance 1.0;2.0;3.0;4.0
E flow resistance 1.0;2.0; 3.0
B flow resistance  1.0;2.0; 3.0
G closing starts 20; 25; 30; 35; 40
G opening starts  -15; -20; -25
H opening starts -15;-20
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Figure 6.7: The third level details for block D (a) and block C (b). The curve views
are used to interactively explore combinations of control parameters.

Table 6.1 shows the control parameters and values chosen for each of them. We
will explore which factors facilitate or hinder the possibility of achieving the desired
form of injection.

In general, the first stage of analysis is experimenting with the injector design
and geometric properties. Once these properties are set, injectors are produced and
they can not be changed any more. We are not dealing with the physical design of
the injector, so it is used as is.

Our point of interest is on hydraulic flows through different parts of injector and
correlations between them. During the second stage of the analysis (described in
this paper), the designer fixes the geometry and explores the parameters controlled
by ECU.

Table 6.2 shows the outputs (state parameter’s values) that have been considered
in the analysis. Note that all outputs are time-dependent, i.e., they are not single
scalar values but rather functions of time. After we ran all 2,880 simulations we
had a dataset consisting of 2,880 records. Each record has a set of independent
scalar dimensions (Table 6.1) and nine dependent attributes which are time series
(Table 6.2). Such a dataset follows a more complex data model than usual data
models, where each record has scalar attributes only.

Our first task was to explore possibilities of designing an EUI suitable for high
power. Such a scenario is typical when designing high-power special vehicles (mil-
itary or heavy duty commercial trucks).
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Table 6.2: State parameters used in the analysis.

Block Parameter Units
A pressure bar
A volume rate mm? /deg
G volume rate mm? /deg
C lift mm
C velocity m/s
D volume rate mm? /deg
D injected volume mm?
D pressure bar
F pressure bar

6.5.1 The High Power Mode

If we want to achieve the high power mode of operation, the injection curve has to
be shaped almost as a square (steep rise and steep decrease), as shown in Figure 6.6.
Additionally, the injection pressure must be as high as possible in order to inject a
sufficient amount of fuel.

We start with the simulation model view (Figure 6.4). It shows the model with
all the blocks and their control parameters and state parametersO aggregates on the
right.

We are interested to see state parameters values in two blocks, C and D. We
select the third level for the blocks and the curve views are configured. Figure 6.7
shows only the curve views of interest.

We explore different shapes and try to understand which control parameters
combination can produce the desired behavior. We start with the beginning of the
injection (needle opening — the point where the injections curves start to rise) and
do not analyze the closing (the part where injection curves fall) at the moment.

As stated before, we want very high injection gradient (steep curves) at high
injection pressure. High pressure will cause more fuel to be sprayed into the com-
bustion chamber. We brush the curves using the line brush and refine the selection
by limiting the crossing angle (Figure 6.8a). In this way we select only curves which
have a fast needle opening.

At the same time, we are interested in cases where injection pressure is high at
the beginning of injection. High pressure will cause a stronger penetration of spray
into combustion chamber — a desired characteristic of the high power mode. In
order to refine the selection, we combined the previous selection with a new brush
on the pressure curves (Figure 6.8b).

Note that we have some slowly increasing curves in the injection rate view. We
exclude them (Figure 6.8c) using a difference brush.

The interactive simulation model view is visible all the time and corresponding
control parameters and values of state variables are highlighted during the analysis.
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Figure 6.8: Searching for the cases with high injection gradient at high pressures
(injection rate at opening has steep raise) in four steps — a) step 1: select by limiting
the crossing angle on injection rate view; b) step 2: refine the selection with a new
brush on the pressure curves; c) step 3: exclude slowly increasing curves by using
a difference brush; and d) step 4: exclude the second needle opening by using a
difference brush.

Before analyzing the control parameters causing the desired shape, we want to
make sure there is no second needle opening. This is a phenomenon that happens
sometimes. The needle is opened once more at the end which leads to an unwanted,
uncontrolled subsequent injection. This process must be avoided because it leads to
the rapid deterioration of the quality of the combustion process inside the cylinder.
In order to examine such cases (not easily visible in the curve view) we used the
first derivative of the injected rate curves.

Figure 6.9 (left) shows the curve views. We can see positive derivative (the left
part of the curve view), and negative and positive derivative on the right side of the
curve view. However, there are also positive derivatives, i.e., needle openings (the
right part of the view). It is the second needle opening, which is not controlled, and
has to be avoided. We can brush the unwanted cases (Figure 6.9).

We know that the moment, when an unwanted behavior happens, is the moment
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Figure 6.9: Eliminating the curves with unwanted, uncontrolled subsequent injec-
tion in block D using a visualization of the first derivative. The histograms for flow
resistance in blocks B and H are shown.

when block G (SCV) starts to open but is not fully open and blocks H and I (NCVs)
are already fully open.

Additional investigation of the control parameters that are controlling hydraulic
behavior of the system shows that flow resistance in block H is small and flow
resistance in block B is high in the runs where secondary needle opening occurs (
(Figure 6.9 right).

Why does the second needle opening happen? Blocks H and I (NCVs) are sud-
denly open and their flow resistance is small. On the other side of valve is low
pressure and pressure near the valve drops quickly (Figure 6.10). That causes a
shock wave to propagate back through the system toward the other side (red line)
to block G (SCV). Block G is not fully open and nozzle inlet has higher flow re-
sistance. Shock waves hit these “hydraulic barriers” and reflect back toward NCV
block H (blue line).

There is again a small resistance toward the control volume. The reflected wave
will result in a pressure drop in the control volume and the needle jumps up. The
interactive simulation model view is especially useful in analysis of such complex
phenomenon where experts have to understand many states of different blocks con-
nected in a certain way.

Once we have analyzed the unwanted behavior we can continue with the original
analysis. We will use the difference brush to subtract the unwanted cases from the
last stage of the analysis (Figure 6.8d).

We see that parameters with the dominant influence on the behavior of the sys-
tem in order to achieve a square shape of injection rate are: the flow resistance
within block E (orifice), which must be small, and the flow resistance through the
passage towards volume above the needle (block B) which must be small, too. Less
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Figure 6.10: A shock wave propagates back through the system toward the other
side (red line) to block G (SCV). Block G is not fully open and nozzle inlet has
higher flow resistance. Shock waves hit these “hydraulic barriers” and reflect back
toward NCV block H (blue line).

resistance at the nozzle enables a more free and rapid injection start without losses
(Figure 6.11).

On the other hand, the pressure above the needle in the control volume will be
higher, because there is no damping between the rest of the system and the control
volume caused through orifice. When the needle control valve opens, the pressure
in the control volume drops faster again, because of less resistance in the orifice.
Faster pressure collapse in the control volume will result in a faster needle opening
and a faster injection (closer to the square shape).

Besides square shape and high pressure we want a high amount of injected fuel,
as well. We focused on block D next. We have selected the volume rate through the
nozzle, the cumulative volume flow through the nozzle, and pressure in the block D
as state parameters for this block (Figure 6.12, right top).

The aggregates of these state variables are displayed in the model view us-
ing histograms (Figure 6.13). The second histogram shows the distribution of the
amount of the injected fuel (this is the maximum aggregate) which corresponds to
the total amount of fuel injected since injected fuel output is computed as a cu-
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Figure 6.11: We can see that the highest block E flow resistance values are not
allowed if we want maximum power and that there are more combinations having
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Figure 6.12: A snapshot from an interactive visual analysis session with the CMV
system as used in this study. On the left, six linked “standard” views are shown with
a brush applied to the scatterplot in the upper left. In the middle, the simulation
model view is shown with linked histograms, reflecting the same selection. On the
right, details for D block are shown (as third level of detail view).

mulative value. This is visible when we open the third level and see the curves
themselves. If we brush the injected rates now, we can see that they are correlated
to the closing start at block G.

The second histogram also shows that for the most cases that provide a square
shape, the amount of the injected fuel is more or less average. Square shapes of
curves are primarily between injection sets in the middle part of the pressure gen-
eration curve. It must be so, because for a square shape it is necessary to start with
a higher pressure, which causes delay in the start of the injection. The injection
is shorter and maximum values of injected amounts are not achieved. The high
fuel amount criterion is not fulfilled, but the shape of the curve and high injection
pressure are achieved.

If we select all desirable simulation runs (a square injection curve, high pressure
and a significant amount of injected fuel), we reduce our data set to 147 simulation
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Figure 6.13: The second histogram in block D summary shows that for most cases
that provide square shapes, the amount of the injected fuel is more or less average.
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Figure 6.14: Using the first derivative of block D volume rate, we subtract unwanted
curves: those with steep rising and with uncontrolled second needle opening.

runs (records).

The described example shows us how the engineer starts from the model view,
configures the third level views for the analyzed blocks and then selects the curves
having the desired shape. Several other views, configured independently from the
simulation model view, were used as well.

Figure 6.12 shows a snapshot of the complete CMV system during the analysis.
Some interesting findings (the second needle opening is a nice example for an unex-
pected finding — detect the expected and discover the unexpected [TCO5, TC06])
illustrate how interactive visual analysis makes it possible to gain a deeper under-
standing by supporting additional, non-planned exploration.
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Figure 6.15: For a high-power low-emission engine a compromise is needed.
Higher block E (orifice) flow resistance is welcome but this is in contradiction with
the regime of maximum power when as low as possible resistance at this position is
needed. Block B flow resistance should be low in the high power case and it does
not influence the low-emission shape. All values of B flow resistance are almost
equally probable for the low-emission shape. Block G closing starts and opening
starts control parameters values make it possible to achieve a sharp or a ramped
termination of the volume rate.

6.5.2 The Low Emission Mode

The emission regulations are becoming stricter every day. Heavy-duty Diesel en-
gines have to meet very strong emission criteria in the near future. The fuel injection
system together with the pressure charging, the cooling system, the exhaust after-
treatment and other engine subsystems play a key role in achieving low emission.

The fuel injection system has to offer a range of different improvements in areas
of flexible injection characteristics, e.g., a multiple injection, high injection pres-
sures and different shapes of injection rates for every regime of operation. The
high requirements for heavy-duty engines must be achieved without compromising
their current performance and fuel economy. We focus on the emission-reducing
capability of a prototype injector in this section.

We start with the model view again, and use it to configure a curve view in
the CMV system. We want to achieve a different injection profile now, a ramp
injection shape for the low emission mode of operation (Figure 6.6). We use the first
derivative of the injection to subtract the unwanted curves: curves with steep rising
(high derivative) and curves with uncontrolled second needle opening (undesired
behavior). The large number of cases following this shape did not come as a surprise
(Figure 6.14). Due to the physics of the vents and basic injector geometry, the ramp
shape is the most natural shape for the unit injector [CMN"04, GTB03].

The model view shows us that the damping at the entrance to the control volume
above the needle (block E) has a significant impact on the adaptability of the injector
to the regime of low emission. Higher flow resistance is welcome but this is in
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Figure 6.16: For the desired shape of the injection curve both gradients of volume
rate during needle opening (right) and during the needle closing (left) must be near
Zero.

a contradiction with the regime of the maximum power when we need as low as
possible flow resistance at this position. Obviously, a compromise is needed if a
high-power low-emission engine is a goal (Figure 6.15).

Let us examine block B flow resistance now. Remember it was preferably low
in the high power case. We have better luck now, flow resistance does not influence
the low emission shape. All values of flow resistance are almost equally probable
for all cases with the low emission shape.

We have also analyzed an additional point in the model. We are again interested
in checking if it would be possible to tune the engine for low emission and high
power. A slow increase of flow resistance in blocks H and I (NCVs) will result
in a better behavior in case of low emission mode but again, this increase is in
a contradiction with the high power mode where this control parameter has to be
slightly decreased. The domain expert has to find a compromise.

6.5.3 The Low Consumption Mode

Direct injection systems for Diesel engines must deliver high performance and the
maximum torque while keeping fuel consumption low. The desired injection rate
shape curve for the low consumption mode of operation is shown in Figure 6.6.

There are several approaches how to meet the requirement on the injection curve
shape. One possibility is to tune the signals sent to blocks G, H, and I. The ECU
controls the valves and sends these signals. Different settings of block G (SCV)
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Figure 6.17: A (pump chamber) block third level. The low consumption regime has
all basic characteristics with average values and no extremes.

with a constant settings for blocks H and I (NCVs) may be used at the end of the
injection to produce different injection pressure levels during the needle closing.
This makes it possible to achieve a sharp or a ramped termination of the volume
rate.

Another approach is to see if it can be achieved with altering other control pa-
rameters. If we want to have the desired shape of injection curve, the gradients of
block D volume rate curves during needle opening (Figure 6.16 right) and during
the needle closing have to be near zero (Figure 6.16 left). As a consequence, the
range of values for the volume rate derivation is narrow (approximately between -4
and 2) and the changes in the volume rate are relatively small.
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Once we have selected these cases, we can explore the control parameters of the
selected simulation runs using brushing (Figure 6.17).

The large view of block A (pump chamber) in Figure 6.17 shows us that the
low consumption regime is some kind of a middle regime. It means that all basic
characteristics (like pressure) have middle values (no extreme or limit values). The
high power and the low emission modes of operation (Figure 6.6) are two extreme
regimes and the low consumption mode of operation is somewhere in the middle.
The low consumption curve shape can also be considered as a combination of the
high power and low emission curve shapes.

