
Parameter Spaces of Cups
Cluster-based Exploration of a Geometry

Generator’s Parameter Space

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Michael Beham
Matrikelnummer 0726417

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Johannes Kehrer, PhD

Wien, TT.MM.JJJJ
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Parameter Spaces of Cups
Cluster-based Exploration of a Geometry

Generator’s Parameter Space

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Michael Beham
Registration Number 0726417

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Johannes Kehrer, PhD

Vienna, TT.MM.JJJJ
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Michael Beham
Kölblgasse 14 Tür 11, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

In den folgenden Zeilen möchte ich mich bei allen Menschen bedanken, welche mich während
der Diplomarbeitet unterstützt haben. Ohne deren Unterstützung wäre die Durchführung der
Arbeit nicht möglich gewesen.

Zuerst möchte ich mich bei meinem Betreuer Johannes Kehrer bedanken. Seine ermunternde
Art, sein großer Einsatz, sowie sein umfangreiches Wissen haben mich umfangreich während
der Diplomarbeit unterstützt. An dieser Stelle möchte ich ihm auch nochmals zu seiner Vermäh-
lung gratulieren und im viel Erfolg für seine wissenschaftliche Laufbahn wünschen. Außerdem
möchte ich mich bei Meister Eduard Gröller bedanken. Er lektorierte nicht nur die Diplo-
marbeit, sondern hat mit zahlreichen Ratschlägen die Diplomarbeit umfangreich bereichert.
Desweiteren hat er auch mich ermuntert, diese Arbeit bei der IEEE VIS 2014 einzureichen,
wo ich diese Arbeit vor der internationalen Visualisierungs-Community im Bereich Visual An-
alytics Science and Technology (VAST) präsentieren konnte [8].

Diese Diplomarbeit wurde gemeinsam mit dem AIT - Austrian Institut of Technology
durchgeführt. Besonders möchte ich mich bei meinem Projektleiter Wolfgang Herzner be-
danken, welcher mir die Chance gab, in seiner innovativen Forschungsgruppe zu arbeiten. Gemein-
sam mit den Arbeitskollegen Markus Murschitz und Oliver Zendel, welchen ich ebenfalls
meinen Dank ausspreche, gab mir Wolfgang nicht nur sehr wertvolles Feedback, sondern hat
meine Anwendung auch evaluiert. Ohne der kollegialen Arbeit in der Forschungsgruppe hätte
ich weder ausreichend Wissen über das behandelte Anwendungsgebiet, noch das Wissen über
die besonderen Erfordernisse erwerben können.

Außerdem möchte ich mich an dieser Stelle bei meiner Familie bedanken. Ohne deren
Unterstützung hätte ich weder das Studium absolvieren, noch die Diplomarbeit durchführen
können. Besonders möchte ich aber an dieser Stelle meine Eltern Regina und Leopold Beham
hervorheben. Sie finanzierten nicht nur meine akademische Ausbildung, sondern haben mich
über das gesamte Studium, besonders in schwierigen Situationen, unterstützt. Ihre umfang-
reiche Unterstützung ermöglichte überhaupt meine akademische Ausbildung. Auch möchte ich
mich bei meiner Schwester Birgit bedanken. Sie diente nicht nur als Vorbild für schulische
Leistungen, sondern hat mir auch Mut in schwierigen Situationen zugesprochen und mich mit
guten Vorschlägen unterstützt.

Nicht vergessen möchte ich meine Freunde und Studienkollegen, welche mich während des
Studiums begleitet haben. Besonders hervorheben möchte ich aber meine Mitbewohner Elisa-
beth Staudigl, Fabian Ladurner, Dominik Hörner und Myriam Boubaker. Sie sind nicht
nur meine Mitbewohner und Freunde, sondern waren auch immer mit Rat zur Seite.

iii

Abstract

Geometry generators are commonly used in video games and evaluation systems for computer
vision to create geometric shapes such as terrains, vegetation or airplanes. The parameters of
the generator are often sampled automatically which can lead to many similar or unwanted ob-
jects. In this thesis, we propose a novel visual exploration approach that combines the abstract
parameter space of the generator with the resulting geometric shapes in a composite visualiza-
tion. Similar 3D shapes are first grouped using hierarchical clustering and then displayed in an
illustrative parallel coordinates or scatterplot matrix visualization. This helps the user to study
the sensitivity of the generator with respect to its parameter space and to identify invalid regions.
Starting from a compact overview representation, the user can iteratively drill-down into local
shape differences by clicking on the respective clusters. Additionally, a linked radial tree gives
an overview of the cluster hierarchy and enables the user to manually split or merge clusters. We
evaluate our approach by exploring the parameter space of a cup generator and provide feedback
from domain experts.

v

Kurzfassung

Geometriegeneratoren werden häufig in Videospielen und Evaluierungssystemen für Maschi-
nelles Sehen eingesetzt um 3D Geometrie wie Terrains, Vegetation und Flugzeuge zu erstellen.
Die Generatoren werden durch Parameter gesteuert. Diese werden oft automatisch abgetastet,
um verschiedenste Variationen eines Objektes zu erzeugen. Dies führt aber oft zu sehr ähnli-
chen oder unerwünschten Objekten. In dieser Diplomarbeit wird ein neues Visualisierungssys-
tem vorgestellt, welches die Analyse des abstrakten Parameterraumes eines Geometriegenerators
gemeinsam mit den resultierenden Geometrieobjekten mithilfe neuer Visualisierungen darstellt.
Ähnliche Objekte werden zunächst mittles Hierarchischem Clustering gruppiert und anschlie-
ßend in illustrativen Parallelen Koordinaten dargestellt. Dies ermöglicht dem/der BenutzerIn die
Sensitivität einzelner Parameter zu analysieren und Regionen im Parameterraum zu identifizie-
ren, welche unerwünschte Ergebnisse liefern. Die Visualisierung startet mit einer kompakten
übersichtlichen Darstellung und der/die BenutzerIn kann interaktiv die lokalen Unterschiede
durch klicken auf den gewünschten Cluster analysieren. Zur erhöhten Übersichtlichkeit wird
auch eine radiale Baumdarstellung der Cluster angeboten. Desweiteren können Cluster vereinigt
und gesplittet werden. Das System wurde von Fachleuten evaluiert, wobei ein Tassengenerator
analysiert wurde.

vii

Contents

1 Introduction 1
1.1 Problem Statement . 3
1.2 Contribution . 5
1.3 Thesis Structure . 5

2 State of the Art 7
2.1 Visualization and Exploration of a Set of Geometric Shapes 8
2.2 Parameter Studies . 13
2.3 Conclusion . 14

3 Methods 17
3.1 Visualization of Multi-Dimensional Data . 18
3.2 Small Multiples . 19
3.3 Scatterplots . 20
3.4 Parallel Coordinates and Starplots . 22
3.5 Visualization of Hierarchical Data . 25
3.6 Composite Visualizations . 31
3.7 Interaction Techniques . 33
3.8 Clustering and Similarity Measurement . 37

4 Overview of Cupid 43
4.1 Data Generation and Pre-Processing . 44
4.2 Coregistration and Hierarchical Clustering . 45

5 Composite Visualization of Abstract and Spatial Data 49
5.1 Composite Parallel Coordinates . 50
5.2 Composite Scatterplot Matrix . 53
5.3 Visualization of Hierarchical Clustering . 57
5.4 Nested Icons . 59
5.5 Additional Features . 62

6 Geometric Properties 63
6.1 Derived Geometric Properties . 64
6.2 Visualization of Geometric Properties in Parallel Coordinates 65

ix

6.3 Visualization of Geometric Properties in the Scatterplot matrix 66

7 Implementation 67
7.1 Overview of the System . 67
7.2 System Components . 70
7.3 Cup Generator . 72

8 Results 75
8.1 Analysis of the Effect of the Parameters . 75
8.2 Query-based Exploration of the Geometry Generator’s Parameter Space 77
8.3 Finding Similar 3D Shapes and the Corresponding Parameter Values 78
8.4 Finding Invalid and Implausible 3D Shapes 78
8.5 Evaluation of the Influence of Parameters . 80
8.6 Sensitivity Analysis of Parameter Regions . 82
8.7 Evaluation with Domain Experts . 84

9 Discussion 87
9.1 Similarity-based Clustering . 87
9.2 Combination of Multi-Dimensional Visualizations, Hierarchical Layout, and Hi-

erarchical Clustering . 89
9.3 Visualization of the Multi-Dimensional Parameter Space 90
9.4 Hierarchical Layout . 97
9.5 Nested Icons . 99
9.6 Geometric Properties . 101
9.7 Performance . 103
9.8 Conclusion . 104

10 Summary and Future Work 105
10.1 Summary . 105
10.2 Future Work . 106

A Additional material 109
A.1 Components . 109
A.2 Properties of the Visualizations . 112

Bibliography 117

x

CHAPTER 1
Introduction

In the recent years, computer vision (CV) applications have found their way out of science
laboratories and have become part of everybody’s life. Cars are equipped with advanced driver
assistance systems, drones observe public places to ensure the public safety, and robots are used
for quality control in factories. Computer vision applications act in the real world, and a safe
operation mode is very important to prevent accidents and malfunctions of the robots. So, testing
of the CV systems is of particular importance. If every test case takes place in the real world,
this task is very expensive and time intensive. The obvious idea is to use computer-generated
simulations to reduce the amount of time to test and the costs.

Figure 1.1: The function plot compares hand-made and procedural modeling. If a high quality
or many shapes is needed, procedural modeling is useful [71].

1

Figure 1.2: Categories of airplanes.

To test a CV system, usually a computer generated 3D scene is created. This scene consists
of different geometric shapes, which illustrate the simulated world. Optionally, the shapes are
animated. Then, a test-case can be performed using the generated scene. Generating each test
case by hand is time intensive. To speedup this process a test case simulator is often used. For
evaluation systems of computer vision a common test case is testing different variations of an
object (e.g., different cars). The objects can be created by an artist. However, creating many
different variations of an object is time-consuming. A more reasonable approach is to create the
shapes with procedural modeling.

Procedural modeling is commonly used for the automatic creation of 3D models [91]. Such
techniques are used to create models, which are too complex to build for a person like natural
objects such as clouds [42], trees [79] and landscapes. However, human-made objects can also
be created like cities, buildings, and cars [75]. As shown in Figure 1.1 procedural modeling is
useful, if many different variations of an object, or very complex models have to be generated.
So, this technique is also used in other application areas. It is commonly used in video games,
and all other field, where photorealistic worlds should be generated (movies, commercials, etc.).

Procedural modeling refers to a wide variety of techniques [91]. For creating landmarks
or clouds usually a noise generator [84] or simulation techniques are used [42]. Flowers and
trees are created using L-Systems, which consist of some basic shapes and a grammar that
describes the overall property of the model [79]. Similar techniques are used to create houses
and cities [75]. In this thesis, an application using procedural modeling is called a geometry
generator.

Even through the shapes are generated with simulations, noise generators, or L-Systems, a
parameter space is often used to control the algorithm. Changing of the parameter results in
different variations or complexities of the resulting shapes. In this thesis, we present a novel
visualization system to analyze the parameter space of a geometry generator. Using our new

2

Figure 1.3: (a) Some categories in the cup data set. (b) some cups with different parameter
settings of parameter convexity

tool enables the user, to get new visual insights of the geometry generator’s behaviour. In the
next section, we give a detailed problem statement.

1.1 Problem Statement

Geometry generators create polygonal meshes that approximate a specific domain of geometric
shapes, e.g., cars, airplanes or vegetation. Therefore, they are often used in video games to gen-
erate realistic worlds. For example, every tree in a 3D scene has a different shape by varying the
parameters of the generator [79]. Computer vision (CV) evaluation systems also use geometry
generators to create virtual test cases, for example, to evaluate the recognition of different shapes
of an object [104].

