FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Omnidirectional Stereo
Rendering of Virtual
Environments

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Visual Computing

eingereicht von

Lukas Meindl
Matrikelnummer 1028160

an der
Fakultat fur Informatik der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Dr. Anton Fuhrmann

Wien, 29.09.2015

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Omnidirectional Stereo
Rendering of Virtual
Environments

MASTER'’S THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Visual Computing
by

Lukas MeindlI
Registration Number 1028160

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Dr. Anton Fuhrmann

Vienna, 29.09.2015

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Lukas Meindl
Bergenstammgasse 8 / 9, 1130 Wien

Hiermit erklére ich, dass ich diese Arbeit selbsténdig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollstédndig angegeben habe und dass ich die Stellen
der Arbeit - einschliellich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

I would like to thank my supervisor, Anton Fuhrmann, for the interesting conversations
we had about the thesis topic and for all the input he provided. I would also like to
thank my main supervisor, Michael Wimmer, for the valuable feedback given on the
thesis.

I am grateful to my parents, grandparents and my uncle for all the support they gave
me during my entire studies. I also wish to thank Ilana for her support and for being
there.

I wrote this thesis as a diploma student at the VRVis Research Center in Vienna
and I thank the organisation for giving me this opportunity. The competence center
VRVis is funded by BMVIT, BMWFW, and Vienna Business Agency within the scope
of COMET — Competence Centers for Excellent Technologies, project #843272. The
program COMET is managed by FFG.

iii

Abstract

In this thesis we discuss the use of omnidirectional stereo (omnistereo) rendering of vir-
tual environments. We present an artefact-free technique to render omnistereo images for
the CAVE in real time using the modern rendering pipeline and GPU-based tessellation.

Depth perception in stereoscopic images is enabled through the horizontal dispari-
ties seen by the left and right eye. Conventional stereoscopic rendering, using off-axis
or toe-in projections, provides correct depth cues in the entire field of view (FOV) for
a single view-direction. Omnistereo panorama images, created from captures of the real
world, provide stereo depth cues in all view direction. This concept has been adopted for
rendering, as several techniques generating omnistereo images based on virtual environ-
ments have been presented. This is especially relevant in the context of surround-screen
displays, as stereo depth can be provided for all view directions in a 360° panorama
simultaneously for upright positioned viewers. Omnistereo rendering also lifts the need
for view-direction tracking, since the projection is independent of the view direction,
unlike stereoscopic projections. However, omnistereo images only provide correct depth
cues in the center of the FOV. Stereo disparity distortion errors occur in the periphery
of the view and worsen with distance from the center of the view. Nevertheless, due
to a number of properties of the human visual system, these errors are not necessarily
noticeable.

We improved the existing object-warp based omnistereo rendering technique for
CAVE display systems by preceding it with screen-space adaptive tessellation meth-
ods. Our improved technique creates images without perceivable artefacts and runs on
the GPU at real-time frame rates. The artefacts produced by the original technique
without tessellation are described by us. Tessellation is used to remedy edge curvature
and texture interpolation artefacts occurring at large polygons, due to the non-linearity
of the omnistereo perspective. The original approach is based on off-axis projections.
We showed that on-axis projections can be used as basis as well, leading to identical
images. In addition, we created a technique to efficiently render omnistereo skyboxes
for the CAVE using a pre-tessellated full-screen mesh. We implemented the techniques
as part of an application for a three-walled CAVE in the VRVis research center and
compared them.

Kurzfassung

Diese Arbeit beschéftigt sich mit omnidirektionalem Stereo (Omnistereo) Rendering von
virtuellen Umgebungen. Wir schlagen eine Technik vor mit der Artefakt-freie, anhand
der modernen Rendering-Pipeline und GPU-basierter Tessellierung, Omnistereo Bilder
fiir CAVE Systeme in Echtzeit erzeugt werden kénnen.

Raumwahrnehmung in stereoskopischen Bildern wird durch horizontale Disparitaten
zwischen dem linken und rechten Auge erzeugt. Konventionelles Stereo-Rendering, auf
der Basis von Off-Axis oder Toe-In Projektionen, liefert korrekte Hinweisreize fiir die
Tiefe in dem gesamten Blickfeld fiir eine gegebene Blickrichtung. Omnistereo Panora-
ma Bilder, welche durch Aufnahmen der realen Welt erzeugt werden, liefern hingegen
Hinweisreize fiir die Tiefe in alle Blickrichtungen. Dieses Konzept wurde fiir Rende-
ring angepasst, wodurch mehrere Techniken entstanden sind um Omnistereo Bilder aus
virtuellen Umgebungen zu erstellen. Diese Methode ist flir Bildschirmsysteme die den
Nutzer komplett umgeben von Relevanz, da hierbei eine gleichzeitige Raumwahrneh-
mung im gesamten 360° Panorama fiir aufrecht positionierte Beobachter erzeugt werden
kann. Omnistereo Rendering kann zudem ohne Kopfrotations-Tracking verwendet wer-
den, da die Projektion unabhéngig von der Blickrichtung ist, was bei konventionellen
Stereo Projektionen nicht der Fall ist. Omnistereo Projektionen liefern hingegen aber
nur im Zentrum der jeweiligen Blickrichtung korrekte Hinweisreize fiir die Tiefe. Stereo-
Disparitatsverzerrungsfehler entstehen zunehmend in der Peripherie der Blickrichtung.
Figenschaften des menschlichen visuellen Systems machen diese Fehler aber kaum be-
merkbar.

Wir haben eine bestehende Object-Warping Omnistereo Rendering Technik fiir CA-
VEs verbessert, indem wir sie mit Screen-Space adaptiven Tessellierungsmethoden er-
weitert haben. Die Technik erzeugt Bilder ohne die zuvor wahrnehmbaren Artefakte und
lauft auf der GPU in Echtzeit. Die Artefakte der urspriinglichen Technik ohne der Tessel-
lierung wurden durch uns beschrieben. Tessellierung verringert die Kantenkriimmungs-
und Texturinterpolationsartefakte, die bei grolen Polygonen, aufgrund der Non-Linearitét
der Omnistereo Perspektive, entstehen. Der originale Ansatz der Technik basiert auf Off-
Axis Projektionen. Wir haben gezeigt, dass On-Axis Projektionen auch als Basis ver-
wendet werden kénnen und die resultierenden Omnistereo Bilder ident sind. Auflerdem
haben wir eine Methode entwickelt Omnistereo Skyboxes in der CAVE mittels eines vor-
tessellierten Vollbild-Meshes effizient darzustellen. Wir haben die Omnistereo Techniken
als Teil einer Anwendung fiir den drei-wandigen CAVE des VRVis Forschungszentrum
umgesetzt und aufgrund dieser Anwendung die Techniken miteinander verglichen.

vii

Contents

Introduction 1
1.1 Problem Statement 4
1.2 Contributions 5
1.3 Overview Lo e 6
Background 7
2.1 Depth Cues e 7
2.2 Immersiono L e 8
2.3 Stereoscopic Rendering oo 10
2.4 Cybersickness e e 16
2.5 Intrusiveness e 18
2.6 Perception of Omnistereo in the Human Visual System 18
2.7 Tessellation Shaders 22
Motivation 25
3.1 Advantages of Omnidirectional Stereo 25
3.2 Research Aim 27
Related Work 31
4.1 CAVE . . . e 31
4.2 Omnidirectional Stereo Imaging 35
4.3 Rendering Stereo Panoramas 36
4.4 Multiple-Center-Of-Projection Images 37
4.5 Omnistereo Rendering ina CAVE 39
4.6 Omnistereo Rendering in Curved Display Systems 45
4.7 Omnistereo Rendering in Domes 54
4.8 Multi-Viewer Stereo Displays L . 61
Object-Warping Based Omnistereo Projection 65
5.1 On-Axis Omnistereo Object-Warping 65
5.2 Off-Axis Omnistereo Object-Warping 70
5.3 Discussion of Vertex-Shader Based Omnistereo Rendering 71
Tessellation-Based Omnistereo Projection 75

ix

6.1 Remedying Non-Linear Projection Artefacts

6.2 Adaptive Tessellation for Omnistereo Rendering

6.3 Omnistereo Skybox for the CAVE
7 Implementation and Results

7.1 Setup . . . e

7.2 Application

7.3 Results. e
8 Conclusion

8.1 Future Work
Bibliography

85
85
87
88

95
96

97

CHAPTER

Introduction

In recent years, virtual reality (VR) technology has once again come to public attention,
mainly due to the success of VR devices in home entertainment systems and the increased
availability and affordability of these devices. Given Nintendo’s Wii Remote controller
and Wii balance board for the Wii, Sony’s PlayStation Move controller for PlayStation 3
and Microsoft’s Kinect for the Xbox 360, all consoles of the seventh generation of video
game consoles were equipped with VR input devices. New head-mounted display (HMD)
devices have come into development, such as the Oculus Rift, Sony’s Project Morpheus
and Samsung Gear VR, which are designed to be inexpensive and for home use [1].

Huge advancements have also been accomplished regarding (3D) output devices, such
as 3D television displays, 3D monitors and 3D projectors, mainly driven by the rapid
spread of these technologies at cinemas and in homes. As a result of these developments,
the output devices have also become more affordable. Figure 1.1 shows how a scene in
reality is captured using a 3D camera by storing separate images for the left and the right
eye respectively. The captured images can, for example, be displayed with the mentioned
devices. Passive or active 3D glasses are used in conjunction with these devices to view
separate images with the left and right eye. These stereoscopic displays, as well as
HMDs, provide greater immersion than monoscopic displays, by enabling binocular cues
to the human visual system, thus offering enhanced depth perception. This principle,
which is commonly used these days, for example in 3D cinemas and in 3D television, can
also be used to view entirely virtual environments instead of captured real-world scenes.
This is accomplished by stereoscopic rendering, which is the method of rendering left
and right-eye images from two different perspectives, based on the left and right eye’s
positions in the virtual scene.

3D displays and 3D projectors, as well as the displays used in 3D theaters, only offer
a correct stereoscopic effect if the viewer is located approximately central to the screen
and at a certain distance. While this is an acceptable drawback when using them for
entertainment purposes, it makes them not suitable for VR applications. In order to

Figure 1.1: The process of capturing a scene in reality, using a 3D camera that records
images for the left and right eye, to viewing the final result on a 3D display using 3D
glasses.

always provide a correct view for a single viewer even if they are moving, tracking of the
head position and view direction is required.

VR is researched and used in the fields of health care, training, education, automo-
tive industry, virtual heritage, virtual archaeology, engineering, driving simulation, flight
simulation and product design. For these purposes, regular commercial off-the-shelf 3D
displays and 3D projectors may only provide an insufficient VR experience on their own
due to the limited FOV and movement constraints. While HMDs offer free movement
and often a sufficiently large field of view (FOV) at low cost, they come with a number
of drawbacks, such as movement constraints, discomfort from wearing the HMD, dis-
comfort from the proximity of the screen to the eyes and a generally higher likeliness to
cause motion sickness. In addition to that, they eliminate the possibility for multiple
users to share the same display and view, hinder direct communication and occlude the
direct vision on other participants. Surround-screen displays, such as the CAVE (CAVE
Automatic Virtual Environment) [2], consist of multiple 3D projectors or screens in order
to provide a very large or complete FOV. Such displays suffer less from the mentioned
issues but are more expensive to acquire and maintain and require more space.

In order to allow multiple users to observe a 3D object or virtual environment from
multiple view points and directions simultaneously, multi-view stereoscopic displays have
been developed. Autostereoscopic displays, for example, allow this without requiring any
special headgear or glasses for the viewers [3]. Lenticular displays are autostereoscopic
displays that use lenses to direct the view to a specific sub-zone of a 2D image depending
on the view angle. However, this technique comes at the cost of a reduced image reso-
lution, which is reduced further with each additionally supported view angle. Another
type of autostereoscopic display, the volumetric display, visualises voxel data and is also
viewable from multiple directions at the same time. However, the resolution of the 3D
image is limited by the bandwidth that is needed to transfer the voxel data for each
frame. The scene or object to be displayed also has to be modelled or scanned as voxel
data. Both of these display technologies can only be used to showcase virtual objects
and are not suitable for surrounding the viewer with a virtual environment. However,
many VR installations are made to show large virtual scenes or immerse the user into a
virtual world. For those purpose, HMDs and surround-screen displays are better suited.

HMDs and stereoscopic surround-screen displays incorporate head-tracking, which
requires the entire scene to be re-rendered on changes of head position and orientation.
Tracking requires extra tracking hardware and additional computations to be performed
in the software before every rendered frame. Since tracking hardware is not perfectly
accurate it can cause jitter. Also, since the tracking hardware and the processing of
the data takes time, delays may be introduced. These two issues can cause discomfort
and motion sickness. If more than one viewer is inside a surround-screen display, only
the viewer who is being head-tracked will be able to view the environment correctly.
Other viewers will perceive reduced, negated or reversed depth for the objects, as well
as distortion errors to a varying degree based on their view direction. If there is only a
single viewer who is not being tracked, the same issues arise. Therefore, being able to
provide a single user, who is standing still or remains seated, with a stereoscopic view

3

in all view directions without any head-tracking can be of advantage.

1.1 Problem Statement

Rendering scenes stereoscopically requires knowing the viewer’s position and orientation
accurately, so that the stereo pairs can be rendered correctly for this viewpoint. Head-
tracking is typically used in this context to determine the orientation and position of
the user’s head before rendering a frame. These calculations have to performed fast
enough to support real-time rendering frame rates. Additionally, the head-tracking can
cause jitter or introduce delays, both of which may aggravate or induce cybersickness.
Creating multi-viewer VR setup that allow users to share a display is not possible with
regular stereoscopic rendering. Such setups may be designed to allow users to move
and look wherever they want, but stereoscopic rendering is unable to create images with
satisfactory depth perception for all viewers under these circumstances. In order to
provide satisfactory stereo depth cues in all directions, omnidirectional stereoscopy, also
called omnistereo, rendering has to be used. This technique creates valid stereo images
featuring correct binocular disparity in the center of the view for each direction a user
might be facing, thus lifting the necessity to perform any kind of view-direction tracking.
The way omnistereo images are rendered depends on the used display system and the
type of screens in use. Our goal is to create an application that renders omnistereo
images at real-time frame rates for the CAVE display system at the VRVis research
center. A technique for rendering omnistereo projections for a CAVE display system,
which is based on off-axis projections and vertex shaders, has been proposed by Simon
et al. [4]. However, this technique is not independent of mesh density and can thus
lead to artefacts when polygons appear large on the screen due to the non-linearity
of the omnistereo perspective. Another proposed solution for omnistereo rendering in
CAVE:S is to render multiple views per screen [4] to approximate the projection. Vertical
slices are rendered for the vertical screens of the CAVE, which are then composed into
the final image. This solution is less efficient than the shader-based solution, since
it requires additional geometry processing and multiple viewport rendering. Our goal
is to render omnistereo images with low computational overhead compared to regular
stereoscopic rendering using a technique that can be combined with regular shading and
rendering. For this purpose we want to improve the vertex-shader based omnistereo
rendering technique by Simon et al. [4] by remedying the occurring artefacts. These
artefacts are a result of the linear interpolation and linear rasterisation performed by
the programmable graphics pipeline of OpenGL and Direct3D, which was optimised
and built mainly with linear perspectives in mind. Shader-based tessellation techniques
have, for example, been used in the context of shadow mapping techniques [5, 6] in
order to solve artefacts occurring in non-linear projections. Therefore, we intend to use
tessellation techniques to resolve the aforementioned artefacts.

4

1.2 Contributions

The following research contributions were made in this thesis:

e An omnistereo projection for rendering omnistereo images based on on-axis pro-
jection is proposed, which lifts the necessity to recalculate the off-axis projections
on every head-position change and which works analogous to the off-axis based
object warping and is shown to produce equivalent omnistereo images.

e As a solution to the errors that occur in the object-warping technique due to the
linear interpolation performed by the rasterisation and shader attribute interpo-
lation, we propose tessellation-based omnistereo projection, which precedes object
warping with a tessellation step. Two screen-space adaptive tessellation modes,
a naive approach and a sphere-based approach [7], are used in conjunction with
on-axis and off-axis based object warping, which we compared with each other.
We show that the technique remedies the artefacts successfully.

o We propose a simple and efficient technique to render a skybox stored in a cubemap
texture in omnistereo, by using a full-screen quad and a fragment shader.

Further contributions provided in this thesis are:

o The off-axis based object-warping technique for omnistereo rendering, as originally
suggested by Simon et al. [4], is discussed in detail, its geometric background is
illustrated and problems that can occur, and have not been pointed out in previous
work, are explained and displayed.

e A frame-rate comparison between the object-warping techniques including two dif-
ferent scenes with three viewpoints each and varying maximum tessellation factors
set. This comparison shows that the performance of the tessellation-based om-
nistereo projection depends on the scene complexity but is suitable for real-time
rendering and can feature a very low performance loss over regular stereo rendering.

e The design and implementation of an application featuring the omnistereo ren-
dering techniques and rendering images for the three-walled CAVE of the VRVis
research company. The application allows rendering a scene using different tech-
niques, which can be changed at run-time for quick comparison. The modes include
monoscopic and stereoscopic rendering, as well as omnistereo rendering based on
an off-axis or and on-axis perspective projection, each with the option to turn tes-
sellation on or off and to change the tessellation configuration. The application
features a graphical user interface that allows configuring the rendering modes.
The viewpoint inside the CAVE can either be set manually in the interface or
be specified via network from another system that performs tracking, the camera
position and orientation can be controlled using a gamepad.

1.3 Overview

In Chapter 2, information about stereo rendering is given and aspects of VR and the
human visual system relevant in the context of omnistereo rendering are discussed. Based
on the information provided in that chapter, Chapter 3 provides the motivation behind
omnistereo rendering. Chapter 4 summarises the state of the art of the CAVE display
system and omnistereo techniques. Omnistereo imaging based on photographs or videos
and omnistereo rendering techniques used in different display system, including curved
screen display systems and the CAVE display system, are mentioned. The object warping
omnistereo technique is described in Chapter 5 in detail and the problems occurring with
it are discussed. Our proposed improvements lead to the tessellation-based omnistereo
projection technique described in Chapter 6. In this chapter we also suggest a technique
for efficiently rendering omnistereo skyboxes. Chapter 7 includes the description of the
application we created for rendering omnistereo techniques in the VRVis CAVE and the
results of our work. Finally, in Chapter 8 we conclude the thesis and provide suggestions
for future work.

CHAPTER

Background

2.1 Depth Cues

In order to give a user a sense of three-dimensionality for a virtual scene, VR applications
make use of several depth cues for the human visual system. The following depth cues
can be present in a monoscopic view [8, 2, 9]:

e QOcclusion - The object occluding another object has be to be the closer one out of
the two.

e Perspective - The perspective projection makes object appear smaller the further
away they are. Additionally, parallel lines appear to intersect in the vanishing
point of the scene.

o Height in the FOV - Objects that are perceived as resting on a surface below the
horizon are perceived as being more distant if they are located higher in the FOV.

e Atmospheric - Fog, haze and other atmospheric effects can help determine the
distance of an object.

o Texture and detail - Close objects typically appear in greater detail, distant objects
are less detailed.

o Lighting and shadows - The way a surface reflects light and the way shadows are
cast by objects into the scene help determine the shape and position of objects.
Shadows are also a form of occlusion.

e Previous knowledge - Knowledge of the size of an object helps to determine the
absolute depth of the object.

o Relative motion - Head motion gives hints about the relative distance of an object
against its background. Objects further away appear to move more slowly than
objects closer to the viewer.

Additional depth cues not present in 2D images are:

e Stereopsis - The difference between the images cast on our left and right eye’s
retina. This difference occurs due to the horizontal separation of the eyes - the
interocular distance.

e Convergence - The eyes rotate towards the center of interest

¢ Accommodation - To focus at a particular depth, muscle tensions is needed to
change the focal length of the eye lens

These depth cues help the human visual system estimate the distance of an object to
the viewer. Accommodation is a depth cue that is technically difficult to provide in VR
applications and therefore rarely included. Stereopsis is one of the strongest depth cues
in general and the strongest one for distances up to 10 m. Stereopsis is enabled through
horizontal disparity, also known as binocular disparity. The binocular disparity is the
positional distance of a point in space projected onto the retina. At large distances the
binocular disparity becomes too small to be an effective depth cue.

Stereoscopy is frequently used in VR to enhance depth perception by providing con-
vergence and stereopsis depth cues. This is accomplished by rendering separate images
for the user’s left and right eye, each representing the respective eye’s view in the VR.
The two images created in the processes are called stereo pairs. Each image is rendered
independently from separate positions, which represent the respective physical position
of each eye in the virtual scene. Figure 2.1 shows how the parallax between points
projected on the screen is related to the position of the point in 3D. Points behind the
screen have positive, points in front of it have negative and points on the screen have
exactly zero parallax. In monoscopically rendered images the projected points have zero
parallax and are therefore all perceived to be located on the screen in 3D. In stereo
images the virtual objects have varying parallaxes depending on their distance to the
virtual eyes. The depth, and therefore the position of objects in 3D, can thereby be
reconstructed in the human visual system. The parallax between stereo images for a
given point in 3D also depends on the distance between the viewer and the screen and
on the eye separation distance.