6.5.4 Discussion

These three scenarios of interactive visual analysis performed by the domain expert
provide a basis for an initial evaluation of the proposed approach. From the do-
main expert point of view, the challenge is how to understand a complex simulation
model with lot of complex interactions among simulation blocks. To achieve that
there must be full interaction between the creation of the simulation model, simula-
tion runs and investigation of the simulation results. The process must be fast and
transparent.

The advantages of our approach that the model, simulation and results are all
integrated within a single application (the CMV system) that provides visual under-
standing of the simulation process. This, in turns, allows the expert to less effort
find an optimal solution with full understanding of the design. When dealing with
multiple simulation runs, the CMV system helps the domain expert to close the
gap between the model and data (Section 1), something that has not been available
before. Possible improvements include integration of other advanced optimization
tools, better support for high-resolution displays, and support for design and analy-
sis of 3D geometry models.

6.6 Conclusion

Using multiple simulation runs helps engineers to gain a deep insight into the simu-
lated phenomenon. As the model complexity grows it becomes impossible to men-
tally link the simulation results with the originating blocks of the model. We have
integrated a model view into a CMV system and made it possible for engineers
to quickly get an overview of the control and state parameters in the model itself.
As the space in the model view is very limited we propose a three levels of detail
approach where higher levels show more information but require more display area.

The newly introduced interactive simulation model view is fully integrated in the
CMV system and a selection in any of the views highlight the information displayed
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in the blocks. We have illustrated the usefulness of proposed approach in a case
study on understanding and tuning an EUI for Diesel engines.

A very positive feedback from the domain expert in the Diesel engine simulation
domain (who is also a coauthor of this paper) indicates that such an approach would
be useful for other domains as well. Every simulation starts with a model definition
and the possibility to show results from multiple runs within the simulation model
blocks helps the experts to analyze and understand the underlying system much
more efficiently.
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Abstract

The widespread use of computational simulation in science and engineering pro-
vides challenging research opportunities. Multiple independent variables are con-
sidered and large and complex data are computed, especially in the case of multi-run
simulation. Classical visualization techniques deal well with 2D or 3D data and also
with time-dependent data. Additional independent dimensions, however, provide
interesting new challenges. We present an advanced visual analysis approach that
enables a thorough investigation of families of data surfaces, i.e., datasets, with re-
spect to pairs of independent dimensions. While it is almost trivial to visualize one
such data surface, the visual exploration and analysis of many such data surfaces
is a grand challenge, stressing the users’ perception and cognition. We propose an
approach that integrates projections and aggregations of the data surfaces at differ-
ent levels (one scalar aggregate per surface, a 1D profile per surface, or the surface
as such). We demonstrate the necessity for a flexible visual analysis system that
integrates many different (linked) views for making sense of this highly complex
data. To demonstrate its usefulness, we exemplify our approach in the context of a
meteorological multi-run simulation data case and in the context of the engineering
domain, where our collaborators are working with the simulation of elastohydrody-
namic (EHD) lubrication bearing in the automotive industry.

7.1 Introduction

Simulation is used in science and engineering to study a wide range of problems
and to understand underlying models and investigated phenomena. Interactive vi-
sual analysis helps professionals to explore simulation results and to understand
and explain the data. The readily available computing power also allows to in-
vestigate multiple simulation runs for a given case scenario. The input parameters
(independent variables) are varied and the values of the output parameters (depen-
dent variables) are computed for each combination of the input parameters. The
resulting collection of simulation runs needs to be analyzed by exploring individual
simulations and how they relate, i.e., what are the emerging patterns.
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One important motivation for the study of multi-run simulation data is to per-
form a sensitivity analysis of the computation. To do so, new ways of visual data
exploration and analysis are needed — data from multiple simulation runs are very
complex to study (compared to conventional simulations where just time and/or
space are considered as independent variables). Traditional scientific data, and cor-
responding visualization and analysis methods, are usually tuned for this more tra-
ditional data model.

We present an advanced visual analysis approach that supports the analysis of
families of data surfaces, i.e., datasets that are seen with respect to pairs of indepen-
dent variables (dimensions). While it is straightforward and easy to visualize one
such data surface, the visual exploration and analysis of a large number of such data
surfaces poses significant stress to the user’s perception and cognition. We propose
an approach that carefully integrates different projections and aggregations of the
data surfaces at three different levels (one scalar aggregate per surface, a 1D profile
per surface, or the surface as such).

There is an increasing number of application domains, including industrial sim-
ulation and meteorology, for example, in which it becomes natural to automatically
consider multiple simulation runs for analysis, and accordingly there is increased
need for appropriate visualization solutions. Konyha et al. [KMG™06] showed how
to analyze data from multiple simulations of 1D CFD in an automotive injection
system. They limited their approach to the investigation of families of curves, i.e.,
the consideration of the data with respect to one variable. A large number of impor-
tant real-world problems can benefit from this approach. Other problems, however,
have complex data sets that should be considered as families of surfaces. Examples
include avalanche warning systems in mountains and the simulation/measurement
of the seabed as used in modern tsunami warning systems.

In the following, we use one illustrative example, i.e., a study of a historic cli-
mate scenario, in the beginning in order to introduce the here proposed methodol-
ogy. Although this meteorological example is not a real case study, it is useful as an
easily understandable illustrative example. Later, we discuss a more detailed case
study from the engineering domain, based on the simulation of elastohydrodynamic
(EHD) lubrication bearing in the automotive industry, which stems from an actual
inter-disciplinary collaboration amongst the authors of this paper. Along with these
two cases, we demonstrate the necessity for a flexible system that allows to inte-
grate a large number of different (linked) views for making sense of this complex
data scenario and propose new interaction and analysis techniques which make it
possible to deal well with such data.
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7.2 Related Work

The body of literature about the visualization of large, high-dimensional, and
time-dependent data sets is impressive and the field is still an area of active re-
search [AMM™08, BHO7, Rob07, Tuf01].

The exploration of large data sets [Kei01] is based on the idea to present the
data in a visual form that would allow analysts to interact with it. Data visualiza-
tion techniques, when suited for the given data set, reduce the cognitive load while
performing analysis tasks. A visualization technique should have limited visual
overlap, fast learning, and good recall [KeiO1]. Furthermore, good integration with
traditional techniques (including simulation) improves the data exploration process.

Time-dependent data is a very important category of data sets. Brushing the
time axis to display details of the selected time frame is one very common and useful
interaction technique used with static representations [HS04, KMG*06, Mon90].

Aigner et al. [AMM™08] provide an overview of visual methods for analyzing
time-oriented data and discuss general aspects of time-dependent data. The time
factor requires a special treatment during visual exploration. Two cases are distin-
guished based on the time dependence of the visual representations, time-dependent
(dynamic) and time-independent (static) representations. The examples of the mul-
tivariate data visualization techniques for multi-variate time-dependent data include
the ThemeRiver [HHWNO2] and Spiral Graph [WAMO1].

Time-dependent (serial) data often exhibit some periodic behavior. Such serial
periodic data are of special interest. For example, time continues forward serially
but include recurring periods (weeks, months, and years) [CK98]. The challenge is
how to simultaneously display serial and periodic attributes of a data set.

All of these methods consider each dimension in a multi-dimensional space to
be a scalar value (numeric, categorical, nominal, or the like). In the case of time-
dependent data they handle it as an isolated case, or aggregate the data in order to
get scalar values.

The challenges that result from a complex internal data structure can be tack-
led, for example, by the interactive visual analysis of families of curves [KMG™06].
That approach provides analysis procedures and practical aspects of interactive vi-
sual analysis that are specific to this type of data. Multiple linked views combined
with advanced interactive methodology support iterative visual analysis by provid-
ing means to create complex, composite brushes that span multiple views and that
are constructed using different combination schemes and that respect the 1D data
series (curves) as a data (sub-)structure [DGHO3].

Time-independent representations are well explored but still have room for new
innovations. Some of the recent findings include Lexis pencils [FP98] that map var-
ious time-dependent variables to the faces of a pencil. Another interesting approach
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uses extruded parallel coordinates, linking with wings, and three-dimensional par-
allel coordinates, integrated in a single rendering system, that visualize trajectories
of higher-dimensional dynamical systems [WLG97].

Interaction techniques allow the user to better understand the data due to the
ability to interact with the data. One of the well established techniques is Fo-
cus+Context (F+C) visualization [Hau06]. When the amount of data is too large
to be displayed, the user should be able to focus on specific data sets of inter-
est while keeping track of the context (entire dataset). There are four groups of
F+C techniques: distortion-oriented, overview methods, filtering, and in-place tech-
niques [BHO7]. Focus+Context visualization is often used in an multiple linked
view setup that supports linking and brushing.

The display of surfaces from volume data is standard in visualization [Lev88].
Surfaces can succinctly represent complex three- and multi-dimensional data. These
kinds of surfaces are created from sampled scalar data in three spatial dimensions.

The user’s perception and cognition of surfaces can be improved by designing
perceptually near-optimal visualizations [War04]. Such a design is achieved by
collecting perceptual characteristics of visualization methods, and exploring them
to discover principles and insights to guide the design of visualizations [HBWO6].

7.3 Illustrative Example and Proposed Methodology

We first describe an example from the climate research field to illustrate the chal-
lenges and then introduce the newly proposed technology.

7.3.1 A sample Analysis of Multi-run Climate Data

Meteorological data provide a prime example of a collection of long-term multi-
dimensional data sets. The relevance and broader impact of the results gathered
from meteorological data are tremendous. The time scale ranges from hourly and
daily weather forecasts to long-term climate change. There are many efforts to facil-
itate collection, storage and exchange of meteorological and related environmental
data.

One such effort is the Potsdam Institute for Climate Impact Research (PIK —
http://www.pik-potsdam.de/), where researchers in the natural and social
sciences work together to study global change and its impacts on ecological, eco-
nomic, and social systems. A combination of data analysis, computer simulations,
and models is used to study meteorological and related data. The researchers at PIK
collaborate with researchers worldwide in order to be able to predict future climate
changes. Relevant progress with respect to better predictions can only be made if
the past is well understood. As part of this research they investigate — amongst
other cases, of course — climate scenarios around several meltwater outbreak events
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Figure 7.1: a. Two linked views, parallel coordinates depicting three simulated val-
ues and a scatterplot showing control parameters. A gradient brush over Greenland
temperatures shows how it is related to diff, (Diff_V) and diff;, (Diff_H) control
parameters, and negative correlation between Greenland temperature and tropical
temperature, and respectively with global precipitation. A plain table with 50000
rows was analyzed. b. A curve view showing the Arctic water parameter. Each
curve represents 500 time steps of a simulation run with a particular set of control
parameters. There are 100 curves depicted, one for each combination of diff, and

diffy

of proglacial Lake Agassiz, i.e., an immense glacial lake located in the center of
North America and formed about 12,000 years ago [BG04a].

The investigated data describes the simulated climate response to one of these
outbreak events. The more than 4,000 year long lifespan of this Lake Agassiz pro-
vides an exciting case for simulation and data analysis. Approximately 8,000 years
ago, the lake drained due to climate warming and melting of the surrounding Lau-
rentide Ice Sheet (LIS). The here investigated multi-run climate simulation is based
on the PIK Climber 2.3 model and simulates a cooling of about 3.6 K over the
North Atlantic induced by this meltwater pulse from Lake Agassiz, routed through
the Hudson strait.

To get a better understanding of the variability of their climate simulations with
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respect to external parameters of the simulation, they compute multiple runs of the
simulation with varied parameters. They varied two diffusivity parameters (one
horizontal, diff},, and one vertical, diff,, both with respect to the ocean part of this
model, 10 variations each), a total of 100 (10 x 10) runs. Each simulation run spans
500 years of annual data.

As aresult, they aggregated 35 different values from the more detailed raw sim-
ulation data. The aggregates include CO, concentration, global surface air temper-
ature, surface air temperatures for both hemispheres, land surface air temperature,
ocean surface air temperature, Greenland temperature, global precipitation, ice ar-
eas for both hemispheres, salinity information, various differential measures (heat
transport, ice transport), etc. For each of the 100 simulation runs all of these result
values are available for 500 years (one time step per year).

The conventional approach would be to represent the data corresponding to one
run as a table with 500 rows, each corresponding to one time step. There would
be columns for the time step (an independent variable differentiating the rows in
one simulation run) and output dimensions like surface air temperature. As we
have 100 simulation runs, a large table consisting of 100 x 500 = 50,000 rows can
be created. In this case, there are three independent parameters, diff;,, diff,, and
time. Such a large table can be explored and analyzed using coordinated multiple
views so that experts gain deeper understanding. Some interesting relations between
different climate descriptors can be seen instantly, e.g., that the average Greenland
temperature is negatively correlated with the average temperature in the tropical
regions as depicted in Figure 7.1a. There is also the strong correlation between
Greenland temperature and simulation control parameter diff, .

If analysts are interested in the development of various results over time such an
approach would be complicated to use (since coherency is lost in the sense of which
data rows belong to which time step). All timesteps belonging to the same set of
control parameters should also show up in the visualization coherently. Konyha et
al. [KMG™'06] showed how an advanced data model with an explicit support of
time series in the data can be exploited for advanced visual analysis. In our case,
this would mean to merge all 500 rows from one simulation run into one row con-
taining time series in dependant dimensions. There would be 100 rows in such a
table, but each would contain many time series dimensions as advanced data types.
Figure 7.1b shows an example of 100 time series (one per simulation run), repre-
senting the Arctic water parameter, visualized using a function graphs view. This
view shows multiple function graphs simultaneously. If there are many curves, a
density transfer function can be used to depict areas with less curves more trans-
parently. A set of outliers that deserves further investigation (possibly indicating an
error in the model) are shown in Figure 7.1b.