Geometry generators usually have a set of parameters that determine the shape of a generated
object. A parameter can be a categorical (e.g., engine type) or continuous attribute (e.g, size of
the wing). From a mathematical viewpoint, a geometry generator is a function f: Rn → Rm,
where n is the number of parameters, and m is the dimensionally of the resulting shapes. In our
case, we use 3D shapes, but geometry generators can also create 2D or time-varying shapes [79].
For creating shapes, the parameter space of a generator is usually sampled automatically. A
general goal in this context is to understand the relations between the parameter space and the
resulting geometric shapes [11]. In particular, we identify three tasks for analyzing geometry
generators:

3

Figure 1.4: Some examples of the cup data set: (a) shows examples of unwanted cups. The top
cup looks like a beer mug. The bottom cup has a very big handle, which results in an unstable
cup. (b) shows the result of the convexity side parameter. A constant change of the parameter
does not result in a constant change of the shape.

Task 1: Find similar 3D shapes and the corresponding parameter settings:

The user wants to identify which regions of the parameter space create certain types of similar
3D shapes. In the case of airplanes, for example, different types of airplanes would be mili-
tary jets, airliners, and small airplanes. Variations within the type military jet can be MIG-15,
MIG-29, and Sukhoi Su-27 (see Figure 1.2). However, we are typically not interested in small
variations of the geometric shape, for instance, whether an airplane has round or squared win-
dows. Examples of different cup categories are shown in Figure 1.3a.

Task 2: Find errors and implausible 3D shapes:

Geometry generators can produce (physically) implausible or unwanted results. For example,
the appropriate profile of a wing is important for the ability of the plane to fly. The generated
meshes may also contain errors such as holes or self intersections of the surface. However,
not only one parameter region can produce unwanted results but a combination of parameters
too. Our approach helps the user to identify such problematic regions in the parameter space by
directly relating the parameters of the generator and the created 3D shapes in the visualization.
Examples of invalid cups are shown in Figure 1.4a.

Task 3: Determine the sensitivity and influence of parameters on the result:

It is often difficult to predict how changes in one or more of the parameter values influence
the resulting geometric shapes. Changes may be global or local, depending on the parameter
(e.g., changing the type of an airplane vs. changing the number of windows). Additionally, the
sensitivity of a parameter may not be linear. That is, for certain regions of the parameter space

4

even small variations may have a drastic effect on the resulting 3D shapes, while changes in less
sensitive regions may have little to no effect on the created geometry. Examples of different cups
of parameter convexity are shown in Figure 1.3b and Figure 1.4b.

1.2 Contribution

In their previous workflow, our domain experts of testing computer vision systems (CV) would
manually study thumbnails of the generated 3D shapes in an image gallery and look up the
corresponding parameter settings in a table. This is cumbersome and time-consuming, especially
in the case of many generated 3D shapes.

Motivated by the tasks described above, we introduce a new approach called Cupid. We
want to efficiently explore the results of a geometry generator. We propose a novel visual explo-
ration approach that combines the abstract parameter space of the geometry generator with the
resulting geometric shapes in a composite visualization. The abstract parameter space is visual-
ized using a composite parallel coordinates or a composite scatterplot matrix approach. We nest
the geometric information using icons. This combination helps the user to study the sensitivity
of the geometry generator with respect to its parameter space and to identify invalid regions.
We use a hierarchical clustering approach for preventing visual clutter. Starting from a com-
pact overview representation the user can interactively drill-down a cluster of interest to explore
all details. Additionally, we use a composite radial tree approach to visualize the hierarchical
clustering.

In this context, this thesis represents a close collaboration between visualization researchers
and domain experts (one of the paper authors has developed both a geometry generator for cups
and Cupid). The contributions of this work are as follows:

• We propose a composite visualization that combines both the abstract parameter space of
the geometry generator and the resulting 3D shapes in a single visualization. This enables
the user to study relations between the parameter space and the created geometry.
• Adapting hierarchical clustering, the user can interactively drill-down into groups of similar

3D shapes (compare to Task 1).
• We evaluate our approach according to Task 1-3 by exploring the results of a cup generator

and provide feedback from domain experts.

1.3 Thesis Structure

This thesis is organized as follows: In the next chapter the state of the art of the exploration of
a set of geometric shapes and parameter studies is presented. In Chapter 3 the basic methods,
which are used, are presented, and their implementation is explained. In Chapter 4 a concep-
tional overview of Cupid is given and the preprocessing steps are presented. The composite
visualizations are in focus of Chapter 5 and the geometric properties in Chapter 6. Chapter 7
gives an overview of the system architecture, and all relevant implementation details are dis-
cussed. The results are presented in Chapter 8. In Chapter 9, we discuss our solution in detail.
In Chapter 10 a summary is given, as well as future perspectives of research.

5

Parts of these thesis are based on: M. Beham, W. Herzner, M.E. Gröller and J. Kehrer:
Cupid: Cluster-Based Exploration of Geometry Generators with Parallel Coordinates and Radial
Trees, IEEE Transactions on Visualization and Computer Graphics, 2014 [8].

6

CHAPTER 2
State of the Art

This chapter covers the most sophisticated works of the visualization and exploration of a set of
geometric shapes and parameter studies. Related work to the exploration of a set of geometric
shapes is presented in Section 2.1. In Section 2.2, several works, which enable parameter studies,
are discussed. A conclusion is given, and open problems are discussed in Section 2.3.

Figure 2.1: An example of a retrieval system: The resulting 3D shapes are similar to the user-
drawn 2D shape [27].

7

Figure 2.2: Example of context-based searching [37]. The results depend on the location and
size of the query box.

2.1 Visualization and Exploration of a Set of Geometric Shapes

The visualization and exploration of a set of geometric shapes are still an active area of research.
While some works try to improve the creation process of a 3D scene, other techniques support
the user by creating 3D shapes or provide techniques for analyzing simulations. So, recent
works focus primarily on the exploration of many heterogeneous geometric shapes of different
categories (for creating 3D scenes), and the exploration of geometric shapes within a category
(for creating 3D shapes, analyzing simulations).

In the following, several querying techniques for the exploration of a set of 3D shapes are
presented, as well as techniques that enable to explore a set of shapes by manipulating a template
object. Then, some approaches, which deal with the parameter space of a set of geometric
shapes, are presented, and in the last section some open problems are discussed.

Querying-based Exploration

Several researchers have proposed methods for exploring of a set of geometric shapes by query-
ing. A common method is to (automatically) collect text keywords to the 3D shape and offer
a keyword search (see Fisher and Hanrahan [37] for an overview). Such applications enable to
enter a text query. Then, a set of geometric shapes is returned. The geometric shapes are ranked
based on how close the query matches a set of tags associated with the object [37].

If the user looks for a particular shape, keywords, describing the shape are hard to find.
Some research proposes methods using sketches of 3D shapes [27]. The user gives an example
(sketch or 3D shape) and a similarity-based query returns a list of similar geometric shapes.

8

Figure 2.3: Exploring collections of 3D shapes [72]: (a) The database of similar 3D shapes. A
analysis automatically extracts a deformation model that characterizes variability in a template
shape. (b) The deformation model provides a constrained manipulation interface for exploring
the collection. (c) The manipulation versus the resulting shapes.

Such techniques reduce the geometric shapes into a feature space that is used to compare two
shapes. An example is given in Figure 2.1. This method is typically used for retrieval systems.

An alternative query-based approach is presented by Fisher and Hanrahan [37]. Their ap-
proach provides context-based queries. Usually, the user searches for a shape that is well suited
for a particular 3D scene. Instead of querying with keywords, sketches or examples, their sys-
tems suggest shapes, which are well suitable for the created 3D scene. The user specifies a
region in the scene, where the shape should be placed (using a simple bounding box). Then, the
system returns a list of well-suited shapes. An example of this application can be seen in Figure
2.2. The results differ according to the place and the size of the bounding box.

Exploration of Shapes using Creation and Manipulation

While keywords and shape examples enable to choose between a broad categorization (e.g.,
distinguishing between airliners and cars) the exploration of finer scale variations within a cate-
gory is still a challenge. Funkhouser et al. [39] enable to create new shapes using parts of other
shapes. The user defines a region of interest, which should be replaced. Then, their system
searches in a large database of 3D shapes to find alternative parts. The user selects the desired
part, which is then cut out of the shapes with intelligent scissoring. The scissored parts are then
used to create a new geometric shape [39]. A similar system is presented by Xie et al. [103].

Umetani et al. [96] present an interactive framework, which checks the validity of a 3D
shape, while creating/editing. They define several constraints that the generated 3D shape has
to fulfill (e.g., stability). If one or more constraints are violated after a user manipulation, the
system generates multiple suggestions to restore the validity of the shapes. The advantage of

9

Figure 2.4: Adding increasing amounts of ‘sporty’ to an initial vehicle [92].

their system is that the user can focus on the esthetic aspects of the design while the system
helps to achieve physical plausibility.

Ovsjanikov et al. [72] and Smith et al. [92] enable the exploration of a set of 3D shapes using
template objects. The user can deform a template model, and the corresponding object is shown.
An example of this approach is shown in Figure 2.3. Coffey et al. [30] extend this technique to
explore a set of simulations or visual effects. By dragging parts of an object, the user can explore
different simulations.

Parametric Spaces of 3D/4D shapes

Besides the exploration of 3D geometric shapes, in some applications the exploration of shapes
with additional abstract properties is important. For example, Smith et al. [92] add parameters
like sporty and weight to a set of cars. The user can vary the attributes to generate new shapes.
An example of the effect of sporty is shown in Figure 2.4. A similar system is created by
Blanz and Vetter [15] to model 3D faces. Just like Smith et al. they use a set of morphable
shapes to vary a shape. Each shape can be adjusted by changing the corresponding parameters.
Their system enables to reconstruct 3D faces from single images. Then, photo-realistic image
manipulations can be performed in the 3D space by changing the corresponding parameters.
Allen et al. [1] extend this approach to entire human models. They reconstruct a space of body
shapes from 250 scanned human figures using a sophisticated registration algorithm. Examples
of the parameter space of human bodies are shown in Figure 2.5.

Killian et al. [61] presents another approach for exploring a shape space. The input shape
space is created by spanning a number of input shapes. This input space is projected on a
2D polygon by metric multidimensional scaling. So, each corner of the 2D polygon represents
an input shape. The user can explore the shape space by drawing a curve on the 2D polygon.
Each point of the curve results in an output shape. The output shapes are created by using
interpolation between and exploration from the input shapes [61]. Note that Sloan et al. [90] use
a similar idea for creating new 3D shapes. New 3D shapes are created by interpolation between
several examples.

Instead of visualizing a parameter space of shapes, Coffey et al. [30] and Bruckner and
Möller [21] deal with the parameter space of simulations. Coffey et al. [30] visualize the at-
tributes of a simulation using a wing plot. The simulations can be selected with varying the
attributes within the wing plot. Bruckner and Möller [21] present a result-driven exploration

10

Figure 2.5: The parameter space of human bodies [1]. The bodies vary in size and weight.

approach for exploring physically based multi-run simulations. They split animations (created
with different parameter settings) into similar segments. The segments are then grouped using a
density-based clustering algorithm. There approach supports the user in finding of a parameter
setting to achieve a specific simulation behaviour.

Marks et al. [68] introduce with Design Galleries a general concept for exploring multi-
dimensional parameter spaces. Their system projects a multi-dimensional parameter space us-
ing multi-dimensional scaling. As basic element, they represent an object by little thumbnails.
Additionally, some results are shown on the side of the visualization, which are linked with lines
to the corresponding thumbnail. The focus of their application is to find good parameter settings
for an algorithm.

Talton et al. [93] present a collaborative tool to get high quality and alternative models of
a geometry generator depending on a given example. They use a linked representation of the
modeling tool and a map that shows alternative 3D shapes. The 3D shapes are placed in a
semantic map depending on the similarity. The map can be adjusted by an administrator. An
example of the semantic map is shown in Figure 2.6. To detect high-quality models in the
parameter space, the activity of the user is tracked additionally.

The idea of using abstract data to explore a set of spaces is also used by Busking et al. [24].
They enable the exploration of 3D shapes using a 2D scatterplot and replace the data points with
3D shapes. Additionally, linked views for the evaluation of a shape and comparison of different
shapes are provided.

Exploration of Abstract Data using Composite Views

Balabanian et al. [4] extends the idea of combining abstract and spatial data to hierarchical data.
They nest the spatial data from a computer tomography into a graph representing the hierarchy
of the body parts. An example of their approach is shown in Figure 2.7. Schmidt et al. [83]
perform a hierarchical clustering in order to identify differences between sets of images. This
approach also enables to drill-down into the hierarchy in order to evaluate the data set.

