
Layer-Based Procedural Design of Facades Supplementary

Material

Martin Ilč́ık Przemyslaw Musialski Thomas Auzinger Michael Wimmer
Vienna University of Technology, Austria

Contents

1 Additional Definitions 2
1.1 Reflection Modes for Counters . 2
1.2 Multi-head Finite State Automaton . 2

2 Modeling Examples 3
2.1 Residential House - Continued . 3
2.2 Apartment House . 4

3 Details of the Solver 6
3.1 Pattern Analysis . 6
3.2 Pruning Candidates by Size of Opaque Symbols 7
3.3 Weighting of Alignment Columns . 8
3.4 Placement of Non-Opaque Symbols . 9
3.5 Sizing and Placement Example . 9

HALL
SPLIT-BASED LAYER-BASED

+ 4 ✎ 6

+ 10
+ 2

+ 5-6

+ 2
+ 1

+ 2 + 4
+ 2
+ 2

RULES

LAYERS

SYMBOLS

COUNTERS

ATTRIBUTES*

*incl. linear expressions

LAYER-BASEDgh(BA)n

h := I(AB)mAI
L5

βπ
T

π
:=

 P
Q

RQ
Δ

X
L 5

1 ≤ m 1 = n

IABA... B A

Δ

T

R

Q
P

Q

X

β

G H G
(m+1)α+mβ+2ι1' n(α+b)

S*
α+β

L
K

ψ

2(λ+ω+δ+γ)

M
β

X
α

X Σ
1'ι ι

XX
α

P
β α

X X
Q
R
Q
X

γ

δ

λ

δ

1'

X
R
Q
X

γ

δ

λ

ω

R
N
N

ψ

1'

1®

O
β

X
α

R X
α1'

X
α

R
β

Θ*
α+β

Π*
α+β

σ

. .
 .

T
M

SPLIT-BASED

Figure 1: Comparison of designs for the top layer of the teaser. The cyan outline marks the
boundary of a new layer with a large hall. While our approach requires only two new patterns
(orange), the hierarchy of splits (green) must be extensively changed to produce the same result.
Dimmed green rule chains starting attached to G were previously connected to M before adding
the hall. Light boxes with attributes (Greek letters) denote shapes sizing, 1′ denotes relative
sizing.

1

4 Further Comparisons with Related Concepts 11
4.1 Modeling with Split Based Grammars . 11

4.1.1 Our Method . 11
4.1.2 Split-Based Method . 11
4.1.3 Added Detail . 11

4.2 Detailed Comparison with Structure-Aware Concepts 12

1 Additional Definitions

1.1 Reflection Modes for Counters

We employ patterns that are regular expressions with common operations: concatenation, alter-
ation, grouping. Complex repetitive and reflective symmetries require a more powerful concept
than regular grammars. Therefore, we add a parametric counting operation with a set of reflec-
tion modes as proposed in Table 1.

Notation Mode Input Result

none (EkG)
2

= EkG EkG

− normal inner (EkG)
−2

= EkG EkG EkG EkG

| normal outer (EkG)
|2

= EkG EkG EkGEkG

· pivot inner (EkG)
·2

= Ek G Ek Ek G Ek

◦ pivot outer (EkG)
◦2

= EkGGk E EkGGk

� pivot total (EkG)
�2

= Ek G kE k G Ek

Table 1: Reflection modes applied to the pattern (EkG)
2
.

While the reflection mode is set for each counter manually by the user, the repetitions count
is automatically determined in the first stage of the facade solver. The repetition counts are
constrained to be equal for all instances of the counter across all patterns and alignment groups.

1.2 Multi-head Finite State Automaton

In order to derive the oriented network encoding all possible alignments of a candidate (wi)
m
i=1

in Section 5.2, we construct a one-way finite state automaton with m heads, where m is the
number of patterns to be aligned.

The automaton is a 5-tuple (Q,Σ, δ, q0, F) where

• Σ is the alphabet, i.e. the set of symbols defined in our system and # /∈ Σ.

• q0 is the initial state (w1#, . . . wm#) with # being the end marker.

• F is the final state (#, . . . ,#)

• Q is a finite set of states Q = {(Qi)
m
i=1 |Qi is suffix of wi}

• δ is a finite set of transitions (q, a1, . . . , am) → q′ with q, q′ ∈ Q, being the current and
next state, respectively, and a1, . . . , am ∈ Σ ∪ {ε}, such that ∃ai 6= ε, being the symbols
currently read by the m heads.

