
Masterstudium:
Visual Computing

Diplomarbeitspräsentation

Towards Visual Exploration of Parallel Programs
 using a Domain-specific Language

Tobias Klein

Technische Universität Wien
Institut für Computergraphik und Algorithmen

Arbeitsbereich: Computergraphik

Betreuer: Ao.Univ.-Prof. Dr. M. Eduard Gröller

CONTACT tobias.klein@tuwien.ac.at

VISUAL EXPLORER

REFERENCES

MOTIVATION

APPROACH APPLICATION

Peter Rautek, Stefan Bruckner, M. Eduard Gröller, and Markus Hadwiger. ViSlang: A system for interpreted domain-specific languages for scientific visualization.
IEEE Transactions on Visualization and Computer Graphics (Proc. SCIVIS ’14), 20(12):2388-2396, 2014.

[1]

Mitwirkung: Dipl.-Ing. Dr.techn. Peter Rautek

Researchers frequently encounter programming challenges that could be
solved efficiently in a parallel manner but they often possess only
limited experience in parallel programming. Additionally, achieving
efficient parallel code is a complex optimization problem, and a
time-consuming, error-prone task.

Traditional performance tools usually read back hardware counters and
display statistics that correspond to the question ”What is going wrong“.
In contrast to these tools, the aim of this work is to allow programmers
to quickly test their hypothesis on ”Why is something going wrong“.

Source-to-Source Compiler: We have developed a compiler that transforms
programs, written in our DSL, to OpenCL programs with additional
instrumentations to record the program's behavior during the execution.

Domain-specific Language (DSL): We have developed a DSL based on
ViSlang [1] and designed in a way that it closely resembles OpenCL C language
with extra annotations to specify recordings of intermediate data.

Visual Explorer: Our visual explorerer reveals the behavior of the execution of
the program and interactions that occur with the underlying hardware. The
visualizations are based on the well-known D3 Framework [2].

INPUT

OUTPUT

Rapid Prototyping: Our framework automatically creates the
setup and boilerplate code that is required for the execution of
parallel programs and benefits from fast turnaround times. This
facilitates the rapid integration and testing of new algorithms.

Debugging: The investigation of intermediate data is usually realized
with manual code changes, which record data and send it back to the
host. Our system provides simple code annotations, which
automatize this step and enable the direct use of visualizations.

Profiling: Our visualizations reveal common performance issues,
such as branch divergence and bank conflicts and furthermore
support the detection of their causes.

Education: Our visualizations can be utilized for educational
purposes since they support the direct understanding of complex
parallel algorithms through the visual representation and interactive
exploration of their behavior.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven documents.
IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis ’11), 17(12):2301-2309, 2011.

[2]

The optimization of parallel programs is always multi-objective. For
instance, optimizing the code for memory-throughput may influence
the instruction-throughput and compromise the overall performance.
This is the reason for programmers having to deal with complex code,
errors, and performance guess work.

The execution of parallel programs is often considered as a black box,
where only input and output is known, but only little is displayed about
the execution of the code itself. However, this is crucial for the
understanding, correctness and especially the performance of the
implementation.

?OpenCL

10

20

30

50

40

10 20 30 5040 10 20 30 5040

12
8

8 4

12
8

8 4

12
8

8 4

12
8

8 4

0 1 2 3 4 5 6 7

...

...

OpenCL

30

11114 14 1

30

Branching View
The branching view reveals different control flow patterns that occur during the
execution of the program. It also visually encodes branch divergence, a common
performance issue in parallel programs. Equal semantics are linked between
different views so that the user is able to interactively explore the behavior of
the algorithm.

Branching Behavior

1344 420 96 96

nr
 o

f
w

or
k

it
em

s

111001

13888

30000

20000

10000

0

40000

Memory View
The memory view depicts memory accesses of a specified variable. Furthermore, it
shows visual representations (memory bank) that follow the semantics of the
underlying hardware architecture and their interaction with the execution. This
view also enables to explore memory bank conflicts and different memory access
patterns.

Memory Behavior

work items

lo
gi

ca
l t

im
e

memory bank word

global barrier
local barier
write
read

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