11

Figure 2.6: Comparision between (a) principal component analysis (PCA), (b) multi-
dimensional scaling (MDS), and (c) the semantic map presented by Talton et al. [93].

Open Challenges

Almost all applications presented in the previous section use a similarity measurement. As
mentioned by Ovsjanikov et al. [72] measuring similarity is still an open problem. Finding a
good similarity measurement is very difficult. While some methods perform well for defining
the similarity for a broad classification of objects, others perform well for defining the similarity
within a category. A lot of research in defining the similarity between objects has been done in
the last years. A solution, which works for all application areas is still not found. We discuss
this problem in more detail in Section 3.8.

Another open challenge is to perform a detailed study of the parameter space. The works
focus primarily on the exploration of a set of geometric shapes and using abstract parameters
mainly to select shapes. Analyzing the parameter space of an underlying geometry generator
is not studied sufficiently. We discuss the usefulness of the presented work in more detail in
Section 2.3.

Our work differs from the approaches described above in that we focus on a more complex
parameter space. We provide a new integration of spatial data into an abstract space using paral-
lel coordinates. We not only explore a set of shapes, but also provide techniques for evaluating
the complex relationship between the parameter space and the generated shapes. The thesis uses

12

Figure 2.7: Hierarchical visualization of segmented head and neck. The cervical curve is fo-
cused by showing its relative position in the neck and highlighting its substructures [4].

methods from parameter studies of other application areas to provide methods of analyzing the
parameter space of a set of shapes.

2.2 Parameter Studies

Parameter studies are successfully used in several application areas. Usually, the parameter
space is studied in a systematic way by varying parameters.

One of the first approaches is HyperSlice [97]. HyperSlice is created to study scalar func-
tions with a multi-dimensional input space. Similar to a scatterplot matrix, the multi-dimensional
parameter space is visualized by orthogonal 2D slices, showing each combination of two param-
eters. In contrast to a scatterplot matrix, only a part around a focal point is shown. The user
navigates through the parameter space by manipulation of the focal point. The idea of Hyper-
Slice is extended by DosSantos and Brodlie [33], Piringer et al. [76] and Berger et al. [11]. Dos
Santos and Brodlie [33] replace the matrix layout with a graph interface. Each node represents a
1D, 2D or 3D plot. Moreover, they provide multiple focal points. Piringer et al. [76] also builds
upon the concept of HyperSlice. They introduce HyperMoVal to validate regression models.
HyperMoVal combines the multi-dimensional functions and known validation data [76]. Berger
et al. [11] extend HyperMoVal for analyzing the continuous parameter space of a simulation.
They map the local neighborhood around the focal point in the input parameters to the output
domain. A guided navigation enables to predict target ranges within a small input region as well
as a sensitivity analysis.

Booshehrian et al. [17] presents Vismon an application to support data analysis of fisheries
management. They provide a sensitivity analysis, comprehensive and global trade-offs analysis,
and an approach to visualize uncertainty of the underlying simulation model [17]. Torsney-Weir
et al. [94] present with Tuner an application to find well-suited parameter settings for image seg-
mentation algorithms. Pretorius et al. [78] use a similar idea to determine the parameter settings

13

Figure 2.8: Visualization of 2D funcion ensembles [77]: (a) the member-oriented overview em-
ploying feature-based placement (b) for 524 2D functions; (c) the mid-level focus of 31 selected
members; (d) the domain-oriented overview showing the point-wise range of the selected subset;
(e) the 3D surface plot of a single member. The arrows indicate key interactions for linking the
parts [77].

of image analysis algorithms. The earlier presented techniques from Bruckner and Möller [21]
and Marks et al. [68] also use the ideas of parameter studies to find good parameter settings.

Finally, Piringer et al. [77] present an approach for analyzing 2D function ensembles. The
2D functions are represented by icons that are nested into 2D scatterplots, which depict the
simulation parameters. The icons can be analyzed at different levels of detail using brushing.
An example of their system is shown in Figure 2.8. While their approach uses 2D scatterplots
to represent the parameter space of the simulation, we deal with a higher dimensional parameter
space using parallel coordinates. Additionally, we focus on the analysis of similar shapes using
hierarchical clustering.

In the literature, there are a lot of other parameter studies. Also, other approaches use mul-
tiple linked views to study the complex relationship between input and output of a simulation
model [57, 58, 69].

2.3 Conclusion

In Section 1.1, we present three tasks for exploring the results of a geometry generator. The first
task is to categorize the shapes and to find the corresponding parameter values. Then, invalid
and unwanted shapes should be detected. The third task is to perform a sensitivity study of the
parameter space. In the following, the presented works are analyzed concerning their usefulness
for the task.

14

The first task is to find similar geometric shapes and to find the corresponding parameter
settings. Finding similar 3D shapes can be done by using the querying methods like keywords
or proxies of shapes. However, these techniques do not provide an overall visualization. The
techniques using template objects also miss an overview representation. However, an overview
visualization of the shapes is very important because we want to compare many shapes.

Other techniques like Design Galleries [68] and Talton et al. [93] provide such an overview
using a map representation. While Design Galleries use the well-known multi-dimensional scal-
ing (MDS), Talton et al. [93] use a semantic approach to layout the map. The MDS layout
algorithm projects the parameter space to a 2D map, with preserving the global distances be-
tween the shapes. The distance between two shapes is defined by their similarity. So, a cluster
of similar shapes is located in a small region of the map. The semantic map, presented by Talton
et al. [93] , sorts the shapes by similarity. Zooming is supported. While at the beginning only an
overview visualization is given, the user can explore details by zooming into a specific region.
The map visualization is very useful to categorize the shapes. With a principal components
analysis (PCA), and the MDS map, clusters of similar shapes are located in a small area. In the
semantic map visualization, a representative of a cluster is shown in the overview visualization.
Examples of the PCA, MDS, and semantic map is shown in Figure 2.6.

If the parameter space is categorized, the parameter regions have to be identified. Some
approaches use additional linked representations to visualize the corresponding parameter set-
tings. For instance, Coffey et al. allow selecting simulations with a wing plot. Talton et al. [93]
provide a semantic map, which is linked with the corresponding geometry generator. If the user
selects an object in the semantic map, the parameter settings of the object are passed to the ge-
ometry generator. The user can explore the geometry generator by small modifications of the
parameters.

The second task is to find invalid objects. While Umetani et al. [96] present an approach,
which checks the validity of shapes at runtime, the other approaches do not provide any support
for this. In these approaches, the users have to do a manual checking of the validity of geometric
shapes. The collaborative approach from Talton et al. [93] may support this task because they
track the popularity of shapes. Invalid objects would not be used after a manual checking by the
artists. So, the application would recommend other geometric shapes.

The third task is to perform a sensitivity study and to determine the influence of parameters.
The methods presented in Section 2.1 are not able to perform such tasks. Most applications
provide no or only a few methods to explore the abstract parameter values. Only Busking et al.
[24] provide a scatterplot to analyze the parameter space. However, a scatterplot only visualizes
two parameters. Comparing different parameters with only one scatterplot is very hard.

The presented works for the exploration of a set of 3D shapes are partially usable to analyze
our tasks. Especially, the applications do not provide methods for sensitivity studies. In contrast
to the exploration of 3D shapes, the sensitivity analysis is a very important topic in parameter
studies research. For example, a great application to study sensitivity is presented by Berger
et al. [11]. They propose a linking and brushing method to analyze 1D CFD simulations (e.g.,
for timing of fuel injection) [11]. Using linking and brushing enables to follow input samples
to the corresponding output and vice versa. The linking and brushing method enables an easy
sensitivity study. If the region in the input space result in a small region in the output space, the

15

input space is not sensitive. If the region in the input space covers a large region in the output
space, the input space is sensitive. However, parameter studies are usually done to analyze
simulations or an algorithm. Analyzing a set of geometric shapes needs a novel visualization
system.

In summary, the most sophisticated works of exploring a set of geometric shapes miss meth-
ods to analyze the corresponding parameter space. Primarily, the used techniques focus to ex-
plore shapes using querying and modifying of template objects. The corresponding parameter
values are visualized using linked views, but do not provide methods to do research in more
detail, like a sensitivity analysis. In contrast, the examples of parameter studies provide great
techniques to analyze a parameter space. The main idea of our application is to combine the
techniques from the parameter studies and the exploration of geometric shapes. While, most pa-
rameter studies analyze simulations, we analyze the parameter space of a geometry generator.

16

CHAPTER 3
Methods

In this chapter the basic techniques are presented that are used to study the complex parameter
space of the geometry generator. The created application is called Cupid, and it is presented
in the next chapters. An overview of Cupid is given in Figure 3.1. The application visualizes
the abstract multi-dimensional parameter space, as shown in Figure 3.1a. Methods to represent
multi-dimensional data are the focus of Section 3.1. Very important techniques, such as small
multiples, scatterplots, and parallel coordinates are presented in Sections 3.2-3.4. In order to
ensure a good readability, the amount of data to display has to be reduced. Cupid groups similar
3D shapes with a hierarchical clustering approach. Figure 3.1b shows a representation of the

Figure 3.1: Overview of Cupid. (a) Composite parallel coordinates are shown that directly relate
the parameter space of a geometry generator and the clusters of similar generated 3D cups. (b)
Radial tree depicting the hierarchy of the clusters. (c) If a user clicks on an icon, a detail window,
showing all members, is displayed.

17

hierarchical clustering. Methods to display hierarchical data are presented in Section 3.5. Both
visualizations nest the 3D shapes using icons. This is an example for a composite visualization.
This design pattern is used to combine different visualizations in one geometric space [54].
We give an overview of composite design patterns in Section 3.6. Both layouts are linked.
Interaction in one visualization is also shown in the other representation. In Section 3.7 we
present several interaction methods. In Figure 3.1c the members of a cluster are shown in a
detail window. Cupid is using a similarity-based clustering approach to group similar shapes.
More information about measuring the similarity of geometric shapes and clustering techniques
is given in Section 3.8.

3.1 Visualization of Multi-Dimensional Data

An important part of Cupid is the visualization of the multi-dimensional abstract parameter
space. The effect of each parameter also depends on the other parameters. It is not sufficient
to visualize only one dimension of the higher dimensional data. False interpretations of the
higher dimensional data can occur (compare it with mix effects presented by Armstrong and
Wattenberg [3]). We need visualization techniques to display the complete multi-dimensional
parameter space. However, the visualization of higher dimensional data is a challenging prob-
lem. According to Keim [59], the most sophisticated methods for visualizing multi-dimensional
data can be categorized as follows:

Standard 1D/2D/3D visualizations / Small multiples A common method to display multi-dimensional
data is the use of standard 1D/2D/3D visualization techniques. The basic idea is to apply
popular techniques, which are used to visualize 1D/2D/3D data, for representing a multi-
dimensional space [59]. Common examples for visualizing 1D/2D/3D data are bars (see
Figure 3.2a), boxplots (see Figure 3.2b), histograms (see Figure 3.2c), arrows (see Fig-
ure 3.2d), 1D/2D function plots (see Figure 3.2e,f), thumbnails (see Figure 3.2g), and star
glyphs (see Figure 3.2h). To use 1D/2D/3D techniques for visualizing multi-dimensional
data, a common approach is to show the same representation for different objects side-
by-side. Common examples of this technique are permutation matrix, survey plot, and
scatterplot matrices.

Geometrically transformed displays: Geometrically transformed display techniques comprise
all techniques, which aim to find a meaningful transformation of a multi-dimensional data
set [59]. Examples of such techniques are scatterplot, parallel coordinates, and starplots.
Such data are often analyzed using coordinated multiple views (see Roberts [81] for an
overview). Different data dimensions are explored in multiple linked views, including
scatterplot matrices [6] and parallel coordinates [45, 51]. Another common technique is
to use dimension reducing techniques like multi-dimensional scaling (MDS) or self or-
ganizing maps (SOA). Such techniques projects the multi-dimensional (parameter) space
into the low dimensional visual space and preserve the (global) distances between the
objects.

18

Stacked displays: Stacked display techniques visualize data by using a hierarchical relation-
ship [59]. In case of multi-dimensional data, the dimensions are partitioned. Each di-
mension of the data is shown in another level of the hierarchy. A common example for
such techniques are treemaps [3]. Several dimensions are displayed using a hierarchical
representation. Additional attributes of the data points are mapped to some attributes of
the nested rectangles (e.g., color, size, etc.).