2.2 Immersion

Immersion is a central concept in VR. Immersion is the extent to which the feeling or
belief exists that one has left the real world and is “present” in the virtual world [10].
The immersion in a VR depends on its ability to replace real world sensations with
virtual ones and thus deliver a believable illusion to the user. Immersion is important
for creating a credible VE, as it describes the degree to which the user suspends disbelief.

8

A Screen B

(projection plane)

—

? Zero

parallax

Legend

@ Lefteye

@ Right eye

d @ Point in world space
® eProjected point

Negative
parallax

Figure 2.1: The images show points in a 3D scene being projected on the screen for
the left and the right eye and their resulting parallaxes between the eye’s images.

Suspension of disbelief describes the ability to suspend judgement of the implausibility
of any media, a simulation or a narrative without having to force oneself. This idea
is very fundamental to VR, because in the most optimal case for a VR, its user(s)
will accept the artificial environment presented by the software as a real environment.
Another important role in VR is played by presence, which describes the psychological
perception of existing in the VR. This is primarily thought to be the by-product of the
VR’s immersive properties. Presence depends both on external and internal factors.
This means, that in order to feel “present”, the VR has to be immersive enough to
disallow distractions or psychological ties to the external world from occurring.

Factors that support the presence are the length of exposure, social factors, sys-
tem factors, pictorial realism, ease of interaction and internal factors. System factors
that positively contribute to presence are, for example, stereopsis, a large FOV and

9

sufficiently high update rates. The FOV describes the area in which the viewer can per-
ceive an environment from one position and orientation, defined by the angular extents
of this area in degrees. For example, a display with 360° horizontal FOV completely
surrounds its viewers horizontally, allowing any direction at all times to be seen using
head-rotations. The human visual system only allows perceiving a FOV limited to ap-
proximately 180° horizontally and 120° vertically. Most animals also can not perceive
the entire FOV, an exception being the hammer shark, which has a 360° vertical FOV. In
order to convey the impression of being surrounded by a virtual environment (VE), the
viewer’s FOV should be covered by the environment as much as possible. A surround-
screen display, such as a CAVE [2] with six screens, may offer an unlimited FOV, both
horizontally and vertically, whereas HMDs typically provide a FOV of around 90 to 110°.
While the entire surrounding environment can be seen with HMDs using head-rotations,
only this limited FOV is visible to the viewer at a single moment.

Common consumer-grade output devices, such as computer monitors and television
display devices, have a variable and comparatively low FOV. For this reason, the afore-
mentioned displays are generally treated like a window into the virtual world. The FOV
is variable because it depends on the viewer’s position; increasing the distance between
the viewer and the display will decrease it.

As discussed before, immersion can be broken by real world distractions or by psy-
chological ties to the external world. A large FOV can create the impression of being
surrounded by the VE and, in addition to that, allows for peripheral vision. An experi-
ment by Prothero and Hoffman [11] was conducted to investigate if a wider FOV would
encourage a higher sense of presence. The experiment was conducted with HMD’s with
40° vertical FOV and 105° horizontal FOV. The participants of the experiment experi-
enced a VR with either unrestricted FOV or a FOV limited by tanning googles. The
results indicated that a higher degree of presence is reached with a higher FOV. Out-
put displays, which offer a high FOV, such as HMDs, are therefore more adequate for
VR setups. CAVEs, domes and cylindrical cinema installations can even allow fully sur-
rounding the user, providing a horizontal and vertical FOV of 360°. Such setups create a
panorama that can only be fully viewed by using head rotations, unlike non-surrounding
low-FOV displays.

According to Peleg et al. [12] the ultimate immersive visual environment should
provide three elements:

1. Binocular stereo vision
2. A complete 360° degrees view, allowing the viewer to look in any desired direction

3. Free movement

2.3 Stereoscopic Rendering

Stereo image pairs can, for example, be created with ray-tracing rendering techniques [13].
However, ray-tracing is not popular for use in VR, as it is computationally significantly

10

Actual screen

Left eye

Eye
separation

(“Toe—in" angle” — — —

Implied
left-eye
screen

Figure 2.2: The “toe-in” method used to create stereoscopic images. The eye separation
distance in the image is exaggerated for better illustration. The cameras are rotated in
a way that their direction vectors meet at the focal length. The figure shows the rotated
frustums and the assumed projection screens. The implied screens do not match the
actual screen, resulting in incorrect parallax.

more demanding than rendering based on rasterisation and typically too slow for VR
applications, which need to run at least at interactive frame rates. For planar screens,
off-axis stereo projections and toe-in stereo are therefore typically used.

Toe-In Stereo

In order to create stereoscopic images, the “toe-in” method is often used [8]. In this
method the cameras (real film cameras or virtual cameras as in rendering) are rotated
so that the direction vectors meet at at the focal length, as shown in figure 2.2. It
is a popular method for low-budget filming because offset/parallel cameras are more
expensive and less common. It can also be used within rendering, for example when
features required for off-axis rendering are not available in the rendering engine or library
used. The images created with the “toe-in” method may appear stereoscopic, but are
technically incorrect and may cause discomfort to the viewer. A vertical parallax is
introduced by the method, which increases with the distance from the image center.
Correctly rendered left and right images, however, do only have a horizontal disparity.
Another way to look at the problem is to see it as a distortion in the form of a keystoning
effect. Figure 2.3 shows the incorrect toe-in stereo image next to a correct one, both
rendered as anaglyph images.

11

|
Vo

Figure 2.3: The left stereo image shows the keystoning effect caused by a toe-in stereo
projection. The projections for the left and the right eye cannot be merged into a single
3D object. The right stereo image shows the correct projection. Image by Kreylos [14]

Pe

Figure 2.4: An on-axis perspective projection, with the position of the camera . pro-
jecting the screen-space origin to the centre of the screen. Image taken from Kooima
[15]

Off-Axis Projection

An on-axis projection matrix projects the screen-space origin to the center of the screen [15].
The resulting image is correctly projected for viewpoints located vertically and horizon-
tally centered relative to the display. This type of perspective projection is, for example,
used to render three-dimensional (3D) video games, simulations and other 3D applica-
tions on consumer-grade display devices. In these setups no tracking of the viewer’s
position takes place, so that the perspective cannot be adapted to it. Therefore the
real position and the assumed position typically do no match match perfectly for the
viewer, but this is acceptable for most type applications. Off-axis projections project
the VE correctly for viewpoints that are not centered. This can be used for monoscopic
rendering and is crucial for correct stereoscopic rendering. Figures 2.4 and 2.5 show the
view frustums of an on-axis and off-axis projection, respectively.

12

Pe

Figure 2.5: An off-axis perspective projection, with the eye position and screen-space
origin falling off center. Image taken from Kooima [15]

When rendering stereo pairs, the left and right eye positions are used to determine
how the frustum of the off-axis projection has to be aligned. Unlike with on-axis projec-
tions, the frustums of off-axis projections are asymmetric and skewed. Figure 2.6 shows
the frustums of the left and right eye’s off-axis projection from top-down view. Using
such projections is possible with OpenGL’s and Direct3D’s modern programmable shader
pipelines, as well as with the deprecated OpenGL fixed-function pipeline. Kooima [15]
discussed the mathematical computations required to create these matrices and shows
how they can be used together with the fixed-function pipeline of OpenGL. The example
can, with little effort, be adopted to be used in OpenGL’s or Direct3D’s modern pro-
grammable shader pipeline or any other rendering library or rendering engine supporting
programmable shaders. The off-axis and on-axis perspective projections are planar pro-
jections and therefore suited for flat screen surfaces, which is equivalent to the projection
plane in computer graphics terminology.

Figure 2.7 shows how a virtual object positioned between the viewer and the screen
has to be projected onto the screen, in order to give a correct impression of depth using
binocular disparity. If on-axis projections were used here instead, the resulting projec-
tions would not be in accordance to the screen both eyes are looking at and would result
in a keystoning effect. When rendering stereoscopic images for VR scenarios, for example
in a CAVE environment or when using a dome or a sphere as projection surface, the head
of the user has to be tracked to determine the view direction and position. Figure 2.8
shows different view directions for the eye pairs. The illusion of three-dimensional depth
can only be perceived correctly if the viewer’s head orientation (view direction) matches
the one for which the stereo pairs were rendered. In the direction perpendicular to the
view direction, parallel to the line connecting the eye positions, the rendered images
have no horizontal disparity, which means that there is no perceivable stereopsis. The
disparity is reduced with increasing deviance from the original view direction. For this
reason, this method of stereoscopy is not applicable for multiple users when using shared
screens.

When rendering stereoscopically across multiple adjacent screens, for example as

13

Projection plane

Left eye

Monoscopic
(on-axis)

Right eye

Figure 2.6: The image shows the view frustums of on-axis and off-axis (left and right
eye) projections as seen from above. The mono view is rendered with an on-axis projec-
tion, while the right and the left eye’s views are rendered with off-axis projections.

screen

A

screen

screen

Figure 2.7: The image shows how an object has to be projected onto the projection
walls to create the binocular disparity. Image used with permission from Kreylos [16]

14

No Stereo
This Direction

Stereo Possible in

Viewing Direction
<8 No Stereo t

Stereo Possible in This Direction

‘ Viewing Direction

Figure 2.8: Stereo viewing is not possible in the directions perpendicular to the eye
axis when using the regular perspective projection. Image taken from Peleg et al. [12]

done in CAVEs, it is necessary to use the off-axis method instead of the incorrect toe-in
one in order to create visually correct images. The latter causes apparent discontinuities
between the projected images on adjacent screens, which is a highly undesirable effect
as it can result in gaps between the screens or in image points appearing in either of the
screens. This effect also occurs if the head position is centered inside the CAVE, since the
projection origins are the eye positions and not the head positions. The eye positions are
offset from the head position and therefore not located at the center. Because of this it
is never viable to render stereoscopically across adjacent screens with the toe-in method.
Figure 2.9 shows a three-walled CAVE and the correct off-axis view frustums for a given
eye position. The images projected onto the screens in this case merge without visible
seams and are completely correct. For monoscopic rendering in a CAVE, if the assumed
head position is not located at the center of the room, an off-axis projection is required
for the same reason.

In theaters exhibiting 3D films, the viewers’ heads are assumed to be positioned
upright. When using linearly polarised glasses, tilting the head sideways will cause the
right-eye and left-eye images to be mixed for each eye, the amount of which depends
on the degree to which the head is tilted. When using circularly polarised glasses or
shutter glasses, the images are shown correctly separated for each eye, but tilting the
head 90° sideways removes the stereo effect and tilting the head 180° inverts the stereo
effect, effectively swapping the view of the left and right eye. A CAVE, however, may
contain ceiling or floor projections, which make head tilting support inevitable. Addi-
tionally, unlike in 3D film theaters, viewers can move around and significantly change
their orientation. If the positions of the viewer’s eyes are known, it is possible to render
stereo images for any arbitrary head rotation by using off-axis projections.

When rendering stereoscopically, special care has to be taken regarding screen-space
post-processing effects [17, 18]. Such effects, which are often used in monoscopic ren-
dering for video games or VR applications are, for example, depth of field, screen-space
ambient occlusion, bloom, lens flares and tone mapping. However, in stereo rendering

15

N Front wall view frustum -
\

Leftwall e~

view frustum 7«
/ N
/ Eye N
/ N

Right wall view frustum

Figure 2.9: Overhead view of a CAVE setup with three walls. The view frustums of
the off-axis projection are shown for a single eye position. Since no seams exist between
the frustums, the transitions between the projected images are continuous.

they may look incorrect or even cause discomfort. By applying consistently for both
eyes, the problem may be solved in some of the cases. Billboard rendering, which is
sometimes also used for particle effects, is also affected, as the billboards are perceived
flat in stereo.

2.4 Cybersickness

A problem with VR applications is that they frequently cause symptoms similar to those
of motion sickness among its users [19]. These effects are exhibited both during and after
the VR experience and are referred to as cybersickness.

Cybersickness may include one or multiple of following symptoms:

e Nausea

16

Headache

Eye strain

Vertigo

Disorientation

In some cases sweating, vomiting, pallor, dryness of mouth, fullness of stomach and
ataxia may occur. Motion sickness and cybersickness cause the same symptoms but are
not equivalent. The former can be induced by vestibular simulation alone, while visual
stimulation may contribute to it, however, cybersickness can be induced without any
vestibular simulation and is described as a polygenic sickness without one exact cause.
The effects can last for hours after having been exposed to the VR and, additionally,
after-effects can develop during this time [20]. For this reason, some aircraft bases in the
USA require its pilots who used a flight simulator to not fly an aircraft in the following
12-24 hours and many VR entertainment centers require users not to drive a car in the
30-45 minutes following the exposure. The longer the exposure to a VE takes place, the
longer a user needs to recover from the cybersickness effects and after-effects. People try
to avoid feelings of sickness, which means that a VR system that causes cybersickness
is more likely to be avoided as a whole. In addition to that, cybersickness distracts the
VR users, making it more difficult to follow the original purpose of the VR application
or complete tasks. These effects, and the risk of users being negatively affected in
driving/flying a vehicle, are good reasons for VR developers mitigating cybersickness.
Some of the factors contributing to cybersickness depend on the individual, such as
gender, age, illness, whether they are sitting or standing and whether they are in control
of the simulation.

There are also a number of factors related to the VR’s technology and display:

o Position-tracking of the user’s head or even eyes is used in VR to be able
to determine the user’s perspective in the VE and render it accordingly. In
addition to that, some VR installations that try to display an accurate repre-
sentation of the user in the virtual world, also track the user’s limbs’ physical
positions. However, position trackers are not 100 percent accurate and have
a tendency to submit unstable information, causing jitter. This jitter intro-
duces constant uncontrollable movement of the user’s view, which causes in
dizziness and concentration loss in VR setups.

e Lag describes the delay between performing an action and seeing the result
occurring in the VR. One very common source of lag is created by the time
it takes to receive and process information from the head-tracker. When a
user rotates his or her head, this lag will result in a later update of the user’s
view. Even though this delay might only be some milliseconds, users can find
this effect very unsettling and it is especially troublesome as this can trigger
some of the cybersickness symptoms.

17

e Another factor is flicker, which causes eye fatigue, is distracting and also
triggers cybersickness. Flicker is more likely to be perceived with larger FOVs
because of the peripheral vision’s sensitivity to movement. Since VR setups
try to surround the user with a VE, this is of greater concern to VR than to
other applications. Higher refresh rates can help removing the perception of
flicker.

Modern HMDs are light and compact and typically allow for fast head movements
and rotations. Fast changes in orientation or location can lead to distracting lags, in case
the tracking equipment is slower than the speed of change. In such cases the HMD users
are forced to move slowly and smoothly to mitigate the issue. In CAVEs the problem
remains, as head movements and rotations may introduce the same lags. However, this
effect is comparatively smaller when it comes to head rotations in CAVEs, because the
stereo projections only require a small alteration to generate the correct perspective [2].

2.5 Intrusiveness

The intrusiveness of a VR device is the degree to which it restricts the senses of its
users. HMDs without see-through capability have a very high level of intrusiveness. It
can isolate the user entirely from their real environment. HMDs that are partially see-
through or fully see-through allow users to see the real world in addition to the virtual
objects superimposing it. When using such HMDs, the intrusiveness is decreased, but,
on the other hand, the immersiveness and suspension of disbelief are broken more easily.
This happens due to the view of the real environment, which is only enhanced with
virtual objects and not fully replaced, a process referred to as augmented reality.

2.6 Perception of Omnistereo in the Human Visual
System

Omnidirectional stereo images, also called omnistereo images, are images that provide a
correct stereo effect at the center of the view independently of the current view-direction.
The stereo effect is present omnidirectionally, as all points are rendered as if the viewer
is facing them, looking in their direction. The images therefore do not need to be
re-rendered for changing head orientations. Simon et al. [4] suggested that it is only
necessary to create accurate stereo cues around a narrow FOV in the viewing direction.
In order to understand why this can be the case, a look at the human visual system and
its properties needs to be taken. When both eyes are used, the human visual system
has a FOV of approximately 180° horizontally and 120° vertically [21]. The area that
can be seen by both eyes simultaneously, referred to as the binocular field of vision, is
approximately 120° horizontally. Omnistereo techniques assume the head orientation to
be aligned vertically, i.e. without a sideways tilt or a roll, in terms of principal axes.
A head rotation around the vertical axis is simulated for every view direction when
rendering omnistereo images, therefore the horizontal view is the most relevant one in

18

~120° binocular field of vision

Figure 2.10: Gaze shift angles greater than approximately 15° usually make viewers
turn their heads in addition to the eye movements that are done in order to focus at the
point.

this context. A gaze is an intent look at something. A gaze shift is the realignment of
the line of sight that is done to move the projected image of an object of interest to
the central retina, where the visual resolution is the highest. Starting from the central
position, eyes cannot move more than approximately 50° to the right or to the left [22].
Gagze shifts that are greater than approximately 15° usually involve a head movement
in addition to the movement of the eyes, therefore limiting the rotation of the eyes.
Sometimes small-amplitude gaze shifts also lead to head movements. Figure 2.10 shows
the binocular FOV and the gaze shift angle.

When following moving objects with their eyes (visual tracking), people normally
also move their heads. Following a moving target solely with eye movements is rarely
done for significant periods of time in real life scenarios. Spectators at a tennis match
are a good example for a gaze pursuit of an object, in this case the tennis ball, that
involves both head and eye movements. Around the eyes’ view direction, a sharp central
vision is provided by the fovea. This foveal vision covers only approximately 1,5-2° of the
FOV, which is approximately 0,1° of the entire FOV [23]. The peripheral view covers the
much larger remaining view but has around the same amount of the optic nerve and the
visual cortex available for its information. Towards the outer periphery of the vision,
the images appear increasingly distorted and blurry. The visual acuity decreases the
larger the angle to the central vision is, i.e. towards the outer periphery of the vision.
Figure 2.11 shows this decrease depending on the location of the image on the retina.
The decreased visual acuity also potentially affects large parts of the binocular FOV. In
the peripheral vision, motion is perceived much faster than in the foveal vision.

19

Figure 2.11: Visual acuity depending on the angular distance from the fovea

created by Hans-Werner Hunziker [23]

Version
Limit £ 20

—e e

Binocular .
Field = 110

Monocular
Field L "
~05" from Fovea

to edge of Retina

Monocular

. Image

Figure 2.12: Viewers usually turn their heads when attempting to fixate points outside
approximately 20° range of their head-centric median plane, which is the comfortable
viewing range for eye motion (version). Image used with permission from Simon et al.

[4]

20

Disparity Error (arcmin)

5

Eccentricity ("]

MmN

Figure 2.13: Disparity errors of an omnistereo projection for a viewer looking in a
specific direction. The omnistereo projection distorts points in the periphery of the
visual field. The computed disparity distortions at various distances from the observer
within a 40° FOV are shown. Distortion is zero at an eccentricity of 0° and for points
on the screen (blue curve). Image taken from Couture et al. [24]

When attempting to view a point outside the comfortable view range of 40°, the
viewer usually turns their head toward the point, thus limiting the amount of eye ro-
tation. Figure 2.12 shows the comfortable view range, which is an area extending from
the median plane between the eyes. Detailed stereo vision is usually attained by turning
the head.

Couture et al. [24] analysed the stereo disparity distortions of two omnistereo projec-
tion models. The projection models create omnistereo images for cylindrical displays for
observers standing at the center. Omnistereo by design has zero distortion at eccentric-
ity 0°. Disparity errors increase gradually away from this zero-distortion locus. Points
that are located at large horizontal distance from this locus are distorted to be closer if
the point is in front of the screen, and farther if it is behind the screen. Points located
far away from the observer are exposed to larger depth distortions, however, these dis-
tortions are not necessarily perceivable, as the visual system measures disparity, which
depends on inverse depth. Therefore, large absolute errors in the triangulated depth of
a point might result in a small disparity change, which can make the error less apparent.
Figure 2.13 shows the disparity errors for points at various distances from the observer
within a 40° FOV.

Couture et al. [24] also examined whether the depth disparity errors are perceivable.
On the one hand, geometric distortions increase with eccentricity, on the other hand the

21

(Vertex Shader)

___________ Yo

i’ Tessellation Control Shader ,‘,

(Vertex Post-Processing)

l Legend
(Primitive Assembly)
/' =TT _. _______ \
l . Optional o
(Rasterisation) ----------
} Programmable
____FragmentShader Fixed

Figure 2.14: The OpenGL 4 rendering pipeline

resolution of the visual system decreases with it. Stereo acuity is the smallest detectable
difference in depth that can be perceived in binocular vision. Although the human stereo
acuity worsens in the periphery, the decreasing performance is not worse than expected, if
considering the worsened luminance perception in the periphery [25, 26]. The remaining
question is if the limits of the visual stereo acuity of the human vision outweigh the
distortion errors, especially in the periphery. Based on the data from previous studies
on stereo in peripheral vision, Couture et al. [24] suggested that the distortions are at
or below the detection threshold for humans, as long as the rendered points are not
too close to the viewer. In that case, the disparity errors may not be of significance to
human observers. In their projection model, the minimum distance was 1 m, displayed
as the yellow curve in Figure 2.13.

