
Masterstudium:
Visual Computing

MOTIVATION Often, users of visualization applications do not have access to high performance systems for the computationally demanding visualization tasks. Rendering the visuali-
zation remotely and using a thin client (e.g. a web browser) to display the result allow users to access the visualization even on devices that do not target graphics processing. However, the
flexibility to manipulate the data interactively suffers in thin-client configurations. This makes a meaningful interaction with data sets that contain many objects difficult. This is especially true
in in-situ visualization scenarios, where direct interaction with the data can be challenging.

We tackle this problem with an approach that employs a deferred visualization pipeline to divide the visualization computation between a server and a client. Our thin client is built on web techno-
logies (HTML5, JavaScript) and is integrated with the JQuery and D3 libraries to enable interactive data-driven visualizations. An intermediate representation of objects is introduced which
describes the data that is transferred from the server to the client on request. The server side carries out the computationally expensive parts of the pipeline while the client retains extensive
flexibility by performing object modification tasks without requiring an expensive re-rendering of the data.

The server renders the Volume Object Model in three consecutive steps. First, the volume is segmented into ob-
jects using a ViSlang [2] script, which allows for the specification of customized segmentation parameters.

Then, the screen-space bounding boxes of each object are evaluated in a first pass over the volume. This allows
us to create render targets for each of the objects.

The objects are rendered to their respective render targets in a second pass over the volume independent of oc-
clusion. Additionally, we gather metadata (e.g. scalar aggregates, geometric properties, topological information)
about the objects.

OUR SYSTEM
We introduce a novel intermediate representation for deferred visualization.
The Volume Object Model (VOM) consists of metadata and pre-rendered vi-
sualizations of each object in a data set.

In order to guarantee client-side interactivity even for large data sets, the
client receives only the metadata for a pre-visualization step.
By allowing the user to perform filtering, the complexity of the requested
visualization data can be reduced from the client side before streaming any
image data.

The object images are requested from the server on demand. In combina-
tion with the metadata, the final visualization can then be reconstructed
from these images. Moreover, all objects in the visualization can be investi-
gated and programmed by the user via an integrated console. No additional
streaming of content is necessary unless the viewpoint or server-side vi-
sualization parameters are changed.

Our implementation is integrated with the VolumeShop [1] visualization
framework. The volume rendering is performed using OpenCL.

The client (screenshot below) is accessed through any web browser.

INTERFACE & RESULTS
On the client side, each object is rendered to an HTML5 canvas element, which can be modified through JavaScript.

VOLUME OBJECT MODEL

REFERENCES
[1] Stefan Bruckner and M. Eduard Gröller. VolumeShop: An interactive system for direct volume illustration.
 In Proceedings of IEEE Visualization 2005, pages 671–678, 2005.
[2] Peter Rautek, Stefan Bruckner, M. Eduard Gröller and Markus Hadwiger. ViSlang: A system for interpreted domain-specific languages for scientific visualization.
 In IEEE Transactions on Visualization and Computer Graphics 20, pages 2388–2396, 2014.
[3] Anna Tikhonova, Carlos D. Correa, and Kwan-Liu Ma. Visualization by proxy: A novel framework for deferred interaction with volume data.
 In IEEE Transactions on Visualization and Computer Graphics 16, pages 1551–1559, 2010.

DEFERRED VOLUME VISUALIZATION

Diplomarbeitspräsentation

Anna Frühstück

Decoupling Object Manipulation from Rendering
in a Thin Client Visualization System Technische Universität Wien

Institut für Computergraphik und Algorithmen
Arbeitsbereich Computergraphik

Betreuer: Ao.Univ.-Prof. Dipl.-Ing. Dr. M. Eduard Gröller

CONTACT a.fruehstueck@gmail.com

This thesis was written in cooperation with the King Abdullah University of Science and Technology (Thuwal, Saudi Arabia)

Visualization Pipeline

Visualization Pipeline with deferred rendering

Remote Visualization Pipeline with deferred mapping and rendering stages

The architecture of our system. The server generates the Volume Object Model and
transmits it to the web client on request through a socket-based streaming solution.

In deferred rendering, intermediate results of the rendering pipeline are
written to buffers which are taken into account in a later stage for the ge-
neration of the final image.

Previous deferred visualization pipelines generated proxy images as a de-
ferred representation for volume data [3]. Different types of proxies allow
for a deferral of specific operations on the volume, such as relighting or li-
mited viewpoint changes.

Our approach proposes a pipeline that defers object-level manipulations
to the client-side by transmitting an intermediate volume representation.

Reconstructed visualizations of a decorated Christmas tree. On the left, we draw the borders of each object in
the visualization. In the middle, we sort and arrange the objects according to their size. We can create complex
visualizations from the objects and their metadata, e.g. arranging objects into a scatterplot according to specific
features as shown on the right. Here, we plot voxel count vs. density and use each object as a glyph in the scat-
terplot. Our system allows the user to program object level manipulations on the client side with only a few lines
of code.

Our system enables the user to script modifications on the object level. Objects can be addressed by their unique
ID or by classes, which can be assigned to objects. This permits users to modify individual objects as shown in the
examples above, or write functions to query, filter, and apply modifications to groups of objects. In summary, our
approach allows for the execution of fully interactive object-related visualization tasks in a web browser without
triggering an expensive re-rendering on the server.

Object Outlines Sorting of Objects Scatterplot Visualization

Segmentation Boundary Computation VOM Generation