Icon-based displays: Icon-based techniques map attribute values of multi-dimensional data to
some visual features of icons [59]. Typical features are color and shape. Common ex-
amples are the Chernoff face, needle icons, star glyphs, and stick-figure icons. These
representations are very effective, if the icons relate to the characteristics of the data [59].

Dense-pixel displays: The basic idea of dense-pixel displays is to map each dimension value to
a colored pixel [59]. Additionally, the pixels are grouped into adjacent areas. The ordering
of the pixels is very important. Dense-pixel techniques provide different arrangements,
depending on the purpose. The pixels are arranged to find correlations, dependencies, and
hot spots [59].

In the next sections, we discuss the used techniques in more details. In Section 3.2 we
discuss small multiples in more detail because we also use this technique to visualize members
of a cluster. In the Section 3.3, the scatterplot visualization is discussed in detail, and in Section
3.4 we present parallel coordinates.

3.2 Small Multiples

Small multiples are a visualization concept introduce by Edward Tuttle [95]. He describes them
as: „Illustrations of postage-stamp size are indexed by category or a label, sequenced over time
like the frames of a movie, or ordered by a quantitative variable not used in the single image
itself“ [95].

The idea of small multiples is to use the same basic item (a 1D/2D/3D visualization) multiple
times to display an object. Typically, a bar chart, histogram, or function plot is used as the basic
item. An overview of commonly used standard 1D/2D/3D visualization techniques is given
in Figure 3.2. A bar chart is a representation of 1D data. The size of the bar relates to the
corresponding 1D value. For an nD data, n bar charts are created. A histogram is a representation
of the distribution of the data. We separated the data into m-intervals. Each interval is called
a bin. Then, each bin is incremented for each data point, which is within the interval of the
corresponding bin. Each bin is represented with a bar, and the height of the bar corresponds to
the number of data points which are within the bin. For an nD data n, histograms are used. This
representation is reasonable, if the distribution of the objects across a dimension is in focus. A
data point is shown by highlighting each bin across each dimension, which contains the selected
date. In other visualization scenarios also graphic are used (for example, landmarks). The
multiples show multi-dimensional data without trying to use a too complex objects.

Small multiples are primarily used to compare objects across all dimensions of the data. The
user looks after patterns (like correlations, dependencies, hot spots) in the 1D/2D/3D visualiza-

19

Figure 3.2: Examples of basic visualizations, which are commonly used for small multiples.

tions. The visual mapping has to share the same measures, scales, size, and shape to support the
user by comparison of different elements. A change of one attribute at an axis have to affect all
plots. Figure 3.3 gives an example of small multiples. Figure 3.3a displays a time-series of a
dynamic graph with small multiples. The user can analyze the changes of the graph by compar-
ing it among different timesteps [2]. Figure 3.3b displays the velocity of a tornado. Using many
tiny arrows enables to identify the center of the tornado.

The advantage of small multiples is the easy readability. The user only needs to understand
a single visualization. Then, the user can apply this knowledge to the other visualizations.
To ensure a good readability, the ordering of the basic items should follow a logical ordering.
Furthermore, the used items should be simple because the user needs to be able to process many
items and to preserve visual clutter.

3.3 Scatterplots

A scatterplot is a diagram using Cartesian coordinates to display values of 2D data. A scatterplot
is used to plot data points on a horizontal and vertical axis in the attempt to show how much one
variable is affected by another one. Each datum is represented by a marker depending on its
values on the X- and Y-axis. The marker is typically a point, but also other representations, like
thumbnails, can be used. Figure 3.4 shows an example of a scatterplot matrix.

The scatterplot can suggest various kinds of correlations between these two variables. Typ-
ical types of correlations are clusters and linear structures. If a linear structure exists, the data

20

Figure 3.3: (a) Small multiples to display a time-series of a dynamic graph [2]. (b) Small
multiples of arrows are used to display the velocity of a tornado [9].

points are close to form a straight line in the scatterplot. In these cases, the two variables have
a high linear correlation. Scatterplot can also show a nonlinear correlation. For instance, if the
data points are close to form a function f(x) = x2 a quadratic correlation can be identified.
The correlation can be positive or negative. A positive correlation is a correlation, where the
data points are located from the lower left for the upper right. If the data points are located
from the upper left to the lower right, a negative correlation exists. A scatterplot can also be
used to identify clusters. Clusters are regions, where the data points are concentrated. The main
advantage of a scatterplot is the easy use, and correlations in the data can be identified easily.
Furthermore, in a lot of other sciences and applications scatterplot matrices are a basic tool for
analyzing 2D data. The main disadvantage of scatterplots is the limitation of showing only two
variables.

However, in this thesis multi-dimensional data have to be analyzed. A scatterplot matrix
addresses the problem of only displaying 2D data. A scatterplot matrix is a series of scatterplots
displaying each combination of variables. At each of the axes one of the variables x1, .., xn are
displayed. So, all combinations of the variables are shown in a matrix assembly of scatterplots.
The data points at the diagonal elements of the scatterplot matrix are always diagonally posi-
tioned, because in this case the same variable is assigned to the horizontal as well as the vertical
axis. This representation follows the idea of small multiples [95].

Small multiples are great for analyzing many variables. To ensure a good readability, the ar-
rangement of the charts follow a logical ordering. In the scatterplot matrix, the ordering follows
a matrix layout. This layout ensures that the user can analyze the data set by comparing one at-
tribute on one axis to all other attributes on the other axes. The ordering of the attributes should
also be modifiable. This feature is important to enable the user to add some meta information.
Another application area of small multiples is the visualization of a set of objects.

21

Figure 3.4: (a) Visualization of the multi-dimensional Iris data set with a scatterplot matrix [18]
and (b) parallel coordinates [19].

3.4 Parallel Coordinates and Starplots

Parallel coordinates consist of a set of parallel lines, which each represents a dimension of the
data. These lines are typically drawn vertically and equally spaced. Each line is also called
an axis. A datum in the n-dimensional space is represented as a polyline with a vertex at each
parallel axis. The position on each axis corresponds to the value in the associated dimension.
Figure 3.4b shows an example of parallel coordinates.

Typically, the parallel coordinates plot is used to find patterns, which identify the relation-
ship between the dimensions of the data. If two dimensions are positively correlated, the lines
between two axes are parallel. If the correlation is negative, all lines are crossing at a point
between both axes. Clusters can be identified, if a set of lines starts with an ε-region and ends in
another ε-region of the other axis. Outliers can be identified if the line path of the outlier differs
from the other line paths of the data.

The ordering of the axes is important. Typically, the user analyzes several orderings of the
axes and applies some meta information to find a good ordering. In some research heuristics are
presented to find a good ordering of the coordinates [13].

The axes are not parallelly oriented, but oriented within a circle. The lowest value of each
axis is positioned at the center of the circle (or shifted a little bit outwards) and the highest
value is positioned at the radius of the circle. The orientation within a circle is done by using a
transformation reaching from Cartesian coordinates to Polar coordinates. To use starplots, the
data-set should be at least three-dimensional. Similar to parallel coordinates, starplots enable to
display many coordinate axis. Preventing overloading of the visualization, the dimension of the

22

Figure 3.5: Parallel Coordinates without edge bundling (a), and with edge bundling (b) [70].
Edge bundling bundles all line paths which relate to a cluster.

data should be limited to approximatly 10 axes. The optimal number of dimensions is between
5 and 7 axis.

Extending parallel coordinates to support clusters

Visualization of many objects can result in visual clutter. A common way to enhance the read-
ability is to group similar objects. With clustering techniques, objects are grouped into clusters

23

Figure 3.6: Branching technique from McDonnel and Mueller [70]. (a) Different branching
widths provide insights into the distribution of the data. (b) Illustration of the highest, medium,
and the lowest branching widths. A high branching width results in a polygon between highest
and lowest B-spline. A medium branching width results in a polygon between highest and lowest
B-spline with holes. A low branching width results in line paths.

using one or several properties (like similarity). Then, all (similar) objects within a cluster are
analyzed. In Section 3.8 we present methods to cluster data.

A common technique for visualizing the clusters is to assign each cluster a unique color.
Each line path is then colored with the corresponding color. This technique works well for small
data sets, but visualizing large data sets can result in visual clutter and over-plotting of clus-
ters. To improve the readability, several edge bundling techniques are presented in the literature.
The idea of edge bundling is to bundle all line paths which relate to a cluster. This technique re-

24

duces visual clutter and decreases the amount of required screen space (compare to Holten [48]).
An example is given in Figure 3.5. An overview and a comparison of different edge bundling
techniques are done by Heinrich and Weiskopf [45].

McDonnell and Mueller [70] provide an illustrative approach for visualizing clusters. In-
stead of visualizing a set of line paths for each cluster, they use the minimal polygon which
covers all line paths of the cluster. Their technique enables to define the level of detail of a clus-
ter interactively. At the lowest level of detail, a polygon which is determined by the lowest and
highest line path is shown. At higher levels of details, the polygon gets holes at regions where
the distance between two line paths exceeds a (user-defined) threshold (see Figure 3.6a). The
highest level of detail only shows line paths. Figure 3.6b gives an example of a low, medium,
and high level of detail.

A lot of different clustering algorithms exist. One common technique is the use of hierar-
chical clustering. The user can analyze clusters at different levels. Fua et al. [38] extend parallel
coordinates for supporting hierarchical clustering. The user interactively can drill-down into a
tree structure. Lex et al. [67] proposes a focus+context visualization for comparing separately
clustered groups of variables of biomolecular data. Clustered records are connected across mul-
tiple groups of variables using bundled curves and ribbons.

3.5 Visualization of Hierarchical Data

Data with an inherent relation are an important class of data. If there is an inherent relation
among the data elements, then the data can be represented as a graph. A graph is a pair G =

Figure 3.7: a. Directed graphs: green nodes shows a path, orange nodes depicts a path b:
Undirected tree: yellow node labels a root node, blue nodes represents parents nodes, and nodes,
colored with magenta, shows leaf nodes

25

(V,E), where

• V: Set of nodes

• E: Set of edges connecting nodes

A node represents a datum, and an edge is a connection between two nodes (see Figure 3.7)
[100]. In particular, the literature differentiates between directed and undirected graphs. If
the direction of the edge has to be taken into account, the graph is called directed graph (see
Figure 3.7a), otherwise it is called undirected graphs (see Figure 3.7b) [100]. A permutation
of edges is called a path (see Figure 3.7a) [100]. Cycles are closed path, i.e., a permutation of
edges, where the start and end node of the permutation are equal (see Figure 3.7a) [100]. A
graph that has no cycles is called tree (see Figure 3.7b) [100]. If a node of the tree is singled
out to a special node, then the tree is called rooted [100]. The special node in the tree is called
the root (see Figure 3.7b) [100]. A rooted tree has an orientation away from the root [100]. The
parent of a node n is the node that connects the node n to the root on a path (see blue nodes in
Figure 3.7b) [100]. Every node is called child, if it has a parent node. A leaf is a node, that is
not parent of another node (see magenta nodes in Figure 3.7b). [100]. Internal nodes are nodes
that have at least one child. Trees are often treated as hierarchies, where the length of a path to
the root denotes the level of a node in the hierarchy [100].

The visual representation of trees is a difficult task, especially, for large trees. The main
task of graph-drawing is to ensure high readability and an efficient use of space. Tree drawing
algorithms include several tree layout algorithms [47, 85]. Various examples of tree drawing
algorithms are given in the Figures 3.8 and 3.9. In the following, we present different graph-
drawing algorithms to visualize hierarchical data.

Node-Link Diagrams

A popular approach for displaying trees are node-link diagrams. In Figure 3.8a,b,c common
examples for node-link diagrams are depicted. The nodes of the tree are drawn using circles,
and edges are drawn using simple lines. The standard layout (see Figure 3.8a) is drawn using
a simple recursive algorithm from top-to-bottom (starts at the root node and traverses the tree
down to all leaves). This algorithm is not space efficient. Reingold and Tilford [80] present an
improved version. Their layout algorithm runs bottom-up and merges the sub-trees. Then, in
an additional top-down pass the final node positions are determined. This version is more space
efficient. Walker generalizes the algorithm for all general trees [52], and Buchheim et al. [22]
shows that the algorithm can be implemented in linear time O(n).