Generally, we can interpret such data as a collection of substructures, i.e., a
collection of data subsets that form time series as addressed above (one per climate
descriptor and run, and with 500 time steps each). For other application questions,
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Figure 7.2: Different ways of depicting a family of surfaces. a. Standard scalar
aggregates of Greenland temperatures can give a first overview of surface family.
b. Only one surface is selected here. It is shown as a single polyline in the parallel
coordinates, or as a collection of function graphs as seen along each of the axis. All
respective (curve-typed) cross-sections through the surfaces are shown. c¢. The 3D
surface view and the 2D height map view of the selected surface.

we consider different substructures: they can be small 2D data tables of their own
(one per climate descriptor and time step, and with 10 x 10 = 100 values in the
table, i.e., one per instance pair of the two varied diffusivity parameters). We call
these small subsets data surfaces, or just surfaces, and all surfaces representing one
climate descriptor a family of surfaces. We merge all original data items which have
the same time step, and organize the 35 simulated dimensions as 35 families of 500
surfaces each. For each time step, a data attribute such as Greenland temperature, for
example, is now a function of two variables, f(x,y), in our case f(diff},diff,). This
is true for each simulated value. We have 500 rows in the table now, each containing
one scalar value — the time step, and 35 surfaces in the form surface = f(diff;,, diff,).

Data organized in this way offers new and unique analysis opportunities. How-
ever, existing interactive visual analysis technology does not support it. Visualizing
one data surface is trivial, visualizing and exploring an entire family is a challenge.
We introduce new methodology for the visual analysis of such data.

Analysts want to get deep insight into data and they want to understand the data
and underlying simulation model. They want to differentiate the surfaces according
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to overall characteristics, or considering the variation of climate descriptor values in
surfaces along their horizontal (or vertical) diffusivity axis. In order to support such
procedures we propose to use various levels of aggregation of the surfaces. The sim-
plest one is to capture one surface as one aggregation scalar, such as the surface’s
maximum, minimum, median, mean, or span. These scalars can be easily visual-
ized using parallel coordinates, for example. Figure 7.2a shows parallel coordinates
visualizing five standard Greenland temperature aggregates (for 500 surfaces each).
In the next step, experts want to investigate these surfaces with respect to each of the
two axes of the surfaces. They might be interested in how a climate descriptor value
changes along the horizontal (or vertical) diffusivity axis. They want to compare
how this changes along the time steps. As the view to the surface along one axis
can be considered as a collection of curves, we use the curve view to depict the sur-
faces at this level. Figure 7.2b shows Greenland temperature as seen along each of
the axes. We depict all respective (curve-typed) cross-sections through the surfaces
in this case. Only one surface was selected, the rest are shown as context in the
Figure 7.2b. Note the different shapes which the surfaces from the collection have.
This single surface is represented with a single polyline in the parallel coordinates
view. Finally, professionals want to see the surface itself at some point of analysis.
Although we cannot efficiently visualize whole families of surfaces at once, we can
visualize one surface (or a few of them using a real 3D view, or a 2D height map).
Figure 7.2c shows the selected surface from the last step as 3D surface and height
map.

7.3.2 Interactive Visual Analysis of Families of Surfaces

The analysis of families of surfaces is a very complex task and depends on the appli-
cation domain. However, we can identify some standard analysis steps supported by
interactive visual analysis. Furthermore, interactive visual analysis is the only way
a domain expert can cope with the significant complexity of such data, especially if
doing a cross-analysis of several families of surfaces. There are three levels in this
process. At the top level, the user is interested in overall trends and in high level
correlations. The most efficient way to perform such tasks is to represent one sur-
face in the family by one aggregated scalar (or more scalars). Once this high level
analysis is done, the user is ready to drill down. However, more data is needed,
scalar aggregates do not suffice. We have identified various profiles of the surfaces,
which, when used simultaneously, support the cross-surface analysis at this level.
Finally, as we do have surfaces, all our collaborators needed them in order to under-
stand the profiles better. It is much easier to understand a surface if it is visualized
as a surface.

For multivariate, multidimensional data we use a coordinated multiple views
system to pursue the analysis. The system is capable of depicting scalars using
various standard views, function graphs which will originate from various profiles
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at the second level in our case, and real 3D surfaces as 3D surfaces or 2D height
maps.

Analysis Through Single Scalar Aggregates (Top Level)

At the early stage we want to get familiar with the data and to explore high level
relations between various surface families and other dimensions in the data set. It is
very convenient to have scalar aggregates. We have identified five most often used
aggregates, i.e., the minimum, maximum, mean, median, and data span (max—min).
All of these aggregates are automatically created for each family of surfaces, and
all of them are available automatically for analysis. The analysis uses coordinated
multiple views with multiple scalar dimensions at this stage.

We have identified several analysis patterns. Brushing through the parameter
space (independent variables) in order to understand the influence and to perform
sensitivity analysis is something which is often done first. The next step is selecting
either wanted or undesired output values in order to eventually detect a pattern in in-
put parameters causing these outputs. In our meteorological example we have often
selected cases with low maximum and high minimum values. Sometimes, like in the
EHD lubrication bearing case described in Section 7.5, the engineers are interested

153



Chapter 7 IVA of Complex Scientific Data as Families of Data Surfaces

in the highest maxima, since, e.g., high pressure is undesirable and they want to see
which cases cause the extreme. Figure 7.1a shows an example of analysis at this
level for a single surface. A similar example consisting of more views and values
for more families can be done in a similar way. Not all of the aggregates were used
in the same way. Minimum and maximum are most actively used, user interacts
with them directly and selects ranges here. The span is also sometimes used in an
active way. The mean and median aggregates, on the other hand, are rarely being
actively brushed, they serve as an overview, and provide important visual feedback
(as a passive visualization with focus—context discrimination).

Analysis Through Aggregated Profiles

The complex data often requires deeper analysis, exploration of complex cross-
family relations. Scalar aggregates are certainly not sufficient for this level. As
surfaces are dependant on two variables, users are often interested in surface be-
havior with respect to one of the independent variables. Furthermore, a common
task identified was to explore how various surface parameters behave with respect
to each of the independent variables. The simple aggregates, like maximum over
all, are not enough, users want to see the maximum with respect to one variable,
while keeping the other independent. As we use various profiles along one axis, the
resulting data is a function graph per surface. Just as we have identified standard
scalar aggregates, we have seen that users most often use standard profiles. We sug-
gest to use the maximum, minimum, mean, median, and all curves profiles. If we
want to create curve profiles, we have to select either x or y inf(x,y) first. Once the
variable is selected, we can use a cutting plane parallel to one axis (dependent on
the selection of the independent variable in focus) and create a collection of cuts.
The intersection of the cutting plane and the surface defines a curve. We can use all
possible cuts along one axis (since the data is discretized we get a finite number of
cuts), or choose one particular cut from a predefined set. In order to depict curves
at this stage we use the curve view.

The profiles are based on the surface value and comparison with other values on
the curve. For example, the user selects to keep the x axis and for each x;, we can
choose the y value dependent on where the surface has the maximum. Therefore,
the surface is represented by the curve where values represent the feature along
the cut. In the case of the maximum, a surface f(x;;,x;) is replaced by a curve
f(xi1) = maxy, f(xi1,x2). The same is true for other profiles.

Figure 7.3a illustrates a simple case. We have used parallel coordinates to depict
scalar aggregates of Greenland temperature (in the upper left). Low maximum val-
ues of Greenland temperature are selected and we can observe interesting relations.

First, we see that all selected runs fall within the first 40 years of the simula-
tion (histogram in Figure 7.3a). A possible explanation for this result might be an
instability of the simulation in the early phase. Although this might seem to be of
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Figure 7.4: Automatically configured multiple profiles of a surface family used at
the second level of analysis. Several such views were usually used, in addition to
other views depicting scalars and surfaces.

limited importance, it can help the simulation team to detect errors in the model and
to estimate when the simulation becomes stable. The surface family (depicted as all
curves on the right) shows also that first simulations behave differently than the later
ones. The blue curves in the upper right corner (they correspond to low maxima)
have a reversed trend as well. They all correspond to early time steps. As time goes
by the curves start to rise, and they get a more typical shape. Figure 7.3b shows the
surfaces for the last 200 time steps.

The users often use more than one profile at this stage of analysis. We have
added a pre-configured profiles view which depicts ten profiles per surface next
to each other. The users simply need all the views on the family of surfaces to
understand what is going on. Figure 7.4 illustrates an automatically configured view
depicting the Greenland temperature family of surfaces using five standard profiles
along each of the two axes. It is useful to have several such views, one for each
surface family in the data, during the analysis. In this case we would see a case for
large-scale high-resolution information displays — this is a clear case where more
pixels mean more value in the analysis.
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Analysis of Data Surfaces as Such (Lowest Level)

The scalar aggregates and curve profiles, as introduced above, offer a powerful tool
for exploration and analysis of complex data. However, at some point, the users
want to see the surface itself. It helps them significantly in forming the mental
image of the shape, and they can interpret profiles much more easily once they
also see the surface. Since we cannot visualize the whole family with all surfaces
simultaneously, we use a 3D surface view and a 2D surface view in the advanced
phases of the exploration process where we are able to narrow the focus to just a
few surfaces from the family.

The idea of the 2D surface view is to represent a surface as a rectangle (2D
surface) where a discrete point (x,y) is assigned a color value based on z = f(x,y).
Due to a large number of surfaces in a family, providing rectangles for all surfaces is
prohibitive, except for very small families. Once the number of selected surfaces is
small enough (e.g., after brushing and drill-down), the 2D surface view supports an
in-depth analysis of individual surfaces. The pixel count is a limiting factor in such
a display. If we use a reasonable size for an overview (something like thumbnail
view for images) we can simultaneously depict up to 100 2D surfaces in a usual
working environment.

If we reduce the number of surfaces even further, the 3D surface view offers the
most intuitive representation of a data surface. Interestingly, all our collaborators
really needed the 3D surface view at some point of the analysis. They often switched
back to it to understand the family of surfaces better.

7.4 Data Model

The data set described in Section 7.3 is an example of data sets that are collections of
data points (tuples) so that the data set under considerationis D = {x!,...,x/ ... x"}
where 7 is the size of the data set (the number of data points) and each data point
x' = (xf,...,x},...,x}) is a collection of attributes, one for each dimension. A tuple
attribute x; can be categorical, numerical, or a data series itself.

In the data set from Section 7.3, xli is the value of dif fj, for the data point i, xé
is the value of diff, for the data point i, xé is the year and so on for the 35 more
attributes. Data points can be aggregated based on the same combination of diff;,
and dif f, values. We can then refine our data model so that for each combination

of diff;, and diff, values, the attribute values are data series over 500 years. The data
model now has a two-level structure (Figure 7.5).

While these model refinements are rather trivial in this simple example, they
illustrate the rationale for a two-level data model that allows us to aggregate data
points based on the values in a selected dimension(s) thus restructuring the data set
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Figure 7.5: Generic data tuple. Each item can be scalar, but can also be a mapping.
The data set which contains more tuples, contains a family or families of mappings.

to have a relatively small number of data points while preserving the information
content. That provides new opportunities for visualization.

More formally, in our approach we are considering a two-level data set that
consists of data points (tuple values) of d dimensions. For each tuple x' and
each data series attribute xi- in a data tuple, we have a separate set of “sub-
tuples” with its own cardinality and dimension. The set of sub-tuples is defined
as D;j = {y',...,¥%, ...,y"} where n;;j is the number of sub-tuples. A sub-tuple in
D;j has aform (yi,...,yq,;) where d;; is a sub-tuple size and each sub-tuple attribute
is either categorical or numerical. The sub-tuple y* is then (y’l‘ yeees y’;l_j).

The dimensions of data series need not overlap with the top level dimensions.
While each data series has its own cardinality and dimensions, our discussion is
limited to three-tuples and less (d;; < 3), i.e. a data series can be a sequence of
numbers, a sequence of pairs of numbers or a sequence of three-tuples. Data series
values can be represented using curves or surfaces. In the case of a sequence of
numbers (y;) we can use a sequence position as a function domain (independent
variable) and numbers as function values (dependent variable).

In case of the sequence of pairs of numbers (y;,y2), one number is used as an in-
dependent variable and other as the dependent variable. We can use a function graph
(curve) to represent data series. In case of the sequence of three-tuples (yi,y2,y3),
we can select one of the data series dimensions for a dependent variable and the re-
maining two dimensions for independent variables, thus defining a function of two
variables that can be visualized as a surface.

7.5 Case Study — Analysis of a Slider Bearing

For the design of internal combustion (IC) engines, the reliability of the crank train
slider and thrust bearings and the piston to linear contact is of central importance.
Its design affects key functions such as durability, performance, wear and engine
noise. Due to increasing specific loads, all physical effects have become important
and they have to be considered by an advanced simulation tool: structural elasticity
and dynamics, energy flow, mixed friction, and the influence of temperature and
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Figure 7.6: a. EXCITE Power Unit Main Bearing EHD Model used in the simula-
tion. Topology view on the left showing main bearing wall, EHD joint, and journal
and geometry view on the right. b. Parameters which were varied in the simulation.
Front view of the bearing on the left, and side view on the right. The groove is used
for oil supply.

pressure upon oil viscosity. The case study is based on an interactive visual analysis
of the IC engine main slider bearing, simulated with the AVL EXCITE Power Unit
solver [Off04, PK98]. The corresponding model is shown in Figure 7.6.