2

Note that we add # to the end of each word in the candidate tuple so that we can assure
acceptance in a single final state once all heads finished reading. The set of states is made up of
all suffix combinations of the input tuple:

Q = {(Qi)
m
i=1 | Qi is suffix of wi} .

The cardinality of Q is given by the product of word lengths |Q| =
∏m

i=1 |wi|. It is possible to sep-
arate the read operations for each head and construct the transition relation as δ = δ1 ∪ . . . ∪ δm
with

δi =

 ((q1, . . . , xqi, . . . , qm) , a1, . . . , am)→ (q1, . . . , qi, . . . , qm)
where x ∈ Σ ∧ q ∈ Q ∧

ak = (x for k = i else ε)

2 Modeling Examples

2.1 Residential House - Continued

In order to finish the design session with a simple residential building from Section 4 of the
paper, a door and a roof need to be added, each in a new layer. Figure 2 lists all steps of user
interaction.

Doors Layer. Creation of the door element closely follows the steps 5 – 8 which create the
columns. The horizontal pattern for this layers is slightly different, since the content should now
be placed in the center. The door is represented by the substitution d := D. Its centering is
achieved by a symmetric control pattern fdf . Since the door is added only on the ground floor,
the vertical pattern By can be reused again with P set to be visible in the mask.

Roof Layer. Up to now, only the ground floor P and the first floor Q were considered in the
vertical patterns. In order to add a roof R to the top, we could alter the base pattern By. It is

Cyan denotes invisible shapes.

Meaning Size
plain wallA 1.0
windowB 1.6

Q 1.0�rst �oor
ground �oorP 2.0

2. SET SYMBOL PROPERTIES

1. ENTER PATTERNS
Repeat walls and windows
as many times as necessary.A(BA)kBX

PQBY
Only a ground �oor and a
�rst �oor.

4. SET SHAPE PROPERTIES CURRENT DESIGN

Material

BQ windowwindow 0.1
AQ 0.1

AP, BP yellow

default brown 0.0

Shapes Depth

Meaning Size
columnC 1.1

—e —
false

—

6. SET SYMBOL PROPERTIES

Opaque
5. ENTER PATTERN

Create a column at each
corner. Everything be-
tween them is automati-
cally matched by the un-
sized symbol e.

cec
c:=C

CX

3. CREATE LAYER0

BX

BY

⊗

A AA BB

Q

P

Material

8. SET SHAPE PROPERTIES

CP grey
Shapes

CURRENT DESIGN7. CREATE LAYER1

CX

BY

⊗
P

Mask

P

Q

C Ce

0. SET CANVAS SIZE

6.0WIDTH 3.0HEIGHT

AP BP AP BP AP

BQ BQAQ AQ AQ

CPCP
The wall behind is still the shape AP

The windows are only textures

No input required for the unsized e.
Override the default opaqueness for C.

Meaning Size
doorD 1.0

—f —

10. SET SYMBOL PROPERTIES9. ENTER PATTERN
Create a door in the
middle of the facade.

fdf
d:=D

DX Material

12. SET SHAPE PROPERTIES

DP door
Shapes

CURRENT DESIGN11. CREATE LAYER2

DX

BY

⊗
P

Mask

P

Q

f fD

DP
No input required for the unsized f.

Meaning Size
roofR 1.5

15. SET SYMBOL PROPERTIES13. ENTER PATTERN

RY aligns with BX and in-
serts the roof R above PQ.PQRRY

Roof is a single shape �lling
the whole canvas width. HRX Material

17. SET SHAPE PROPERTIES

HR red
Shapes

FINAL DESIGN16. CREATE LAYER3

RX

RY

⊗
R

Mask R
Q

H
Group

2

P

HR

All symbols are by default opaque, thus
R can be aligned next to PQ.14. UPDATE CANVAS 4.5HEIGHT

The door is just a texture

H is not aligned to anything

Figure 2: The whole modeling process for the residential building. Section 4 of the paper explains
steps 0 – 8, here we continue with steps 9 – 17 in Section 2.