A radial tree is a variation of the node-link diagram. It displays the tree similar to the
standard representation, but with an additional transformation using polar coordinates. The
depth of the tree is encoded in the radius, and the ordering is encoded using the angle [47].
An example of a radial tree is shown in Figure 3.8c. Another approach to provide a more
space efficient representation are balloon trees (see Figure 3.8b). This layout places the children
circularly around the parent [47]. Rendering a balloon tree is not easy, especially, if the number
of child nodes varies much (i.e., one child node has more than 30 children, and another child
nodes has only five or less children). In such cases overdrawing or an inefficient use of space can

26

Figure 3.8: Different tree representations [10]: (a) standard visualization, (b) ballon tree, (c)
radial tree, (d) treemap (the rectangle size depends on the hierarchy level)

occur [25]. To prevent these problems, different solutions are available. For example, Carriere
and Kazman [25] propose a solution which works bottom-up and approximates the circles with
a polygon.

Finding a space-efficient representation of large trees in a 2D space is a difficult task. Sev-
eral approaches extend the output space, and render the tree in 3D space. A common example
is the cone tree [47]. This layout is similar to the balloon tree, but the hierarchy is encoded in
the height (or depth). Figure 3.10 depicts an example of a cone tree. As shown in this repre-
sentation, the 3D layout is hard to read. Compare it with the shadow, which results in a balloon
tree. Furthermore, navigating in 3D space is more difficult, than navigating in 2D space. So,
extending the output space is not recommended.

Layered Diagrams

Layered diagrams are introduced to enhance the use of the available space. These diagrams
use layering, adjacency or alignment to represent the tree structure. An example of a layered
diagram is an Icicle plot [47]. This method gives a more space-efficient representation and a

27

Figure 3.9: Comparison of several tree layouts using Protovis [18]: (a) icicles, (b) sunburst
diagram, (c) radial tree, (d) dendrogram, (e) treemap, (f) circle packing

clear impression of the tree structure. Similar to the standard layout, much space is used for the
visual mapping of the inner nodes. An additional polar coordinate transformation of the Icicle
trees results in a Sunburst diagram [47].

The advantage of layered diagrams is that they are more space efficient than the node-link
diagrams. In Figure 3.9a, an example of an icicle plot is depicted, and Figure 3.9b shows a
sunburst diagram.

28

Figure 3.10: Comparision between cone tree (object) and ballon tree (shadow): Using a 3D
layout does not enhance the readability [10].

Treemaps

Ben Shneiderman [89] introduces an alternative technique to represent hierarchical data called
treemaps. Treemaps use rectangles instead of nodes and encode the hierarchy using a tiling algo-
rithm. The root node is represented by a large rectangle. Then, the rectangle is subdivided into
smaller rectangles for every child node. This process terminates if all nodes are subdivided. The
size usually correlates to an attribute (e.g., costs, importance, . . .). The advantage of treemaps
is that they result in a very space-efficient representation of the tree because they use the entire
display space.

Various algorithms exist to till the nested rectangles. In Figure 3.11, an overview is given.
The easiest algorithm is called Slice and Dice [89] (see Figure 3.11a). The algorithm tills the
rectangles in one direction (horizontal or vertical). The size of the rectangles usually correlates
to an attribute of the data. The tilling direction is switched between horizontal and vertical at
each level of the tree.

Other algorithms for creating a treemap are strips (see Figure 3.11b), squarified (see Fig-
ure 3.11c), binary trees, pivot-by-middle (see Figure 3.11d), pivot-by-size (see Figure 3.11e),
and pivot by split (see Figure 3.11f) [7, 35]. The performance of the algorithm differs in the
aspect ratio of the resulting rectangles, the ordering of the rectangles, and the stability. An as-
pect ratio of the nested rectangles (the width of the rectangle/the height of the rectangle)) near
one ensures better readability. The ordering measures how good the neighborhood of the tree is
achieved. The stability measures the changes in the treemap, if a new node is inserted. Ben Bed-
erson and Martin Wattenberg [7] compare the BinaryTree, Ordered, SliceAndDice, Squarified,
and Strip algorithm after this measurement. The results are shown in Table 3.1. All algorithms

29

Figure 3.11: Different treemap tilling algorithms displaying a stock portfolio data set [7]: (a)
slice and dice, (b) strips, (c) squarified, (d) pivot-by-middle, (e) pivot-by-size, (f) pivot-by-split.

have strengths and weaknesses. For instance, if the ordering is critical, the Strip algorithm is a
good choice. However, the commonly used squarified algorithm results in the best aspect ratios.

A common issue of treemaps is that the user cannot identify the borders because the colors
of the rectangle give too less contrast. Cushion treemaps solve this problem by shading the
rectangles [102]. Another solution for this problem is the use of nested treemaps. This method
scales every rectangle down for highlighting the edges. Figure 3.12 shows an example of a
Cushion treemap.

The main advantage of treemaps is that they use the display space very efficiently. A disad-
vantage of treemaps is that they are sometimes difficult to understand. A variation of treemaps
is Circular Treemaps, which are introduced by Wenzel [101]. This method uses circles instead
of rectangles. As shown in Figure 3.12f, this representation is easier to read but less space-
efficient. Another variation is Voronoi Treemaps [5], which use polygons for creating a map.
This variation improves the aspect ratio of the map.

Algorithm Ordering Aspect ratio Stability
SliceAndDice Ordered very bad aspect ratios stable
Strip Ordered medium aspect ratios medium stability
BinaryTree Partially ordered not very good aspect ratios stable
Ordered Partially ordered medium aspect ratios medium stability
Squarified Unordered best aspect ratios medium stability

Table 3.1: Comparison of several tilling algorithms [7]

30

Figure 3.12: Different coloring styles of a treemap created with KDirStat [56]: (a) Border, (b)
Coloring, (c) Cushion treemaps

Treemaps are a common visualization technique. Besides the representation of hierarchical
data, treemaps can be used to display multi-dimensional data (compare with Stacked displays
presented in Section 3.1) [3]. Vliegen et al. [98] adapt treemaps to mimic familiar business
diagrams, like pie chart diagrams or pyramid. An overview of different applications that use
treemaps is given by Shneiderman [88].

Other Techniques

Because of the importance of rendering hierarchical data, many other approaches are presented
in the literature. For instance, the Hyperbolic layout [65] generates a tree layout using hyperbolic
geometry. Then, the geometry is transformed into the Euclidean plane. This algorithm results
in a focus+context representation (compare to Section 3.7 and with Kelly and Ma [53]). Other
examples are H-Trees [47], indented layout (often used in file-browsers) [47] and dendrograms
(see Figure 3.9d) [47].

3.6 Composite Visualizations

The previous sections discuss different techniques to visualize the abstract multi-dimensional
parameter space as well as to represent hierarchical data. However, to analyze a geometry gen-
erator, we also need to consider the generated 3D shapes. Our visualizations have to represent
the abstract parameter space as well as the generated 3D shapes.

Composite visualization is a common strategy to combine different visualizations in the
same geometric space [54]. The idea is to combine different visualization methods to overcome

31

Figure 3.13: Examples of composite visualization: (a) Bruckner and Möller [21] display several
visualizations side-by-side. (b) Busking et al. [24] nest volume renderings inside the abstract
parameter representation. (c) Coffey et al. [30] show the iso-surface of a volume on the top of
volume rendering. (d) Design Galleries [68] use Visual Links. (e) Lex et al. [67] overlay a heat
map in parallel coordinates.

the shortcomings of a single technique [59].
Javed and Elmquist [54] give an overview of composite visualizations. They differ in five

design patterns:

• Juxtaposition views: Showing multiple visualizations side-by-side (compare with small
multiples) [54].

32

• Integrated views: Showing multiple visualizations in one view and connecting similar
objects with visual links [54].

• Superimposed views: Creating a visualization by overlaying several visualizations on
top of each other [54].

• Overloading views: Rendering a visualization inside another visualization [54]. In con-
trast to superimposed views, several visualizations are inside the view.

• Nested views: A visualization is nested into another visualization. Usually, the marker of
the overview representation is replaced by another visualization [54].

In Chapter 2, we present several applications that use composite visualization techniques to
combine different visualizations in the same geometric space. The use of juxtaposition views is
very popular. Busking et al. [24] display a 3D scatterplot, a 3D volume, and a shape comparison
view side-by-side. Bruckner and Möller [21] show a 3D simulation, circular parallel coordinate
plots, sequences, and a clustering side-by-side (see Figure 3.13a). Integrated visualization is
used in Design Galleries by Marks et al. [68]. Design Galleries represent the parameter space
using multi-dimensional scaling (MDS). Additionally, they show several objects of the parame-
ter space on the side. The objects are connected with the MDS visualization using visual links
(see Figure 3.13d). An example of an overloading display is given by Lex et al. [67]. They
overload the coordinates of the parallel coordinates with a heat map (see Figure 3.13e). Coffey
et al. [30] show the iso-surface of a volume on the top of volume rendering. This application is
an example of a superimposed view (see Figure 3.13c). In Chapter 2, we also show some exam-
ples of nested views. Busking et al. [24] use 3D shapes as a marker for the 3D scatterplot (see
Figure 3.13b). Piringer et al. [77] nest 2D function ensembles in the scatterplot matrix. Talton
et al. [93] nest 3D shapes in a semantic map.

3.7 Interaction Techniques

In the previous sections, we present several techniques for visualizing data. However, the goal
of visualization is not only to find a good representation of the data (like illustration) but also
to provide interaction techniques to work at, and move between, focused and contextual views
of a data set [59]. In this section, we present the following interaction techniques in more detail
(based on the categorization of Keim [59] and Cockburn et al. [29]):

• Overview+Detail techniques use a spatial separation between the focused and contextual
views [29].

• Zooming techniques use a temporal separation between the focused and contextual views [29].

• Focus+context techniques integrate the focus within contextual views [59].

• Cue-based techniques highlight or suppress objects within the view selectively [29].

• Interactive Filtering of data enables to explore large data sets [59].

• Linking and Brushing technique enables to interact between different visualizations [59].

33

Figure 3.14: (a) An example of zooming [46]: First, only an overview is provided. The zoom-
in enables the user to display the data in more detail. (b) Additionally, an overview+detail
representation is provided on the bottom right.

Overview+Detail

Overview+detail is a commonly used technique that visualizes an overview and a detail repre-
sentation side-by-side. The idea of this technique is that the user can explore all details in a detail
view. An additional view shows fewer details (overview depiction). The overview prevents the
user from getting lost in all details.

This technique is used in a lot of different applications. For instance, such representations
are used in racing video games. The user sees the driver’s perspective on the entire display.
Additionally, the track is shown at the top of the screen. The user can see his position on the
race course. Without this technique, the user has to memorize the whole race track.

Furthermore, standard desktop environments also use the overview+detail technique. Image
viewers show the images of a directory using a list of small thumbnails while a select image
is shown in all details. A similar approach is used in presentation software systems to display
the slides of a presentation (Microsoft PowerPoint, Libre Office Presentation, Google Docu-
ments,. . .).

Zooming

Zooming is a well-known technique to explore details without overloading the visualization. In
contrast to overview+detail, it uses a temporal separation between the overview and detail repre-
sentation. Keim [59] describes zooming as changing the resolution of the displayed data by the
user. First, an overview representation is shown. Then, the user can interactively manipulate the
view to explore the details of the data [59]. Zooming not only means to display the data objects
larger, but also, to represent the data in more detail [59]. To ensure a good user experience, the
mental map of the user has to be preserved. Too many changes in a short time can confuse the
user. To preserve the mental map of the user, the changes are performed step-by-step.

34

Figure 3.15: Focus+context: (a) a fish-eye projection [47] (b) A moire graph provides a fo-
cus+context visualization of a radial tree [53]

A common example of zooming is used by web mapping services, like Google Maps, Bing
Maps, Nokia Here, and OpenStreetMap. In the beginning, only a basic representation showing
seas and countries is shown. If the user zooms-in, more information is shown, and cities and
motorways are displayed. In the most detailed representation, houses, trails, and sights are
visualized. An example is shown in Figure 3.14a.