In the hydrodynamic bearing simulation, the physical behavior of the structural
parts is described by the dynamics of the elastic bodies. Resources needed for the
advanced slider bearing analysis are extensive and thus the analysis is very demand-
ing. To allow an efficient sensitivity analysis in this case, two separate strands of
analysis have been performed using two different modeling depths. In the first anal-
ysis a model of the entire four cylinders inline IC engine has been built up using a
simplified main bearing model and a complex MBS model which includes all mov-
ing and supporting engine parts. With this model we calculated bearing loads acting
on each bearing with sufficient accuracy. Afterwards, the most loaded bearing was
selected for a detailed second analysis. Figure 7.7 shows the load computed. The
valleys (marked with red circles) correspond to the firing of cylinders.

We have performed an elasto-hydrodynamic (EHD) analysis for this more de-
tailed investigation, using an advanced slider bearing numerical model. It is repre-
sented by one main bearing wall section which carries loads applied to the journal as
itis shown in Figure 7.6a. The aim of the analysis is to investigate a design space by
varying several parameters in order to reduce bearing loads and damage, to increase
bearing life time, and to reduce noise generation as well as friction losses.

7.5.1 Simulation Parameters and Results

Numerous control parameters can be defined for a simulation. We varied three de-
sign parameters, length and width of the oil groove (used for oil supply in the slider
bearing), and height of the gap in the barrel shape of bearing profile (Figure 7.6b).
Table 7.1 shows the parameters used and their units. There are 9 X 5 x 5 = 225
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Figure 7.7: Bearing loads, acting on main bearing journal, simulated using a com-
plex multi body simulation model which includes all moving and supporting engine
parts. The valleys (red circles) correspond to cylinder firings.

Table 7.1: Control Parameters

Parameter Values Unit

Groove Length 90, 112.5, 135, 157.5, 180, degrees
202.5, 225, 247.5, 270

Groove Width  3,3.5,4,4.5,5 mm

Barrel Gap 0,2.5,5,7.5,10 microns

possible parameters combinations, resulting in 225 simulation runs. A simulation
run has a simulation period of two engine cycles which, for a four stroke engine,
results in four complete revolutions of the crankshaft, or a revolution for 1,440 de-
grees around the rotational axis. Due to numerical instabilities in the first calculated
engine cycle (because of imperfections of the predefined boundary conditions), only
the second cycle is used for results evaluation (720 to 1,440 degrees of crankshaft
rotation). In this cycle the numerical model is more stable and afterwards results
are periodic and repeatable even if the simulation time is extended for more cycles.
Seven response parameters were computed for each of the 225 simulation runs. Ta-
ble 7.2 shows the computed parameters, the abbreviations used in the figures, and
the units used.

The simulation tool computes the distribution of the values from Table 7.2
over the entire bearing shell surface. The values are computed for every degree
of crankshaft revolution using regularly spaced points across the bearing shell sur-
face. Therefore, each value in Table 7.2 can be seen as a data surface, spanned
by two independent variables, bearing shell angle and bearing width. Each surface
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Table 7.2: Output values

Parameter Name  Unit
Bearing clearance height CLEA mm

Hydrodynamic pressure PRES MPa
Asperity contact pressure PRSA MPa
Total pressure PTOT MPa
Fill ratio FILL

Hydrodynamic shear stress ~ TAHS MPa
Asperity contact shear stress TAAS MPa

is discretized with 85 points over the bearing shell angle and 11 equidistant nodes
over the bearing width. To reduce the amount of data and to speed up the study, the
surfaces extracted from the results data have 29 values of the crankshaft revolution
regularly sampled within one engine cycle. The complete simulation (225 runs)
takes 4-5 days on a typical PC.

7.5.2 Interactive Visual Analysis

Once the data was computed, we started the analysis. The approach with multiple
simulations is a new trend here and our domain experts did not have a tool which
would effectively support interactive visual analysis of multiple runs and of such
complex data. Visualization of individual runs is done using various 2D and 3D
charts of output parameters. Usually, a domain expert then compares results from
various runs, but cannot interactively explore them. Furthermore, the experts are
used to only treating crankangle (equivalent to time) as an independent variable.
Since we actually have the output values distributed over all the surface of the bear-
ing shell, it was natural to apply our surface analysis methodology. This way new
insights emerged, and our collaborators adapted to the newly proposed method very
fast.

The first task was to explore the distributions of asperity contact pressure. High
asperity contact pressure yields to an increased load on the bearing and to wearing
of the engine. Reducing the asperity contact can contribute the most to the slider
bearing optimization.

We have used a scatterplot to depict groove width and height, and two his-
tograms to depict barrel gap and crankangle (Figure 7.8, barrel gap histogram is not
shown). We have many simulation runs, one for each combination of groove width,
height, barrel gap, and crankangle, and therefore each point in the scatterplot repre-
sents multiple runs. The function graph views in Figure 7.8 show maxima of PRSA
and PRES, as well as minima of CLEA and FILL data surfaces. The shape of the
surfaces is completely invisible if aggregates are used only.
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Figure 7.8: The first task was to identify cases with high asperity contact pressure as
this leads to wearing of the bearing. We have selected PRSA maximum values in the
maximum projection of PRSA surfaces and identify regions of control parameters
which result in wanted, low maximum asperity pressure. Note that such a high
pressure appears only at certain crankangles, and this information would have been
lost in a conventional analysis. Note also the interesting shapes of PRES, CLEA,
and FILL surface slices in the lower row of the figure.

The engineer selected maximum PRSA (unwanted behavior) and identified pos-
sible values of the control parameters which lead to lower maximum PRSA (gray
points in the scatterplot in Figure 7.8). By analyzing the results from the simula-
tion runs we saw that asperity contact is reduced in general by increasing oil groove
length. At the same time asperity pressure can be reduced by decreasing oil groove
width. The most interesting region is identified: groove length of 180 degrees which
is preferable from production point of view and small groove width (the green rect-
angle in Figure 7.8). This was set as the starting condition for the following analysis.

In the next step of the analysis we look at the simulation runs near to the in-
teresting region (the green rectangle in the Figure 7.8). We use the same setup for
control parameters as in the previous step. Figure 7.9 shows four stages of the anal-
ysis. We first brush the region of interest in the scatterplot. This brush in the left
scatterplot in Figure 7.9a remains the same throughout the analysis. In the first steps
(Figures 7.9b—d) we also focus on one value of the barrel gap. Later we refine the
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selection using a histogram brush on the barrel gap histogram (second histogram
in Figure 7.9a, active only for Figure 7.9¢). Results for those six combinations of
groove size (as selected in the scatterplot) and always the same barrel gap (as se-
lected in the histogram) are showed for complete engine cycle — for all crankangles.
To look at the results in more detail, the distribution of asperity contact and hydro-
dynamic pressure is also shown as a 3D surface, plotted over the bearing shell angle
and the bearing width for all crank angles throughout Figure 7.9.

Figure 7.9b shows that maximum asperity contact pressure for selected cases
is less than 50% of the maximum pressure in all simulation runs (PRSA-MAX
graph) and maximum hydrodynamic pressure is also reduced by approximately 10%
(PRES-MAX graph). Our domain expert likes the 3D surface view in wire-frame
mode. He always uses it in order to see if there is some strange behavior. As this
view depicts many data surfaces simultaneously all we see is a kind of envelope. He
can hardly see the interior of the family of surfaces where many data surfaces are
possible (and can be clearly seen in function graph views). As he is often interested
in extremes he uses it often. By looking at the 3D surface distribution one can see
that asperity contact appears at bearing edges and mainly at one side of the bearing
due to the distribution of applied bearing moments (Figure 7.9b). The PRSA 3D
surface view shows all peaks at one side. At the same time, the distribution of hydro-
dynamic pressure has a peak in the central bearing region (PRES 3D surface view
and function graph view). When we apply the third brush (Figure 7.9c) and show
only the maximum values of hydrodynamic pressure, one can see that the maxi-
mum appears at only one crank angle near to the top dead center, where maximum
bearing forces are acting due to the combustion in the particular cylinder. At this
crank angle, the distribution of hydrodynamic pressure (PRES) is regular and as-
perity contact pressure is near to zero (PRSA). Therefore, further decreasing of the
hydrodynamic pressure will probably be not feasible only with selected parameters
or without any increasing of the asperity contact pressure.

On the other side, when we look at the maximum asperity contact pressure in
Figure 7.9b, (PRSA-MAX views) one can see three groups of characteristic peaks
over the bearing shell angle. We select the highest, (3rd,) peak (brush 3 in Fig-
ure 7.9d) and explore the corresponding surfaces. It can be seen that maximum
asperity contacts (the PRSA graph in Figure 7.9d) appear at one side of the bearing
but are not the minimum or the maximum values from the all simulation runs. We
can also see in the crankangle histogram that those peaks appear immediately after
maximum hydrodynamic pressure after combustion with shifted maximum values
to the bearing edge where solid contact is detected (3D surface views). Typically,
the asperity contact pressure at the bearing edges can be reduced by using a barrel
profile of the bearing shell. This means increasing the barrel gap as defined in Fig-
ure 7.6b. We tried to see what is happening as we increase the gap, and we expected
the asperity contact to decrease. We extended the barrel gap histogram brush over
larger values of the barrel gap, the rightmost histogram in Figure 7.9a shows this
selection. Corresponding graphs are depicted in Figure 7.9e. Our results show that
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asperity contact is even increased due to increases of hydrodynamic pressure and
the changed distribution, contrary to our first expectations.

Finally, it is important to see that the here presented sensitivity analysis can also
be implemented as a first step in slider bearing optimization. We have efficiently
identified the most influential parameters on the bearing behavior in an interactive
way. Using our new methodology it is possible to check large amounts of results
data and identify correlations between main design parameters and the slider bear-
ing dynamic behavior. The newly proposed data model makes it possible to explore
inter-surface relations efficiently. The paradigm shift from a crankangle—based con-
cept to surface width/height based series was very fast and, once achieved, also
intuitive. Next steps would be to make the simulation model more complex by
varying bearing shell surface properties and oil quality, e.g. The same methodology
can be used to explore future designs and automatic optimization results.

7.6 Conclusion

We introduce a new interactive visual analysis methodology to support the analysis
and exploration of complex data originating from multiple-runs simulations. Such
data is becoming increasingly popular and our approach significantly improves our
ability to cope with increased complexity. We introduce a novel way of considering
two independent variables in the data. Such data can be understood as families of
surfaces. Here we focus on how to deal with the complexity of the data. We can
easily depict a million of data items when using a scatter plot, but only about 10 000
items (in a legible and expressive way) using parallel coordinates (without advanced
techniques such as reverting to a frequency-based representation [NH06]), and only
a handful of surfaces when using the 3D surface view. The proposed approach
is certainly not trivial and requires a certain learning curve. Domain experts were
puzzled at the beginning, but then they appreciated the new technique. They realized
quickly that we need to keep data surfaces coherent in order to understand complex
relations and interplay of parameters.

We identify three levels of analysis, aggregation using scalars, profiling with
respect to one variable, and finally the last stage where individual surfaces are used.
Due to occlusion related problems the final level can be used at late stages of anal-
ysis when the user drills down to a single (or just a few) surface(s) in a family. This
approach is widely applicable, here illustrated with two examples, meteorological
data and the analysis of EHD bearing from automotive industry.

Here we deal with cases where the surfaces are regularly sampled. Surfaces with
irregular sampling represent an interesting research challenge. The extension to
alternative sampling strategies is an important direction of future work. In both here
discussed cases (meteorology and bearing), the analysis is an a posteriori process,
i.e., with no further influence on the computed simulation data. We illustrate the
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newly proposed technology on the cases with just a few control parameters. In
other cases, one could think about a coupled setup (as in the case of computational
steering [MGJHOS8]) where throughout the analysis new parameters are varied. Then
it would be necessary to reload the analysis with respect to new surface structures
in the data.
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Figure 7.9: a. Groove dimensions are fixed using scatterplot. Barrel Gap is the same
for b, c, and d. The extended case is used for e. Three different peaks in PRSA were
identified and explored. Selection was refined by selecting high pressure and barrel
gap influence was studied. Note the use of 3D surface view and 3D scatterplot
which were almost always used by domain expert - mechanical engineer. b. The
interesting region of groove size was selected for an in depth analysis. c. Selections
were refined by selecting high PRESS-MAX. d. Selections were refined by selecting
high PRSA-MAX. e. Finally, gap was extended using histogram selection and high
PRSA-MAX was selected.
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Abstract

We describe an approach to visually analyzing the dynamic behavior of 3D time-
dependent flow fields by considering the behavior of the path lines. At selected
positions in the 4D space-time domain, we compute a number of local and global
properties of path lines describing relevant features of them. The resulting mul-
tivariate data set is analyzed by applying state-of-the-art information visualization
approaches in the sense of a set of linked views (scatter plots, parallel coordinates,
etc.) with interactive brushing and focus+context visualization. The selected path
lines with certain properties are integrated and visualized as colored 3D curves. This
approach allows an interactive exploration of intricate 4D flow structures. We apply
our method to a number of flow data sets and describe how path line attributes are
used for describing characteristic features of these flows.

8.1 Introduction

An effective visual analysis of the dynamic behavior of 3D time-dependent flow
fields is still a challenging problem in scientific visualization. Although a number
of promising approaches have been introduced in recent years, the size and com-
plexity of the data sets as well as the dimensionality of the underlying space-time
domain makes the data handling, the analysis and the visual representation challeng-
ing and partially unsolved. In particular, it also proves to be inherently difficult to
actually comprehend (in detail) the important characteristics of 3D time-dependent
flow data.