3

Figure 3: An apartment house in Vienna as reference for the design in Figures 4 and 5.

easy to accomplish in this trivial design, but for complex scenarios we have a better option. The
user adds a new pattern Ry with PQR and expects PQ to align with the existing content. R
should be placed on the top, even without any content in the underlying layers. Our framework
supports such design thinking by the alignment qualifiers (see section 3.5 of the paper). All
symbols are opaque by default, since the default shape geometry is a box. We assume that any
shape produced by a pair of opaque symbols will cover the whole cell of the alignment grid, so
that unintended holes in the facade are avoided. In this specific case the roof has a triangular
shape, which does not cover all the space behind. However, there will be no more elements above
the roof to cause problems, thus we can keep the default opacity property of the symbol R.
Opaque symbols are allowed to be aligned without any content in underlying layers. Therefore,
we expect the roof to be aligned separately above P and Q. After the vertical pattern is created,
the user updates the canvas height.

For the horizontal direction a special pattern must be created as well. The triangular roof
should stretch horizontally over the whole canvas. The new pattern Rx reflects this by being
only a single symbol H. Note that it is course opaque by default. However, H is so large that
it would destroy any fragmentation of the alignment, resulting in all content from all horizontal
patterns being aligned in a single cell, i.e. not aligned at all. For completeness, we note that
only transparent symbols (since they produce no geometric shapes) may split to achieve a better
alignment. The user solves the problem by setting Ry to a new alignment group within Layer3.
The roof spans horizontally over the whole canvas, so there is no need to align it with anything.
Content from layers 0 – 2 can be normally aligned in the default alignment group without being
limited by H. At last, a mask is applied to R in Layer3 so that only the roof stays visible.

2.2 Apartment House

Additionally to the design session example in the paper, we provide a more complex example
with an apartment house. The user follows the design of a photographed building in the Figure 3.
It takes approximately 12 minutes to create the design from scratch. A 21× 10 units canvas will
be covered by at least three layers. Apart from the basic layer, the ground floor and the first
floor both contain individually aligned structures.

Basic Layer – Factorized Patterns. Starting from scratch, the user enters the patterns
for the first layer. The main part of the building in the horizontal direction follows

Bx = GC A(BA)k CG .

4

+
B D B DGgBDG D B

A B B B B BD D D D BD BD BD BD BD BD Af f

D E D D D D D D D D D DE E E E E E EF FG C A B A B A B A B A B A B A B A B A C G
Z

V
Y

W

Z
V
W

V
W
V
W
V
W
V
W
V
W
X
Y

W
X

X

L2

L3

L1

L0

Figure 4: Irregularities in common facades require misalignment of elements. This layout uses a
basic layer L0 (left) and three more layers (right) with horizontal patterns assigned to different
alignment groups. This way, the windows in the first two floors do not align with balconies and
windows of the upper floors. The result is shown on Figure 5, for details see Section 2.2.

Please note that for symbols related to the horizontal/vertical direction, we use letters from the
begin/end of the alphabet. In a similar way, the basic vertical pattern is given as

By = ZY (VW)l XY .

Then, desired sizes for symbols introduced in these patterns need to be set. Their values are
shared among all other patterns that use the respective symbols. Sizing and meaning of the
symbols is listed in Figure 5, right. The counters k and l stay unrestricted. At this point, the
basic layer L0 can already be created.

A grid appears, with all shapes being bright boxes. By assigning materials and depth offsets
to the shapes, we introduce details to the layout. A vast majority of shapes keep the default
appearance, the rest should be changed according to Figure 5 right.

In contrast to split-based grammars [WWSR03, MWH+06], our factorized approach to pat-
terns is free of decisions on which direction to give preference to. Producing directly the grid
with final shapes makes instancing and combining of patterns easier.

Ground Floor Layer – Masking. The second layer L1 will contain the ground floor – denoted
by Z in By. Hence, only shapes produced by Z should be visible in L1. The user can directly
set By as the vertical pattern of L1 and assign Z to the respective mask. Our framework
automatically overrides the geometry of all shapes created by the remaining vertical symbols
(V,W,X, Y) to be empty.

A generalized horizontal pattern for the ground floor is more difficult to estimate, our design
proposal is

Gx = (DE)nD F D(ED)m F D(ED)n with n < 3 .

Bx and Gx are different in structure. A common alignment would not work well. Our concept
allows for efficiently dealing with several independent alignments at once. The ground floor in
L1 can be easily made independent to other layers by using a separate alignment group for Gx.