Other examples of zooming are presented in the state-of-the-art (see Chapter 2). For exam-
ple, Talton et al. [93] use zooming for their semantic map representation. Piringer et al. [77]
use zooming to show different levels of 2D function ensembles. Low level of detail results in a
visualization of the maxima and minima of the 2D function. The intermediate values of the 2D
function ensembles are only shown in a high level of detail.

Focus+Context

A disadvantage of overview+detail techniques is that the context can be lost, if only some parts
of the visualization are shown. In contrast to overview+detail, focus+context techniques visu-
alize an overview and a detailed representation in a single view (instead of side-by-side). The
basic idea is to visualize the focused parts with a high level of detail while contextual parts are
shown with a lower level of detail. The visual seam between the higher and lower level parts is
minimized [59]. Combining the focused and contextual view in a single visualization prevent
the user from losing the contextual information.

Common examples for focus+context are distortion techniques. For example, hyperbolic and
spherical distortions are often used. In Section 3.5 we present a Hyperbolic tree, which provides
a focus+context visualization of a tree [65]. Figure 3.15 shows an example of the spherical
distortions. More information on distortion techniques is presented by Leung and Apperley [66]
and Keim [59]

35

Figure 3.16: Two examples of cue-based techniques [64].

Cue-based Techniques

Cue-based techniques are used to highlight or suppress items of the visualization [29]. The
basic idea is similar to the well-known photography technique. If the viewer should focus on an
object in the image, the focus of the camera moves to the object, and the camera’s depth-of-field
is reduced. The resulting image shows the object in sharp focus, while the other objects are
blurred [29].

According to Cockburn et al. [29], cue-based techniques are used to highlight objects in the
focus or to simplify contextual objects. Kosara et al. [64] use the idea of depth-of-field of a
camera to simplify contextual objects (see Figure 3.16). Another approach is to render objects
of the background with less opacity or saturation. For instance, this method is used by Berger et
al. [11].

Filtering of Data

Exploring a large set of data is a difficult problem because human recognition is limited. To
handle large data sets, the user usually splits the data into segments [59]. Then, the segments
of interest are focused. A popular technique for exploring data is direct selection or querying
[59]. However, direct selection can be difficult if the data set is too large. Querying can result in
undesired results [59]. To solve this issue, filtering of data techniques are introduced. The user
fades out uninteresting segments with filtering.

Magic Lenses [14] are an excellent example for a filtering of data technique. Magic Lenses
provide a magnifying glass. The data under the glass is filtered directly in the visualization. The
filtered data is displayed differently than the remaining data set [59]. The data outside the magic
lens remains unaffected. An example of the Magic Lenses is shown in Figure 3.17.

Another method for filtering data is the use of transfer functions. This technique is com-
monly used in volume rendering to define a mapping between the voxels of a volume data and a

36

Figure 3.17: MagicLens is shown as an example of filtering techniques [14]

resulting color and opacity in an image [62]. To fade out parts of the volume (e.g., skin, bones),
the opacity of the transfer function is set to 0. These techniques enable the fade-out of irrelevant
parts of the data set.

Linking and Brushing

As presented in Section 3.6, composite visualization enables the user to combine different visu-
alizations to overcome the drawbacks of a single visualization. In particular, juxtaposition views
are commonly used to show different visualizations side-by-side. However, the information,
which is gathered in one visualization, has to map to the other visualizations to ensure a good
user experience. To navigate between different visualizations, linking and brushing is an excel-
lent technique. The user can select items of interest with a brushing tool. The brushed items are
then also highlighted in the other visualizations. This method enables the user to navigate and
explore the data across different visualizations [59].

Berger et al. [11] present an interesting example of linking and brushing. They study the
abstract parameter space of a simulation. The user can select simulation runs with brushing in
the input or target space. Then, the simulation runs are highlighted in both visualizations. This
technique enables the user to study the sensitivity of a region in the input as well as in the target
space. Figure 3.18 shows an example.

3.8 Clustering and Similarity Measurement

The visualization of large data is a difficult problem. The human recognition of objects is limited.
Displaying many shapes, images, or other data within one visualization will result in a too
complex representation and will confuse the user.

A common approach, to handle large data, is to draw a very simple representation of the
objects. In Section 3.1, we present dense-pixel displays, which show each object by only one
colored pixel. The dense-pixel display is sorted according to a specified criterion. Only the

37

Figure 3.18: An example of linking and brushing [11].

combination of the simple representation and sorting ensures a good readability. The user looks
than for patterns (correlation, hotspots, . . .). Small multiples also use a similar idea.

Another popular approach is to draw only some representatives. Marks et al. [68] only
display some examples (selected randomly) of the parameter space in detail. Another approach
is to group similar objects according to a feature (or multiple features) into a cluster. Depending
on the application area, the feature can be a similarity measure, or a parameter (combination
of parameters, respectively). Then, the objects are grouped using a clustering algorithm (e.g.,
k-Means, DBSCAN, . . .). This approach is used by Bruckner and Möller [21] and by Talton et
al. [93].

In the next sections, we present the clustering approach in detail. First, we present several
algorithms to cluster a set of objects. A popular approach is to group the 3D shapes according
to the similarity. We present different techniques to measure the similarity of shapes in the last
section.

Clustering

Clustering techniques group similar objects. Such methods are successfully used in various
areas like pattern recognition, image processing, and data mining. In the literature, several al-
gorithms to cluster objects are presented. For example, hierarchical clustering algorithms [55],
k-means [12], expectation-maximization (EM) [32], and the DBSCAN algorithm [36] are com-
mon techniques to cluster data.

The k-means clustering approach partitions n objects into k clusters. Each object belongs
to the cluster with the nearest mean. This problem is NP-hard, but a lot of efficient heuristic
algorithms are available [12].

38

A common algorithm for this approach is Hartigan’s method [12]. In an initial step, the user
has to specify the number of clusters. If the number of clusters is unknown, several automatic
algorithms are available to determine the numbers of clusters [41]. Moreover, the algorithm
assigns each object to a cluster randomly. After the initial step, the algorithm calculates the
mean of each cluster. Then, the algorithm calculates for each object the distance to each cluster.
Each object is then assigned to the cluster with the smallest distance. The algorithm repeats this
process until the result converges.

Another heuristic to partition n objects into k clusters are Gaussian mixture models trained
with the expectation-maximization algorithm (EM). The algorithm finds the parameters of a
statistical model by maximizing the likelihood [12]. First, the EM algorithm expects the log-
likelihood using the current estimation of the parameters. Then, the parameters are modified to
maximize the log-likelihood. The computed parameters are used in the next expectation step.
This algorithm proceeds until the log-likelihood converges. This algorithm is well suited if the
data are normally distributed.

The DBSCAN algorithm is another common clustering algorithm [36]. All objects, which
are more similar than a user-defined threshold, are grouped into a cluster. As a result, each
object within the cluster is similar to at least one member of the cluster. In contrast to k-means
clustering, the number of clusters must not be determined before clustering [12]. The shape
of the cluster can be arbitrary (as opposed to EM algorithms), and different similarity distance
metrics can be used [12].

Another popular approach are hierarchical clustering algorithms. The basic idea is to build
a hierarchy of clusters [55]. The literature differentiates agglomerative and divisive methods
for creating the hierarchical structure [12]. Agglomerative methods start with each object in an
own cluster. Pairs of clusters are merged and moved up in the hierarchy [12]. In contrast to
the agglomerative methods, divisive methods start with a cluster, which groups all objects [12].
Then, the clusters are split. The newly created clusters move down the hierarchy. Moreover, the
hierarchical clustering algorithms can differ according to the used metric and the linkage crite-
ria [12]. Hierarchical clustering algorithms can be used with different metrics, like Manhattan,
Euclidean, and Mahalanobis distance [12]. The linkage criterion determines the distance be-
tween two sets of objects using a function of pair-wise distances. Some commonly used linkage
criteria are maximum, minimum, and mean linkage clustering [12]. The maximum linkage clus-
tering groups two sets of objects, so that the distance between an object of group a and an object
of group b is maximized. The minimum distance is used for the minimum linkage clustering.
The mean linkage clustering calculates the mean of both sets

Similarity Measurement

A common approach to group a set of 3D shapes is to measure their similarity. The similarity
measure is used as input for the clustering algorithm to group similar objects. This section
presents some methods to calculate the similarity of 3D shapes.

A very popular technique to determine similarity is the use of feature-based methods [34].
These approaches use a set of features to describe a category of objects. Commonly used features
are centroid, size, Euler number and even more. Then, a feature vector is created using a well-
suited set of features. Each dimension of the feature vector is a numerical entry of one feature.

39

Besides the feature vector, a metric has to define. The metric determines the similarity between
two feature vectors. A common approach is to weight the features with a scalar value and
measure the similarity using the dot product of two feature vectors or using the cosine [34].

Chen et al. [27] use a Lightfield descriptor to measure the similarity. They render the shape
from different camera positions and use the commonly used 2D Zernike moment descriptor and
Fourier descriptor to measure the similarity. While Chen et al. refer the 2D Zernike moment
descriptor, Fisher and Hanrahan [37] use the 3D Zernike descriptors to measure the similarity
between two 3D shapes. Additionally, they reduce the set of potentially similar shapes by con-
sidering the shape’s size. Another approach for comparing 3D shapes using 3D descriptors is
presented by Chaudhuri and Koltun [26]. They use a shape diameter function, which captures
the local thickness of the shape at a sample point and creates a multi-dimensional histogram as
a descriptor [26]. Additionally, they use a pyramid-match kernel to compare shapes at different
levels of detail [26]. Using the feature descriptor also enables the comparison of different repre-
sentations of objects. For instance, Xie et al. [103] and Chen et al. [27] calculate the similarity
between 2D sketches and 3D shapes.

The presented works enable us to distinguish between different classes of objects to get a
broad classification [72]. Finer-scale variations within a class of shapes is still a challenge [72].
The calculation of the similarity measurement with feature-based methods only depends on the
features and the metrics used. In other application areas, the user wants to evaluate finer varia-
tions of a category of similar shapes. For instance, the user wants to compare different cars [50]
or wants to detect the same object in various poses (e.g., compare human poses [49]). An ap-
proach is to find a set of features that works only for a particular class of objects. Finding a
suitable combination of features and metrics depends on the application area. It is still a very
difficult and time-intensive task because the user needs to analyze the complete data set. This
technique is often used in computer vision and image understanding for object recognition.

A particular case of feature-based methods is the use the vertex-to-nearest-vertex distance.
Such algorithms are mainly used to compare shapes of the same class. The algorithm searches
for each vertex of a mesh the nearest vertex of the other mesh and measures the distance. This
distance is weighted, and the sum of the distances determines the similarity. If both meshes are
equal, the distance is 0. The advantage of using this approach is that the similarity value depends
only on the structure of the mesh, and it can be calculated easily. Bruckner and Möller [21]
present a similar technique for 3D volumes. Instead of comparing the distances of the vertices
of a 2D shape, they measure the similarity of objects by comparing the voxels of the two objects.
A similar technique is used by Funkhouser et al. [39]. They measure the similarity by comparing
the distances between two shapes using the dot function. Using voxelization enables the use of
a shape descriptor. Instead of measuring the similarity of the complete mesh, they compare the
parts of the shape. The parts are segmented automatically. A survey of different automatic shape
segmentation techniques is given by Samir [87]. Ovsjanikov et al. [72] measure the Euclidean
distances between N pairs of points sampled uniformly over the mesh, and the distribution of
distances is convolved with a Gaussian kernel.

In the literature, several works explore a set of morphable objects instead of a set of arbitrary
shapes. Morphable objects are shapes where a correspondence exists between the vertices of the
shapes. This relation is used to morph one shape into another one using (linear) interpolation.

40

The relation between the vertices can also be used to determine the similarity between objects
using statistical tools to determine the variation. Blanz and Vetter [15] explore this idea in
the context of 3D face models. Subsequently, the framework has been extended to analyze
shapes of human bodies in consistent poses [1]. Smith et al. [92] use a similar technique to
explore the parameter space of registered car models, and Coffey et al. [30] explores simulations.
The presented methods are very useful if an accurate correspondence between the vertices is
provided. In such cases, it is recommended to use such a technique. In order to avoid restrictions,
we prefer other methods.