In addition to others (streak lines, time lines, etc.), there exist two important
kinds of characteristic curves for time-dependent flow fields: stream lines and path
lines. While stream lines describe the steady behavior of the flow at a certain time
step, path lines describe the paths of massless particles over time in the flow. Hence,
the analysis of the dynamic behavior of flow fields is strongly related to the analysis
of the behavior of the path lines.
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One common approach to analyzing flow fields is to partition the flow domain
into areas of characteristically different flow properties. To do so, a variety of dif-
ferent features have been proposed, such as topological features, vortical structures,
or shock waves. They reflect different properties of the flow and therefore focus on
the representation of different inherent structures. In fact, not all features may give
useful information for every flow data set, and the selection of the relevant features
is often left to the user in an unsupported way. Moreover, among the features there
may be correlations which are either general due to their definition, or they occur
in certain areas of particular flows and give relevant information about the behavior
of the flow. Therefore we believe that not only the introduction and visualization of
new features leads to a deeper understanding of the dynamic behavior of the flow
field, but also an effective analysis of the relations between the features and the ap-
plications of these results for a visual representation. Our paper is one step along
the recently challenging path towards a better understanding of 3D time dependent
flow fields.

Our approach starts with the extraction of a number of properties (features,
scalar values, and time series) at each point of a regular sampling of the 4D space-
time domain. We have focused on properties describing the (local or global) be-
havior of the path lines, being either classical and well-established values in vector
algebra, or properties newly proposed in this paper. The result of this step is a
path line attribute data set: a four-dimensional multivariate data set collecting all
computed path line properties.

The visual analysis of multidimensional multivariate data is a well researched
topic in information visualization. A variety of techniques has been developed to
visualizing such data sets making inherent correlations visible. Because of this
we attempt to use information visualization approaches to analyzing the path line
attributes data set. The results of this analysis (i.e., selections of path lines with
certain combinations of properties) are then used for a focus+context visualization
of either the selected path lines or the interesting properties. This way the user is
able to do a simultaneous exploration in the 4D space-time domain of the flow and
in the abstract path line attribute space. We show that this can give new insight
into characteristic substructures of the flow which leads to a better understanding of
time-dependent flow fields.

The rest of the paper is organized as follows. Section 8.2 mentions related
work in the visualization of 3D time-dependent flow fields. Section 8.3 presents
the properties of path lines which we extract for the further analysis. Section 8.4
describes our information visualization approach and explains how to use it for a
focus+context visualization of the flow data. Section 8.5 applies our approach to a
number of data sets. Section 8.6 draws conclusions and mentions issues of future
research.
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8.2 Related Work

The idea to segment a flow domain into areas of certain flow properties has been
used for 3D steady flow fields for a variety of features, such as topological features
[GLL91, LDG98, MBS*04, TWHS03, WTHS04] or vortex regions [Hun87, SH95,
PR99]. [SS07] provides a general framework of this in the context of topological
features. [PVH™ 03] gives an overview on flow visualization techniques focusing on
feature extraction approaches.

The extension of these techniques to 3D time-dependent fields is usually done
by observing the feature regions over time, see [TSHO1, TS03, GTS04] for topo-
logical features and [BS94, BS95, BP02, TSW'05] for vortex features. Although
these approaches provide insight into the flow behavior at arbitrary time steps, the
analysis of the dynamic behavior based on path lines make specialized approaches
necessary. [WSO05] visualizes a number of carefully selected path lines to get static
representations of the dynamic flow. [TWHSO05] considers a segmentation of the
flow domain based on local properties of the path lines. [WEE03, WSEEO5] apply
texture based visualization approaches to capture path line characteristics.

The idea of connecting information visualization and scientific visualization
approaches is considered to be one of the "hot topics" in visualization [Joh04].
Salzbrunn et al. published an approach of streamline predicates for steady flow
[SSO7]. The work closest to ours is the SimVis approach [DGH03, DMG*05]
which uses approaches of information visualization to analyzing various kinds of
simulation data. The main difference to our approach is that SimVis works on mul-
tiple scalar data describing certain properties of the simulation. Contrary to this,
our approach works on dynamic flow data, focusing on local and global properties
of path lines, i.e. on a multi-variate properties data set, derived from a 3D unsteady
flow field.

8.3 Path Line Attributes

Given a 3D time-dependent vector field v(x,?), X describes the 3D domain and 7 is
the temporal component. Stream lines and path lines are generally different classes
of curves [TWHSO05]. Stream lines are the tangent curves of v for a fixed time ¢,
while path lines describe the paths of massless particles in v over time.

Given a point (x,?) in the space-time domain, the stream line starting at (X,?)
can be written in a parametric form

Sx(T) = x—i—/otv(s,(,,(s),t) ds (8.1)

while the path line starting at (x,¢) has the parametric form

Prs(T) = X+ /0 V(s (5),5 4 1) ds. 8.2)
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LAD

Figure 8.1: a) Mapping the direction vectors along a path line to a unit sphere
and calculating the bounding box approximation of the opening cone; b) Winding
angle along a path line; c) Curvature difference between the path line and stream
line pass through a specified point. d) LAD that records the Euclidean distance
between the point of a path line the corresponding stream line at the same time 7;
e) ArcLAD that records the Euclidean distance between the point of a path line and
the corresponding stream line at the same arc length o from the start point.

Table 8.1: Scalar Attributes

Id Name Description

T — —
nonStraightV Non Straight Velocity Jo 1¥(Prs (9)-5+40) || ds— | (=]
distSE Relative start end distance Ipx (9 =x]
avDir Average direction Hzx‘f%

Px.
avParticleV Average particle velocity M

/ T

lyapunov Lyapunov exponent M,A:prm (v[GRHO7, SLMO5]
wind Winding Angle Y002 Z( (piv1—pi):(pir2—pis1) ). Fig. 8.1b
lad Local acceleration displacement lpx. (t)—sx. (7) || Fig. 8.1d
curvDiff Curvature difference (ks —Kp)* Kp= ““"‘Tw K= % Fig 8.1c
div Local divergence div(v)

Path lines depict the trajectory of massless particles in a time-dependent flow.
To characterize path lines, we consider two kinds of information: scalar values
that describes local or global properties of a path line, and time series that collects
information along a path line.

For scalar attributes, we compute a number of scalar properties of the path line
starting at a given point (x,7) which reflect either local or global properties of the
path lines. In the latter case, the value depends on the considered integration time.
Since we are interested in the global behavior of the path lines, the integration time
can be chosen rather large (relative to the time interval in which v is defined). In
particular, we compute the scalar values in Table 8.1.

For time series we have investigated the attributes in Table 8.2.
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Table 8.2: Time Series Attributes

Id Name Description
DistEu Euclidean distance to start DistEu(t)=||px(t)—x||
LAD Local acceleration displacement LAD(t)=||px, (v)—sx, (7| Fig. 8.1d
ArcLAD Arc local acceleration displace-  Fig. 8.1e
ment
Dir Direction vector
OpeningCone Opening cone Fig. 8.1a
Curvature Curvature
Velocity Velocity

3D time
4 Selected
dependent Attributes of S e
vector field path lines WWW* attribute fields W” pa,:;'ei,“e;

¢ - »
Sampling Path line 5 W 4
sintegration attributes Information visualization hum::‘sizl‘ae‘iimn
time setting calculation analysis P v
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Fetrerrilie v/”} il path lines //”> Color
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Figure 8.2: Pipeline for analyzing path line attributes.

8.4 System overview

Fig. 8.2 shows the pipeline of our path line attribute analysis approach. We start
with a 3D time-dependent flow field v to be analyzed. As a first step, we apply a
sampling of the space-time domain to obtain the points for which we compute the
path line attributes. Note that since the data lives in a 4D domain, even a rather
small sampling density may give a high amount of sample points. Therefore, the
sampling density should be a compromise between the spatio-temporal accuracy of
the analysis and the available computing resources. If the analysis delivers interest-
ing features in certain smaller regions of the domain, this region can be analyzed
using a higher sampling density to make sure the sampling rate is above the Nyquist
frequency . At this state of the approach we also have to set the integration time for
the path lines. Also this setting is a tradeoff between the fact that we want to have
the path lines to be analyzed as long as possible and the property that most of the
path lines should be integrated over the same time without leaving the domain.

The next step of the approach is the integration of the stream lines and path lines
starting from the sampled points over the set integration time. For our examples we
have used a 4th order Runge-Kutta integration. From these integrations we compute
all path line attributes introduced in section 8.3.

The set of all path line attributes is the input of our information visualization
core module which will be described in section 8.4.1 in more detail. Interactive
visual analysis on the basis of state-of-the-art information visualization techniques
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and brushing in linked views is used to extract relevant correlations, interesting fea-
ture combinations, or general properties of the data. Note that the brushed features
are not necessary physical variable. The result of this analysis is used to steering the
visualization of the path lines and their attributes. If the interactive visual analysis
delivers interesting features in a certain scalar path line attribute, we can visualize it
using standard volume rendering techniques like direct volume rendering or slicing.
Furthermore, the interactive visual analysis delivers a selection of interesting path
lines having a certain combination of properties. They are visualized as 3D line
structures with a color coded time component.

Our implementations of the visualization of the selected path lines and the se-
lected attributes are based on Amira [SWHOS5], whereas our information visualiza-
tion analysis is based on the ComVis system which is described in section 8.4.1.

8.4.1 The ComVis system

ComVis is an interactive visualization tool. It supports conventional information vi-
sualization views such as 2D and 3D scatter plots, parallel coordinates, histograms,
as well as a special curves view which is used for displaying function graphs. This
combination of views makes it possible to analyze a wide variety of data where
in the same row of a multi-variate table some values are scalar (just as it is usual)
and others correspond to a function graph (common in various kinds of scientific
data)[MJJ"05]. The tool offers multiple linked views parallel to each other. Each
view can be of any of the above mentioned view type. ComVis pays great attention
to interaction. Due to advanced brushing and linking proved to be very powerful
analytical tool. Users can brush the visualized data in any view, all linked views
reflect the data selections by appropriate focus+context visualization. Furthermore,
the user can use a simple, yet powerful line brush in the curves view. The line brush
selects all curves which intersect the line. All brushes can be scaled and moved
interactively. The multiple brush mode makes it possible to flexibly combine vari-
ous brushes. The user selects brushes and boolean operations between them. AND,
OR, and SUB are supported. Furthermore, the tool creates a composite brush in an
iterative manner. This means that the user selects a current operation (AND, OR,
or SUB) and draws a brush. The previous brushing state is combined with the new
brush accordingly. The new state is computed, and it is used when the user draws
another brush. In this way the user immediately gets visual feedback, and can very
easily broaden the selection (using OR), or can further restrict the selection (using
AND or SUB). Once the user is satisfied with a selection (or in the meantime),
a tabular representation of the selected data can be shown and exported to file on
demand.
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Figure 8.3: Flow behind a cylinder: a) Direct volume rendering of the /yapunov
attribute field at time O; b) All considered path lines.

8.5 Applications

We applied our approach to a number of data sets. Not surprisingly, not all at-
tributes are interesting in all data sets, and different path line attributes turn out to
be important for different data set. However, we can also identify several interest-
ing coherencies between different path line attributes which seem to hold even for
different data sets. Accordingly, we are optimistic that the here described analysis
indeed provides a useful basis for future generalization of this approach.

8.5.1 3D time-dependent cylinder flow

Figures 8.3 and 8.4 present some results of analyzing a 3D time-dependent flow
behind a circular cylinder. The cylinder is put in the origin with radius 0.5 and height
8.0, while the data set domain D is [3.15,19.74] x [-2.06,2.06] x [0.09,1.89] x
[0,2x]. This data set was kindly provided by Gerd Mutschke (FZ Rossendorf) and
Bernd R. Noack (TU Berlin). We considered path lines at a 28 x 14 x 7 x 6 (191MB
attribute file to ComVis) sampling and used an integration time of 1.57 (for the data
set given in a 27 time slab). Figure 8.3a shows the direct volume rendering of one
of the attribute fields lyapunov. In figure 8.3b, all path lines integrated from the
sampled points are displayed. As we can see from figure 8.3a, there are certain
patterns in the lyapunov attribute field. Low lyapunov values indicate stability of
the path line. We use the information visualization approach to select the area with
low lyapunov, as shown in the upper left of figure 8.4a. The visualization of the
selected path lines is shown in figure 8.4b. Fig. 8.4c shows the seed area of the
selected path lines at the time 0.

When investigating the visualized result, we can see that there are further dif-
ferent patterns in the low /yapunov path lines. It is obvious when we investigate the
ComVis result of time series LAD, after choosing the cluster as shown in the upper
right of figure 8.4d. We get the path line cluster whose LAD time series have small
values at the end of the integration time. Fig. 8.4e and 8.4f present the visualization
of the selected path lines and their seed areas. We notice that they stay in the middle
of the domain and along the flow direction directly behind the cylinder.
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Figure 8.4: Feature low lyapunov and LAD: a) Selecting low lyapunov area in
ComVis; b) Visualization of selected path lines with low lyapunov; c) Visualization
of the seeding area of the selected low lyapunov path lines at time 0; d) Selecting
low lyapunov and parabola LAD area in ComVis; e) Visualization of selected path
lines with low lyapunov and low LAD:; f) Visualization of the seeding area of the
selected low lyapunov and low LAD path lines at time O.