First Floor Y – Substitutions. Structured selection of facade regions is often needed to
assemble more complex patterns. Lipp et al. [LWW08] introduced instance locators for split-
based grammars to reduce the complexity of local changes. Instead, we utilize the more versatile
substituted patterns, which suit the layered concept the best.

A vertical pattern should provide content for the first floor only. Adapting the existing
By pattern is not possible in this case, since there is no way to distinguish between the floors

5

represented by (VW)
l
. The user will take advantage of the layered concept by creating a new

substituted pattern:

Fy =

{
ZY ts

t := XWX

The unsized symbol s automatically covers everything above the first floor. We set the preferred
size of X to be approximately half of the size of V , i.e. X ≈ 0.5V .

First Floor X – Multiple Alignments. Two corner windows on the first floor align with
balconies in L0, whereas the middle part with thinner walls should be independent. Multiple
alignments can be realized only in distinct patterns, so the user creates a pair of patterns Fx and
Mx with complementary substitutions. Together they yield

GDBDB AB(DB)jA GDBDB

Fx =

{
f g f

f := GDBDB
Mx =

{
f g f

g := AB(DB)jA

Layers L2 and L3, both with Fy as vertical pattern, utilize Fx and Mx, respectively. Mx gets
assigned to a new alignment group in layer L3. Notice that despite of being in different align-
ment groups, Fx and Mx will always fill the whole canvas. The reason is that both use the same
control pattern. Since the size of f and g is the same across all patterns and alignment groups,
an explicit alignment is forced.

Layer Ordering. During the design process, the user created the following stack of layers with
L0 being at the bottom.

L3

L2

L1

L0

Pattern Group Mask Pattern Group Mask
MX

FX

GX

BX

FY

FY

BY

BY

3
1
2
1

1
1
1
1

—
—
—

—
—
Z
—

— ⊗

⊗

⊗

⊗

Ordering of layers is always important for visibility of elements. If L0 were on top of the stack,
it would wrongly cover elements form all other layers.

We created a non-trivial facade layout using only a few design elements. More results showing
the advantages of our method and a critical comparison with other approaches are presented in
Section 5 of the paper.

3 Details of the Solver

3.1 Pattern Analysis

The complexity of counting and sizing can be significantly reduced even before any words get
generated. Control patterns sometimes contain the same subpatterns. This can be recognized
first by substituting the content pattern into the control pattern and flattening the counters. Let
us demonstrate it on the following simple example with two patterns:

6

=
Shapes Depth

CW, EZ,FZ 0.3-
BW 0.1-

0.3GY, GG, CY, CV, CG
AY, AG, BY, BG

default 0.0

Shapes Material

default whitedefault white
EZ, FZ glassglass

CV orange
CW, BW dark glass

Symbol Meaning Size
corner wallG 0.1

balconyC 2.2
1wallA

0.7windowB

thin consoleY 0.1
Z 1ground �oor

wallV 0.4
windowW 1
thin wallX 0.2

thin wallD 0.3

small shopF 1.2
E 1.8large shop

Figure 5: Continuation of the Figure 4 with the resulting facade. Additional layers L1, L2 and
L3 introduce windows following a new pattern, which is not aligned with the layer L0. The
alignment in both directions is shown with transparent letters in blue. The list of all symbols
and shapes is given right.

Pattern0 =

{
AkcCmcAk

c := C
Pattern1 = AkClAk

After trimming away the common parts from a pair of patterns, the sum of symbol sizes in
the two remaining subpatterns should be equal because all layers span over the whole canvas.
Thereby, we get a linear expression with either counters or control symbols as variables. After
flattening, Pattern0 and Pattern1 reveal a dependency of the counter values

Pattern0 = Ak CCmC Ak

Pattern1 = Ak Cl Ak ⇒ m+ 2 = l .

A pairwise analysis of all patterns for the given direction gains two systems of linear equations –
one for counters and one for unsized symbols. Some counters and unsized symbols can be directly
resolved by solving the system, others become constrained by the equations so that the number
of possible counter values and sizing options stays low. In case one of the systems is infeasible,
the user is notified to check the consistency of the facade design.