In conclusion, we do not find a perfect solution for calculating the similarity between two
arbitrary objects. All methods have their strengths and weaknesses. Some methods are useful for
calculating the similarities between different classes of shapes while other methods are excellent
to calculate the similarities of the shapes within a category. Some techniques work with arbi-
trary 3D shapes while other algorithms only work for shapes with an accurate correspondence
between the vertices. So, depending on the application area, different solutions are useful.

However, these issues motivate the use of visualization techniques. If the similarity could
be calculated accurately, some tasks can be done automatically. For example, a perfect similar-
ity measurement would enable an automatic categorization of shapes (compare with Task 1 in
Section 1.1) or to detect regions with high sensitivity (regions of a parameter where a lot of cat-
egories are located; compare with Task 3 in Section 1.1). Instead, our solution provides useful
visualizations of the parameter space to get new visual insights.

41

CHAPTER 4
Overview of Cupid

Our main goal is to study the relations between the abstract parameter space of a geometry
generator and the resulting 3D shapes. Unlike other approaches that show these two domains
side-by-side using linked views (compare to the juxtaposition view in Section 3.6), our idea is to
combine both into a single composite visualization (compare to the nest view see Section 3.6).
We use parallel coordinates for analyzing the multivariate relationships of the data. However, the
naïve approach of representing each parameter combination together with the resulting 3D shape
in the parallel coordinates would lead to visual clutter. Therefore, we first apply hierarchical
clustering to group similar 3D shapes (compare also to Task 1).

In the visualization, we first show clusters at the highest hierarchy level, where the user
can selectively drill-down into sub-clusters. The clusters are shown using composite parallel
coordinates [70]. We augment this abstract visualization of the parameter space by icons that
represent the 3D shapes or other properties of the clusters. This allows the user to directly relate
regions in the parameter space to the corresponding clusters of similar 3D shapes, and vice
versa (compare to Tasks 1 and 3). For understanding the hierarchical structure of the clusters,
we adapt a linked radial tree to display the same icons representing the individual clusters.
Our presented technique for composite parallel coordinates can also be used with other multi-
dimensional visualization methods. We adapt a composite scatterplot matrix to show that the
presented technique is not limited to parallel coordinates only.

As an application example, we explore the results of a cup generator that is used for testing
the object recognition capabilities of a domestic robot. The parameter space consists of eleven
parameters. Certain parameters define parts of the cup (e.g., handle type, overall silhouette) and
other parameters represent global modifiers of the shape (e.g., smoothing or distortion). More
details of the cup generator are presented in Section 7.3.

The presented application is called Cupid. A conceptional overview of Cupid is depicted
in Figure 4.1. The user starts with determining the parameters of the geometry generator and a
sampling strategy for the parameter space. The parameter space is then sampled in order to gen-
erate the 3D shapes. We also derive certain measures that describe quantitative properties of the
3D shapes (e.g., area or convexity), which can be used in the visual exploration. The 3D shapes

43

Figure 4.1: Overview of our system for exploring the results of a cup generator: First, the user
determines the parameters of the geometry generator and the sampling strategy. The parameter
space is then sampled and the corresponding 3D shapes are generated. Measures describing
geometric properties of the 3D shapes are derived and the 3D shapes are clustered based on
their similarity. Finally, the resulting clusters are visualized in a radial tree and a composite
visualization that shows both the abstract parameter space of the geometry generator and the
generated 3D shapes.

are hierarchically clustered based on their similarity. The resulting clusters are displayed in the
radial tree as well as the parallel coordinates and scatterplot matrix.

4.1 Data Generation and Pre-Processing

Initially, the user defines the parameters of the geometry generator and chooses a sampling
algorithm (see Figure 4.1a). Each parameter is described by a name, a type (categorical or
continuous), and the range to be sampled. As shown in Table 7.1, the cup generator has attributes
such as handle type, convexity, and parameters describing the overall shape (e.g., width of the
cup at the top, middle and bottom). Additionally, the user defines the number of samples and
selects the sampling method. We provide random sampling and low-discrepancy sampling. The
advantage of using low-discrepancy sequences is to achieve a uniform sampling of the entire
parameter space as opposed to random sampling [60] (see Figure 4.2).

44

Figure 4.2: Different sampling techniques: Comparison between (a) random sampling and (b,c)
low discrepancy sampling. Low discrepancy sampling uniformly distributes the data over the
entire sampling space.

4.2 Coregistration and Hierarchical Clustering

We use clustering to group the created 3D shapes according to their shape similarity. This
helps to reduce visual clutter in the visualization and supports the user in finding regions in the
parameter space that result in similar geometric shapes (compare to Tasks 1 and 3). Since the
3D shapes are generated with different alignment, we have to coregister them first. We then use
agglomerative hierarchical clustering to create a hierarchy of clusters, where clusters of similar
3D shapes are merged as one moves up the hierarchy. This has the advantage that initially only
a few clusters need to be displayed, and the user can drill-down into selected sub-clusters.

To align the generated 3D shapes, we use the iterative closest point (ICP) algorithm which
calculates a transformation T (translation and rotation) that minimizes the difference between
the vertices of two geometric meshes [105]. There are many approaches for computing mesh
similarities. Due to its simplicity, we chose to use the sum of Euclidean distances between each
vertex xi in the mesh M1 and its nearest neighbor in the mesh M2, which can be computed
rapidly using kD-Trees:

d(M1,M2) =
1

|M1|
∑

xi∈M1

min
xj∈M2

|xi − xj |

If smaller parts of the 3D shapes are not aligned (e.g., the handles of two similar cups have dif-
ferent positions), however, the measure can result in a large difference. Since our cup generator
creates an identifier for each part of the cup, we align the individual parts first and compute the
similarity based on the aligned parts of the 3D shapes:

d∗ =
1∑
iwi

(
∑
i

wi ·max(d(parti,1,parti,2), d(parti,2,parti,1))),

where parti,k is the ith part of mesh k and wi is the corresponding weight. Accordingly, more
important parts of the geometry can have higher influence on the similarity than less important
ones. If a part of the shape is missing, we add a penalty value to the similarity value. Note

45

Figure 4.3: Similarity Measurment: (a) The data are loaded. (b) All parts are separated. (c) All
parts are rotated to the same orientation. (d) The similarity can be measured.

that the idea of using parts of a 3D shape is not limited to our cup generator. For example,
fractal vegetation generators often have symbols and predicates, which identify the parts of the
geometry [79].

Our hierarchical clustering is based on DBSCAN [36] which is a popular density-based clus-
tering algorithm (see Section 3.8). Areas with higher density (similarity) than the rest of the data
form arbitrarily shaped clusters. Objects in sparse areas that separate the clusters are considered
to be noise. Advantages of this algorithm are that it does not require a predefined number of
clusters and it can identify arbitrarily shaped clusters of similar 3D geometries. Additionally,
it can be easily adapted to create a hierarchy of clusters. The algorithm has two parameters,
namely a similarity threshold st and a minimum number of cluster members minS in order to
be considered a dense area. Starting from an arbitrary 3D shape created by the geometry gener-
ator, the 3D shapes with a similarity d∗ below st are queried. If the number of similar 3D shapes
exceeds minS, the region is considered sufficiently dense and the similar 3D shapes are used as
seeds for growing the cluster. 3D shapes located in non-dense regions are classified as noise.

Since the number of clusters resulting from DBSCAN can be very large (depending on the
data set and the parameter settings of the algorithm), we extend our approach to hierarchical
clustering (compare to Fua et al. [38]). The idea is to group similar clusters to reduce the
number of clusters to be displayed. During the visual exploration, the user can then interactively
drill-down into selected sub-clusters for a detailed inspection. The initial result of DBSCAN
already provides us with the leaf nodes in our hierarchical structure of clusters. In order to
merge clusters, we iteratively apply DBSCAN where the similarity threshold st is increased
by ∆st,the resulting hierarchy is shown in the radial tree in Figure 3.1b. The construction is

46

Figure 4.4: Hierarchical Clustering: At first, similar objects are grouped into a cluster using
DBSCAN (green: merged, yellow: density-reachable, blue: noise). Incrementation of threshold
st results in a hierarchical clustering.

illustrated in Figure 4.4. In order to keep our approach simple and usable, we only display
four hierarchy levels of the clustering (the fourth level only displays the root). Since we pre-
compute the similarities between each pair of 3D shapes, the user can interactively modify the
parameters st, ∆st and minS, and inspect the resulting hierarchy in the radial tree.

47

CHAPTER 5
Composite Visualization of Abstract

and Spatial Data

After computing the clusters, and geometric properties, the multi-dimensional parameter space,
and hierarchical clustering data are visualized. Cupid provides a cluster-based composite paral-
lel coordinates approach and a composite scatterplot matrix for visualizing the multi-dimensional
parameter space. The hierarchical clustering is visualized using different hierarchical layout al-
gorithms, like radial trees and circular dendrograms.

In the following, we describe the composite visualization of both abstract and spatial data
using parallel coordinates and a scatterplot matrix. We then describe our linked hierarchical
layouts (radial tree, circular dendrogram, and treemap), and finally the icons, which are the
basic items for nesting the spatial information and steering the views. In the last section, some
other features are presented, like a simple shape browser.

Figure 5.1: (a) Construction of edge bundling (b) Resulting B-splines.

49

Figure 5.2: (a) Colors used for clusters at the top-level (b) Variation of the luminance used for
the second level of the hierarchical clustering

5.1 Composite Parallel Coordinates

For exploring the parameter space of the geometry generator, we use a novel cluster-based com-
posite parallel coordinates approach with nested spatial information (compare to the nest view
see Section 3.6). The basic items of the visualization are the clusters resulting from the hierar-
chical clustering, which are represented as nested icons. The icons show the 3D shapes or other
properties of the cluster representatives. Additionally, we use illustrative techniques to enhance
the visual representation of the clusters.

Illustrative techniques can enhance the readability of parallel coordinates [70]. Each cluster
is represented by a colored polygon that shows the extend of the cluster (see Figure 3.1). Render-
ing just the convex hull of the polygons would not provide much insight into the underlying data.
Therefore, we use the branching technique from McDonnell and Mueller [70], which enables
the user to control how densely or sparsely the data are distributed in the parallel coordinates
(see Figure 3.1a). As presented in Section 3.4 the rendering colored polygons instead of all line
paths reduces visual clutter. The user can control the level-of-detail with the branching parame-
ter (compare with focus+context techniques presented in Section 3.7). We apply edge bundling
to enhance the visual representation [48, 70]. The start and end positions of the B-spline curves
are equal to those of the polylines. Additionally, we add two control points which are used for
bundling the curves. The control points are placed at the mean of the corresponding clusters,
which are shifted to the region between a pair of coordinates. Figure 5.1 shows the creation
of the B-spline curves. The user can control the bundling factor, which reduces overlapping
between clusters and decreases the amount of screen space occupied by a cluster. Moreover,
individual 3D shapes, which have been classified as noise are represented as B-splines with gray
icons.

To differentiate between clusters, the user can select between various styles for a cluster. We
offer color-only, contour, shadow and shaded style, according to McDonnell and Mueller [70].
The styles help to discriminate between several clusters. Additionally, the opacity and saturation

50

Figure 5.3: Animated transition between two levels of the cluster hierarchy: The geometry and
color are morphed from the parent to the child clusters. Coloring with different luminances en-
ables the user to discriminate between child clusters and ensures consistency during interaction.

can be selected. To highlight the selected cluster, a different style, opacity, and saturation can be
assigned to the colored polygon (compare with cue-based techniques presented in Section 3.7).

Cupid uses the cluster hierarchy for color assignment. Each cluster at the top level of the
hierarchy gets a different color using a qualitative color map from ColorBrewer [44]. In Fig-
ure 5.2a, the colors are presented. If the user drills-down into a cluster of interest, the sub-clusters
get the same color but with a different luminance. This color assignment ensures consistency
during the visual exploration, and the difference in luminance supports the discrimination be-
tween different sub-clusters. In Figure 5.2, an overview of the effect using different luminances
is given.

In order to preserve the mental map of the user, we perform an animated transition that
morphs a selected parent cluster into its sub-clusters (see Figure 5.3). For this task, we create a
new polygon, which saves for each vertex the start and the end position of the animated transi-
tion. The animated transition is then performed using a simple linear interpolation between the
start and the end position.