8.5.2 Hurricane Isabel

Fig. 8.5 shows a visual analysis of the hurricane Isabel data set, which has been pre-
viously analyzed in a number of papers [GM04, DMH04]. We sample the domain
with path lines at a resolution of 24 x 24 x 6 x 6 (253MB attribute file to ComVis),
and set the maximum integration time to 30 hours (the whole data set covers 48
hours). Fig. 8.5a shows the visualization of all considered path lines. Fig. 8.5b
show a direct volume rendering of nonStraightV at time O (the starting time of the
simulation).

For this data set, we start the information visualization analysis, with the obser-
vation of the avParticleV vs. distSE scatter plot (upper right of Fig. 8.5c), showing
a number of points on the diagonal but also a number scatter points clearly above it.
We expect the points on the diagonal to represent path lines with a rather straight-
line-like behavior, whereas the locations of the points above the diagonal may indi-
cate a swirling behavior. Since nonStraightV is equivalent avParticleV vs. distSE,
we selected all points above the diagonal, by considering points with a rather high
nonStraightV (upper left of Fig. 8.5c). The parallel coordinate representation (lower
right of Fig. 8.5c) shows that the selected path lines have a rather low curvDiff. This
indicates that in these regions stream lines and path lines are locally rather similar.
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The curvature plot of the selected path lines doesn’t have extreme values (lower left
of Fig. 8.5¢). The selected path lines are visualized in Fig. 8.5d, clearly showing
that we have selected the ones swirling around the moving eye of the hurricane. Fig.
8.5¢ shows the areas where the selected path lines originate at time ¢ = 0, while Fig.
8.5f shows the starting areas of the selected path lines for all time steps.

8.5.3 Airfoil

Figures 8.6 - 8.7 show a comparative visual analysis of 8 different data sets of a flow
around an airfoil. The difference between these 8 data sets are the air injection fre-
quency. The injection frequencies are O(base), 0.2, 0.44, 0.6, 0.88, 1.0, 1.5 and 2.0.
The goal of our analysis is to find the best air injection frequency which contributes
the best lift power. It is known that abnormal vortex structures reduce the lift of the
airfoil. Therefore, our visual analysis focuses on the areas with vortices where the
probability of abnormal flow is high. We reduce our consideration to a small area
around the areas with vortices.

We sample the interesting area with path lines at a resolution of 36 x 12 x 8 x 10
for each data set, and set the maximum integration time to 30 seconds (the whole
data set covers different time domains for different frequencies and the path line
integration will usually leave the domain within 30 seconds for each frequency).
Fig. 8.6 shows the visualization of all considered path lines for different frequencies.
We observe that most path lines behave well showing a rather straight behavior. The
abnormal flows correspond to those non straight path lines. As our experience on
these attributes, the nonStraightV is a good attribute to reflect the characteristics of
straightness of path lines. So we compare this attribute computed at same location
and same time for different frequency data sets in ComVis.

Fig. 8.7 shows the comparative result of the analysis of the nonStraightV for
these 8 different frequencies. Relative analysis is popular in airfoil analysis since
the relative flow behavior for different parts of an airfoil determines the lift power.
We apply a relative selection here and select those path lines for each data set with
70 percent highest nonStraightV attributes. Those selected path lines and the cor-
responding seeding areas are visualized. We can see that these selected non straight
path lines are closed to the area with vortices. And we can clearly observe that for a
frequency 0.6, there are fewest non straight path lines and the non straight seeding
areas are the smallest. So we find that for frequency 0.6, the probability of abnormal
flow is less compared to others. We have tested several other percentage of the high-
est nonStraightV. All the results present the equivalent information. We conclude
that 0.6 is the best air injection frequency among the 8 tests. The experience from
the industry partner confirms this result successfully.
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Figure 8.5: Analysis and visualization of data set Hurricane Isabel: a)A visualiza-
tion of all considered path lines. b) Direct volume rendering of the nonStraightV
attribute field at time O; c) Selecting the area with high nonStraightV which corre-
sponds to swirling behavior in ComVis; d) Visualization of selected path lines of
swirling behavior; e) Visualization of the seeding area of the selected swirling path
lines at time 0; f) Visualization of the seeding area of the selected swirling path lines
at all time steps.

8.6 Conclusions

To getting insight into the dynamic behavior of path lines of 3D time-dependent
flow fields is still a challenging problem for the visualization community. Path lines
elude a straightforward extension from stream line based methods because path lines
can be integrated only over a finite time, and they may intersect each other (at least
when only considering their 3D reference locations). This paper is the - to the best
of our knowledge - first approach to getting insight into the behavior of path lines
by applying an approach from information visualization. In particular, we made the
following contributions:

e We identified a number of local and global attributes of path lines which we
expect to contain relevant information about the path line behavior.

e We interactively analyzed these attributes by using an approach from infor-
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Figure 8.6: The path lines started from the focus area of the airfoil flow field for
different air injection frequency.

mation visualization. The results were used to steering a 3D path line visual-
ization.

e We applied our approach to a number of data sets, in order to get new insight
into the path line behavior.

During our analysis it turned out that not all path line attributes gave useful results
for all data sets. However, inherent and data independent correlations in the at-
tribute data set can be expected, making a reduction of the attribute set possible.
In particular, we have the impression that the investigation of path line attributes
can indeed lead to a useful and practicable way of accessing/segmenting interesting
flow features in time-dependent data sets, including swirling/vortical/rotating flow
subsets, (e.g., via attributes wind and nonStraightV) , quasi-steady flow structures,
(e.g., via attributes LAD and ArcLAD, etc.), etc. We are optimistic with respect to
these expectations, not at the least because it was, for example, fairly straight for-
ward and quite easy to accomplish to extract the rotating main vortex of hurricane
Isabel, which — to the best of our knowledge — cannot so easily be accomplished
with any of the previously published vortex extraction methods.
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Figure 8.7: The comparative analysis result for the attribute nonStraightV of of the
airfoil flow field for different air injection frequency. The pictures in the first column
depict the selections of 70 percent highest nonStraightV for different frequencies in
ComVis. The pictures in the second column depict the corresponding selected path
lines for the first column. The pictures in the third column are the corresponding
seeding area for the selections in the first column.
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Abstract

Recent work has shown the great potential of interactive flow analysis by the anal-
ysis of path lines. The choice of suitable attributes, describing the path lines, is,
however, still an open question. This paper addresses this question performing a
statistical analysis of the path line attribute space. In this way we are able to balance
the usage of computing power and storage with the necessity to not loose relevant
information. We demonstrate how a carefully chosen attribute set can improve the
benefits of state-of-the art interactive flow analysis. The results obtained are com-
pared to previously published work.

9.1 Introduction

When analyzing the dynamics of unsteady flow, the investigation of particle move-
ments is a canonical choice. In order to enable further analysis based on particle
paths, these trajectories need to be characterized. Possible ways to describe the
paths include deriving measures for their global and local behavior and properties
of the field around the moving particles. A large number of such feature detectors
is available and has been used in different contexts [PVH103, JMT05, STHT09,
SGSMOS].

Previous work by Biirger et al. [BMDHO7], Shi et al. [STH"09] and
Lez et al. [LZM*11] has shown the great potential of the combination of Inter-
active Visual Analysis (IVA) and feature extraction. However, the question of how
to choose an adequate attribute set to investigate is left open, although it is non-
trivial. Feature detectors are usually designed to target one specific aspect of the
flow behavior. An ad hoc choice of suitable attributes is therefore dependent on cor-
rect prior knowledge (or assumptions) on what type features to expect. This has the
implication that unexpected behavior is possibly hard to detect. Therefore, a objec-
tive and complete investigation of the data set in question would require to look for
"all possible" features (say vortices, vortex core lines, path lines with low average
speed,. . .) and their detectors at once.
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This leaves us with a large amount of possibly interesting features and even
more detectors that should be considered. Computing all of them is tedious at least
and results in a high computation time and storing a large number of attributes per
trajectory. It can be expected that this brute force approach would generate a con-
siderable information overhead, since many of the attributes are computed from the
same velocity field. In general, different feature detectors may systematically corre-
lated to each because they either describe the same aspect of the flow or are related
to each other by physical principles (e.g., velocity and vorticity by the vorticity
equation). From the practical side, a systematic analysis of a data set gets increas-
ingly challenging the more dimensions it contains. Hence, a canonic question in this
context is: Is there a common subset of the path line attributes that captures "all"
complexity of the data sets? Or, in short, what is the intrinsic dimensionality of the
path line attribute space?

The problem of analyzing high dimensional data sets is a classic challenge,
that both statistics [JWO07] and visualization [FH09] deal with, as well as others.
Roughly speaking, the main distinction between these two approaches to multi-
variate data analysis, is the role of the user: while statistics relies on automatic
methods, visualization-based approaches try to exploit a larger amount of user in-
teraction [SS04a, PBHO8]. The benefits and drawbacks of the two approaches can
be considered complementary. One should therefore aim to combine the strengths
of both, namely rigidness and inherent objectiveness of statistical methods for de-
termining the intrinsic dimensionality of the data and the flexibility and possibility
of integration user knowledge of IVA in the analysis stage.

In statistics, a number of dimension reduction methods are available [Fod02],
two of the most prominent being principal component analysis (PCA) [Pea0O1] and
exploratory factor analysis (EFA) [Spe07]. In short, the first finds orthogonal prin-
cipal components (linear combinations of the observed variables) that account for
the maximal amount of variance. Although efficient for the mere dimension re-
duction purpose, one of the draw-backs of this method is that the principal compo-
nents are usually hard to interpret and the computation of them involves possibly
all observed variables. Modifications of PCA that attempt to avoid this have been
proposed [ZHTO06], imposing additional constrains on the algorithm. Exploratory
factor analysis gives the number of statistical variables, called factors, needed to
explain the common variance between variables and how these factors load on (are
correlated to) the observed variables. These factors are assumed to be not directly
measurable, hence the actual interesting information being the loadings (correlation
coefficients) on the observed variables. Taking the highly loaded variables for ev-
ery factor yields a set of variables that are interpretable, account for the complexity
of the data, and the set is (if the data allows for this) of considerable smaller di-
mensionality. Hence, exploratory factor analysis is a more promising choice for the
dimension reduction for our purposes. For a more detailed overview of the similar-
ities and differences between PCA and EFA, we refer to Suhr [Suh05].
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In this paper we investigate several CFD data sets with exploratory factor anal-
ysis, with the goal to find a common set of variables that can be used as a starting
point for a deeper analysis of CFD data sets. This variable set should capture the
underlying physical processes in fluids with a little as possible redundancy. The
analyzed data sets span different geometries, constant/non-constant inflows as well
as different simulation methods to prevent the variable set from being specific for
one type of simulation/geometry/application.

We compare the results from IVA applied on the attribute set found in our inves-
tigation to previously published results. Our results match and also partially exceed
previous ones. In contrast to previous work we have a predefined attribute set, which
makes a more systematic analysis possible.

The remainder of this paper is organized as follows: first we briefly discuss pre-
vious work, and then we describe our statistical analysis and present its results. We
give a demonstration of the results achievable from the combination of our findings
and IVA, comparing these results to previous ones.

9.2 Related Work

Because of their tight relation to the dynamic behavior of the flow, visualization
by means of particle trajectories is a well established branch of flow visualiza-
tion [MLP10].

Theisel et al. [TWHSO05] introduce the classification and segmentation of path
lines according to attracting, repelling and saddle-like behavior for visualization
purposes. This classification allows the authors to identify a path line-based topol-
ogy for two-dimensional unsteady flows. Salzbrunn and Scheuermann [SS06] in-
troduce a mathematical framework based on Boolean algebra that allows to define
a topology based on so-called streamline predicates. These predicates are user cho-
sen and can be seen as path line attributes with Boolean range. Later, Salzbrunn et
al. [SGSMO8] extend this approach to path lines.

Biirger et al. [BMDHO7] investigate the opportunity to combine several feature
detectors making use of interactive visual analysis, focusing on vortical features.
Shi et al. [STH*09] present a similar approach together with more general path line
attributes, using both local and global descriptors for the path line behavior. Lez et
al. [LZM"11] enhance the utility of path line based IVA by the possibility for direct
path line brushing via projections.

The problem of dimension reduction in high-dimensional data sets is a well
established research field within statistics. Pearson published his seminal work
on principal component analysis [Pea0l] in 1901. Spearman laid the founda-
tion for factor analysis with his 1907 article on the "true measurement of corre-
lation" [Spe07]. Since, a large number of related methods and algorithms has been
presented. For an overview we refer to Fodor’s survey on this topic [Fod02].
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In the context of information visualization, the possibility for user-guided di-
mension reduction has been investigated. Yang et al. present a method called Vi-
sual Hierarchical Dimension Reduction (VHDR) [YWRHO03]. VHDR clusters the
data dimensions according to similarity measures, generating a dimension hierar-
chy. The user selects clusters and specifies "representative dimensions" for those
clusters. Finally, a projection step is applied.

Seo and Shneiderman present the rank-by-feature framework [SS04a], that al-
lows the user to rank the dimensions by some simple statistics for one-dimensional
and two-dimensional representations of the original dimension and dimension pairs,
respectively. Piringer et al. [PBHO8] extend this approach to the investigation of
user-specified subsets of the original data set instead of dimensions only. Recently,
Turkay et al. [TFH11] presented a visualization model that allows for interaction
in both item and dimension space. This eases the understanding of the relation of
different data dimensions and the according analysis of high-dimensional data sets,
yielding means of interactive dimension reduction.