2.7 'Tessellation Shaders

In OpenGL 4.0, the tessellation stage was added to rendering pipeline as an OpenGL
Core feature. The rendering pipeline is shown in Figure 2.14 including the programmable
shader stages. The tessellation control and tessellation evaluation shaders were intro-
duced in OpenGL 4.0, while the geometry shader had become a core feature already
in OpenGL 3.2. All shader stages, except the vertex shader, are optional. However,
without a fragment shader the colour output is undefined and only the stencil and depth
values will be written as usual. Both the geometry shader and the tessellation shaders

22

can generate new geometry based on input primitives. The geometry shader, however,
has upper limits regarding the number of output vertices and is executed within a single
shader. Tessellation shaders were introduced specifically to allow subdividing primitives
into smaller primitives and are therefore better suited for this purpose.

The tessellation process consists of three steps. First, the tessellation control shader
(TCS) determines the amount of tessellation to be applied per primitive. In this context,
the continuity of adjacent edges of primitives needs to be considered. Vertices that are
inserted along a triangle’s edge, but are not inserted in the same manner along the edge
of the neighbouring triangle, are known as t-vertices. If t-vertices are introduced at edges
shared between primitives, gaps, breaks or seams can appear in supposedly contiguous
meshes [27]. These cracks in the mesh occur around the t-vertices once a type of vertex
displacement is applied to the mesh. Since object warping displaces vertices, this aspect
has to be considered in this technique.

Second, the fixed-function tessellation primitive generator subdivides the input patch.
This stage is affected by the spacing mode that can be set in the tessellation evaluation
shader (TES). There are three spacing modes in OpenGL 4:

o equal__spacing
o fractional_even__spacing
e fractional__odd__spacing

equal__spacing leads to the edge being divided into segments of equal length. The frac-
tional spacing modes provide smoother, more stable interpolation for gradually changing
tessellation levels. For adaptive tessellation, the fractional modes are therefore better
suited. Using equal spacing leads to perceivable “jumps” between integral tessellation
levels, whereas the fractional modes factor the fractional parts of the tessellation values
in, providing smooth progression.

Third, the TES receives the tessellation results and computes the interpolated data
values based on them. When processing triangle primitives, the barycentric coordinates
are accessible in the shader and can be used to interpolate the value based on the values
of the triangle’s original vertices.

23

CHAPTER

Motivation

In the previous chapter we discussed the generation of stereo images and several aspects
that need to be considered in VR applications. Stereo rendering in conjunction with
surround-screen displays provides users with a large FOV, a low amount of intrusiveness
and high immersion. The stereoscopic rendering provides additional depth cues, but
requires head position and direction tracking in order to generate an image with a
correct perspective for a single user. If the off-axis projection is not recalculated on
a change of the view-direction, the rotation of the view-direction to the left or right
side by 90° results in nullified depth cues, with one eye’s view being rendered closer
and the other farther from the scene. When looking to the sides by 180° , the left and
right eye images are swapped, effectively reversing the binocular depth cues. Therefore,
an undistorted view in a conventional perspective is tied with a single view direction
selected by the application, for example of a single head-tracked guide in a CAVE.

Figure 3.1 highlights the difference between off-axis and omnistereo projections. The
off-axis projection features almost no binocular disparities for the points projected on
the lower screen. In contrast, the omnistereo projection provides binocular disparities
for all directions the viewer might be facing at that moment.

In Section 2.6 we have mentioned that omnistereo images can provide correct stereo
in all view directions for the center of the view. In the periphery of the view, the
omnistereo image pairs provide increasingly inaccurate stereo cues. However, we have
shown that several traits of the human visual system and the likeliness of humans to
rotate their heads to look at objects of interest mitigate this problem.

3.1 Advantages of Omnidirectional Stereo
One advantage of the omnistereo projection model is that it lifts the requirement of

head-tracking partially or entirely, depending on the design of the VR system. Head
orientation or view direction tracking is not required in any case. Head position tracking

25

8 ——

|
|
|

Be

(
1
I

L]

@ Lefteye
© Right eye
e Point in world space

I
I
I
1
I
I
I
I
I
I
+4
I
1
I
I
I
I
|
} - ’
e Projected point 1

1
1
1
1
1
1
1
|
4
1
|‘ Legend
|
|
|
|
1

Figure 3.1: Top-down view of a CAVE. Points and their projections on the screens are
shown for the left and the right eye. Top: Off-axis projection with a fixed view-direction
perpendicular to the right screen. Bottom: Omnistereo projection.

26

is required only if the user is allowed to move away from the assumed head position to
such an extent that the distortions in the projection on the screen become too large for
the actual viewpoint. If the tracking is not fast enough, it can introduce delays, which
in turn can cause cybersickness. Omnistereo images do not need to be re-rendered when
the head is rotated, which removes this issue entirely.

Another advantage of omnistereo rendering is that it may allow multiple viewers to
share a display, with some constraints. While the distortion error increases with an
increasing deviation from the assumed viewpoint, it can be small enough in large-scale
panoramic displays and curved screens, therefore being suited for multiple simultaneous
viewers.

3.2 Research Aim

Our main motivation for omnistereo rendering is to generate omnistereo for a single user
in a CAVE display system without any tracking. A constraint imposed by omnistereo
rendering is that the up-axis of the viewer has to be constant, i.e., the viewer may not
tilt their head. However, this is not a serious limitation for typical VR applications.

An unanswered question so far is how omnistereo pairs are to be generated. Given a
display setup that is built using multiple adjacent screens, a naive approach to achieving
an omnistereo effect is to render each screen’s image using a separate off-axis projection,
with the view direction always set to face the respective screen. A CAVE consists of
walls that serve as adjacent projection screens. In such a setup, each wall’s image can be
rendered with the view direction being oriented perpendicular to the projection plane.
This means that, based on the head position, the assumed eye locations are positioned
so that the projection is correct for a viewer facing the screen. The images are then
rendered using off-axis projections based on these eye locations. In this case the stereo
depth cues are indeed present in all view directions, but they are lightly diminished
towards the borders between the vertical screens.

Figure 3.2 shows the left eyes’ view frustums of such a setup. The frustums shown
in the Figure make it apparent why the naive approach will cause issues. The edges and
planes of neighbouring view frustums do not coincide, although they would if the eye
positions were identical. Thus, the parts of the virtual environment that are virtually
located between the planes and inside the room are not enclosed by any of the two
frustums and therefore do not appear on either of the screens, while the parts located
outside the room would appear duplicated across the screens. The breaks in the transi-
tion between the views, which occur due to the large rotational difference between the
view directions of the adjacent screens, make this approach not viable. This problem
has nothing to do with stereo rendering itself, but rather with the use of multiple centers
of projection, since each wall uses a separate center of projection [4].

Ray-tracing can be used to create stereo image pairs, as well as omnistereo images,
but has considerably higher computational demands and is therefore generally not suited
for usage in VR. Omnistereo images feature a non-linear perspective. This means that
they cannot be produced with traditional means used in real-time rendering, such as

27

Front CAVE wall

Left CAVE wall Left eye (forward view)

Left eye (left view)

Figure 3.2: In a naive approach to render omnistereo, separate view-directions that
are perpendicular to the projection plane may be used for each CAVE wall’s projection.
The images shows the view frustums in such an approach for the left eye. Since the eye
positions are not consistent for the respective eye, the edges of the frustums of adjacent
screens do not coincide. As a result, the viewer will see apparent discontinuities between
the screens.

by using a projection matrix with a homogeneous coordinate for linear perspectives.
Cameras with fish eye lenses take images from a curvilinear perspective, which is a non-
linear perspective as well. This perspective can be reproduced in computer graphics
using a function that samples a cubemap or by approximation by the means of vertex
displacement, for example, implemented inside a vertex shader. Equally to curvilinear
perspectives, perspective projection can not produce correct images for display systems
with curved screen, such as dome displays, unless both the viewpoint and point of
projection are in the center [28]. The perspective can be approximated by using a
fragment shader that computes the intersection of the view ray with the display and
samples a pre-rendered cube map accordingly. However, a cubemap-based approach
is not viable for omnistereo rendering, since the cubemaps are rendered from a single
viewpoint, whereas the omnistereo projection is based on multiple viewpoints. Another
way to render images for curved screens is by using vertex correction, which involves

28

casting a ray from the view point to the vertex position, determining the intersection
point with the projection surface and rendering the point considering the projector’s
view. This can be done on the GPU in a vertex shader, but since edges are linearly
rasterised in the rendering pipeline this does not work well with long edges. However,
the step can be preceded by primitive tessellation to refine the mesh and achieve a better
accurate approximation of the edge distortion.

All things considered, our aim is to find a technique for creating omnistereo images
for a CAVE, which is implemented using traditional GPU-based rendering with the
programmable rendering pipeline and rasterisation. A single-pass solution based on
a vertex-shader, or potentially a tessellation shader, is preferred in order to keep the
impact on the performance and changes regarding the rendering process small. Such
a solution also allows adapting existing applications to render omnistereo images with
small changes.

29

CHAPTER

Related Work

4.1 CAVE

The CAVE was first mentioned in 1992 by Cruz-Neira et al. [2]. The motivation that
lead to the creation of the CAVE was to create a useful tool for scientific visualisation.
A CAVE consists of display screens that form a complete or partial room of cubic
shape. The walls, ceiling and floor of this room are used as planar projection surfaces
surrounding the user who is located inside this room. An early presented version of the
CAVE consisted of three wall projections and a floor projection [29]. Figure 4.1 shows a
CAVE setup.

The central idea behind the CAVE was to overcome problems encountered by other
virtual environment systems. In the CAVE, the binocular stereo is established by using
stereo rendering on the projection screens. To accomplish a correct perspective projec-
tion and a correct stereo view, the user’s head position inside the bounds of the CAVE
and head rotation are tracked at all times. Figure 4.2 shows a user inside the CAVE and
the view frustums of the off-axis projection based on the tracked position and direction.
In a fully set up CAVE with all 4 walls, the floor and the ceiling in use as projection
screens, the user is completely surrounded with projections from the virtual environ-
ment. In this setup, the user is provided with the full 360° FOV for all view points. The
FOV may, however, be limited by the display hardware, such as the stereo glasses.

The cubic setup of the CAVE was chosen as an approximation to a sphere. The
benefit of this setup is that it aids people standing inside the CAVE. In addition to that,
off-the-shelf high resolution video projectors, as well as modern graphics libraries and
hardware, are primarily specialised in projecting imagery on flat rectangular surfaces,
making them perfectly suited for the CAVE’s requirements.

Interaction in virtual environments often requires representing the physical body of
the user, specifically the hands. Physical objects that the users are supposed to interact
with might also need to be represented. The majority of HMD devices completely ob-
struct the user’s view of the real world, restricting the senses to the computer simulation.

31

Figure 4.1: Projector setup for a CAVE

For these devices, the representation are explicit, meaning that the representations have
to be simulated and rendered just like the rest of the virtual environment itself. This
requires additional tracking of the body parts and the objects and the allocation of a
higher computation time for rendering.

In contrast to that, the CAVE and similar surround-screen setups, offer implicit body
representations because the body is visible physically and does not require additional
rendering. In such setups the appearance of the body representations can not be altered.
Additionally, the user’s body or any other physical object in such a setup can partially or
fully occlude a user’s view of the virtual environment. Virtual objects that are supposed
to be closer to the viewer than the occluding object, can therefore be occluded as well.
This becomes a problem, for example, when the virtual object is between the user’s hand
and the eyes or if another user gets in the way of another user’s view of an object. In
such cases, where the object would have to be projected between the occluder and the
viewer, the stereo collapses.

According to Cruz-Neira et al. [29], the prevalence of cybersickness in the CAVE
is relatively low compared to other displays used in VR. Also, the projection planes
in a CAVE do not move when the viewer changes their view angle or position, unlike
HMDs. Cruz-Neira et al. [29] carried out a quantitative analysis of the effect of tracking
noise and latency on the user and found out that the CAVE has a greatly minimised
error sensitivity to tracking noise and latency associated with head rotation compared
to HMDs.

32

Front wall

Left Right
wall wall

Viewer

Figure 4.2: Visualisation of the frustums of the off-axis projections. The user is not
positioned centrally inside the CAVE

Nevertheless, there are several shortcomings of the CAVE:

e The CAVE is relatively expensive and requires a large amount of space. Cheap
wall-sized LCD screens are not available and while stereo video projectors got
cheaper over the past years, the price of multiple projectors still exceeds that of
many HMDs. However, if multiple viewers stand inside the CAVE, then the per-
person cost could be considered cheaper. In contrast, if using HMDs, an HMD
needs to be bought for each user.

¢ Projecting on all 6 sides of the CAVE is difficult. For example, if the floor projection
is projected from above, it may cast user shadows. Rear-projections for the floor
require a special floor construction, which can include having to raise the CAVE.
One of the walls has to feature a human entrance and exit, which can pose a
problem considering that the wall also serves as a screen.

o Internal light spillage can be caused by the CAVE’s wall, ceiling and floor screens
on the other screens, depending on their reflectivity and brightness. This can
reduce the contrast of the images.

The first 6-sided hybrid CAVE was created by Fraunhofer-Gesellschaft [30] in 2001 [31].
The display system is called HyPI-6 (Hybrid 6-sided Personal Immersion System). The
term ’hybrid’ refers to the fact that the system offers both passive and active stereo
projection. It was also one of very few 6-sided CAVEs at its time. The system can be
driven either by a PC-multi-node-system for passive stereo or a SGI Onyx3 for active

33

Figure 4.3: The low-cost surround-screen display system created by Cruz-Neira et al.
[32]. Image taken from Cruz-Neira et al. [32]

stereo. The dimensions of the CAVE are 2,9 x 2,9 x 2,7 m. Fabric screens are used for
the projection surfaces. To reduce the physical footprint of the device, mirrors are used
for each screen, since rear projections are used.

According to Cruz-Neira et al. [32], the costs of acquiring surround-screen displays
have generally been in the hundreds and even millions of dollars, especially if offering
synchronised stereo projections across multiple screens. A typical CAVE system, con-
sisting of three wall screens and a floor screen, can easily cost more than three-quarters
of a million dollars. A large part of the cost is related to customisations that are needed
to reduce the visibility of the seams between the screens and to the fact that a special
room supporting the projector arrangement is required. In addition to that, expensive
recurrent maintenance is required to keep systems like the CAVE operational. For these
reasons, the widespread use of such systems has been limited.

The goal of Cruz-Neira et al. [32] was to create a VR display that is affordable
and easier to maintain and upgrade than commercially VR displays, while providing
comparable quality. They presented a low-cost and easy to maintain display system
that is similar to the original CAVE but can be built based on commercial off-the-
shelf components. It is modular and can be installed in a variety of locations without
requiring special room conditions. The quality of the system is comparable to more
expensive solutions.

A self-supporting structure that could be taken apart was used for the installation.
The maximum floor dimension was restricted to approximately 14,63 m x 14,63 m
and the actual screen-bounded dimension inside the display system was approximately
3,66 m x 3,66 m x 2,74 m. The display consists of three wall screens. Despite having
slightly larger screens than a typical CAVE, only a single projector per screen needed

34

to be used. A projector stand was created for each projector, so that they do not need
to be attached to a ceiling or wall of the installation space. The stand has adjustable
height to compensate for unevenness of the floor. The projectors featured an aspect
ratio of 4:3 and provided active stereoscopic imagery. To avoid long projection distance
to the screens, conversion lenses were put in front of the projectors’ output to magnify
the image by approximately 1,5.

Each of the three projectors projectors receives its input from a different PC. The
PCs are part of a five-node graphics cluster. The fourth node acts as the master node
for processing input, logic, and distributing the results to the three render nodes. The
fifth node acts as a file server in the cluster to minimise maintenance and avoid soft-
ware inconsistencies on the client nodes. Their system incorporated an omnidirectional
treadmill for locomotion as well as tracking. Figure 4.3 shows the display system in use.

Due to the resolution, applications such as flight simulators and military command
and control are therefore outside the scope of the system. Nevertheless, it can be used for
architectural walk-through, engineering, science visualization, and educational applica-
tions. A disadvantage of using the magnifying lenses is that the pixel size on the screen
is approximately 3,8 mm and that small aberrations occurring due to the projectors’
optics are magnified. However, realistically only the trained eye can detect these with
static images. A tracking system is used to acquire the user’s head position and view
direction to render images with a correct perspective for that user. Cruz-Neira et al.
used the optical tracking system that came with the omnidirectional treadmill for this
purpose.

4.2 Omnidirectional Stereo Imaging

Omnistereo methods have mainly been described two different contexts. On one hand
there is the question of how to create omnistereo images based on real environments
by using cameras, on the other hand there is the question of how to render omnistereo
images based on virtual environments. Ishiguro et al. [33] were the first to use the term
omnidirectional stereo, describing a method to generate omnidirectional panorama im-
ages. Their method uses a single camera that swivels about a vertical axis, consecutively
taking images of a real world environment. Peleg et al. [12] described the theory of cre-
ating omnistereo images using cameras. The first method they describe is the method
by Ishiguro et al. [33] where a slit camera is used, which has its film covered except for a
narrow vertical slit. The slit determines a single viewing direction for the camera. The
slit camera can be rotated in a way that the resulting panoramic image has a single view
point. If the camera is rotated about a vertical axis directly behind the camera, the
resulting viewpoints are located on a viewing circle. The circular projection projects all
points in the scene with the viewer or the camera facing the point by turning towards
it in the horizontal plane (i.e. rotating around the vertical axis). The projection is
therefore always correct along the viewing direction but not in the peripheral vision.
Figure 4.4 displays the circular projections for these two types of rotation.

35

Image Surface

Viewing Circle

(@) (b) ()

Figure 4.4: The projection from the scene to the image surface is done along the rays
tangent to the viewing circle. (a) The traditional single-viewpoint panoramic image. (b)
and (c) Multiple-viewpoint circular projections with inner viewing circles. Image taken
from Peleg et al. [12]

Peleg et al. [12] use a camera with a right and left slit that move together with
the camera. The two slits create two panoramic images enabling stereo perception in
all directions. The second method describes how to create stereo panoramas with video
cameras. A video camera is rotated about the vertical axis behind it, but vertical image
strips are obtained from the images instead of using slits. For stereo mosaicing, two
vertical strips are obtained from the left and right side of each image. Composing the
narrow vertical strips approximates a circular projection on a cylindrical image surface,
as can be seen in Figure 4.5. Additionally, a system using a spiral lens and another one
using spiral mirrors were suggested to capture real-time movies having stereo panoramic
features. However, omnistereo lenses or mirrors have not yet been developed. For this
reason, and since the existing methods produced omnistereo images for static scenes
only, Couture, V. and Langer, M. S. and Roy, S. [34] presented a method that produces
loopable panoramic stereo videos based on dynamic scenes. The resulting omnistereo
videos can be displayed up to 360° around a viewer.

4.3 Rendering Stereo Panoramas

Peleg et al. [12] described a method using conventional rendering to create omnistereo
panorama images for cylindrical or spheric projection surfaces based on virtual environ-
ments and 3D models [35]. The viewing cylinder or sphere can be approximated using
polygonal geometry. Each face of the geometry is rendered separately from a different
viewpoint. Figure 4.6 shows how the faces of the polygonal approximation are rendered.
For reasonable quality, a vertical face has to be used for each 1-2°, which accounts to
approximately 200-400 faces for the entire cylinder. Stereo rendering allows controlling

36

Right Eye Left Eye
Strip Strip

Figure 4.5: The image shows how stereo panoramas can be created using a video
camera rotating about an axis behind it. The strips taken from each image are pasted
together to approximate a panoramic image cylinder. Vertical strips taken from the
center of the images create a monoscopic panorama, vertical strips taken with an offset
from the center to the left and right of the images create right and left eye panoramas
respectively, which together form a stereo panorama. Image taken from Peleg et al. [12]

binocular disparity, which makes it possible to assume an eye distance that is different
from the actual eye distance of the viewer. This can be used to assume a larger eye
distance for far away scenes and a smaller one for closer scenes, to make the stereo effect
artificially stronger or weaker for a given scene. To view stereo panoramas on planar
image surfaces as provided by flat screens, such as computer or television displays or
HMDs, the panoramic image needs to be projected from the cylinder onto a plane. A
central projection about the center of the cylinder, with the image plane tangent to
the panoramic cylinder, should be used for this purpose and will preserve the depth
perception.