3.2 Pruning Candidates by Size of Opaque Symbols

When the solver generates words for alignment as described in Section 5.1 of the paper, the upper
bound for the word size is determined by the canvas size. The lower bound li is more difficult to
compute, since it is determined by the count of opaque symbols in patterns above in the stack.
The reason is that an opaque symbol may push the content from underlying layers to the sides
so that it becomes the deepest non-ε element in the respective column of the alignment matrix.

(B I
A

I IIB IB I
A A A A)ɛɛɛ(B)

 I opaque false true

11 11

12 8

A = 4
B = 4
I = 1

∑∑

1 1 3 0 0 0 0 0 05error

In the given example, A represents a wall, I a column and B a balcony. Only A is opaque.
The patterns I (BI)

l
and Ak cover a canvas of size 12. When I is not opaque, the shapes

produced by I occlude the content behind them only partially. Thus, I must be aligned to an
opaque symbol from a pattern deeper in the stack in order to avoid gaps in facade. But once
I is set opaque, it can be aligned in a way that it becomes the deepest non-ε element in the

7

A B A B A

C

C
e

X
ε

ε 5.2 6.2
5.1

6.0 5.0
4.9

4.1
3.9

3.6

3.4

2.6
2.5

2.4
2.3
1.5

1.3 1.3
1.1

1.0

0.8
0.3

0.1

0.2

ALIGNMENT X - 1st STEP
CeC

ABABA
eC

BABA
C
A

ALIGNED
PART ERROR

LETTERS
COUNT

C
A

Ce
ABAB
CeC

ABABA

0.1 2

0.3

0.2

6

8

INPUT RESTALIGNED

ALIGNMENT ERROR

CANDIDATES
ALIGNMENT X - 2nd STEP

eC
BABA

e
BAB

C
A

C
A

C
A

ALIGNED
PART ERROR

LETTERS
COUNT

e
ABA

eC
BABA

0.4

0.8

4

6

INPUT RESTALIGNED

ALIGNMENT ERROR

B A B A

C
e

X
ε

ε

6.0

5.2

4.4

4.2
3.8

3.4

2.6
2.2
1.6

1.2 1.4
1.8 0.8
0.4

CANDIDATES

ALIGNMENT X - 3rd STEP
eC

BABA
e

BAB
C
A

C
A

C
A

ALIGNED
PART ERROR

LETTERS
COUNT

C
A 0.1 2
ε
A 1.0 1

INPUT ALIGNED

C
A

ALIGNMENT
ERROR

A

C
X
ε

ε
1.1

1.0
0.1

Figure 6: Weighting of edges for the three steps of the shortest path search in Figure 8 of the
paper. X denotes the current node, other matrix elements list alignment errors δ for all reachable
nodes. Orange arrows track boundary of the δ ≤ 1.0 tolerance region .

aligned column. The columns
(
I
ε

)
are actually inserted in between the content of the bottom

pattern. This often reduces the local alignment error, but size of the resulting alignment grows.
If the words produced by deep patterns were already approaching the canvas size, the inserted
columns would cause the alignment to exceed the error tolerance. Therefore, shorter words need
to be considered for patterns deeper in the stack. Once a pattern contains opaque symbols, also
words smaller than canvasSize− µ must be considered for all patterns below.

li = canvasSize−
i∑

a=1

∑
k

(wa [k] .size ∗ wa [k] .opaque)

If w2 generates AA instead of AAA in the previous example, then the alignment fits perfectly.

3.3 Weighting of Alignment Columns

The search for an optimal alignment is formulated as a shortest path problem on the alignment
decision network ADN. To construct an ADN, we use the state transition graph of the automaton
as defined in Section 1.2. We have defined the transition relation δ as a union of relations where
each δi uses only the ith head for reading. Therefore, the transition graph defines a partial
ordering of the set of states Q. Structure of the graph forms a directed acyclic m-dimensional
square lattice. In order to allow reading more than a single letter by one or more heads at once,
the ADN is constructed as the transitive closure of the transition relation δ.

In the following, we provide the explanation to m = 2. A generalization to an arbitrary
m is achieved using a hierarchical approach with additional time complexity of O (logm). Let
the initial state be placed top-left and the final state bottom-right in the square lattice. Then,
the transitive closure causes that each state in the ADN can reach all other (and only those)
states to the right and to the bottom, by a single edge. The set of reachable states is actually
a rectangular subregion of the ADN. The number of incoming and outgoing edges for each node
can be easily determined as the product of the respective subword lengths, roughly O (nm).