This paper is targeting dimension reduction for interactive flow analysis along
the lines of the works of Biirger et al. [BMDHO7], Shi et al. [STH'09], and LeZ et
al. [LZM ™ 11].

9.3 Statistical Analysis

In this section we firstly give a description of the statistical methodology we use,
and then describe the actual analysis of the data.

9.3.1 The Statistical Model

As explained in the introduction, we chose exploratory factor analysis (EFA) to in-
vestigate the dimensionality of the path line attribute space. It is worthwhile notic-
ing that modern EFA is more a group of methods than one single algorithm. Since
we want to find the minimal number of factors explaining the variation in the data
set, we have to choose Principal Factor Analysis (also known as Common factor
analysis) [Har76]. In order to increase the numerical stability, an iterative algo-
rithm is used [Har76]. Since we are interested in factors that can be related back
to one (or more) attributes that we can compute, we discharge the usual assumption
of uncorrelated factors and use the so-called varimax criterion instead [Har76]. In
short, this criterion tries to maximize the variation in the factor loadings onto the
variables. This yields often the situation that each variable virtually loads one factor
only [Har76]. For a thorough discussion of these algorithmic choices, and possible
alternatives, we refer to Harman’s book [Har76].

One crucial aspect of a factor analysis is the criterion that determines how many
factors have to be retained. The eigenvalues of the respective factors give informa-
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param. num. of factors factor: variable with highest loading
(Kaiser/screen/prop.) | (loading)

time 6/7/11 1:A; (0.95), 2:inv (0.99), 3:startEnd (0.97),
4:vel (0.87), 5:usH (0.85), 6:windang (0.65),
flow through 7:dpos (0.81), 8:vel (0.71)
a box space 5/5/9 1:X2 (0.96)/Hunt’s Q (-0.94), 2:inv (0.98),

3:vel (0.86), 4:uSH (0.86)/SH (0.85),
S:startEnd (0.92), 6:pos (0.68)
time 5/8/6 1:inv (0.98), 2:startEnd (1.00)/avspeed (0.99),
3:A, (0.94)/Hunt’s Q (-0.93), 4:SH (1.00),
5:pos (0.88), 6:avspeed (0.71)
space 51717 1:startEnd (0.99)/avspeed (0.97), 2:inv (0.89),
3:SH (0.96)/uSH (0.94), 4:\, (0.95)/Hunt’s Q (-0.93),
S5:inv (0.78), 6:pos (0.86), 7:avspeed (0.58)
time 51517 1:vort (0.95), 2:SH (0.94)/uSH (0.93), 3:inv (1.01),
4:startEnd (0.95)/ avspeed (0.94),
breaking 5:A2 (0.89)/Hunt’s Q (-0.85)

dam space 4/4/8 1:vort (0.97), 2:inv (1.01), 3:dpos (0.67)/vel (0.63),
4:uSH (0.89)/SH (0.87), 5:Hunt’s Q (0.94), 6:pos (0.73)
time 4/8/8 1:vort (0.94), 2:SH (0.92)/uSH (0.92), 3:inv (0.92),
4:startEnd (0.94)/avSpeed (0.93),
exhaust 5:A2 (0.89)/Hunt’s Q (-0.85)
manifold space 4/8/7 1:vort (0.87), 2:avspeed (0.97)/dpos (0.94),
3:avspeed (0.97)/dpos (0.94),
4:inv (0.78), 5:avspeed (0.98)/dpos (0.93)
time 5715 1:inv (0.99), 2:1; (1.00), 3:vel (0.93),
turb. chan. 4:vel (0.92), 5:vel (0.94)

flow space 51716 L:inv (0.99), 2:A, (0.96)/Hunt’s Q (-0.95), 3:vel (1.00),
4:vel (1.00), 5:vel (1.00), 6:windang (1.00)
time 7/6/7 1:inv (0.98), 2:vort (0.99), 3:SH (0.99)/normhel (0.99),
4:); (0.99)/ Hunt’s Q (-0.99),
rot. vortex S:avspeed (1.00)/vel (0.96), 6:avspeed (1.00)/vel (0.95)

rope space 71719 1:inv (0.97), 2:vort (0.99), 3:SH (0.99)/normhel (0.99),
4:A, (0.99)/Hunt’s Q (-0.99),
S:vel (1.00)/avspeed (0.96), 6:avspeed (1.00)/vel (0.95),
7:windang (0.91)

data set

t-junction

Table 9.1: Summative result of the statistical analysis on the different data sets,
according to their parametrization. The found patterns are discussed in Sec. 9.3.4.

tion on how much of the variance is explained by the single variable, compared to
a uniform distribution of the variance. Hence, Kaiser [Kai60] suggests to retain all
factors associated to an eigenvalue greater than 1. Cattell suggests the use of the
plot of the eigenvalues against their index to determine the right number of factors
to retain [Cat66]. The factors that lay on the scree (i.e., the base of a steep incline
or cliff) of the plot are considered neglectable, therefore this criterion is commonly
referred to the scree plot test [Cat66]. Finally, if the goal is to guarantee that the
retained contain a certain percentage of variance, one can simply include factors
until their relative weight exceeds a desired threshold. Kaiser’s criterion has the
advantage of being objective, but has proven to be unreliable in extracting the true
number of underlying factors [COO05]. Better results are obtained using the scree
test [COO05]. Here the drawback lies in fact that this is a "soft" criterion that relies
on the users interpretation of the scree plot. Finally, retaining factors accounting
for more than 100% of the variance will not add information about the data set
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but noise. Hence, we consider the maximum of the factor number suggested by
Kaiser’s criterion and the scree plot test, with 100% of explained variance (or pro-
portion) as a limiting bound. For a more thorough discussion of how to choose the
correct number of factors to retain, we refer the reader to the article of Costell and
Osbourne [COO05].

All statistical computations for this paper have been carried out with
SAS(©) software.

9.3.2 The Data Sets

In total we analyzed 5 different data sets with different geometries and simulation
methods and 1 analytic data set. For the greatest possible generality, we use only
the velocity fields to calculate the path lines and their attributes. This means that
the similar factor patterns across the data sets are due to the common underlying
principles of fluid dynamics and not due to similarity in the data sets. The data sets
investigated are the following:

Flow through a box: This data set is the simulation of flow through a box. The
data set consists of 100 time steps. The inlet is on the top of the box. The data
set consists of 17120 cells organized in a Cartesian grid.

T-junction: This data set is the simulation of flow through a T-junction with two
inlets and one obstacle inside. The data set consists of 100 time steps. One
inlet is in horizontal direction, another one in vertical direction. The obsta-
cle is placed under the vertical inlet. The fluid flows through the horizontal
inlet first, while the inflow from the top begins after some time. The data set
consists of 30930 cells organized in a Cartesian grid.

Breaking dam: This data set is a flow simulation of a bursting dam with a box-
shaped obstacle. The data set consists of 48 time steps. The burst occurs in
the first time step. The data set consist of 76505 cells, organized in a Cartesian
grid.

Exhaust manifold: This data set is a flow simulation of an exhaust manifold. The
data set consists of 69 time steps, covering one inflow from every of the three
exits from the cylinders. The data set consists of 36524 cells organized in an
unstructured grid.

Turbulent channel flow: This data set is a direct numerical simulation (DNS) of a
fully developed turbulent channel flow at frictional Reynolds number Re; of
180. The flow domain is bounded by two infinitely large parallel solid walls,
and the flow is driven by a constant mean pressure gradient in the stream-wise
(x) direction. The boundary conditions are non-slip on the solid walls and
periodic else. The data are produced by a Spectral Element Method (SEM)
solver. The data set consists of 2097152 cells organized in a rectilinear grid.
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Rotating vortex rope: This data set is an analytic model of a rotating vortex tube
as used by Fuchs et al. [FPH"08] with parameters R = 0.25, k =2, ® = 0.5
and s = 3. The data set consists of 100 time steps and 504063 cells organized
in a regular grid.

9.3.3 The Path Lines and their Attributes

For all data sets, we seed a path line at every cell center and integrate it until the
particle leaves the flow domain or the time span described by the data set elapses.
The particles are saved at the same time steps the original data sets consist of. Be-
sides the positions we compute both attributes depending on these positions and
attributes depending on the velocity field itself, evaluated at the particle positions.
The fact that we save particle positions (and attributes) at the original time steps,
avoids temporal interpolation of these fields. The investigated attributes with their
dimensionality are:

Attributes from positions: position (3), quadratic statistical invariants (3) [LD00],
temporal derivative of position (3), torsion (1), curvature (1), winding angle
(1), arc length (1), average speed (3), distance actual position to end position

)

Attributes from velocity: velocity (3), A (1) [JH95], Hunt’s Q (1) [HWMZ88], nor-
malized helicity (1) [LDS90], scalar field corresponding to the Eigenvector
method (Sujudi and Haimes) [SH95] (1), scalar field corresponding to the
Eigenvector method for unsteady flow [FPH'08] (1), scalar field correspond-
ing to the Cores of swirling particle motion [WSTO07] (1), vorticity (3)

It is worthwhile noticing that all attributes that would be constant along the path
line (average speed, arc length,...), have been computed from the actual position
in the time step to the last time steps. For example, the average speed at time step
0 is the average over the whole path line, at time step i the average over the part
of the path line starting at its position in time step i to its end. This means that we
have a time series for all of the attributes. The information of the usual definition
is stored at time step O and is therefore easily retrievable. In the statistical analysis
we consider the components of attributes independently, since no assumptions on
the dependencies of the dimensions of the same attribute can be made. If one of the
dimensions is characteristic for the data set, however, we include all of them since
the meaning of a dimension can change from data set to data set. For example,
the x-velocity may be the stream-wise velocity in one data set and the span-wise in
another.

Finally, we investigate all data sets in the above described configurations, as
well as sampled evenly with respect to the arc length. This is achieved by a re-
parametrization. The arc length parametrized representation has the advantage that
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certain shape descriptors become unique, e.g., the combination of curvature and
torsion (c.f. Frenet-Serrat formulae [Hsi81]).

9.3.4 Results

The main results of our statistical analysis are summarized in Table 9.1. The first
column gives the data set in question, the second the parametrization type (time or
space). The third column gives the number of retained factors according to Kaiser’s
criterion, the scree plot test, and the 100% proposition criterion, respectively. The
last column gives the factors we consider, according to the principle explained in
Sec. 9.3.1. Next to the index of the factor we give the attribute with the highest
loading and in brackets the numerical value of the loading. If there is another at-
tribute that is in a 5%-range, we include it as well. For the full statistical output
we refer to the included extra material. The abbreviations used in the table as well
as in the full output (in alphabetic ordering) are: arc (arc length), avspeed (average
speed), curv (curvature), dpos (time-derivative of the position), HuntsQ (Hunt’s Q),
inv (quadratic statistical invariants), 12 (A,), normhel (normalized helicity), pos (po-
sition), SH (eigenvector method according to Sujudi and Haimes), swirl (cores of
swirling particle motion), tors (torsion), uSH (eigenvector method for unsteady flow,
"unsteady Sujudi and Haimes"), vel (velocity), vort (vorticity), windang (winding
angle). The statistical analysis has to answer two questions: first, which dimension-
ality has the attribute space, and second, which attributes represent these dimensions
best?

The dimensionality The average number of factors retained by Kaiser’s criterion
is 5.25 (SE = 0.28, CV = 0.18), while the scree plot test retains 6.4 (SE = 0.34,
CV = 0.18) factors, on average. From the proportion criterion we see that 7.5 fac-
tors (SE = 0.47, CV = 0.22) are on average sufficient to explain 100% of the vari-
ance in the data set. Our criterion, which balances maximum dimension reduction
(Kaiser), a soft user-influenceable criterion (scree plot), and the goal of explaining
"all" variance of the data set, retains on average 6 factors, being more stable than
the other criteria (SE = 0.28, CV = 0.16).

The representative attributes For our final suggestion of 6 factors we order the
attributes according to their frequency. The four most frequent attributes are inv
(12), A2 (10), Hunt’s Q (8) and avspeed (7). We include all but Hunt’s Q, since this
attribute is coupled to A, in 7 out of 8 occurrences, and A, is known to outperform
Hunt’s Q[JH95]. Two attributes have frequency 6: startEnd, and vel. We include
both. From the now retained five attributes, two, namely inv and startEnd, depend
on pos (frequency 3), so we decide to include this attribute to make the 6 attributes
we investigate as self-contained as possible.
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(a) path lines (b) seeding positions

Figure 9.1: (a) path lines meeting the analytic condition defined in Sec. 9.4.2 and
(b) their seeding positions. The color coding gives the temporal evolution of the
path line (from yellow to red).

Figure 9.2: Scatter plot of the start-end distance (horizontal) and path line length
(vertical). Red points represent path lines starting in or in the vicinity of the middle
pipe. For further discussion see Sec. 9.4.2.

Hence, 6 good candidates for representing the path line attribute space are: the
quadratic statistical invariants (inv), A,, the average speed (avspeed), the start to end
distance (startEnd), the velocity (vel) and the positions (pos).

We evaluate our factor choice by rerunning the analysis with the number of
factor to retain fixed to 6 and checking the obtained factor loading pattern for cross-
loadings and the amount of variance explained as suggested by Costello and Os-
borne [CO05]. On average 2.4 (SE = 0.76, CV = 1) attributes out of 28 exhibit
crossloadings, and the average variance explained is 0.95 (SE = 0.02, CV = 0.07)
which shows that the proposed factor structure is both expressive and stable for the
investigated data sets. The full output of the statistical evaluation can found in the
supplemental material.