Zhu, Zhigang [36] discussed multiple different omnistereo techniques for capturing
omnistereo images and introduced a new catadioptric circular projection omnistereo
method. The catadroptric method uses planar mirrors to enlarge the viewing circle,
allowing for more compact rigs, and provides better stereo configurations. He also pre-
sented a dynamic omnistereo approach and gave a numerical analysis on omnidirectional
representation, epipolar geometry and depth error characteristics.

4.4 Multiple-Center-Of-Projection Images

The issue of rendering omnistereo images based on virtual environments is essentially
not an issue of stereo rendering, but rather one of creating multiple-center-of-projection

37

f)! . Image Surface fr

“\Viewing Circle”

(@) (b)

Figure 4.6: Faces of a polygonal approximation for rendering cylindrical panoramas.
The faces are rendered from a central viewpoint suitable for the circular projection.
Image taken from Peleg et al. [12]

images [4, 37]. A multiple-center-of-projection (MCOP) image is a single image ac-
quired from multiple locations. The technique for creating MCOP images proposed
by Rademacher and Bishop [37] allows synthesising an image from a new viewpoint
based on data from multiple reference images. It combines samples from multiple view-
points into a single image, which becomes the complete dataset. An example for a MCOP
image is shown in Figure 4.7. Although the MCOP image definition encompasses a wide
range of camera configurations, the work of Rademacher and Bishop is mostly based on
photographic strip cameras, which consist of a moving strip of film behind a vertical
slit. These cameras capture continuous image-slices of a scene are through the slit, as
they move through space while the film rolls by. By these means, each vertical slice
can be captured from a different view point. Images that are created by strip cameras
that moves along a continuous path automatically satisfy the criteria for MCOP images.
Figure 4.8 shows the process of capturing MCOP images with a strip camera.

Strip cameras have been used extensively, for example, in aerial photography. The
strip cameras we refer to in this work are digital strip cameras that capture each pixel-
wide vertical slice from a different center of projection. An MCOP image is an extension
of a conventional two-dimensional image and is characterised by having a set of cameras
contributing to it instead of only a single one. Therefore, its individual pixels or sets of
pixels are acquired by different parameterised cameras. Four conditions have to be met
by MCOP images: the camera locations have to lie on a continuous curve or a continuous
surface instead of being an unorganised set of points, samples captured from multiple
cameras are not blended together - i.e. each pixel is acquired by a single camera -, viewing
rays vary continuously across neighbouring pixels and two neighbouring pixels must
either correspond to the same camera or to neighbouring cameras, therefore assuring

38

Figure 4.7: An example multiple-center-of-projection image of an elephant. Image
taken from Rademacher and Bishop [37]

a smooth transition from camera to camera when traversing pixels. Sampling issues
in MCOP image rendering can occur if, for example, the viewing rays of the cameras
capturing a nearly-convex object approach grazing angles with the object. In contrast,
if sampling every point at near-normal angle to the objects, the acquired samples are
sufficient everywhere.

The process of creating MCOP images with slit cameras is analogous to that of
creating an omnistereo image for a vertical screen. The latter involves moving a virtual
or real camera along a viewing circle while capturing vertical slices. However, this is
not true when it comes to omnistereo rendering for non-vertical screens, such ceiling or
floor screens in a CAVE, which require a different approach. The specific data structure
of MCOP images, which saves camera-related data together with the two-dimensional
image data, is not relevant in the context of omnistereo images, as only the image itself
is relevant. It should also be noted that the sampling issues related to the camera’s view
rays occur in a similar fashion in omnistereo techniques that render vertical image-slices
to approximate the omnistereo image.

4.5 Omnistereo Rendering in a CAVE

Max [38] described a way to create omnistereo images for an OMNIMAX dome (now
called IMAX Dome) using ray tracing. Although this approach is not feasible for real-
time rendering, it provided the descriptive process for creating such images. Simon et al.
[4] presented two techniques to render omnistereo images for the CAVE in real-time.
When using off-axis projections, the tracked physical eye positions of the viewer in

39

scene
- strip camera

= p Qcameras
< <[] film Q
scene Co ¢, camera
ya \\\ B, curve
I // N 1 G Ci
/7)
/ 7~
s - — | —
/ ‘_

— = camera path - ———
multiple-center-of-projection image

Figure 4.8: The left image shows a strip camera, consisting of a moving strip of film
located behind a vertical slit. The right image shows a discrete number of image-slices
being captured along a curve. The single MCOP image captured in this way allows
seeing three sides of the house simultaneously. A similar configuration was used for
Figure 4.7. Images taken from Rademacher and Bishop [37]

the display system coincides with the two centers of projection (COPs) of the stereo im-
age projected on the screen. The resulting view on the virtual environment is therefore
completely accurate and provides a correct binocular disparity, as it is re-rendered for
every new head position and rotation. Conversely, omnistereo projections are only cor-
rect in the center of the visual field for every view direction, as the accuracy degrades in
the periphery. Given two perspective projections based on COPs defined by the viewer’s
the left eye and right eye positions, the resulting location of a projected object in screen
space will generally differ. This difference is relevant for the binocular disparity and
therefore for the perceived depth. Since the two COPs depend on the viewer’s head
position and view direction, it is impossible to create stereoscopic images for multiple
different view positions and directions at the same time in one stereo image while pro-
viding correct depth information in the entire visual field. However, it is possible to do
so accurately, if not perfectly, as shown by Simon et al. [4]. An explanation why the
properties of the human visual system make these imperfections of such an omnistereo
projection acceptable is given in Chapter 3.

Figure 4.9 shows a top-down view of two lines and their perspective projections on
a single screen. The projection is based on a single viewing position and view direction,
whereas the view direction is perpendicular to the screen. A number of perceived loca-
tions of model points along the lines are shown. The human visual system of the viewer
reconstructs the 3D location of points in the two-dimensional images based on the depth
information provided in the stereo images. In this figure’s setup the reconstructed loca-
tion of the points are correct because the viewer’s head position and direction coincide
with those used for the projection. The rays from the left and right eye positions to
the projected positions of points are shown. Since the viewer’s actual eye locations are
identical to the locations used in the projection, the projection is entirely correct. This

40

A Viewing Direction

Screen
Varsion
! Limit 220"
— e e e ——
:'_
e o
Model F‘{:-int—/‘ "'I"\
\
Ll Base Line

Figure 4.9: Top-down view of two lines being projected on a screen with a regular
off-axis projection. The human visual system can correctly reconstruct the positions of
the model points along the original line, based on the stereo images created with this
projection. Image used with permission from Simon et al. [4]

Viewing Lhreclion ’

Screen

Qe im0

Base Ling

Figure 4.10: The identical image is shown on the screen as in the setup of Figure 4.9
but the view direction of the viewer has changed. Without having re-rendered the image,
the depth of the model points can not be correctly reconstructed anymore. The model
points are seen distorted, even along the view direction. Image used with permission
from Simon et al. [4]

41

Viewing Direction

M A A o
Screan /
\ Varsion
\ Limit £20°
.-{r.--@-'l‘i“"" "'""'I!'-;'--c-.d___
- i U""a
e

Basa Line

Figure 4.11: An omnistereo image is shown on the screen to a viewer with the same
view direction as in Figure 4.9. No distortion is perceived in the center of the view,
along the view direction, but distortion is perceived increasingly towards the periphery.
Image used with permission from Simon et al. [4]

means that the depth can be reconstructed correctly from the image, as shown on the
figure by the fact that the perceived model points are indeed located on the lines at the
correct depth, since all eye ray intersections meet along the lines. Figure 4.10 shows
the identical projection on the screen, the image on the screen is therefore unchanged.
However, in this figure the viewer’s eye locations do not coincide with those of the pro-
jection, since the viewer’s head is rotated. In this case, the depth of any point on the
screen can not be reconstructed correctly in 3D based on the 2D images, which causes
the model to be perceived distorted. This can be seen by the fact that the reconstructed
positions of the models points are situated along a dashed curve, whereas their actual
positions are situated on the solid lines. In addition to that, it should be noted that the
location of the model points is incorrectly perceived even along the view direction.

Figure 4.11 shows circular projections of the model point on the screen and the
perceived distortion of the model point positions for a given view direction. In the
omnidirectional circular projection, the screen space positions are only saved when the
head’s view direction is the same as the direction to the model point. In the center of
the view there is no distortion, the model points are perceived along the line. However,
a distortion occurs in the peripheral vision of the view direction. It should be noted that
no distortion occurs in the peripheral view when using an off-axis projection, as long as
the view direction coincides with the one used for the projection, as shown in Figure 4.9.
Additionally, it can be seen that the distortion is relatively low around the view direction,
increasing towards the periphery. Figure 4.12 shows the model’s distortion in another
view direction based on the same omnistereo images on the screen. Again the distortion
is non-existent along the view direction and similarly increases towards the periphery.

Circular projections have been suggested as way to acquire omnistereo images. The

42

Viewing Direction 4

\\“A Base Lina

Figure 4.12: The same omnistereo image as in Figure 4.11 is shown on the screen.
The viewer’s view direction is changed as in Figure 4.9. No distortion occurs along the
view direction, but distortion occurs towards the periphery of the view. Image used with
permission from Simon et al. [4]

images can, for example, be rendered by adapting a ray-tracing program to implement
the circular projection. Since this is not suitable for real-time rendering, Simon et al.
[4] suggested two methods that can be rendered at real-time frame rates. The first
technique works analogously to the multi-view rendering technique originally suggested
by Peleg et al. [12]. It can be seen as an improvement to the naive approach of rendering
omnistereo images as discussed in Chapter 3. The naive approach only uses one view
direction per screen, using a regular linear projection (off-axis projection). If using
multiple view directions per screen, and thus multiple COPs, the circular projection can
be approximated with increasing accuracy. Raising the number of view directions per
screen leads to a reduction of the error and thereby also to a reduction of the extent
of the discontinuities between the views. The angular differences between the views are
decreased as well. In the naive approach, in order to have the views face the walls of
the CAVE, the view is rotated 90° around the vertical axis each time. In the multiple
COPs per view approach, a discrete number of views is rendered per screen. Each view
uses a separate off-axis projection. The result of each view is a rendered vertical image
slice. By combining these image slices, an omnistereo image is formed. The primary
question surrounding the multi-view approach is how many views are needed to generate
an omnistereo image without visible artefacts. The resolution of the virtual environment
display system and the pixel size play a role in this matter. Simon et al. [4] suggest that
the gap and the overlap errors between adjacent slices should be reduced below half
a pixel in order to remove most visible artefacts. For a pixel size of 1-2mm, it was
suggested to use 15° views to achieve pixel errors below half a pixel in common view
conditions (objects between % screen distance and infinity). Simon et al. were able to
confirm this approximation with their implementation of the technique.

The second method pre-warps the meshes of all models for each screen. The vertices

43

of the meshes are displaced so that the standard off-axis projection creates an omnistereo
image for that screen. This pre-warping technique, called object warp, is appropriate for
real-time rendering on the GPU. Pre-warping of meshes has also been used by Wartell
et al. [39] for controlling stereo distortion, which occurs when deliberate incorrect (under-
/overestimated) eye-separation distances are used for the viewer. In object warping, the
projection of a vertex is created from a fixed projective viewpoint using a standard off-
axis perspective projection. This projective viewpoint can be different from the assumed
position of the viewer, which defines the circular projection. The projective viewpoint
and the assumed position of the viewer define how the vertices of the object’s mesh
are warped. The objects are warped in order to appear on screen as if they were seen
in the center of the view by the viewer, while facing the direction of the object, yet
they are projected from the projective viewpoint using a regular perspective projection.
The eye positions of the omnistereo projection are always located along the viewing
circle for each object’s direction. The object has to be warped for the left and the right
eye separately for each omnistereo image pair and object proportions are maintained
in the warping. The eye ray is the ray that starts from the eye position and passes
through the original vertex position. The point of intersection of the eye ray and the
projection plane is relevant for the calculation of the warping, as the warped vertex
position has to lie on the ray that starts from the projective viewpoint and goes through
this intersection point. This ensures that the warped vertex’s position in screen space,
once projected from the projective viewpoint, will be seen from the eye position as
expected. By using relationships of similar triangles in the geometry of this setup, Simon
et al. [4] derived a simple and fast solution to calculate the warped position. The method
can be combined with any algorithm based on regular perspective projections. The
geometrical background of this object warping technique, as well as an implementation
of the method, are described in detail in Section 5.2.

Simon et al. [4] implemented both the multiple-view method and the object-warp
technique. They were used in an i-Cone™ display system and in a four-walled CAVE.
According to Simon et al., the technique allowed their displays to be used as true multi-
user displays, providing users with the ability to look around and browse the virtual
environment freely. They conducted an informal user evaluation with 50 users, most of
whom are expert users of immersive visualisation systems, which confirmed that the om-
nistereo images provided a seamless image with correct stereoscopy in all view-directions.
One of their i-Cone™ displays consisted of four projectors, each providing a images cov-
ering a horizontal FOV of 60° coverage, providing a total FOV of 240°, and consisting
of four 15° views. The rendering time per projector was reported to be twice as long
as with conventional stereo. The panoramic virtual environments were shown to groups
of 3 to 10 people. The users were asked to compare the stereo impression of a virtual
environment rendered in omnistereo with that of the same scene rendered in regular
stereo with a fixed view direction. For the omnistereo rendering, users reported a bet-
ter quality of stereo, a wider FOV and that they had looked around more in it. No
artefacts, such as visible seams, were observed and the only negative remark was about
slower rendering speeds. The four-walled CAVE consisted of three vertical walls and one

44

Figure 4.13: The AVIE omnistereo VR theater with multiple users inside. Image taken
from McGinity et al. [41]

floor and the test scene consisted of a car interior as seen from the driver’s position. The
object-warping took place on the GPU inside a vertex shader and had a rendering over-
head of less than 20°. Objects closer than % the distance to the display were reported
to be visually distorted, objects further away appeared acceptable. Additionally, objects
underneath the viewer were difficult to view. An open question that was raised by the
authors was how the lighting, in particular the specular highlights, should be handled
during the omnistereo rendering.

4.6 Omnistereo Rendering in Curved Display Systems

Generating stereo images for planar projection surfaces is well known. However, stereo-
scopic rendering for non-planar projections, such as cylindrical and spherical projections,
is still a challenge [40]. Creating an omnistereo rendering method for such surfaces is
an additional challenge, since multiple centers of projection have to be used therein.
Omnistereo techniques have been developed for full 360° cylindrical displays, as well as
for conical displays.

AVIE

A 360° VR cinema called AVIE was described by McGinity et al. [41] in 2007. It
combines real-time omnistereo projection with surround audio and marker-less motion

45

tracking for up to 20 users; Figure 4.13 shows the general setup. It was designed to
display both video content and real-time computer graphics. According to the McGinity
et al., the AVIE was the first only-360° cylindrical stereo VR theater. Important goals of
the project were: a high level of immersion, support of up to twenty simultaneous users
and allowing physical activity and group interaction while staying low-cost. A cylindrical
screen surface was chosen for the cinema because the authors saw it as advantageous
for projecting omnistereo images. The display uses a total circumferential resolution of
around 7500 pixels and polarising filters are used to separate right and left eye images.
In total, twelve projectors and seven PC’s are used in the setup. Due to the cylindrical
projection surface, techniques using a distortion mesh and blend textures had to be
used to render seamless, distortion-free images across the entire surface. Tracking is
performed using twelve infra-red cameras, twenty infra-red flood lights and a cluster of
four Linux operated PC’s that run the tracking algorithms in parallel, providing tracking
in real-time. The tracked movements and gestures act as the primary human-computer
interface. The omnistereo rendering of the AVIE is based on the work by Simon et al. [4].
Due to this, the tracked head positions and orientations of viewers are not used to change
the projection. Instead, the view point is assumed to always be located at the center of
the cylinder and the omnistereo is supposed to allow users to freely move and look around
wherever they choose. The image distortions that arise from the discrepancies between
the viewer’s position and the assumed viewpoint are less perceptible in a cylindrical
displays than they are in a composite planar systems, such as a CAVE. McGinity et al.
[41] stated that this is the case since the distortions are continuous over the whole
screen in a cylindrical display. According to observations by McGinity et al. based on
the experiences of more than a hundred visitors of the theater, the omnistereo images
can be observed comfortably from any position inside the AVIE theater. However, they
mentioned that moving viewers perceive motion in the image when there is none, which
is due to the lack of motion parallax. The effect is most evident when there are distinct
foreground and background objects in a scene.

i-Cone™

The i-Cone™ is a panoramic curved screen display system for virtual environments [42].
It features a horizontal FOV of up to 360° horizontal FOV. The screen of the display
is a conical section with an opening angle of 5°. Before this system, curved screen
systems have not been commonly used for this purpose. According Simon and Gobel
[42], this is due to the lack of workspace for standing participants and due to bad
acoustics. A typical curved screen installation used a three-channel setup providing
a horizontal FOV of 160° and no floor projection. Their approach optimises screen
geometry and projector placement allowing to create a front projection curved screen
system that has an extended workspace for standing participants. A motivation for using
curved screens is given by the fact that they distribute the geometrical errors from the
untracked viewing position smoothly over the display area. This makes them inherently
better suitable for big audiences than non-curved screens. The display system can include
floor projections and spatial audio. The geometry of the i-Cone™ screen is described

46

Figure 4.14: The AVIE used as part of a mining training simulator. Image taken
from McGinity et al. [41]

as a conic section with 5° opening angle, Figure 4.15 shows a four channel display of
this type. One of the installed display systems had a height of 2,8 m and a radius of
3,3 m and a horizontal FOV of 240°. Due to the curved surface, the CRT projectors used
in the system require distortion correction, which was handled statically by geometric
adjustment using physical marking of the screens with reference points. The projected
images from the four projectors are blended to create a seamless view. Two different
hardware setups were used for the image generation: a cluster of PC’s including four
dedicated graphics cards, rendering to a resolution of 6200x 1460 pixels, and a twelve-
processor four-pipe SGI Onyx2 system rendering at a resolution of 5600x 1320 pixels.
Neither of these two systems offered floor projections, although the possibility to add
such projections was mentioned by Simon and Gobel.

Omnistereo rendering

Simon and Beckhaus [43] developed an omnistereo projection technique for the i-Cone™ dis-
play system. The technique allows rendering omnistereo images in real-time, providing
stereo vision for all directions without head-tracking for multiple participants simulta-
neously. The approach used by Simon and Beckhaus is based on the circular projection
technique by Peleg and Ben-Ezra [35], which is mentioned in Section 4.2. While per-
spective projection forms an image by rays converging in a single viewpoint, the circular
projection forms it using rays that are tangential to a viewing circle. A comparison of
these techniques is shown in Figure 4.16. In the circular projection, the baseline for
every view direction is perpendicular to the viewing direction. Therefore, the resulting
omnistereo images provide a parallax for all viewing directions. The real-time render-
ing approach approximates the circular projection stereo image by rendering slices. The
amount of slices required for rendering a sufficient approximation depends on the approx-
imation error of the sliced perspective image compared to the true circular projection.

47

Figure 4.15: The 240° i-Cone™ display system. Image used with permission from Si-
mon and Gobel [42]

Figure 4.16: Comparison of the perspective projection (a) and the circular projection
(b). Image used with permission from Simon and Beckhaus [43]

For the i-Cone™ display, four slices per projector were used, resulting in 15° horizontal
FOV coverage per slice. The reported overhead for this setup rendering on an SGI Onyx2
for a typical scene is less than 50%. A vertex-shader based method called object warping
has been suggested as an alternative method to render omnistereo images [4]. Models
can be pre-warped in order to achieve omnistereo rendering using regular perspective
projections thereafter.