Linear traversal Weights for the edges are determined by the column alignment error ω (see
Eq. (9) in the paper). In the previous paragraph we have shown that the number of edges
leaving a node grows exponentially with the number of layers. Thus, their weights are computed
on-demand only for visited nodes. The property of partial ordering of the state space allows to
reduce the complexity even more. In the following we show that for a large portion of edges
leaving the current node can be ignored. Please follow the Figure 6 for an illustration of the
weighting process on the data from Figure 6 in the paper.

8

utilize dynamic programming to limit the weighting to a small subset of edges.
For m = 2, there are only two reading heads, i.e. two directions in the square lattice. The

region to the lower-right from the current node contains all nodes directly reachable. Let us set
a pointer to the current node. Using a dynamic programming method which accumulates the
signed alignment error, the pointer can track the border of the region where ω ≤ µ. In Figure
6 it is marked by a red line. It takes exactly 2(m+ n) steps. The region mostly takes a narrow
diagonal form. The quadratic complexity becomes nearly linear.

In more detail, the pointer starts toward bottom. It simulates reading with the second head,
accumulates the size of each processed letter and computes ω. Once ω > µ the heads switch and
the pointer moves to the right. The ω now decreases. A switch is also performed once ω ≤ µ.
This way the lower border of the acceptable region is traced. After reading both words to the
end, the pointer returns in the same manner tracing the upper border of the region. There is no
need to compute ω for nodes outside of the region, as it is known to be higher than µ.

For m > 2, words of the candidate are processed pairwise with results combined in a hierar-
chical way. The number of edges needed to be weighted for a node of ADN is then O (n logm).

3.4 Placement of Non-Opaque Symbols

In the alignment constraints for the least squares solver listed in Section 5.3 of the paper, the
last constraint

∀i > 0 (ai,j [0] .s = a0,j [0] .s ∧ ai,j [last] .t = a0,j [last] .t)

assures that all rows of any column j have to be sized equally. However, it can be relaxed for
non-opaque symbols. Shapes produced by non-opaque symbols do not occlude everything behind
them. Thus, it is possible for them to omit the requirement to stretch in the alignment column,
and rather let them approximate their preferred size the best. Figure 3b in the paper shows the
non-opaque letter P in L1 placed in the middle of the opaque content from the layer below. We
relax the stretching behavior by inserting pairs of additional gap letters γ1 . . . γ4 as the first and
last letter to those elements of Ai,j with at least one non-opaque letter. The alignment matrix
from Figure 3b changes as follows:

P b
A D B(b P a

D
a ɛɛ

A
ɛ P P

D A DB D A B D
a)
γ1Pγ1 b

A D B(b γ4Pγ4 a
D

a ɛɛ
A

ɛ γ2Pγ2 γ3Pγ3

D A DB D A B D
a)

The γ and ε symbols are similar, but the instances of γ must be pairwise equally sized to achieve
centered placement of the corresponding elements. As a further extension, it would be possible
to allow to the local alignment for non-opaque symbols not only to center, but also to left and
right.

3.5 Sizing and Placement Example

Figure 7 shows the final stage of the solver processing the best alignment of (CeC,ABABA).
Instances of symbols are first transferred to letters and a representative instance for each symbol
is chosen and stored in the property p. Yellow boxes list constraints in the linear system. All
instances of a symbol are constraint to the same size. The objective in the orange box minimizes
the size deviation of the optimized symbols sizes to the preferred sizes given by the user.

