
Creating B-Spline Control Points
We initialize B-Spline control points along the corners of a simpli�ed
Voronoi diagram.
We observe that the placement of these control points in a 2 x 2
node block solely depends on the presence of a diagonal connec-
tion between the block's nodes. This allows us to compute control-
point positions in parallel by looking at each cell separately.
We present a data structure that allows random access lookup to
control points, based on the position of their generating node
blocks in the planar graph. Based on the connectivity of each cell's
nodes to surrounding nodes, we can identify neighboring control
points lying on the same spline and store them along with each
control point's position.
In the same processing step, we are also able to identify control
points that lie on intentionally sharp corners and duplicate control
points that lie on T-junctions.

Contact: falichs@gmail.com, kopf@microsoft.com, wimmer@cg.tuwien.ac.at

Algorithm Overview
The general idea behind the algorithm is to create a resolution-independent, smooth
representation of a given low-resolution pixel art image.
The result should have sharp contours between regions of strongly dissimilar colors and
smooth shading transitions between similarly colored regions.
We show how to implement each of the steps of the original algorithm in a highly parallel
fashion, exploiting modern GPUs.

Abstract
Pixel art was frequently employed in games of the 90s and earlier. On today's large and high-
resolution displays, pixel art looks blocky. Recently, an algorithm was introduced [Kopf2011] to
 create a smooth, resolution-independent vector representation from pixel art. However, the
algorithm is far too slow for interactive use, for example in a game. This poster presents an
e�cient implementation of the algorithm on the GPU, so that it runs at real-time rates and
can be incorporated into current game emulators.

Pixel
Connectivity

&
Intersection

Removal

Pixel Art Input
Pixel

Connectivity
Buffer

Calculate
Control

Points and
Connections

 Control Point
Buffer Optimization Rasterization

Optimized
Control Point

Buffer

Parallelization
In order to allow parallel processing, we split the algorithm up in a sequence of multiple parallel stages.
Intermediate results are stored in bu�ers, allowing subsequent stages to continue processing.

Optimizing B-Splines
The control points de�ning the B-splines still
su�er from staircasing artifacts, which we
mitigate by shifting each control point to
reduce its corresponding curve segment's cur-
vature.

Connecting Pixels and Removing Intersections
We identify regions of homogenous color.
We construct a graph where each pixel is a
node and two nodes share an edge if their
associated colors are similar.
The graph is stored in a layout similar to the
original pixel grid.
We can �ll each entry of the bu�er in parallel
by comparing the color values of the pixels
a�ecting each entry. The Graph has to be
made planar by eliminating crossing diagonal
edges.
This is done for each potential diagonal in
parallel by applying four heuristics de�ned by
Kopf and Lischinski [Kopf2011].

References
KOPF, J., AND LISCHINSKI , D. 2011. Depixelizing pixel art.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4, 99:1 – 99:8.

DEPIXELIZING PIXEL ART IN REAL-TIME
Felix Kreuzer

Vienna University of Technology
Johannes Kopf

Microsoft Research
Michael Wimmer

Vienna University of Technology

We compared the runtimes of the original algorithm and our own implementation on a rela-
tively weak system (Intel Core 2 Quad Q6600, 4GB DDR2 RAM, NVIDIA Geforce 560Ti GPU). Our
implementation computes a 4x scaled version of a 256 x 224 screen from Super Mario World
in 8 milliseconds, which takes about 32 minutes using the original implementation. (feel free
to check out a demo at tinyurl.com/gpupixelart)

Rasterization
We render an output image using a simple per-fragment processing routine which samples a
single cell from the data structure computed before and computes the fragment's color by
mixing the cell's associated node colors depending on whether a curve segment passes
through the cell.

Results