McGinity et al. [41] implemented the multi-view and the object-warping omnistereo

48

90 o .-, - "L..L -
- - -
2 "y, * > .
:E (1] = H‘n :
UEJ G % é L T
o T m - S
w -
= &0 s - - = 1
g " N =
5 s i
L
"nE -

Rendered Views per eye

Figure 4.17: Benchmark showing the decrease in frame-rate depending on the num-
ber of views. Four different scenes of varying complexity were tested. Image taken
from McGinity et al. [41]

techniques that had been suggested by Simon et al. [4]. The object warping method was
implemented as a CPU and GPU version. For the multi-view method, the horizontal
FOV of each view may not be larger than 11° in order to maintain an acceptable conti-
nuity between the views. The AVIE projectors cover 66° horizontal FOV each, therefore
six to eight views per eye need to be rendered per projector. Figure 4.17 shows a chart
displaying the frame rate reduction for different scenes and different amounts of ren-
dered views. The CPU object-warp method is more efficient and can be rendered in less
batches but requires special attention when using particle systems or calculations done
inside vertex shaders. The GPU object-warp method, however, can be integrated into
existing vertex shaders. The AVIE was used to display the following projects:

¢ Stereo panoramic still images using slide shows
e Panoramic videos captured with a panoramic video camera

e Stereo panoramic video, which is a composition of computer generated stereo im-
ages and still panoramic photographs. The project Hampi featured still panoramas
of archaeological sites in India that were combined with pre-rendered CG charac-
ters.

e Mining Training Simulator - a simulator for the UNSW School Of Mining Engi-
neering, shown in Figure 4.14

o TVisionarium - a prototype of an immersive televisual data-mining application

Lorenz and Doéllner [44] presented a real-time rendering method for non-planar pro-
jections with a single center and straight projection rays [45]. Their goal was to provide
an optimal and consistent image quality at real-time frame rates. Their method removes
the need for image re-sampling, approximating the projection by a set of perspective

49

cylindrical piecewise perspective
projection volume approximation

| |
projection surface ? ? projection planes

Figure 4.18: Top-down view of cylindrical projection volumes. The left image shows
the ideal volume, the right image shows a piecewise approximation using perspective
projections. Image taken from Lorenz and Déllner [44]

e
g

e

=
&

L
&
i
iy

-+
=
|
sl
i

e

Figure 4.19: The image diplays the rendering of a scene using the piecewise perspective
projection method. The curved projection volume is split into narrow rectangular vertical
slices in order to approximate an omnistereo projection. Image taken from Lorenz and
Dollner [44]

projection pieces. Each piece itself can provide optimal image quality. The combina-
tion of the pieces creates the desired projection. The piecewise perspective projection
method is possible because a cylindrical projection only uses a non-planar projection
in the horizontal direction, whereas in the vertical direction a regular perspective pro-
jection is used. Therefore, changing the horizontal edge length of each slice rendered
with a perspective projection allows controlling the quality of the approximation. The
method splits the curved projection volume into narrow rectangular vertical slices, as
visualised in Figure 4.18. The scene’s primitives are replicated on-demand and rendered
in those projection pieces, in which they were determined to be visible. Therefore, the
method is independent of the input mesh density regarding the quality of the projection.
Figure 4.19 displays how a virtual environment is rendered using slices, based on the
piecewise perspective projection method.

The original implementation ran on the GPU inside a geometry shader by using

50

transform feedback. Since then, graphics hardware with tessellation shaders have become
available, which allows having a single-pass implementation of piecewise perspective
projections.

A considerable drawback of the technique is the high geometry processing overhead.
The vertex processing that happens after the primitive replication create a bottleneck
for the rendering performance, especially in scenes with a high amount of polygons.
Compared to an image-based projection, the piece-wise projection method turned out to
be significantly faster in some setups, but significantly slower in others. The performance
of the methods depends on the amount of slices, the amount of primitives in the scene
and the targeted image size. However, the piece-wise projection method provided a
better image quality than the image-based method in all of the comparisons.

The multi-view omnistereo method suggested by Simon and Beckhaus [43] can be
combined with the piece-wise perspective projection technique by Lorenz and Dollner
[44]. This would allow rendering the view-slices in a single pass, increasing the perfor-
mance of the method.

Trapp et al. [40] adapted both an image-based rendering technique for non-planar
surfaces and the geometry-based mesh-refinement technique by Lorenz and Doéllner [46]
to output stereoscopic images. The techniques were then compared. In addition, their
goal was to create omnistereo panoramas with the techniques. The image-based method
uses normal-based image warping. A cube-map texture is dynamically generated to
capture the virtual environment surrounding the scene’s camera. The cube-map faces
are rendered with parallel projections, since off-axis projections toe-in cameras would
lead to artefacts or missing stereo disparity. A projection function is used to sample the
cube map using computed normal vectors. The method runs on the GPU, implemented
in a fragment shader program using a post-processing pass. A full-screen quad is used
for the rendering. A naive approach for stereo rendering is the creation of two cube maps
using two rendering passes. Stereo rendering is then performed by computing two non-
planar projections. Trapp et al. [40] proposed to create two cube map textures within a
single rendering pass to avoid unnecessary state changes. Figure 4.20 gives an overview
of the image-based stereo rendering method.

The geometry-based approach uses geometry shaders to apply view-dependent tes-
sellation with limited edge length per primitive to all primitives of the virtual environ-
ment. This dynamic mesh refinement is necessary to ensure sufficient vertex density on
the screen. Each primitive is emitted twice using separate projections, directing them to
two different layers. The geometry-based approach only needs a single scene evaluation
to output the stereo image pair. Furthermore, it supports omnistereo rendering. They
concluded that the geometry-based approach has a number of advantages as compared
to the image-based one, such as providing better quality, better performance and allows
for more functionality with respects to stereo rendering. In addition, the geometry-based
approach can be used to create full 360° omnistereo panoramas, whereas the image-based
approach is not suited to create omnistereo images.

Herndndez et al. [47] implemented a multi-slice rendering approach for omnistereo
rendering in the AVIE. The viewer’s head position for all their implemented techniques

o1

Figure 4.20: Overview of the implementation of the image-based stereo rendering for
non-planar projections. Layered rendering of the cube maps is used to create image
representations of the virtual environment. These images are then sampled using a
projection functions to generate the stereo image pairs. Image taken from Trapp et al.
40]

d

Figure 4.21: Top-down view of the multi-slice approach for omnistereo rendering in a
cylindrical display. Image taken from Hernéndez et al. [47]

92

MNumber of Slices vs. Frames per Second
(Multi-slice)

FPs

1 . 2 3 4 5 . & T S 9 - 10
=—=5mall objects| 41 408 | 376 | 298 | 285 | 274 265 | 265 | 278 | 274
= Big objects 332 (3L | 209|154 | 163 | 152 | 138 | 136 | L2 | 112

Figure 4.22: Benchmark of FPS depending on the amount of slices for the omnistereo
approximation. Objects that appear large on the screen affect the FPS differently than
objects which appear small. Image taken from Herndndez et al. [47]

was assumed to be located in the center of the cylinder and to be static. Figure 4.21 shows
a top-down view of the omnistereo projection of the multi-slice approach. Figure 4.22
shows a benchmark of the frames per second (FPS) depending on the amount of slices
per view. The GPU used for the benchmark was a Nvidia(R) 330M. The scene consisted
of 24.000 textured triangles, which were rendered separately for each eye resulting in a
total of 48.000 triangles per stereo pair. The benchmark was done in two modes, one with
small objects, i.e. objects that do not span over a large distance on the screen, and on
with big objects. Objects that span across multiple view-slices will not be affected by the
frustum-culling as often, therefore affecting the rendering performance more than objects
that appear small on the screen. Amounts of slices that allow achieving an acceptable
approximation of the omnistereo projection without visible artefacts typically reduce the
rendering performance significantly, as compared to a single-view rendering.

Since the multi-slice approach did not provide sufficient performance, Herndndez
et al. [47] implemented a vertex-shader based omnistereo approach for rendering to
cylindrical screens. Figure 4.23 shows how the vertices are projected on the screen in
their shader-based approach. Instead of using a perspective projection matrix, their
method transforms the vertices directly into clip space using a conversion implemented
in the vertex shader. The vertex positions are converted from the Cartesian coordinates
to a cylindrical coordinate system inside the shader for this purpose. Given that vertices
that are outside the view frustum of the non-omnistereo projection could be inside the
view frustum for the omnistereo projection, the view frustum culling was modified to
cover a wider FOV depending on the interocular distance. Moreover it should be noted
that other than with the multi-slice approach, the interpolation can become an issue
with the shader-based approach when polygons cover a large horizontal FOV on the

93

Figure 4.23: The right image shows how points are projected onto the screen in the
shader-based omnistereo rendering for cylindrical displays. Image taken from Hernandez
et al. [47]

screen. This occurs due to the interpolation done between the vertices being linear,
which is correct for linear projections but wrong for the non-linear projection performed
by the shader. The results of the shader-based method showed a higher accuracy than
the multi-slice approach, a seamless projection and no artefacts.

4.7 Omnistereo Rendering in Domes

Hemispherical domes, which can be small personal domes, such as the iDome, or large
domes, such as used in planetariums, offer an alternative to the CAVE and cylindrical
screen systems [48, 49, 50]. Historically their use has been restricted to large planetari-
ums, primarily for public education in astronomy. The planetariums that had the ability
to present real-time digital graphics only projected the imagery on a small portion of
the dome using a single projector. In later developments, multiple projectors were used,
achieving full dome projections. The movies shown in such setups featured fisheye im-
ages. With the advancement of graphic cards technology, the content was not limited
to movies and images any longer and real-time interactive graphics could be shown,
opening possibilities for VR applications. Planetariums commonly use multiple digital
projectors. This enables a higher maximum resolution for the combined result of the
projected images. However, in a single person dome this is a less attractive option due
to space constraints and difficulties in arranging the projectors without interfering with
the viewer. Additionally, using multiple projectors requires careful alignment and edge
blending across overlapping projection regions, which can be problematic.

In comparison to cylindrical displays and CAVES, domes offer a similarly large FOV
and can feature stereoscopic projections. A disadvantage of CAVEs is that they have
corners that are difficult to hide and may make viewers aware of the projection sur-

54

Top view Side view

Spherical
mirror
l:*li vector

Projector

Figure 4.24: Representation of the path of rays from a projection source, reflected off
a spherical surface. Image taken from Bourke [48]

face, which can reduce the illusion of being somewhere else if not hidden well enough.
Cylindrical displays and domes have seamless projections. Cylindrical displays can wrap
around the viewer providing a complete 360° horizontal FOV, but they generally have a
limited vertical FOV.

In order to make domes less expensive, smaller domes of around 10 m in diameter,
as well as even smaller easily transportable, inflatable domes of around 5 m in diameter
have been developed. A single projector with a fisheye lens, which was located in the
center of the dome, was employed in such systems. The disadvantages regarding the use
of fisheye lens projectors are the lower resolution and brightness, as well as chromatic
aberration. Nevertheless, they are easier to manage and cheaper than multi-projector
installations. Bourke [48] introduced an alternative projection system that reduces the
cost of dome projection while maintaining a similar quality by using spherical mirror
projections. A spherical mirror can reflect light from a rectilinear frustum, as produced
by regular consumer-grade projectors, over almost the whole surface of the dome. Just
like a fisheye lens, the spherical mirror scatters the light across the surface of the hemi-
sphere. Figure 4.24 displays the path of the rays before and after the reflection from the
mirror. Different placements of the projector and mirror are possible, such as placing
the projector close to the rim of the dome, in the middle of the dome or placing the
mirror at the base of a vertically mounted truncated dome. Alternative geometries have
been proposed, such as using a convex mirror to project into cylindrical environments or
using polyhedral spaces. Benefits of using the described setup instead of a fisheye lens
include:

e The projection hardware can be located away from the center of the dome. As

95

this is generally a location that provides a large tolerance to viewpoint deviations
in respect to the resulting view distortion, this can be of advantage, especially for
single person domes.

o A fisheye lens can typically only be fitted to a very narrow range of projectors. By
having the projector and the optics separated, it is possible to choose from a wider
selection of projectors. However, a good depth of focus has to be provided by the
projector, due to variations in path lengths when using a mirror.

e The coverage on the dome can be controlled. However, neither the mirror-based
system nor the fisheye lens projectors can cover the whole dome. The latter due
to pixel efficiency reasons.

o Higher resolutions and complete coverage can be achieved using multiple projectors
and mirrors. For example, a dual mirror and projector system would have a single
blending zone in the middle of the dome.

e In contrast to fisheye lenses, a good quality mirror does not cause chromatic aber-
ration.

e Mirrors are less expensive than fisheye lenses for projectors

Images projected onto the dome surface need to be warped to look correct and
undistorted. A warping mesh is used for this purpose, which is created by finding
the point on the projector frustum for any point on the dome. Bourke [50] describes
the creation of the distortion as being relatively straightforward. The mesh used for
projection calibration can be seen in Figure 4.27. This makes precise image warping
possible and can be done in real-time on modern graphics cards.

The iDome, developed by the iCinema Centre, is a single person dome display system
that uses spherical mirror for the projection instead of a fisheye lens. The hemispherical
surface completely surrounds the viewer [50]. The mirror is placed behind the dome
and can be almost completely hidden. Figure 4.25 shows the projection setup of the
iDome. Applications for the iDome include astronomy visualisation, driving simulators,
exploration of molecular datasets (as shown in Figure 4.26), architectural visualisation
and virtual heritage.

Bourke [49] described the most common omnidirectional displays to be cylindrical
screens. Since omnidirectional projections give a single user the ability to view direction
in stereo without requiring head-tracking, an immediate consequence is that multiple
participants can potentially be supported by such omnistereo screens with each one
looking in different directions. The stereo view is only correct for one viewing position,
which is the case both when using planar displays as projection surfaces, and when
using cylindrical displays. For the latter, the viewing position is typically located at the
center of the cylinder. The region in which the distortion and parallax errors, which are
induced by moving away from this optimal viewing position, are not an issue is larger for
the cylindrical displays. However, not even a single user located at the optimal viewing

o6

hole in
dome

. projector
mirror =
i \

Figure 4.25: An illustration of the projection geometry of the iDome using a mirror
for projection. According to Bourke [50], not all projectors meet the focus requirement
for this setup. Image taken from Bourke [50]

Figure 4.26: Example usage of the iDome: The exploration of molecular datasets.
Image taken from Bourke [50]

o7

Figure 4.27: The polar mesh used for projection calibration. Image taken from Bourke
[50]

position of the omnistereo displays is presented with completely correct stereo images.
Towards the edges of the observers’ FOV the parallax of the images is lower in reality,
as well as in regular stereoscopic rendering. This is not the case when using omnistereo
projections. For example, the parallax of an imagery at 90° of the viewer’s view direction
would be 0. However, Bourke [49] describe this as not being an issue in general and that it
does not induce serious eye strain because of the limited FOV imposed by the stereoscopic
glasses. Despite the fact that the observer might see imagery in their peripheral view,
stereoscopic sensations are not perceived in that region. The stereoscopic glasses do not
wrap around or block the imagery in that region, therefore the degree of immersion is
unaltered. A simple way to create stereo fisheye images for a dome is to horizontally offset
two standard fisheye projections and rotate the view direction so that the zero parallax
occurs at the correct distance along the view direction, as shown in Figure 4.28. This
is analogous to the toe-in stereo rendering approach for planar screens. An issue with
this approach is that for a 180° FOV the edges between the two cameras do not match.
In order to solve this, it has been suggested to over-render the fisheye and rotate the
images. However, a persistent problem is the incorrect parallax information that occurs
when the viewers looks away from the central view direction. Views perpendicular to the
central view direction have no parallax information. The problem are analogous to the
problems occurring with planar toe-in stereo projections. Off-axis fisheye projections,
as shown in Figure 4.29, are most commonly used to provide users of single-user domes
with an undistorted view within the dome. The user does not have to be located in
the center of the dome to get a correct view. The stereoscopic fisheye projection images
created by the off-axis and toe-in methods provide satisfactory depth cues only for the
“forward” view direction. Objects that are located horizontally towards the edges have
different scaling, if comparing the left and the right eye’s views, and a decreased parallax.

o8

\ 1

I, . .
v /M i view direction

left eye fisheye 4 right eye fisheye

right

view direction

left eye fisheye [
right eye fisheye

right

Figure 4.28: Toe-in stereo fisheye projections. Image taken from Bourke [49]

However, for observers looking forward the difference in scale and the reduced parallax
are not critical because this region lies out of the focus. Peripheral cues are given in a
satisfactory way even when using omnistereo projections.

Bourke [49] suggested a way to create omnidirectional stereoscopic fisheye images.
The method meets the requirements of both smaller personal domes such as the iDome
and directional planetariums. Directional planetariums are planetariums in which the
seating and dome orientation is laid out in a way that all of the audience is essentially
looking in a similar direction. The omnistereo fisheye images are created by mimicking
how the viewer rotates their head around the vertical axis (the up axis) when looking
around in the hemispherical dome. This eye-axis rotation defines the eye positions for
any possible view direction. This allows maintaining the correct parallax information for
any localised area on the display. At the middle of the FOV, the approach gives correct
results but it degrades away from the middle. However, the reduction of the FOV,
which happens due to the stereoscopic eye-wear, diminishes this error. The geometry
for the view rays of the omnistereo projection, as seen from top-down, is displayed in
Figure 4.30. The techniques and algorithms were tested in an iDome using anaglyph
techniques, as well as with frame sequential stereo using shutter glasses. Figure 4.31
shows a comparison of the off-axis stereo fisheye projection and the omnistereo fisheye
projection. The images are rendered from the same view point; the left and right eye

29

.
LN view direction

right

view direction

right

Figure 4.29: Off-axis stereo fisheye projections. Image taken from Bourke [49]

image are superimposed. The omnistereo projection is the only type of projection that
provides acceptable depth perception irrespective of the viewing direction of the observer.

The calculations of the omnistereo pairs is done in view space coordinates. The
origin of this coordinate system represents the center of the viewer. The coordinates
are converted to polar coordinates, in which the computations take place. Bourke [49]
suggested that for content that is rendered offline a modification of a ray-tracer can be
used. For real-time rendering, a different technique is required due to the computational
intensity of ray-tracing methods. Analogous to the techniques for cylindrical screens,
described in Section 4.6, one way to accomplish this is to render vertical slices that are
composed into a final image. Another way is to use a vertex shader that adjusts the
geometry, which allows rendering the scene in a single camera render pass. As this results
in a non-linear projection, the interpolation done on the GPU hardware will be incorrect,
as it linearly interpolates between vertices. Vertices that stretch across large distances
in screen space can therefore require tessellation in order to create a sufficiently correct
omnistereo effect. Bourke [49] stated that this tessellation needs to be performed on
the CPU resulting in significant amounts of geometry that have to be transferred to the
GPU. This is, however, not the only solution since tessellation can be now done on the
GPU using tessellation shaders. Potentially, this may remove the drawback that arises

60

right

rid ht

Figure 4.30: Top-down view of the view rays for the rotated eyes in the omnistereo
projection. Image taken from Bourke [49]

from having to transfer the tessellated geometry. Our omnistereo rendering approach
for CAVE displays, which will be described in Chapter 7, for example, runs in a single
pass on the GPU and adaptively tessellates the geometry for the omnistereo projection
solving the mentioned issues for planar screens.

4.8 Multi-Viewer Stereo Displays

As mentioned in Chapter 3, regular stereoscopic rendering creates a correct perspective
only for a single head-tracked viewer. To provide a correct stereoscopic projection for two
or more tracked viewers simultaneously, multi-viewer stereo displays have been proposed
by Frohlich et al. [51]. Using this system, the users can operate and collaborate in
the same interaction space. The display was originally designed for two to six users.
This can be achieved based on shutters only. An alternative is to use shuttered LCD-
projectors combined with polarised stereo glasses. This combination requires half the
shutter frequency and provides double brightness, as displayed in Figure 4.32.

The authors describe the combination of LC-shutter and polarisation as being the

61

Figure 4.31: Left: Off-axis stereo projection with a lack of parallax towards the sides,
e.g. at position B. Right: Omnidirectional stereo fisheye pair, in which the horizon-
tal parallax is equally present at the sides and the center of the screen. Image taken
from Bourke [49]

Usear 1

User 2

Figure 4.32: A combination of a LC-shutter stereo system with a polarised stereo
system. When the stereo images for user 1 are shown, the other users’ images are not
projected. Image taken from Frohlich et al. [51]

62

most promising setup of those they have tried. Nevertheless, even if using this technique,
four-user setups have noticeable disadvantages. At higher shutter frequencies, the im-
ages can appear too dark, since the light which is emitted by the projection system
is distributed over the amount of views. Visible flickering can occur at lower shutter
frequencies. Therefore, the maximum feasible amount of users is very limited. Pross
et al. [52] presented a multi-view stereo display based on pulsed LED light sources of a
set of multiple LCD projectors. This display technology optimises the multi-view stereo
technique towards higher brightness and minimises crosstalk by allowing high frequency
switching. Instead of using mechanical shutters in front of the projectors, only one of
the LED projectors emits light at a time. Nevertheless, neither of these techniques is
suitable for larger amounts of simultaneous viewers.

63

CHAPTER

Object-Warping Based
Omnistereo Projection

In the following two sections, object-warping based omnistereo projections for the CAVE
are described. One method is based on off-axis projections and one is based on a single
COP and can be used with an on-axis projection. The object-warping method, which
is used to generate omnistereo images by modifying the vertex positions before the
perspective projection, has originally been suggested by Simon et al. [4], whose work
is described in Section 4.5. The original object-warping, discussed in Section 5.2, was
proposed in combination with off-axis projections. In Section 5.1 we show that the
method can also be based on-axis projection, leading to the same omnistereo projection
images as a result. In the course of the following sections, we discuss these object
warping methods and attempt to illustrate the geometric background in greater detail
than in the original paper, specifically by providing several corner-cases. The previously
undescribed issues that arise due to the non-linearity of the perspective are described in
detail and are shown. These artefacts result from the fact that the approximation is only
correct at the final vertex position, whereas the edge between the vertices is interpolated
linearly, which is an incorrect form of interpolation for the omnistereo perspective.