9

PLACEMENT & SIZING X

e

BA A B A

LETTER

s t

i j k2 11
0.0 1.0

LETTER

s t

i j k2 12
1.0 2.5

LETTER

s t

i j k2 22
2.5 3.5

LETTER

s t

i j k2 32
3.5 5.0

LETTER

s t

i j k2 13
5.0 6.0

CC

LETTER

s t

i j k1 11
0.0 1.0

LETTER

s t

i j k1 12
1.0 5.0

LETTER

s t

i j k1 13
5.0 6.0

SYMBOL

min opt
0.7 1.0

max
1.2

Ap 2 11
SYMBOL

min opt
1.4 1.6

max
1.7

Bp 2 12

SYMBOL

min opt
1.0 1.1

max
1.2

Cp 1 11
SYMBOL

min opt
1.3 3.8

max
7.6

ep 1 12

0.7 1.2
s211< t211

≤ s211− t211≤
0.0 = s221

1.4 1.7
s221< t221

≤ s221− t221≤
t211= s221

0.7 1.2
s222< t222

≤ s222− t222≤
t221= s222

1.4 1.7
s223< t223

≤ s223− t223≤
t222= s223

0.7 1.2
s231< t231

≤ s231− t231≤
t223= s231 t231= 6.0

s111= s211

s121= s221

s131= s231

t131= t231

s121= s223

t111= t211

t211− s211= t211− s211 t221− s221= t221− s221 t222− s222= t211− s211 t223− s223= t221− s221 t231− s231= t211− s211SYMBOLS SIZING

ALIGNMENT
CONSTRAINTS

ALIGNMENT
CONSTRAINTS

STITCHING

BASIC
CONSTRAINTS

t211− s211− 1.0 t221− s221− 1.6 t111− s111− 1.1+ +OBJECTIVE m i n 2

Figure 7: Linear system of equations for placement of (CeC,ABABA). Letters are extracted
from the alignment and a set of constraints is constructed. The s and t variables are referenced by
the letter identifier with ijk addressing aij [k]. Note that redundant constraints and tautologies
were not removed in this example. However, we did omit local constraints for letters 1-1-1, 1-2-1
and 1-3-1.

10

4 Further Comparisons with Related Concepts

4.1 Modeling with Split Based Grammars

Our approach provides even more significant results for facades with many details organized in
both – regular and irregular patterns. Let us examine the top layer of paper’s teaser containing
an irregular dominant hall. Please follow Figure 1 to compare the design process.

4.1.1 Our Method

Without editing or understanding the remaining content, the hall can be modeled in a separate
layer with a pair of new masked patterns. The hall stretches over two full floors and covers small
parts of the last floor as well. In opposite to split methods, which are limited to convex scopes,
our patterns mask out arbitrary shapes that can be represented as a union of rectangles. By
setting AX and BX to transparent, the background layer stays visible on the last floor while IX
stays solid. The hall position relative to the right wall is controlled by the counter n in (BA)

n
.

Unsized symbols g, h, π and β adapt automatically. A, B, P , Q, ∆, X and T have been already
defined and used by lower layers. The horizontal pattern is assigned to a separate alignment
group so that the tall windows will not align with the rest of the facade. The hall addition is
simple to perform, without any interference with the rest of the facade design.

4.1.2 Split-Based Method

The user needs to understand and to edit the whole hierarchy of rules to achieve the same result
using a split-based tool. The changes involve four new rules, five adapted copies and one edited
rule In sum ten additional symbols are required. The split concept implicitly requires redundant
structural information: After being derived from the G branch, the L branch encodes a very
similar structure. It is easy to get confused in the hierarchy of split and repeat rules. Adding
even more independent patterns using a split-based method would be very difficult to achieve
and to control.

While our system binds the geometric size to the symbols and guarantees equal size all
over the facade, split-based approaches are designed in a fully different way. Therefore, you
can see various combinations of symbols and sizes in Figure 1. With increasing complexity,
the user seeks automated sizing of shapes with help of relative values. By our experience,
concurrent usage of relative and absolute sizing is difficult. The best choice is to define the size
of the final elements absolutely, using global attributes which are fixed. Snapping, proposed
by Müller et al. [MWH+06], offers only limited fine-tuning – not comparable to our alignment
process. Absolute sizing also produces a lot of design complexity, since a high number of linear
expressions is required for sizing of splits. For the hall structure, it is mainly G and K which are
difficult to be sized. Consequently, the repeat rules are indirectly bound to the counter values
m and n which are set manually. Contrary, our approach automatically seeks the best values for
them.

4.1.3 Added Detail

The layout as shown in Figure 1 is a bare variation of a real bookshop facade in Vienna, built
almost 180 years ago. A detailed reconstruction of the real building (Figure 8) requires 18
patterns with 29 symbols ordered in 12 layers. The design stays simple as the patterns are
defined independently of each other. A CGA Shape reconstruction of the same facade requires

11

Figure 8: Detailed replica of the real-world bookshop facade with our framework. Note that for
illustration, some layers were merged together in the stack on the right.

55 rules organized in a complex hierarchy. Each addition of new elements requires global changes
and imposes high intellectual demands on the designer.