A remark on time- vs. arc length-parametrization We observe that the arc
length-parametrized data set allows a representation with the same number of fac-
tors, or fewer, following Kaiser’s criterion or the scree plot test. With the 100%

191



Chapter 9 A Statistics-based Dimension Reduction

\ \

/ ?
(a) cluster 1 (b) cluster 2 (c) cluster 3

Figure 9.3: Investigation of some of the clusters in Fig. 9.2. The top row shows the
actual selections, while the bottom row gives the associated path lines in their 3D
context (color coding according to temporal evolution from yellow to red). For the
discussion of the figures, we refer to the main text (Sec. 9.4.2).

proportion criterion, no clear trend is observable. It is worthwhile noticing that an
arc length parametrization represents the geometry of the path line more faithfully,
but lacks information on the dynamics (uniform speed with respect to arc length!).
Hence, the trend to be expressible by fewer factors may actually originate for that
fact that this representation causes an information loss. On the other hand, we see
that the shape descriptors inv perform well under both parametrization. Hence, we
may conclude that the geometry-wise advantage of an arc length parametrized data
set is too small to outweighed the possible risk of information loss.

9.4 Demonstration

After we determined both dimensionality and representative attributes, we now
demonstrate how an interactive visual flow analysis based on our findings can look
like. First, we describe the framework used. Then we analyze two different data
sets. Both data sets have been investigated in previously published work, which
allows us to assess the results we achieve.

9.4.1 The framework

The framework used for this paper is the SimVis software [Dol07]. This software is
an interactive visual analysis environment, tailored to meet the special requirements
of computational fluid dynamics. Apart from multiple linked views, consisting of
different information visualization views (e.g., histograms, scatter plots, parallel
coordinated), the system provides a passive 3D view for focus+context visualization
of the flow domain. Besides this, the frame work offers the opportunity to derive
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new flow attributes on the fly. For further details we refer to Doleisch’s paper on
the SimVis software [Dol07] and the references therein. One of the views, that
makes the framework especially useful in the context of path line attributes, is the
curve view [KMG™06, MKO™'08]. The curve view is used to display large families
of function graphs at once (cf., e.g., Fig. 9.7) plotting the function values against
time. Lines are selected by brushing a certain value range for a specific time step.
Functions with multiple components can be analyzed component-wise.

9.4.2 Exhaust manifold

This data set has been investigated by LeZ et al. [LZM"11]. Their paper is not
targeting the question of which attributes to choose for a interactive flow analysis,
however, the authors suggest several attribute combinations that they found useful
for the case study. These attribute combinations are start to end distance and path
line length (arc length), maximum velocity and mean velocity along path line, and
maximal curvature and maximal torsion. All those attributes are constant along the
path lines. As also mentioned in the original paper by LeZ et al., one of the goals
in the design of exhaust manifolds is the decrease of flow resistance (so-called back
pressure). Hence, the detection of path lines/particles causing back pressure is a
natural task in this context.

In order to make the visual analysis based on the different attribute sets compa-
rable, we identify an analytically defined set of path lines that we try then try to re-
trieve using both the original variable combinations and the here proposed attribute
set. We restrict the analysis to particles seeded in the middle tube and its imminent
vicinity. We identify particles possibly causing back pressure as those which 1)
move upstream (i.e. max, (posy(fo) — posx(t)) > 0, x denoting the axis aligned with
the stream and assuming the stream to have positive sign) and 2) are upstream from
the middle pipe at some point in time (i.e. max,(pipeboundary, — pos.(t)) > 0,
with pipeboundary, being the position on the x-axis where the inflow pipe is con-
nected to the outlet and under the same assumptions as before). Hence, the path
lines in question are those where both parameters are positive. See Fig. 9.1 for an
overview over the path lines identified and their seeding positions. Obviously, an
ad hoc analytic definition of interesting path lines is only possible in relatively clear
and intuitive situation as this. We use this for the sake of comparability only.

First, we investigate the attribute combination start to end distance and path line
length. We have preselected particles in the middle pipe and its immediate vicinity.
In Fig. 9.2 we see a scatter plot of the two attributes. The red dots represent the path
lines to investigate, the yellow dots give the context (i.e. the remaining path lines).
In the scatter plots opacity scaling according to point density is used. In their paper,
LezZ et al. suggest investigating "unusual clusters", and we can visually identify sev-
eral of them. We select those clusters one after the other and monitor the path lines
associated to them (Fig. 9.3). We see that none of the visually distinguishable main
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Figure 9.4: Scatter plot of the maximum velocity (horizontal) and the mean velocity
along the path line (vertical). As in Fig. 9.2, red points represent path lines starting
in or in the vicinity of the middle pipe. For further discussion see the main text in
Sec. 9.4.2.

Figure 9.5: Scatter plot of the maximum curvature (horizontal) and the maximum
torsion along the path line (vertical). As in Fig. 9.2 and 9.4, red points represent
path lines starting in or in the vicinity of the middle pipe. For further discussion see
the main text in Sec. 9.4.2.

clusters gives satisfactory results: on the one hand the clusters in Fig. 9.3(a) and
Fig. 9.3(b) describe the same path line behavior, the cluster in Fig. 9.3(c) contains
both path lines we are interested in (left branch) as well as path lines that seem not
to be associated with back pressure (lighter path lines in the right branch). Further
refinement of the query could help this, but no visual clues on how to do this are
present in the scatter plot.

The next attribute combination investigated is maximum velocity and mean ve-
locity along the path line. Fig. 9.4 shows a scatter plot of these two variables, the
colors have the same meaning as before. In this case the visual detection of unusual
clusters is harder. The most apparent abnormality seems to be the high share of
path lines in question in the center of scatter plot. As Fig. 9.6(a) shows these path
lines are indeed associated with the behavior we want to track. However, we sys-
tematically miss out on path lines seeded in a specific region (marked up with the
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(a) investigation of maximum (b) investigation of maximum (c) investigation of maximum
velocity vs. mean velocity curvature vs. the maximum tor- curvature vs. the maximum tor-
sion sion

Figure 9.6: (a) The visually detectable "abnormality" in the scatter plot is selected.
The path lines show the targeted behavior, but not all of them can be detected (cf.
inset). (b) and (c) Due to the lack of visual clues, different thresholds are assessed,
not showing the desired effect. For further discussion we refer to the main text
(Sec. 9.4.2). For all three figures: Color coding of the path lines according to their
temporal evolution (from yellow to red).

(a) (b) (©)

Figure 9.7: Intermediate steps of the interactive flow analysis based on the attribute
set proposed in this paper. The time line is left to right, top to bottom. Regular
selections are marked in orange, not-selections in pink. The final result can be
found in Fig. 9.8. A detailed description of the analysis steps is given in Sec.9.4.2.

circle).

Finally, we investigate the combination of maximum curvature and maximum
torsion along the path line (see Fig. 9.5 for the respective scatter plot). Here, no
clusters are visible. This means we would have to rely on thresholding. This thresh-
olding gives, however, not the desired results, as seen in Fig. 9.6(b). Choosing a
higher threshold refines the selection, but it fails to discriminate different types of
flow behavior (Fig. 9.6(c)).
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Figure 9.8: The upper branch in the inv2 line plot together with the respective path
lines (together with the previous described selection, see Sec.9.4.2).

As a summary, we conclude that, following the state-of-the-art approach as de-
scribed by LezZ et al., we could find only a part of the path lines targeted.

Now we use the attribute set suggested by our statistical analysis. As remarked
earlier, all of these attributes are time series. Hence, we make extensive use of
the curve view. First we look at the stream-wise position (in the same sense as
used earlier). As in the first investigation, we select particles that originate from
the middle pipe and its vicinity (Fig. 9.7(a) top). In order to cause back pressure,
particles have to still be in the pipe, at the next stroke of the engine. Hence, we
discharge ("not-selection") particles that are in the outlet at the time step the next
stroke occurs (selection in Fig. 9.7(b) top). In the top of Fig. 9.7(c) we see the path
lines corresponding to this selections. The particles that move "upstream" exhibit
the same pattern as the once found by the analytic definition.

However, our selection is, at the current point, still containing a number of path
lines with clearly different (so to say "correct") flow behavior. Hence, we move to
a different attribute to refine our selection. In the bottom of Fig. 9.7(a) we see the
time series for the second quadratic statistical invariant (in the following: inv2). We
see (at least) two clearly distinguishable patterns: path lines with a medium-high
value of inv2 in the beginning of the time series, and others with a rather low value.
We select the ones with the higher values and see (cf. Fig. 9.7(c) bottom) that now
nearly all path lines exhibit the expected behavior. A small number of path lines is
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Figure 9.9: Close-up of the seeding positions of the path lines in Fig. 9.8 compared
to the seeding points of the reference path lines. We see that the difference between
those two sets is hardly detectable.

(a) (b) (©

Figure 9.10: Intermediate steps of the interactive flow analysis based on the attribute
set proposed in this paper. The time line is top to bottom, left to right. The final
result can be found in Fig. 9.11 and Fig. 9.12. A detailed description of the analysis
steps is given in Sec.9.4.3.

not of the expected type, representing particles being sucked in the rightmost tube.
In fact, also the selected time series of inv2 have two branches (upper and lower, see
Fig.9.7(b) bottom).

As Fig.9.8 shows the two branches are indeed associated to the different types of
path line behavior present. Comparing the seed points of the path lines found by our
analysis to the seed points of the reference path lines, we see a clear correspondence
of the two sets (Fig. 9.9, in contrast to the situation in Fig. 9.6(a) bottom).

We see that the interactive flow analysis of the data set based on our suggestions
is able to find the targeted path lines. In addition, the process is intuitive in the
sense that different flow behavior is reflected by clearly distinguishable clusters in
the attributes. We discussed our results with a domain expert, who confirmed the
expressiveness of our results.
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Figure 9.11: Final result of the interactive flow analysis based on the her proposed
feature set. We are able to identify the recirculation area in front of the of the
obstacle described by Pobitzer et al. [PPF'12]

9.4.3 Breaking dam

Figure 9.12: Top view on the path lines depicted in Fig. 9.11. The color coding is
according to the attribute inv3, blue being low and red being high values.

This data set has been investigated by Pobitzer et al. [PPF*12] in the context of
finite-time Lyapunov exponents (FTLE). One of the interesting features is a separa-
tion structure in front of the obstacle, separating particles passing at the two sides
of the obstacle. Another structure is a recirculation zone in front of the obstacle.

198



A Statistics-based Dimension Reduction Chapter 9

Due to its definition, the FTLE approach is not suitable to investigate the internal
structure of the recirculation. We therefore investigate this question by means of
interactive flow analysis of the attribute set proposed earlier in this paper.

Since we want to target recirculation behavior, we preselect particles seeded up-
stream from the obstacle. Since the recirculating particles do not pass the obstacle,
we can assume that the distance from start to end is not too big. Hence, we exclude
the path line cluster associated to high distances from our analysis, using a "not"-
selection (Fig. 9.10(a)). The top of Fig. 9.10(b) shows the path lines corresponding
to this selection.

Now we investigate one of the other attributes, namely the first quadratic sta-
tistical invariant (in the following: inv1l). The attribute is chosen since it provides
clearest clustering with the current selection (Fig. 9.10(b) bottom). The most dis-
tinct cluster is a rather small group of almost horizontal lines in the top. We recall
that inv1 is a shape descriptor and ideal recirculation can be thought of as a circu-
lar motion. Hence, an almost constant shape descriptor could indicate the wanted
behavior. After selecting this curve cluster, we investigate the second quadratic sta-
tistical invariant (in the following: inv2). Again, this attribute has been selected for
analysis by the same principle as before. We detect two possible clusters and by
the same reasoning as before, we select the family of more or less constant lines
(cf. bottom of Fig. 9.10(c)). In Fig. 9.11 we see the selection and the resulting path
lines. We conclude that we found the recirculation zone Pobitzer et al. found the
boundary of in their paper [PPF' 12]. Investigating the remaining attributes, we see
a clear split in the second quadratic statistical invariant, color coding the path lines
according to this attribute, yields Fig. 9.12, revealing that the left-right separation
structure is also present inside the recirculation, an insight the FTLE-based analysis
of Pobitzer et al. failed to convey.

9.5 Conclusions

In this paper we address the problem of selecting an expressive subset of the path
line attribute space for interactive visual flow analysis. Investigating a number of
CFD data sets using factor analysis we found that there are common patterns both
in dimensionality and attributes associated to them across data sets. We identify
6 path line attributes that represent those factors. The analysis based on the at-
tributes suggested in this papers proves to match, and in part also exceed, previous
work, showing how the benefit from the already proven concept of interactive flow
analysis can be utterly increased by carefully selecting appropriate attributes. Prior
knowledge of which attributes to investigate reduces both computational and stor-
age overhead. In addition, a lower-dimensional data set is easier to handle in the
context of IVA and allows for a systematic investigation.

Usually, one of the aims of factor analysis is to identify the underlying factors,
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at least qualitatively (as mentioned earlier, are the factors assumed to not be measur-
able directly). Looking at the attributes suggested, we can informally identify one
attribute associated to shape (inv), one related to vortices (A;), and a bigger group
of attributes related to motion (avspeed, startEnd, vel and pos). This may indicate
that the motion is the most complicated aspect of path lines, or, more optimistically,
better attributes for describing it could be found.
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