5.1 On-Axis Omnistereo Object-Warping

In this technique, the projective viewpoint is located at the center of the CAVE, and a
regular on-axis perspective projection is used for the final projection. In object warping
methods, the vertices of the model’s mesh are warped before a specific projection takes
place. The position of each vertex in the vertex shader program is changed in a way so
that the perspective projection, which is applied thereafter, projects the vertex to the
screen-space position of the desired omnistereo projection. The method in this section is
based on the original object warping method suggested by Simon et al. [4] but uses on-

65

axis instead of off-axis projections. One benefit of being able to use on-axis projections
is that this may lift the necessity to calculate new off-axis projection matrices for each
screen whenever the head position changes, which also requires updating the shader
attribute on the GPU each time. In case the used graphics library or engine does not
support off-axis projections out-of-the-box, this technique may be better suited as well.
Additionally, this method can be considered to be easier to illustrate and understand,
since it features a single projective viewpoint located at a central fixed position, as
opposed to the method based on off-axis projections.

Figure 5.1 shows the geometric construction of object-warping in a CAVE, as seen
from a top-down view. The warping is based on a given vertex position V' and the
front-wall projection from the left eye’s viewpoint E(left) is shown. The object warping
for the right eye’s view and for the other wall screens works analogously and is therefore
not shown. In the displayed arrangement, the head position O is located coinciding with
the center of the CAVE, and thus with the on-axis projection’s COP C'C. OtoV depicts
the line that passes through O and V. The respective left or right eye’s position, which
is the position from which we want to actually see the vertex, has to be calculated for
each vertex to achieve stereo in each view direction. Therefore the head position needs
to be rotated towards the vertex’s, which allows deducing the respective eye position
knowing the eye separation distance. In the view-space coordinate system, the left or
right eye’s position can be determined by flipping the OtoV vector respectively to the
left or right in the xz-plane. The distance of the eye from the head position O is % of the
eye separation distance. The resulting eye position, the head position and the COP all
lie on a line in this arrangement, as can be seen in Figure 5.1. Based on the calculated
position of the eyes, the line EtoV from the eye position to the original vertex position
can be created. This line intersects the image plane at the point I. We define the warp
line as the line onto which a vertex has to be moved in order to be projected to the
omnistereo projection’s screen-space position. Based on the intersection point I and the
COP, the warp line can be created. Using a perspective projection from the projective
view point, a warped point along this line is projected to its final position.

The exact position along the line should be chosen carefully, as it can affect depth
sorting in the final image if objects occlude each other. The depth is defined by the
distance of the object to the viewer and is determined by the view space z-coordinate in
OpenGL and Direct3D. There is no intuitively correct solution to the problem of finding
the right position but the depth order has to be correct in regard to the omnistereo eye
position of the warped vertex.A naive approach to define the depth order is, for example,
to use the distance from the projection center or the eye position to V as the distance
from the eye to V', thus retaining the original order. Alternatively, a line, parallel to the
line connecting the eye positions and passing through the projection center, can be used
to find an intersection by letting it pass through V' and intersecting it with the warp line,
defining the new position of the vertex. Figure 5.3 and Figure 5.2 display how V' can be
determined using this approach. When using this method, similar triangles can be used
to simplify the calculation: The triangle spanned by I, O and the eye position is similar
to the one spanned by I, V/ and V. Using similar triangles was first suggested by Simon

66

warp line

front wall

left wall right wall

E(right)

Figure 5.1: The geometry of the omnistereo object-warp technique for a CAVE, using
an on-axis perspective projection from the CAVE’s center. Eye positions are defined
separately for each vertex, positioned perpendicularly to the line passing through the
head position and the vertex. The warp line is constructed based on an intersection
point on the image plane.

et al. [4] for omnistereo rendering based on off-axis projections, which is explained in
Section 5.1.

Figure 5.2 shows that the similar-triangle approach still works in extreme cases.
The shown case features a possible position for vertices resulting in the warp line being
parallel to the projection plane, in which case the position of the point I is undefined.
In case it is nearly parallel, the point I is defined but possibly located at very large,
up to near-infinity distance from the projection center, which introduces numeric errors.
Solutions for V’ that depend on the calculation of the point I in the Cartesian coordinate
system may therefore not always yield the desired result, whereas the similar-triangle
based solution does.

Omnistereo warping for a central viewpoint using an on-axis projection by means
of Figure 5.3 can be expressed in two equations and be further simplified. In this
arrangement, the head position and the COP coincide and are located at the origin
(0,0,0) in view space. As previously described, the eye position can be retrieved trivially
in view space by flipping the unit vector pointing from the head position to the vertex
position and scaling it by %2 the eye separation distance and adding the result to the
head position. In addition to the similar triangle relation mentioned previously, another

67

front wall

left wall right wall

E(right)

V2 warp line /m

Vv EtoV E(left)

Figure 5.2: In some arrangements the position of the vertex (V') can cause the in-
tersection point I to be undefined or located in near-infinity distance from the eye. A
solution can be established that also provides a correct solution for such arrangements
can be established by means of similar triangle relationships.

relation of similar triangles can be introduced, which allows further simplification of the
calculation. The point resulting from the orthogonal projection of the eye position onto
the projection plane is called E,, and the resulting point of the same projection done for
the vertex position is called V,,. The triangle consisting of F),, the eye position and I is
similar to the triangle V', V), and I. The respective eye position will be referred to as E
and the COP (coinciding with O) as C. The following length-based ratios using similar
triangle relationships can be constructed:

EC EI EE,
vV VI VY,

(5.1)

The vector from the COP to V is known. In order to retrieve V'’ based on V, the
vector from COP to V needs to be scaled by a factor and added to V. By means of
the additional similarity that we established using the orthogonally projected points,
the calculation of the factor f can be reduced to a single dimension, namely the depth,
defined by the z-coordinate in view space. The distance of the projection plane from the
center of the CAVE is denoted by dp,,. The following equation is based on a right-handed
coordinate system:

Ve (=dy) _ Viztdy

/ (—dpp) —E.z E.z+dy,

(5.2)

68

warp line

front wall

left wall right wall

Figure 5.3: In order to find a solution for point V' along the warp line, a line, which is
parallel to the line passing through the desired viewpoint and the COP C|, can be drawn
passing through V.

V’ can be calculated as follows:

V' =V + f«CE (5.3)

The presented method allows warping an object for a fixed central view position. In
order to support view positions different from the central one, the head position and the
projection center have to be separated in the arrangement. In order to retain the triangle
similarity in this changed setup, we construct a line parallel to the line EC', which passes
through the respective eye position and the projection center. It can be noted that EC
does not pass through the head position and the other eye position in this arrangement,
since the head position has been moved away from the COP. Figure 5.4 shows this new
setup. The equations 5.1, 5.2 and 5.3 can be used in this setup as well.

We implemented both the solution based on similar triangles and a method that
defined the warp line vector based on the point I. The latter method produced frequent
artefacts in our high-polygon virtual environment for triangles outside the view frustum,
which is a result of the mentioned numerical instability of I. The introduced artefacts
could be described as “triangle clutter”, in which numerous triangles are stretched at
apparent randomness over the screen, with their arrangement and dimensions changing

69

front wall

E(right)

right wall
left wall

warp line

Figure 5.4: The changed geometrical setup for off-center view positions using an on-axis
projection matrix.

whenever the view position is changed. This issue can be mitigated by falling back to
an estimation for the point or to the original vertex position whenever I is undefined
or at near-infinity distance. Since such a fall-back can cause further complications, we
recommend only using the similar-triangle based solution.

5.2 Off-Axis Omnistereo Object-Warping

This section describes the object warping method as originally suggested by Simon et al.
[4] in detail. The difference to the method presented in the previous section is that
this one involves an off-axis projection of the vertex instead of an on-axis projection.
The projective viewpoints do not have fixed positions, but vary for each eye and CAVE
wall and depend on the head position in the CAVE. The view direction that defines the
view positions for the off-axis projection can either be fixed per-screen or fixed across all
screens. Simon et al. [4] suggested to use, for example, the direction perpendicular to the
front wall’s screen as view direction for all screens. The following figures and formulas
are based on this suggestion. The described view-direction and the resulting projective
viewpoints serving as COPs (Cjefy) an Crigny)) are shown in Figure 5.5. It should
be noted that any arbitrary view direction, resulting in different eye positions used as
projective viewpoints, could be used as basis. Similarly, a single head position could also
be used as projective viewpoint, requiring only small changes to the calculations.

The arrangement of this setup is shown in Figure 5.5. Cops) and C g5 are the left
and right eye’s respective COPs, which are located at the origin (0,0,0) in view space
for the left and right eye’s view respectively. The desired per-vertex view positions

70

view direction

front wall

warp line

left wall right wall

/

C(right)

E(right)

Figure 5.5: Omnistereo object warping based on an off-axis projection. The left and
right eye COPs (Ciey) an Cpignyy) are defind by the head position and the fixed view
direction, which is perpendicular to the front wall’s screen.

are retrieved in the same way as in the previous method. The relationships shown
in Equation 5.1 are equally true in this setup. Therefore, based on the right-handed
coordinate system we can calculate the scaling factor for the vector VV' as shown in
Equation 5.2 with a small change to dp,. In the on-axis based method, d, denotes the
distance from the center of the CAVE to the screen, which is the on-axis location of the
COP. Since the COP’s position in off-axis projections depends on the head position and
view-direction, the distance to the screen d,, needs to be calculated separately for each
screen. Equation 5.3 can then be used to calculate V.

5.3 Discussion of Vertex-Shader Based Omnistereo
Rendering

We described two methods for performing object-warping of meshes in order to cre-
ate omnistereo images. Both were implemented in our application using GLSL vertex
shaders and generate the same omnistereo images for a given head position, providing a
stereo effect in all view directions. Special attention should be given to frustum culling
techniques, as they may erroneously cull faces when using the techniques. This can be
solved by modifying the frustum size to encompass any polygons that may be visible
after the object-warping, or by turning frustum culling off entirely.

In the work by Simon et al. [4], the question of performing the lighting calculations

71

Left wall Front wall Right wall

Figure 5.6: A living room scene rendered in omnistereo using the per-vertex object
warping technique. The left, middle and right wall’s images for the CAVE setup are
shown. Due to the wide spacing of vertices on the floor, texture discontinuities are
visible between the screen.

in omnistereo rendering was raised. The shading of a scene provides a strong cue for
the depth and shape of objects. While the position of the viewer does not influence
diffuse shading, it affects specular shading and thus the location and size of the spec-
ular highlights. Therefore, the specular shading differs for the left and the right eye.
Experiments conducted by Adams and Elder [53] have shown that the presence of high-
lights affects shape perception and that misaligned highlights are no longer perceived as
specularity. We decided to base the lighting calculations on the new eye position of the
omnistereo projection, which is calculated on a per-vertex basis. For this purpose, the
light and vertex positions used in the shading calculations can be translated into this
eye position’s view space before lighting calculations take place. The resulting specular
highlights are, analogous to every aspect of omnistereo projection, only correct in the
center of the view.

Figure 5.6 shows one of our test scenes, a living room, rendered using the vertex-
shader based omnistereo projection technique. The images for the left, middle and right
CAVE wall are combined into a single image in this figure. The living room’s floor,
walls and ceiling are composed of relatively large polygons leading to artefacts. The
texture of the living room’s floor features discontinuities across contiguous screens and

72

Left wall Front wall Right wall

Figure 5.7: A wireframe rendering of the projection shown in Figure 5.6. The discon-
tinuities of the floor polygon’s edge across the different screen images is visible.

the floor’s pattern appears displaced around the vertical line where the screens join.
Edges of polygons can be affected analogously, featuring discontinuities at the screen
edges. Figure 5.7 shows a wireframe rendering of the same projection, in which the
discontinuity of the polygon edge is apparent. Polygons that feature these errors appear
even worse in stereo, as they provide incorrect depth cues and may even introduce a
vertical parallax. Furthermore, when small objects are in front of a larger polygon, an
erroneous partial or complete occlusion, or lack thereof, may occur, which leads to a
discrepancy in the stereo images that cause discomfort when viewed.

73

CHAPTER

Tessellation-Based Omnistereo
Projection

In this chapter we suggest a solution for solving the issues arising in the object warping
technique, mentioned in Chapter 5. Tessellation-based techniques are discussed as a
solution to remedy the artefacts. Additionally, a novel omnistereo skybox rendering
technique using a pre-tessellated mesh is described.

6.1 Remedying Non-Linear Projection Artefacts

The reason why artefacts appear in object-warp based omnistereo rendering is because
the vertex-shader based implementation only provides correct results at the vertex posi-
tion. The rendering pipeline then interpolates linearly between the non-linearly projected
vertices. As described in Chapter 3, the omnistereo perspective is a non-linear perspec-
tive. Figure 6.1 shows a correct omnistereo projection of a cube. The straight edges of
the cube become curved in the image due to the omnistereo projection. However, the
rasterisation and the interpolation are performed linearly by the rendering pipeline and
can therefore not produce curved lines.

During the rasterisation step, the primitives are broken down into fragments based on
their sample coverage. For each fragment, the output data values from the previous stage
are computed using interpolation. GLSL has three different modes of interpolation [54]:

e flat - The value will not be interpolated, instead the value from the provoking
vertex of the primitive is taken.

o noperspective - The value will be linearly interpolated in screen space.

e smooth - The value will be interpolated in a perspective-correct way, which is the
default mode of interpolation.

75

Figure 6.1: A blue cube rendered for the front and left wall of a CAVE using omnistereo
projection. The corners of the top face are marked, so that A, located at the CAVE
screen’s border, is not mistaken as one of the corners. Two yellow lines were added
to the image to improve visibility of the two edge curvature created by the non-linear
projection.

None of these modes can provide correct interpolation based on non-linearly projected
vertices. However, the interpolated output data values, such as texture coordinates and
the position in view or world space, are needed for lighting calculations and texturing in
the fragment shader and are typically interpolated using one of these modes.

Theoretically, a correct non-linear interpolation could be achieved for each fragment
by performing the interpolation explicitly in the fragment shader. This approach is com-
putationally expensive and leads to complications when using the OpenGL or Direct3D
graphic APIs. In these two APIs, the only way to directly receive a non-interpolated
value from the vertex shader is by using the flat output qualifier in OpenGL’s GLSL
shaders or the nointerpolation interpolation modifier in Direct3D [55]. However, when
using this qualifier, all fragments inside a primitive receive their input value from a sin-
gle vertex, called the provoking vertex (or leading vertex). This vertex is determined by
the provokeMode and the primitive type [56]. The values of multiple or all vertices of
the primitive associated with the fragment are therefore not accessible from within the
fragment shader. It is possible to achieve non-linear interpolation in the fragment shader
nevertheless, for example, by transforming from the warped space back into linear space,
as done by Lloyd [57] in the context of logarithmic perspective shadow map rendering,
followed by a composition of a new result based on the desired form of interpolation.

An additional problem that still needs to be solved is that the primitive rasterisation
occurs in a linear fashion leading to incorrect sample coverage. Fragments supposed
to be outside the fragment may be erroneously rasterised as part of the primitive and
fragments supposed to be outside may be erroneously handled as covered ones. This
occurs because non-linear projections cause lines to become curved in the projected

76

image, resulting in increased or reduced coverage of the primitive along an edge. The
rendering pipeline only supports linear projections and therefore provides no solution
for non-linear primitive rasterisation.

Vertex-shader based omnistereo rendering is greatly affected by this limitation when-
ever a primitive’s edge spans across a large distance in screen space. When two vertices
of an edge are projected on different adjacent CAVE walls, this can cause a discontinuity
between the screens, making the issue become even more apparent. Objects that are
small or have a high polygon density are less likely to cause any of the described prob-
lems but may nevertheless be at risk of doing so when viewed very close-up. However, it
is not unusual for virtual environments to contain big objects with low polygon-density,
such as planar, man-made structures like streets, floors or facades, especially in the con-
text of architectural 3D rendering, simulations, VR applications and video games. It
should be noted that for vertical screens, only the horizontal extent of a polygon affects
its exposure to non-linearity issues, since the projection along the vertical axis is linear.

A general solution for non-linear rasterisation has not yet been found [58, 59]. Point-
based rendering, adaptive subdivision, and ray-casting have been used as possible solu-
tions.

The problem of non-linear rendering has also been discussed in the context of several
shadow mapping techniques. Dual Paraboloid Shadow Maps feature non-linear vertex
data, which are linearly interpolated in the rasterisation step performed by the hard-
ware [5]. This leads to distortion and bending of shadows when polygons are large with
respect to the light, which in turn can be solved with tessellation. Osman et al. [5]
showed that moving some of the work from the vertex shader to the fragment shader
eliminates the need for tessellation for shadow receivers. However, tessellation is still
required for shadow casters in their technique. For this purpose, the necessary amount
of tessellation is determined based on the distance of shadow casters to the light. During
the shadow rendering, the tessellation parameters are then adjusted so that it is ensured
that the rendered triangles do not exceed a given size. A similar solution was used in
the context of Rectilinear Texture Warping (RTW) for efficient generation of adaptive
shadow maps [60]. In this technique, accurate shadows can only be created with non-
linear rasterisation, as the warping maps introduce non-linear distortions. However, due
to the linear rasterisation, visual artefacts can occur in the output along the shadow
edges. To overcome this issue, they used tessellation shaders to adaptively tessellate
triangles based on their screen-space size after projecting them using RTW. The tessel-
lation factors are based upon the edge length, such that no edge is above a pre-defined
value in length.

It should be noted that a tessellation factor determined by the edge’s length in screen-
space will only lead to optimal results if the tessellation itself is performed perspectively
correct. If the tessellation is based on barycentric interpolation of view, world or clip
space coordinates, as it is typically the case, edges oriented at a skew angle to the camera
will be tessellated uniformly in the respective coordinates’ space but non-uniformly in
screen space. However, for the purpose of alleviating the problems caused by the linear
interpolation, the tessellation should be uniform in screen-space.

7

equal number
. ¥,
of triangles g

Regular Munkberg et al.

Figure 6.2: Comparison between tessellation techniques based on a PN-displaced trian-
gle. The screen-space uniform tessellation places more vertices closer to the camera and
provides a better distribution of vertices in screen space. Image taken from Munkberg
et al. [6]

Munkberg et al. [6] described how to tessellate triangles considering the perspec-
tive distortion applied during the projection. This form of tessellation is based on
perspective-correct interpolation. A disadvantage of the technique is that clipping is
required, since triangles that are partially behind the camera can cause artefacts. The
rendering pipeline clips triangles to the view frustum before the perspective division,
avoiding such problems. Another issue is that triangles outside the view frustum with
one or two vertices in front of the near plane will be over-tessellated. Since the tessel-
lation step occurs before the clipping performed by the rendering pipeline, additional
clipping needs to be performed in the shaders before the tessellation step. The clipping
only needs to be done for the original input triangles but is nevertheless computationally
expensive. A comparison of regular tessellation and the perspective-correct tessellation
by Munkberg et al. [6] can be seen in Figure 6.2.

Lloyd [57] proposed logarithmic perspective shadow maps, which require logarithmic
rasterisation causing planar primitives to be curved. In order to avoid errors caused by
the linear rasterisation, a brute-force rasterisation is performed in the fragment shader.
Bounding quads are created for each triangle to achieve a correct coverage of the frag-
ments. When it is determined that a fragment falls outside the triangle, it is discarded
in the fragment shader. Creating the bounding quads was determined to be a bottle-
neck in their implementation. This could be improved using the tessellation or geometry
shaders, which are now available on GPU hardware for this purpose, but the logarithmic
rasterisation would nevertheless be considerably slower than linear rasterisation.

6.2 Adaptive Tessellation for Omnistereo Rendering
The aforementioned techniques for solving non-linear rasterisation problems can also

be used to solve the non-linear rasterisation and interpolation problems in the omnis-
tereo projection. Screen-space adaptive tessellation techniques offer an efficient solution,

78

whereas screen-space uniform tessellation and the brute-force rasterisation require a
computational demand that can be considered too high for real-time rendering. In order
to efficiently remedy the artefacts occurring in object-warp based omnistereo rendering,
we propose to combine existing screen-space adaptive tessellation approaches with the
object-warping technique.

In Section 2.7 we described the tessellation shaders present in modern rendering
pipelines. We also mentioned how interpolation and subdivision are handled in regard to
adaptive tessellation, which is a suitable tessellation technique for the purpose of solving
non-linear rasterisation problems and is also the technique we use to improve omnistereo
rendering techniques. When using adaptive tessellation to solve the artefacts produced
by object warping, the vertex shader only takes care of performing transformations. In
this setup, the object warping itself takes place in the TES, to where it can be moved
without mentionable changes.