To solidify our claim that our layer-based description of facade layouts compares favorably
to split-based grammars, we provide an overview in Figure 9. It lists the number of rules, layers,
symbol and counters that were needed to create the facade that are shown in the top row of
Figure 10 in the paper.

4.2 Detailed Comparison with Structure-Aware Concepts

Our main contributions over the most closely related approaches of Dang et al. [DCNP14] and
Zhang et al. [ZXJ+13] are:

1. Different concept of structure representation

2. Global alignment solver

Layers. [DCNP14] utilize generalized grids, [ZXJ+13] implement a layering operation, but
both are based on decompositions of the facades into hierarchical structures. Both consider this a
serious limitation: Manipulation of hierarchical structures is not intuitive for the user [DCNP14],
introduces additional constraints and requires to handle many special cases. We put the layers
into a single stack, avoiding complex hierarchies. Users can focus on editing single layers while
merging and alignment of the layers is solved by our system. Independent editing of horizontal
and vertical patterns is simpler compared to split-based approaches like [DCNP14].

Overlapping. [DCNP14] create a non-overlapping hierarchy, the layers in [ZXJ+13] exist
only in the volume of their parent. Contrary to [ZXJ+13] and [DCNP14] our method generates
full 3D facade models including semi-occluded structures (arcades on Figure 11-bottom-middle).

Large Elements. Insertion of larger elements is difficult due to topology jumps [DCNP14].
Our layers span over the whole canvas, thus elements of any size can be easily added.

General Symmetries. Multi-way partitioning and complex structures beyond reflective
symmetry are impossible in [ZXJ+13]. Our masked patterns allow to define complex repetitive
and reflective structural symmetries.

12

TERRACED HOUSE
SPLITS LAYERS

36

33

13
8

29
3

RULES

LAYERS

SYMBOLS

COUNTERS

TEASER BUILDING
SPLITS LAYERS

33

28

7
5

24
6

BOOKSHOP
SPLITS LAYERS

55

54

18
12
29
8

APARTMENT HOUSE
SPLITS LAYERS

16

16

6
4

12
4

Figure 9: Complexities of modeling the top row facades in Figure 11 in the paper by either
split-based grammars (SPLITS) or our layer-based approach (LAYERS). Our approach requires
less than half the amount of rules when compared to CGA [MWH+06] for all facades and even
much fewer in presence of irregularities as in the teaser building.

Alignment Solver. [ZXJ+13] require manual locking for retargeting. Global alignment is
beyond the scope of their paper. [DCNP14] use continuous modifications to repair alignment
errors caused by discrete topological jumps. Our main contribution is the automated global
alignment. Alignment groups allow intentional misalignments and also localized alignment. We
use combinatorial optimization to select the best alignment. Continuous optimization only fine-
tunes the symbol sizes without any topological changes.

Creativity. For obtaining variations of a facade [ZXJ+13] and [DCNP14] both require image
input and manual segmentation. Elements not present in the original picture can not be added.
Our framework allows to design facades from scratch. There is more user-input required, but at
the same time more artistic freedom is offered to the designers.

Reusing. Data between nodes in a hierarchy can neither be shared nor be edited at once,
resulting in repeated user actions. The concept of symbols allows to reuse the same elements in
many patterns+layers, avoiding redundant interaction.

Workflow. The editing process in [ZXJ+13] and [DCNP14] is incremental and linear. Switch-
ing the layers on/off supports a non-linear workflow and offers a comfortable way to return to
previous layer configurations.

References

[DCNP14] Minh Dang, Duygu Ceylan, Boris Neubert, and Mark Pauly. SAFE: Structure-aware
Facade Editing. Comp. Gr. F., 33(2):83–93, May 2014.

[LWW08] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive Visual Editing of
Grammars for Procedural Architecture. ACM Trans. Gr., 27(3):1, August 2008.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc van Gool.
Procedural Modeling of Buildings. ACM Trans. Gr., 25(3):614, July 2006.

[WWSR03] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. Instant
Architecture. ACM Trans. Gr ., 22(3):669, 2003.

13

[ZXJ+13] Hao Zhang, Kai Xu, Wei Jiang, Jinjie Lin, Daniel Cohen-Or, and Baoquan Chen.
Layered Analysis of Irregular Facades via Symmetry Maximization. ACM Trans.
Gr., 32(4), 2013.

14