A method for determining the tessellation levels in the TCS has to be chosen. A naive
and fast approach is to use the view-space distance of the vertices as basis. However,
primitives with adjacent edges might be tessellated differently if only the vertex positions
are taken into account, leading to visible seams in the result as mentioned earlier. Thus,
a better approach is to calculate the tessellation level for each edge separately. However,
this does not take the viewport size and the projection parameters into account. The
size of an edge in screen space is decisive for the quality of the omnistereo projection.
Thus, a screen-space adaptive tessellation approach is better suited. The exact position
of the vertices after the object warping cannot be known during the determination of the
tessellation levels. An off-axis projection can, however, provide a rough approximation
for the post-object-warp screen space positions. A COP and view direction for the off-
axis projection has to be chosen for each eye. We suggest using either the assumed
head position as COP for both of the eyes or off-axis projections with a view direction
perpendicular screen, resulting in a separate projection for each eye.

We combined the object-warping techniques with two existing screen-space adap-
tive methods [27, 7] for determining the tessellation levels. Both of the methods first
transform the vertices into screen-space coordinates. This is done inside the shader, by
transforming the world-space vertex into clip space, performing a perspective division
and multiplying the x and y coordinates of the resulting NDC space position with the
viewport width and height respectively. We used two parameters for the tessellation: A
target edge length, which defines the desired screen-space edge length we want to achieve
after tessellation, and a maximum tessellation level, which defines an upper limit for the
tessellation of each edge. When determining the tessellation levels for the vertical CAVE
wall screens, thus excluding the ceiling and floor screens, only the edge lengths in the
x-direction should influence the tessellation levels, since the vertical edge length does
not affect the quality of the omnistereo images. For the ceiling and floor screens, the
length in both the x- and y-direction is relevant, since the projection is non-linear in
both directions.

79

Screen

] Projected
sphere
7] diameter

eye

Figure 6.3: Adaptive screen-based tessellation based on bounding spheres. Image taken
from Cantlay and NVIDIA Corporation [7]

Edge-based screen-space adaptive tessellation

The first method evaluates the tessellation levels in a straight-forward way based on
the edge information, as originally suggested by Doggett and Hirche [27]: The distance
between the screen-space vertex positions of each edge is calculated and then divided by
the targeted edge length. The result is clamped between 1 and the maximum tessellation
level. This is done for each edge to determine all of the triangle’s tessellation levels. The
TES then determines the position and attributes of the new vertices using barycentric
interpolation without considering perspective correctness. A downside of this approach
is that it leads to over-tessellation of triangles that are partially or fully outside the view
frustum [6]. Additionally, it does not take the perspective projection distortion into
account and will under-tessellate edges at a skew-angle to the view direction.

Sphere-based adaptive tessellation

As second method we used sphere-based adaptive tessellation, suggested by Cantlay
and NVIDIA Corporation [7]. Originally intended for terrain rendering, the sphere-
based screen-space adaptive tessellation method by Cantlay and NVIDIA Corporation
[7] computes the tessellation level by conceptually fitting a sphere around the edge in
screen space, as shown in Figure 6.3. The sizes of the triangles resulting from this
technique are generally uniform in screen space. First, the edge length in world or view
space is calculated. The result is used as the diameter of the sphere. The midpoint
of the edge transformed into view space constitutes the center of the sphere. A second
point is determined by adding the radius of the sphere to the x-coordinate of the sphere
center. Both points are then transformed into screen space and the edge’s tessellation
level is determined analogously to the previously mentioned method. In both methods,
the additional rendering complexity is dependent on the complexity of the scene, the
current viewpoint and the hardware used.

80

During our informal evaluation we noticed that edges, whenever edges are not tessel-
lated sufficiently, the error associated with them becomes more apparent when they are
visible on multiple adjacent screens, since the tessellation levels may differ between the
screens and discontinuities can therefore be induced. In some situations, it can therefore
be desirable to tessellate primitives that are potentially visible on multiple screens by
the highest calculated tessellation level for any potential screen. This may be needed
if the scene may not be tessellated enough due to hardware constraints or if this type
of artefact frequently occurs in a specific scenes in the used method. We implemented
the approach in the TCS and tested it with our tessellation methods, but although it
fixes the problem sufficiently for static viewpoints, it leads to popping during camera
movement and overall has a high impact on the rendering performance. A better solu-
tion is to ensure that a method is used that provides sufficient tessellation for all objects
and that the hardware allows high enough tessellation levels. In this case the achieved
quality of the omnistereo projection can be good enough to make the tessellation differ-
ences across the screens imperceptible, even if the tessellation levels for polygons may
vary between the screens. If the maximum tessellation level and target edge length for
the sphere-based tessellation method was chosen accordingly for our test scene, no such
issues appeared and the performance was significantly better than if using lower settings
and determining the highest tessellation across the screens.

We found that the sphere-based tessellation method generally produced better tes-
sellation quality than the naive method in conjunction with the omnistereo projection
technique. The determined tessellation levels for perspectively distorted edges lead to
better screen-space tessellation and it does not suffer from over-tessellation issues re-
garding vertices lying outside the frustum. As a result, a better approximation of the
non-linear omnistereo projection could be achieved at equal frame rates. A comparison
between the original method and the method combined with adaptive tessellation is
shown in Section 7.3.

6.3 Omnistereo Skybox for the CAVE

Skyboxes and skydomes are used to efficiently render skies and distant backgrounds, such
as buildings or mountains, in real time. A skybox is a cube with the environment mapped
onto each side of the cube, stored as six square textures or six regions of a single texture.
A skydome is based on the same principle but uses a sphere or hemisphere instead of
the cube. Skyboxes and skydomes therefore offer information for every view direction.
Skyboxes can be rendered either based on a textured cube, which has each corner
position located at infinite or near-infinite distance, or by sampling a cubemap, such as
provided by OpenGL [54]. Rendering the skybox using a distant cube is possible with
the tessellation-based omnistereo projection technique that we proposed. In doing so,
the skybox can be rendered like any other scene geometry. However, since the maximum
tessellation level is limited by the hardware and may be additionally limited by the
parameters of the technique to prevent over-tessellation, it may be necessary to pre-
tessellate the cube geometry of the skybox in order to attain the desired quality of the

81

projection.

The second way of rendering a skybox is to render it using a full-screen quad and
a cubemap. A cubemap is a texture consisting of six 2D images and offers the same
mipmapping and filtering capabilities as other OpenGL textures. If the feature is sup-
ported, OpenGL allows enabling the GL__ TEXTURE CUBE_MAP SEAMLESS ca-
pability to seamlessly filter cubemaps. In order to display the information of the skybox
stored in the cubemap, a full-screen quad can be rendered in conjunction with a frag-
ment shader that samples the cubemap. In OpenGL, the full-screen quad should cover
the range [—1,1] in x- and y-direction. The z-coordinate of the input vertices should
be set to —1 and the w-coordinate 1, so that the coordinates can be used directly for
the calculation of the lookup vectors. The full-screen quad’s vertex positions represent
Normalized Device Coordinates (NDCs) and can therefore be used as the clip-space out-
put position (gl _Position) in the vertex shader without requiring any transformations
or projections. However, for the purpose of serving as vertex position, the z-coordinate
of the vertex has to be set to 1, so that the skybox appears in the background as desired.
To determine the lookup vector, the unaltered vertex coordinates are first transformed
into view space using the inverse projection matrix. The resulting position can be in-
terpreted as a view direction in view space. This direction vector is then transformed
into world space to serve as a lookup vector for the cubemap texture, for example by
transforming it using the transpose of the upper-left 3x3 submatrix extracted from the
view matrix. Finally, the lookup vector is interpolated and used in the fragment shader
to sample the cubemap texture. If the skybox is rendered as the last part of the scene,
the values in the depth buffer can be used for z-culling, which rejects pixels early on to
improve the performance. While this technique works for off-axis and on-axis perspective
projections, it can not be used for omnistereo rendering.

Thus, we propose a novel technique to efficiently render omnistereo skyboxes using
a pre-tessellated full-screen quad. The tessellated mesh is created on the CPU with the
vertices of its triangles laid out in the range [—1,1] in the x- and y-direction, while the
z-coordinate stays fixed at —1 and the w-coordinate at 1. The clip-space output position
is set in the same fashion as in the aforementioned method. The vertex positions are
then transformed so that they represent coordinates of this screen in the CAVE. For
this purpose, the coordinates are transformed into a view space coordinate system that
has its position at the center of the CAVE and the view direction perpendicular to the
CAVE wall. This can be done simply by multiplying the x-, y- and z-coordinates of the
input vertex position with the distance from the center to the respective CAVE wall. If
the screen is not of square dimensions, the respective coordinate has to be modified by
the aspect ratio. In our implementation, the y-coordinate therefore had to by divided
the aspect ratio. By transforming the assumed head position into this space, the eye
positions for the omnistereo projection can be determined, as described in Section 5.1.
The view-space lookup vector is defined as the vector from the eye position to the screen’s
view-space vertex. The view-space lookup direction can subsequently be transformed
into world space, for which the transpose of the upper-left 3x3 submatrix extracted
from the view matrix was used in the previous method. Since only the orientation

82

of the view matrix affects this transformation, any view matrix with a view-direction
perpendicular to the screen can be used for this purpose. Finally, the unnormalised
lookup vector can be retrieved as interpolated vector in the fragment shader to sample
the cubemap.

The tessellated screen-space quad’s mesh used in the omnistereo skybox technique
needs to be tessellated horizontally depending on the screen’s resolution, in order to pro-
vide a visually acceptable approximation. Analogous to regular omnistereo projection,
vertical tessellation is not necessary for vertical CAVE walls and has no effect on the
result. The closer the assumed head position is located to the CAVE wall, the more
vertical slices are required due to the larger degree of distortion. From our observations,
approximately 1 vertical slice per 30 horizontal pixels is sufficient to provide accurate re-
sults, even if the assumed head position is located very closely to one or multiple CAVE’s
walls. For the floor and ceiling screens of a CAVE display system, both horizontal and
vertical tessellation is necessary.

83

CHAPTER

Implementation and Results

7.1 Setup

An application was created to test and display our techniques and to be able to quickly
compare them at run-time. It was written in C++ and initially relied on Ogre [61]
version 1.9, as we did not require tessellation shaders in the beginning. The version
of the Ogre library in use was modified by us to provide stereo rendering capabilities
based on OpenGL quad buffers. Our latest version of the application uses a version of
the Ogre3D engine from the development branch, as it features tessellation capabilities
in its OpenGL3 renderer. The tessellation capabilities are a requirement in order to
to remove artefacts in the omnistereo projection. We used the graphical user interface
(GUI) library CEGUI [62] to display and handle the GUI in the application. The editor
CEED, which is a part of the CEGUI project, was used to create the XML-based layouts
that our GUI is based on. The shaders were written in GLSL [54]. The application loads
scenes based on the DotScene file format of the Ogre3D engine, which allows importing
scenes from Blender and Autodesk Maya. The viewpoint and direction in the scene,
as well as the rendering configuration for the different modes, can be controlled in the
application using a mouse, keyboard and the GUI or alternatively by using an a gamepad
featuring an XBox360 controller layout.

Our project was created for the CAVE of the VRVis research center. This CAVE
consists of three walls (front, left and right) providing a projection with a horizontal
FOV of 270°. The room for the CAVE has a quadratic floor area with 3,3 m side length;
the projection screen height is 2,9 m. Unlike the original CAVE proposed by Cruz-
Neira et al. [2], this CAVE uses forward projections. Figure 7.1 shows the projection
and positioning of the LCD projectors in the installation. Dell S500 projectors are
used, providing a resolution of 1280 x 720 pixels with a 16:9 ratio and a refresh rate
of 120Hz each. The combined resolution across all screens is 3840 x 720, and active
shutter glasses are used for stereoscopic vision. Typical CAVEs, as well as the original
CAVE proposed by Cruz-Neira et al. [2] and the low-cost three-wall CAVE suggested

85

\\\\\\\\\\\\\\\\\\\\\\\\\\

. . N

Projection

Figure 7.1: Floor plan (left) and elevation (right) of the CAVE setup at the VRVis.
Copyright ©2012-2015 VRVis

by Cruz-Neira et al. [32] that were described in Section 4.1, use synchronized PC clusters
for rendering. However, this CAVE was designed so that a single PC can render for the
entire CAVE at real-time frame rates. An Nvidia Quadro K5000 GPU with multiple
outputs is used for this purpose and since no PC clusters are required and commercial
off-the-shelf projectors are used, this setup is relatively low-cost compared to typical
CAVEs. Thus, it could, for example, be used to make the low-cost CAVE presented
by Cruz-Neira et al. [32] even less expensive.

The Nvidia Mosaic™ multi-display technology is used to span the application across
all projectors, which allows rendering to the display system synchronously and without
tearing artefacts. This mode is used in conjunction with active stereo rendering.

In order to render non-anaglyph stereoscopic images, quad-buffer rendering is typ-
ically used. It enables double-buffering for rendering from each eye’s viewpoint, using
a separate front and back buffer per eye. Whereas OpenGL supports quad buffering
natively since version 2.0 [63] (2004), Direct3D had not supported stereoscopic render-
ing natively until version 11.1 (2012). This version of Direct3D is only available as a
complete version on Windows 8 or higher. A back-ported version of Direct3D 11.1 is
available for Windows 7, however it lacks the quad buffer capabilities entirely [64]. For
this reason, OpenGL has been chosen as graphics API for projects developed for the
VRVis CAVE, including this application.

86

IrdsnpuE sy dintarcs aoeT E
Projaction mcresn distance 1 &% |3
Froumetsan cyglieder radun (] E
Ve pnader made
GeAisteas GNset-pro) walandsol lpaeel (0]
Cmniptars o vartas . cha pl acmmas it |plnrm [_]

emnint a0 wertas-chs piacemant Icytindnicel [}
- gme Blered O

Hono [-_-l

Frag™a™ ahade’ made

LigFaing » Lasluing

o@

Ol bR LInnG

Teasalation shader =08

o

Smpla s<reen-a3pete sdaplive
[f
() gorers-sased seran-a sasstva B

Fasasilal=om Mo

1 12 &

&

Cave-sages compaaiar |
0

Sxybou C)

TR T

Left camarn

Figure 7.2: The GUI overlay of the application. The left window allows changing be-
tween shaders, adjust eye separation distance, CAVE dimensions and other settings. The
right window allows configuring the head position in the CAVE in all three dimensions
and to switch on/off the automatic network-acquired positioning.

7.2 Application

A fixed head position is used in several omnistereo techniques described in Chapter 4. In
those cases, the projection is created so that multiple users can share the same display
and view. The view position in such setups is typically assumed to be at the center
of the display system at all times to minimise the distortion error, created due to the
deviation from the actual view position, across all viewers. Since our application is
created primarily for single-viewer usage, we wanted to be able to change the viewpoint
freely. With this in mind we created our application to allow either manually setting the
head position in our application’s GUI or receiving the head position via the Open Sound
Control (OSC) protocol. We used the oscpack [65] library for receiving the packages
from the local network and unpacking them. We have successfully tested this setup using
head-tracking provided by a second computer in connection with a Microsoft Kinect [66].
Figure 7.2 shows the GUI of the application, consisting of two GUI windows allowing to
adjust the mode and parameters of the omnistereo rendering techniques.

It is possible to implement the object-warping omnistereo techniques in view space
or world space. Some of our original implementations were created based on the world
space coordinate system. However, since omnistereo techniques generally assume that
the viewer’s head is always in the upright position, the majority of calculations, such as
the calculation of the eye position and intersections of lines, can be reduced to a two-

87

dimensional problem in view space. If the calculations are performed in world space,
they involve a higher level of complexity, which leads to a higher likelihood for numeric
errors to occur and also negatively affects the rendering performance. Since using world
space coordinates also offers no noteworthy advantages, we decided to implement all of
our techniques based on the view space coordinate system.

We did not implement an omnistereo technique using multi-view rendering featuring
multiple COPs per screen with one per view using vertical slices, because of the lower
performance and, if an insufficient amount of views is used, the lower quality provided.
These drawbacks are discussed in Chapter 4 in the context of the mentioned omnistereo
rendering techniques.

7.3 Results

Based on our application we tested the rendering techniques in multiple test scenes,
using various tessellation configurations and different head positions in the CAVE. We
compared the images rendered using regular off-axis stereo projection with those of the
object-warping omnistereo technique and the tessellation-based technique. The compar-
ison shows how the tessellation-based technique manages to remove the artefacts in the
object warp based images. Our application was also used to compare the frame rates
between the mentioned rendering methods.

Tessellation-based omnistereo projection

As discussed in Section 5.3, the vertex-shader based technique using object-warping
for omnistereo rendering can cause noticeable artefacts. Figure 7.3 shows omnistereo
images rendered with and without using tessellation being performed before the per-
vertex operations. The omnistereo images rendered with the off-axis and on-axis based
object-warping techniques show no differences and were rendered without significant
difference in speed. Figure A and Figure B show the omnistereo images for the left,
front and right CAVE walls as anaglyph images. Figure A, which is generated with the
technique without tessellation, features the discussed artefacts stemming from the linear
interpolation. Along the edge between the images for left and the front wall, inter-screen
discontinuities are visible at the floor and at the connection between the wall and the
ceiling. On the left wall’s image, the painting is fully concealed by the wall in one eye’s
image, although it is supposed to be in front of the wall for both images, and the lamp
shade is partially concealed. The floor texture and the ceiling section are rendered with
wrong depth cues. None of the artefacts appear in Figure B, which features images
generated with the object warp technique preceded by a tessellation step.

For comparison with regular stereoscopic off-axis projections, we also rendered the
scene from the same head position with the view direction being set perpendicular to the
front wall’s screen, which is equal to the naive approach mentioned in Chapter 3. As can
be seen in the anaglyph images in Figure 7.4, the stereo disparity is only present in the
front wall’s image and is barely present in the left and right wall’s images. Furthermore,

88

‘(g om31,]) uoryR[Esse) YIIM pue (y 9INGI]) UOIJR[[9SS9) INOYIIM POIOPUSI SOSRUII 00I9)STUMI() :€°) IN31q

89

the chair legs and the floor on the left image were rendered featuring a vertical parallax
in stereo, since one eye is closer to the CAVE’s wall than the other. While this image
is correct for a viewer facing the front wall’s screen, viewers facing the left or right wall
or facing any other direction that is not perpendicular to the front wall are not able to
perceive correct stereo depth cues in the images and are exposed to an incorrect vertical
parallax.

Informal testing showed that adding the tessellation step to the rendering process
of the living-room test scene resulted in a frame-rate decrease of approximately 10-40%
depending on the view point and scene complexity. One way to increase rendering
performance when using tessellation is by performing back-face culling [67] and view-
frustum [68] culling inside the tessellation shader. Regular back-face culling, if enabled,
occurs during the primitive assembly stage, as shown in Figure 2.14. Implementing
culling in the TCS allows discarding primitives before performing any tessellation on
them, as well as before determining the tessellation levels for the primitive. Adding
back-face culling to the shader reduced the impact of the tessellation on the rendering
performance, resulting in a frame-rate decrease of 15% compared to rendering without
tessellation. The regular OpenGL back-face culling was enabled at all times during
these comparisons. In the shader-based back-face culling, a small epsilon was used to
avoid erroneous culling, considering that the vertex displacement happening during the
object-warping in later steps may change the orientation of a face. When using this
method, we could not find occurrences of erroneously culled primitives in the scene.
When using the sphere-based tessellation method in conjunction with back-face culling,
the rendering frame rate was therefore decreased by approximately 15% while removing
all visible issues from the interpolation and rasterisation.

Figure 7.5 shows a frame-rate comparison of different rendering configurations mea-
sured in two test scenes with two different camera viewpoint locations each. The first
test scene features a small living room scene with several objects of varying polygon
density. The second test scene is larger and features an urban area consisting of objects
with low polygon-density. The measurements were taken while rendering the left eye’s
images for three CAVE wall screens at 500x500 pixel resolution each and without ren-
dering a skybox. An AMD Radeon 7970 GPU was used, and the hardware anti-aliasing
setting of Ogre was set to F'SAA Sx. The viewpoint 1 of the scenes was positioned in a
way that the images capture a large portion of the scene. Viewpoint 2 was positioned
in centrally in the scenes and in close proximity to several objects. The performance
of the vertex-shader based omnistereo technique was insignificantly different from the
regular off-axis projection rendering, according to the measurements. The omnistereo
projection with tessellation was rendered in three different configurations, each with a
different maximum tessellation factor set for the sphere-based tessellation technique.
Based on informal evaluation of the results using the test scenes and varying view points
and head positions, we determined that in our setup a maximum tessellation factor of 16
was sufficient to remove the object-warping artefacts in the tessellation-based rendering
technique, as higher values did not further improve the quality of the images. Addition-
ally, the frame rate comparison showed that higher maximum tessellation values did not

90

USDIOS S, [[eM JUOIJ 9} 03 Jenotpuadiod UOIIORIIP-MOIA oY) Yim suoryosford aarpoadsied sixe-[() :§-L 2an3rg

91

FPS

92

I Living room - viewpoint 1
1 Living room - viewpoint 2
mmm City - viewpoint 1
1 City - viewpoint 2

Y'QOQ *{,\OQ =§D f&D ‘51‘)
& N & & &
9 > S S N
$° & O » 9
o < N N N
‘b&} O&’ ‘&{}O ‘&{)\O ‘&{)\0
S S B & &
< & & &
) X\“ x\\) X\\)
&%\9‘ & & &
Q QO QO
4 ,@@ \gﬁ@ \gﬁ@
& & &
> 4 &
¥ ¥ ¥

Figure 7.5: FPS Benchmark of different rendering configurations

Figure 7.6: An omnistereo skybox rendered for the front, left and right CAVE walls.
Stereo disparity is present in all view-directions and the images are seamless across the
screens.

Figure 7.7: An off-axis projection skybox rendering with the view direction perpendic-
ular to the front wall’s screen. The stereo disparity becomes increasingly incorrect, as
the view-direction changes horizontally away from a horizontal center of the image.

impact the frame rate in the city scene, but significantly reduced the frame rate in the
living room scene, since it is more densely populated with objects and the objects are
closer to the viewer.

Full-screen-quad based omnistereo-skybox

Figure 7.6 shows an omnistereo skybox rendering for the left, front and right CAVE
wall as anaglyph image. The omnistereo skybox images feature stereo depth cues in all
view directions without containing seams between the screens. Arbitrary head positions
inside the CAVE are supported by the technique. Figure 7.7 shows a skybox rendering

93

1,788 1,760

Figure 7.8: Frame rate comparison of the omnistereo skybox technique with the regular
off-axis projection based technique

from the same viewpoint using an off-axis perspective projection, with the view direction
perpendicular to the front screen. The advantages of rendering skyboxes in omnistereo
over rendering them in regular stereo are analogous to those of rendering meshes using
omnistereo projections instead of regular stereo projections, which were discussed in
Section 7.3.

Figure 7.8 shows a comparison of the frame-rates between the two methods. The
omnistereo and off-axis projection skybox was rendered for one eye’s view for three
CAVE wall screens with a resolution of 500x500 pixels each, using an AMD Radeon
7970 GPU.

94

CHAPTER

Conclusion

The research goal of this thesis was to create an efficient technique for rendering virtual
environments in a CAVE providing stereo depth cues in all view directions. Important
aspects of VR and the reason why omnistereo images can be perceived without noticing
the distortion in the periphery were discussed, forming the motivation for using such
omnistereo rendering techniques. A state of the art of CAVESs, omnistereo imaging and
omnistereo rendering was presented. The mathematical background for the off-axis based
object-warping technique, as originally proposed by Simon et al. [4], and for an on-axis
projection based object-warping technique were provided, as well as illustrations showing
the geometry behind it and potentially problematic corner-cases. We implemented an
application that renders omnistereo images for a CAVE display system using the object-
warping techniques. Artefacts that occur due to the non-linearity of the omnistereo
projection were described and illustrated in the thesis. Our proposed solution to these
problems is to precede the object-warp based omnistereo rendering technique with a
screen-space adaptive tessellation step, while keeping the performance impact on the
frame rate minimal. Using this approach, artefact-free rendering of omnistereo images
can be achieved, which can be used in combination with regular shading techniques and
renders at real-time frame rates.

The tessellation-based omnistereo rendering technique, which combines adaptive tes-
sellation with per-vertex object-warping, provides a great improvement to regular stereo-
scopic rendering with only a few drawbacks. We have shown that by implementing back-
face culling in the tessellation shader, the impact of the tessellation step can be greatly
reduced, which can be further improved upon by adding a frustum-culling technique tai-
lored to the specific requirements of the non-linear projection. Additionally, we created
an efficient skybox rendering technique that can be used in conjunction with omnistereo
rendering. We also presented the CAVE display system created by the VRVis, which
was used for our project and can render to all of its three CAVE walls with a single
PC and GPU, making it a system that is more affordable and simpler to maintain than
typical CAVEs.

95

8.1 Future Work

Future work regarding shader-based frustum culling for our omnistereo technique is
necessary. Efficient frustum-culling implementations are already known, but a method
determining the smallest frustum dimension that includes all visible polygons, while
considering the vertices moved into visibility due to object-warping, has to be a found.
As discussed in Chapter 2, Couture et al. [24] analysed the disparity distortion of om-
nistereo in cylindrical displays. Analogous analysis is required for omnistereo in CAVE
display systems. Additionally, a formal evaluation needs to be conducted to determine
to which extent disparity errors in the periphery are perceived by users in CAVE displays
when observing omnistereo projections. A question that remains open in this context, is
how far a viewer can move their head position from the assumed view position without
distortion errors becoming apparent and how the dimensions of the CAVE, proximity to
the screen and resolution influence this. Although it can be crucial to provide free move-
ment to the user in a VR installations, some installations constrain the user’s movement
to a narrow area. That can be the case, for example, when using treadmills for locomo-
tion, which may limit the user to the center even if moving. Furthermore, we discussed
omnistereo rendering for surround-screen displays such as hemispherical, cylindrical and
conical display systems as well as for CAVEs. Less established, experimental display
systems, such as image projection with convexr mirrors [69] and multi-projection system
with hybrid screen [70], could profit from omnistereo projections as well.

Research is required to determine if a large-sized CAVE display allows for multi-
viewer usage once omnistereo projections are rendered. This may be possible if the
viewers are not spread out too far from the assumed viewpoint of the omnistereo pro-
jection. If this is feasible, it might allow for collaborative work using the shared display
or for viewing the virtual environment in groups with a guide, teacher or trainer who
controls the view. Also, in Section 2.3 we discussed how some rendering effects do not
work well or need to be changed in stereo rendering. Another question that remains
open, is how omnistereo rendering affects these, especially compared to regular stereo
rendering, and if the same solutions as for regular stereo rendering can be applied.

96

Bibliography

L. Avila and M. Bailey, “Virtual Reality for the Masses,” IEEE computer graphics
and applications, no. 5, pp. 103-104, 2014.

C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart, “The
cave: Audio visual experience automatic virtual environment,” Commun. ACM,
vol. 35, no. 6, pp. 64-72, 1992.

N. A. Dodgson, “Autostereoscopic 3d displays,” Computer, no. 8, pp. 31-36, 2005.

A. Simon, R. C. Smith, and R. R. Pawlicki, “Omnistereo for panoramic virtual
environment display systems,” in Virtual Reality, 2004. Proceedings. IEEE, 2004,
pp. 67-279.

B. Osman, M. Bukowski, and C. McEvoy, “Practical implementation of dual
paraboloid shadow maps,” in Proceedings of the 2006 ACM SIGGRAPH sympo-
stum on Videogames. ACM, 2006, pp. 103—106.

J. Munkberg, J. Hasselgren, and T. Akenine-Moller, “Non-uniform fractional tessel-
lation,” in Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Sympo-
stum on Graphics Hardware, ser. GH ’08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2008, pp. 41-45.

I. Cantlay and NVIDIA Corporation, “DirectX 11 terrain tessella-
tion,” http://developer.download.nvidia.com/assets/gamedev /files /sdk/11/
TerrainTessellation_ WhitePaper.pdf, 2011, (last accessed on 29th April 2015).

P. Bourke, “Calculating Stereo Pairs,” http://paulbourke.net/stereographics/
stereorender, 1999, (last accessed on 12th December 2014).

L. Harrison, D. McAllister, and M. Dulberg, “Stereo computer graphics for virtual
reality,” SIGGRAPH’97, Course Notes, vol. 6, 1997.

W. Sadowski and K. M. Stanney, “Presence in virtual environments,” in Handbook
of virtual environments : Design, implementation and applications. L. Erlbaum

Associates Inc., 2002, pp. 791-806.

97

[11]

[12]

98

J. D. Prothero and H. G. Hoffman, “Widening the field-of-view increases the sense
of presence in immersive virtual environments,” Human Interface Technology Lab-
oratory Technical Report TR-95, vol. 2, 1995.

S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: panoramic stereo imaging,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, no. 3,
pp. 279-290, 2001.

P. Bourke, “Creating correct stereo pairs from any raytracer,” http://http://
paulbourke.net /stereographics/stereorender, 2001, (last accessed on 12th Decem-
ber 2014).

O. Kreylos, “Good stereo vs. bad stereo,” http://doc-ok.org/?p=77, 2012, (last
accessed on 12th December 2014).

R. Kooima, “Generalized Perspective Projection,” http://csc.lsu.edu/~kooima/
pdfs/gen-perspective.pdf, 2009, (last accessed on 3rd March 2014).

O. Kreylos, “Homepage of Oliver Kreylos,” http://idav.ucdavis.edu/~okreylos/,
2014, (last accessed on 3rd March 2014).

NVIDIA Corporation, “NVIDIA GPU programming guide, version 2.5.0.” https:
//developer.nvidia.com/nvidia-gpu-programming-guide, pp. 70-73, 2006, (last ac-
cessed on 8th June 2015).

H. Grasberger and R. Habel, “Introduction to Stereo Rendering,” http://www.
cg.tuwien.ac.at /research/publications/2008/Grasberger 2008 ISR, 2008, (last ac-
cessed on 24th February 2015).

J. J. LaViola, Jr., “A discussion of cybersickness in virtual environments,” SIGCHI
Bull., vol. 32, no. 1, pp. 47-56, 2000.

T. A. Stoffregen, M. H. Draper, R. S. Kennedy, and D. Compton, “Vestibular
adaptation and aftereffects,” in Handbook of virtual environments : Design, imple-
mentation and applications. L. Erlbaum Associates Inc., 2002, pp. 773-790.

R. Kalawsky, The Science of Virtual Reality and Virtual Environments, 1st ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1993.

J. Tresilian, Sensorimotor Control and Learning. Palgrave Macmillan, July 2012,
p. 245-246.

H. Hunziker, Im Auge des Lesers: vom Buchstabieren zur Lesefreude ; foveale und
periphere Wahrnehmung. Transmedia, 2006.

V. Couture, M. S. Langer, and S. Roy, “Analysis of disparity distortions in omnis-
tereoscopic displays,” ACM Trans. Appl. Percept., vol. 7, no. 4, pp. 25:1-25:13, Jul.
2010.

[25]

[26]

[27]

[33]

[34]

[35]

R. F. Hess, F. A. A. Kingdom, and L. R. Ziegler, “On the relationship between the
spatial channels for luminance and disparity processing,” Vision research, vol. 39,
no. 3, pp. 559-568, 1999.

M. S. Banks, S. Gepshtein, and M. S. Landy, “Why is spatial stereoresolution so
low?” The Journal of Neuroscience, vol. 24, no. 9, pp. 2077-2089, 2004.

M. Doggett and J. Hirche, “Adaptive View Dependent Tessellation of Displacement
Maps,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, ser. HWWS ’00. New York, NY, USA: ACM, 2000, pp. 59-66.

R. Kooima, D. Roberts, and M. SubbaRao, “Real-time Digital Dome Rendering
Techniques and Technologies,” in Proceedings of IPS2008. International Planetar-
ium Society, 2008.

C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-screen Projection-based
Virtual Reality: The Design and Implementation of the CAVE,” in Proceedings of
the 20th Annual Conference on Computer Graphics and Interactive Techniques, ser.

SIGGRAPH ’93. New York, NY, USA: ACM, 1993, pp. 135-142.

Fraunhofer-Gesellschaft, “HyPI-6: 6-Sided-Cave,” http://web.archive.org/web/
20030203023821 /http:/ /www.vr.iao.thg.de/6-Side-Cave/index.en.html, 2001, (last
accessed on 25th April 2015).

Fraunhofer TAO, “Virtual Reality Lab (VR Lab) mit Hypl-6 (6-Wand-CAVE),”
http://www.iao.fraunhofer.de/lang-de/geschaeftsfelder /engineering-systeme/
277-virtual-reality-lab.html, 2015, (last accessed on 25th April 2015).

C. Cruz-Neira, D. Reiners, and J. P. Springer, “An affordable surround-screen vir-
tual reality display,” Journal of the Society for Information Display, vol. 18, no. 10,
pp- 836843, 2010.

H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo for making global
map,” in Computer Vision, 1990. Proceedings, Third International Conference on,
1990, pp. 540-547.

Couture, V. and Langer, M. S. and Roy, S., “Panoramic stereo video textures,” in
Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011,
pp. 1251-1258.

S. Peleg and M. Ben-Ezra, “Stereo panorama with a single camera,” in Computer
Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.,
vol. 1. IEEE, 1999.

Zhu, Zhigang, “Omnidirectional Stereo Vision,” in Proc. of ICAR’01, 2001, pp.
22-25.

99

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

100

P. Rademacher and G. Bishop, “Multiple-center-of-projection images,” in Proceed-

ings of the 25th annual conference on Computer graphics and interactive techniques.
ACM, 1998, pp. 199-206.

N. Max, “Computer graphics distortion of IMAX and OMNIMAX projection,” in
Nicograph 83, Conference Proceedings, Oct 1983, pp. 137-159.

Z. Wartell, L. F. Hodges, and W. Ribarsky, “Balancing fusion, image depth and
distortion in stereoscopic head-tracked displays,” in Proceedings of the 26th annual

conference on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 351-358.

M. Trapp, H. Lorenz, and J. Dollner, “Interactive Stereo Rendering for Non-planar
Projections of 3D Virtual Environments - With a Comparison of Image - and
Geometry-based Approaches,” in GRAPP 2009 - Proceedings of the Fourth In-
ternational Conference on Computer Graphics Theory and Applications, Lisboa,
Portugal, February 5-8, 2009, 2009, pp. 199-204.

M. McGinity, J. Shaw, V. Kuchelmeister, A. Hardjono, and D. D. Favero, “AVIE:
a versatile multi-user stereo 360° interactive VR theatre,” in Proceedings of the

2007 workshop on Emerging displays technologies: images and beyond: the future
of displays and interaction, ser. EDT '07. ACM, 2007.

A. Simon and M. Gobel, “The i-Cone - a panoramic display system for virtual
environments,” in Computer Graphics and Applications, 2002. Proceedings. 10th
Pacific Conference on, 2002, pp. 3-7.

A. Simon and S. Beckhaus, “Omnidirectional Stereo Surround for Panoramic Vir-
tual Environments,” in ACM SIGGRAPH 2008 Sketches &Amp; Applications, ser.
SIGGRAPH ’03. New York, NY, USA: ACM, 2003, pp. 1-1.

H. Lorenz and J. Déllner, “Real-time Piecewise Perspective Projections,” in
GRAPP 2009 - International Conference on Computer Graphics Theory and
Applications. INSTICC Press, February 2009, pp. 147-155. [Online]. Available:
http://cgs.hpi.uni-potsdam.de/publications/Public/2009,/LD09

H. Lorenz and J. Déllner, High-Quality Non-Planar Projections Using Real-time
Piecewise Perspective Projections , ser. Communications in Computer and Informa-
tion Science. Springer, 2010, vol. 68, pp. 45-58.

H. Lorenz and J. Déllner, “Dynamic Mesh Refinement on GPU using Geometry
Shaders,” in Proceedings of the 16-th International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision 2008, February
2008. [Online]. Available: http://cgs.hpi.uni-potsdam.de/publications/Public/
2008/LD08

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[57]

[58]

[59]

R. D. Herndndez, A. Hardjono, and F. J. A. Cerd4, “Rendering stereographic 3d im-
ages in cylindrical spaces,” diploma thesis, Polytechnic University of Valencia, Uni-
versity of New South Wales, September 2010, https://riunet.upv.es/handle/10251/
13760.

P. Bourke, “Using a spherical mirror projection into immersive environment,”
Graphite, ACM Siggraph, Dunedin, Nov/Dec, 2005.

P. Bourke, “Omni-Directional stereoscopic fisheye images for immersive hemispheri-
cal dome environment,” in Proceedings of the Computer Games & Allied Technology
09, 2009, pp. 136-143.

P. Bourke, “iDome: Immersive Visualisation,” http://paulbourke.net/dome/
iDome/iDomePosterAl.pdf, 2013, (last accessed on 24th February 2014).

B. Frohlich, J. Hochstrate, J. Hoffmann, K. Kliiger, R. Blach, M. Bues, and O. Ste-
fani, “Implementing multi-viewer stereo displays,” in Proc. Int’l Conf. in Central
Europe on Computer Graphics and Visualization (WSCG 2005), 2005.

A. Pross, R. Blach, M. Bues, R. Reichel, and O. Stefani, “Optimization of a multi-
view system based on pulsed LED-LCD projectors,” in Proc. SPIE, Stereoscopic
Displays and Applications XXIII, vol. 8288, 2012.

W. J. Adams and J. H. Elder, “Effects of specular highlights on perceived surface
convexity,” PLoS Comput Biol, vol. 10, no. 5, 05 2014.

Khronos Group, “The OpenGL® Shading Language - Language version 4.40,”
https://www.opengl.org/registry /doc/GLSLangSpec.4.40.pdf, 2004, (last accessed
on 29th April 2015).

Microsoft, “Reference for HLSL - Struct Type,” https://msdn.microsoft.com/en-us/
library /bb509706%28VS.85%29.aspx, 2015, (last accessed on 18th May 2015).

Khronos Group, “The OpenGL® Graphics System: A Specification (Version 4.4
(Core Profile) - March 19, 2014),” https://www.opengl.org/registry /doc/glspec44.
core.pdf, 2014, (last accessed on 18th May 2015).

D. B. Lloyd, “Logarithmic perspective shadow maps,” Ph.D. dissertation, University
of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2007.

J.-D. Gascuel, N. Holzschuch, G. Fournier, and B. Peroche, “Fast non-linear
projections using graphics hardware,” in ACM Symposium on Interactive 3D
Graphics and Games, Feb 2008. [Online]. Available: http://maverick.inria.fr/
Publications/2008/GHFP0S

V. Popescu, P. Rosen, L. Arns, X. Tricoche, C. Wyman, and C. M. Hoffmann, “The
general pinhole camera: Effective and efficient nonuniform sampling for visualiza-
tion,” Visualization and Computer Graphics, IEEE Transactions on, vol. 16, no. 5,
pp. 777790, 2010.

101

[60]

[69]

[70]

102

P. Rosen, “Rectilinear texture warping for fast adaptive shadow mapping,” in
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, ser. 13D ’12. ACM, 2012, pp. 151-158.

Ogre development team, “Ogre homepage,” http://www.ogre3d.org, 2015, (last ac-
cessed on 29th April 2015).

CEGUI Team, “CEGUI homepage,” http://cegui.org.uk/, 2015, (last accessed on
20th April 2015).

Khronos Group, “The OpenGL Graphics System: A Specification,” https://www.
opengl.org/documentation/specs/version2.0/glspec20.pdf, 2004, (last accessed on
95th April 2015).

Microsoft, “Platform Update for Windows 7,” https://msdn.microsoft.com/en-us/
library/jj863687.aspx, 2012, (last accessed on 25th April 2015).

Bencina, R., “oscpack,” http://www.rossbencina.com/code/oscpack, 2015, (last ac-
cessed on 29th April 2015).

Microsoft, “Kinect for =~ Windows,” https://www.microsoft.com/en-us/
kinectforwindows/, 2015, (last accessed on 29th April 2015).

B. Bilodeau and AMD, “Direct3dD 11 tutorial: Tessellation,” http:
//amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Direct3D%
2011%20Tessellation%20Tutorial.ppsx, 2010, (last accessed on 29th April 2015).

E. Persson and AMD Graphics Products Group, “ATI Radeon™ HD 2000 program-
ming guide,” http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/
10/ATI_Radeon_HD_ 2000_ programming guide.pdf, 2007, (last accessed on
29th April 2015).

Hashimoto, N. and Ishiwata, Y. and Sato, M., “Surrounding image projection with
convex mirrors,” in Proceedings of the 3rd International Universal Communication
Symposium, ser. IUCS ’09. ACM, 2009, pp. 146-149.

S. Jeong and N. Hashimoto, “Immersive multi-projector display on hybrid screens
with human-scale haptic interface,” IFICE Transactions on Information and Sys-
tems, vol. 88, no. 5, pp. 888-893, 2005.

	Introduction
	Problem Statement
	Contributions
	Overview

	Background
	Depth Cues
	Immersion
	Stereoscopic Rendering
	Cybersickness
	Intrusiveness
	Perception of Omnistereo in the Human Visual System
	Tessellation Shaders

	Motivation
	Advantages of Omnidirectional Stereo
	Research Aim

	Related Work
	CAVE
	Omnidirectional Stereo Imaging
	Rendering Stereo Panoramas
	Multiple-Center-Of-Projection Images
	Omnistereo Rendering in a CAVE
	Omnistereo Rendering in Curved Display Systems
	Omnistereo Rendering in Domes
	Multi-Viewer Stereo Displays

	Object-Warping Based Omnistereo Projection
	On-Axis Omnistereo Object-Warping
	Off-Axis Omnistereo Object-Warping
	Discussion of Vertex-Shader Based Omnistereo Rendering

	Tessellation-Based Omnistereo Projection
	Remedying Non-Linear Projection Artefacts
	Adaptive Tessellation for Omnistereo Rendering
	Omnistereo Skybox for the CAVE

	Implementation and Results
	Setup
	Application
	Results

	Conclusion
	Future Work

	Bibliography