The first step is to calculate the child polygons. We use the child polygons to morph between
the start and end position. Moreover, the polygons determine the end of the animated transition.
The next step is to calculate the start of the animated transition. For this task, we search for
each parent polygon the corresponding polygons of the child clusters. We need to differentiate

51

between two cases. If the parent polygon has only one child polygon, both polygons are equal.
In the other case, the parent polygon has two or more child polygons. The lower vertices of
the parent polygon relate to the lowest vertices of all child polygons. The upper vertices of the
parent polygon relate to the highest vertices of all child polygons. This relationship is used to
set the start and the end positions of the animated transition. The other vertices of the child
polygons result in overlapping areas or holes. We close the holes by calculating the mean. The
mean is used as start position (see Figure 5.4a). For overlapping regions, we also use the mean
as start position. Additionally, the color is interpolated between the parent and child clusters.
We apply this algorithm for each polygon of the parent cluster.

Several examples are shown in Figure 5.4. The left side displays the parent polygon, and the
right side shows the resulting child polygons. In Figure 5.4a, the polygon A is split into two child
polygons. As shown in this figure, the outer vertices of the child polygon are set to the parent
polygon and the inner vertices to the mean. The arrows depict the correlation between the parent
and child polygons. In Figure 5.4b, polygon B is also divided into two polygons, but polygon C
does not change. As shown in this figure, the same algorithm as for polygon A is done. Polygon
B is unchanged. In Figure 5.4c, polygon D is split into three child polygons, and in Figure 5.4d
the polygons E, and F are split into two child polygons. We use linear interpolation to change
the position of the vertices during the animation as illustrated in Figure 5.3a. Some time-steps
of the resulting animated transition, are shown in Figure 5.3b.

In addition to the parameter values, each cluster is represented by nested icons that depict the
3D shape or other properties of the cluster (see Section 5.4). The size (area) of an icon represents
the corresponding number of cluster members. The user can set a minimum and maximum size
for the icons to avoid overlap or too small icons. For each parameter of the generator, the icons
are vertically placed at the center of the corresponding clusters. If two icons overlap, they are
moved away from each other. We place larger icons first, before placing smaller ones. The icons
are used for steering the visualization. Mouse-over an icon highlights the corresponding cluster,
which is then drawn in front of all other clusters and shown with a higher opacity (see the purple
cluster in Figure 3.1a).

Cupid also provides a detail window for comparing 3D shapes within and across clusters. For
example, the user can click on the icon of a top-level cluster, which then opens a detail window
and shows the 3D shapes of the corresponding sub-clusters (see Figure 3.1). Alternatively, a line
brush [63] can be used to directly select currently invisible 3D shapes, where the corresponding
B-splines (also not shown) intersect with a simple line segment drawn in the view (e.g., see
Figure 5.5). Within the detail window, the selected 3D shapes are first sorted according to their
cluster membership at the top level. Then, the selected 3D shapes are sorted according their
similarities within the sub-clusters. The color of the clusters at the bottom level is there by used
as background color.

Moreover, some basic operations are implemented. The ordering of the parameters can
be changed. This feature is very useful to analyze different parameter combinations. Each
parameter can also be removed and inserted. If some parameters are not important, the user can
remove the parameters. If the user wants to undo the operation, the user can insert the desired
parameter. Furthermore, a mirroring tool is implemented. Usually, the lowest parameter value
is located at the bottom of the corresponding coordinate axis, and the highest parameter value is

52

Figure 5.4: Construction of the animated transition: (a) Polygon A is split into two child poly-
gons. (b) Polygon B is also split into two child polygons, but polygon C is unchanged. (c)
Polygon D is split into three child polygons. (d) Polygon E and F are split into two polygons
each.

located at the top. With mirroring, the parameter is inverted. Then, the highest parameter value
is located at the bottom of the corresponding coordinate axis (and the lowest parameter value at
the top). The mirroring tool is useful for finding correlations (compare with Harrison et al. [43])
and selecting B-splines with the line brush tool (see Section 8.2).

The composite parallel coordinates visualization is primarily used to analyze the geometry
generator’s parameters space. This representation can also be used to modify the result of the
hierarchical clustering, where the user can manually split and merge clusters. The user can
click on two icons and merge them into a new cluster. Clusters can be split as well by marking
3D shapes in the detail window. The selected shapes are grouped into a new cluster. Using
the merging and splitting tool enables to group shapes with respect to the parameter values. In
Section 8, some workflows using the splitting and merging tool are presented.

5.2 Composite Scatterplot Matrix

Besides the parallel coordinates, we also implement a composite scatterplot matrix to analyze
the multi-dimensional parameter space. As presented in Section 3.3, scatterplot matrices are
a powerful approach for identifying correlations between variables in multidimensional data.

53

Figure 5.5: Comparison between the clusters within a selected region.

This visualization technique is used in several parameter studies, e.g., in Busking et al. [24] and
Piringer et al. [76].

A method, to nest the shapes within the scatterplot matrix, is to draw icons instead of points
as markers (compare with nest view presented in Section 3.6). Piringer et al. [77] use this
approach for nesting 2D function ensembles in the scatterplot matrix. This technique enables
to show all available information in one plot. First, we use a similar approach for visualizing
the parameter space of a geometry generator. Instead of visualizing 2D functions, we visualize
geometric shapes with icons. Similar to Piringer et al. [77], a geometric shape of interest can
be highlighted in a detail window. In Figure 5.6a, the resulting scatterplot matrix is shown. As
shown in the figure, the shapes are very small. Though zooming is supported by Cupid, it is very
difficult to analyze the scatterplot matrix and identify similar shapes. So, this approach is not
practical for our purpose.

Instead of drawing every shape within the scatterplot matrix, we use a novel composite
clusters-based scatterplot matrix. We use an approach similar to the composite parallel coor-
dinates. Cupid visualizes each cluster with an icon. As discussed in the previous section, we
use hierarchical clustering to group similar 3D shapes. Drawing only one icon for each cluster
in the scatterplot would not give much insight on the distribution of the clusters. For example,

54

Figure 5.6: Composite scatterplot approach: (a) Method based on Piringer et al. [76], (b) Our
composite scatterplot approach

parameter description value
k determines the amount of attraction between the icon k = 0.172

and the corresponding cluster members
ε0 determines the amount of repulsion between two icons 0.0005
d determines the damping of the force at each timestep d = 0.1

Table 5.1: Parameters of the force-based layout

some members at the bottom-left area and top-right area of the scatterplot would result in an
icon, which is placed at the center. So, we create an icon for each region, where at least two
members of the clusters are placed (equivalent to the branches in parallel coordinates). The al-
gorithm measures the distance between the members of the cluster in each scatterplot using the
Euclidean metric. All members of the cluster, which are below a user-defined threshold t, are
grouped into one icon. The threshold t defines how sparsely the icons are distributed over the
plot. We use this approach for each scatterplot in the scatterplot matrix. Additionally, all mem-
bers of the cluster are drawn using a marker. The markers are colored with the corresponding
cluster’s color. Figure 5.6b gives an example of our scatterplot matrix approach.

After calculating the position of all icons, we use a layout algorithm to prevent overlapping
icons. Identifying all overlapping icons, and setting them to a new position is not sufficient. The
icons should be placed near to the center of the corresponding cluster members. To handle this
problem, we adapt a force-based layout algorithm based on Hooke’s law. Force-based layouts
are popular for drawing graphs. Nodes, which are connected, are attracted, and nodes which are
not connected are separated using a repulsive force. We adapt this approach for our scatterplot
matrix. Each icon is attracted to the center of the cluster, while simultaneously repulsive forces
are used to separate other icons. This algorithm prevents overlapping icons and it ensures that
the icons are placed close to the desired position (i.e. close to the center of the cluster). The

55

Figure 5.7: (a) Enlarging of rows and columns enables focus+context visualization. (b) Mem-
bers of a cluster shown within a detail window

attraction force fH is calculated for every icon using:

fH =
∑
i

(si − r) ∗ k,

where r is the location of the icon, si is the location of the corresponding cluster member si, and
k is the amount of attraction between the icon and the cluster members. The repulsive force is
like those of electrically charged particles based on Coulomb’s law. The position of the icons is
limited by the border of the visualization. We compute the repulsive force fR for every icon as
follows:

fR = (r1 − r2)
q1 ∗ q2

4πε0 ‖r1 − r2‖2
,

where ri, i ∈ {1, 2} are the location of two icons, qi, i ∈ {1, 2} are the sizes of the icons, and ε0
is the amount of repulsion. The force is accumulated, and the velocity v is updated using

vnew = (vold + (fH + fR) ∗ t) ∗ d,

where t is the timestep, and d the damping factor of the force. The position of the icon p is
updated using the Euler method:

pnew = pold + t ∗ vnew.

The parameters of the force-based layout are shown in Table 5.1.
To provide a consistent user experience, we use the same GUI elements (icon, detail win-

dow, buttons, etc.) and provide similar tools in composite parallel coordinates and scatterplot
matrix. The members of each cluster can be highlighted a simple mouse-over of the correspond-
ing icon. Additionally, all other icons, which represent the same cluster, are highlighted across

56

the whole scatterplot matrix. Cupid draws highlighted icons and markers 1.5 times larger. Ad-
ditionally, Cupid provides a lasso tool, which is used instead of the line brush tool in the parallel
coordinates. This tool enables the user to define a region of interest, where all markers which
are within the region are selected. Analog to display all members of a cluster, a detail window
shows all selected shapes.

In a scatterplot matrix, typically all combinations of two parameters are shown. Drawing all
parameter combinations leads to visually overloaded representations. Each combination of pa-
rameters is represented twice (i.e. (paramter1, parameter2) and (parameter2, parameter1)).
The diagonal elements only show a diagonal line (i.e. (parameteri, parameteri)). While other
approaches use this matrix representation, we decide to draw only elements below the diago-
nal of the scatterplot matrix. So, each combination is only drawn once. The diagonal matrix
elements are removed. This representation results in a triangular matrix. However, Cupid also
enables to remove columns and rows, and to change the ordering. These two operations are
important, because in many application scenarios not every parameter is interesting. For exam-
ple, the parameters defining the handle are not interesting if the body of the cups is interesting.
Furthermore, in some application scenarios not every combination of parameters is in the focus
of the user. If the user wants to compare two parameters with the others, it is not necessary to
draw each combination. Removing unneeded parameter combinations results in a better use of
space. For instance, if the user compares one parameter with the others, only one line of the
scatterplot matrix is drawn.

Another feature of Cupid is to enlarge columns and rows of the scatterplot matrix. This
operation follows the idea of focus+context (compare with Section 3.7). Figure 5.7a shows an
example of this visualization.

5.3 Visualization of Hierarchical Clustering

We apply hierarchical clustering to reduce visual clutter and to identify similar 3D shapes at
multiple hierarchy levels. For exploring and modifying the results of the clustering, we adapt a
radial tree which is a popular technique for representing hierarchical data (see Schultz et al. [86]
for an overview). The radial tree is a common node-link tree layout with a transformation to
polar coordinates (see Figure 5.8a). The advantage of radial transformations is a better usage of
space for trees with few hierarchy levels but many leaf nodes. We replace the nodes of the radial
tree with icons that represent the clusters (see Section 5.4). While drawing the radial tree, we
check for overlapping of icons. If two icons overlap, one icon is shifted. Additionally, we draw
circles in the background to discriminate between the different hierarchy levels. The user can
compare the 3D shapes of different cluster members and manually split or merge clusters in the
visualization.

We also implement other hierarchical layouts like circular dendrograms and treemaps. The
user can select the hierarchical representation at run time. Circualar dendrograms are a typi-
cal technique for visualizing hierarchical clustering. A circular dendrogram is very similar to a
radial tree but intermediate nodes are not drawn to avoid visual clutter (see Figure 5.8b). How-
ever, we prefer the radial tree layout because the user can relate the intermediate nodes to the
cluster representatives shown in the parallel coordinates, for example, using linking. Treemaps

57

Figure 5.8: Different representations of the cluster hierarchy: (a) Radial tree, (b) Circular den-
drogram, (c) Treemap.

are another popular technique for representing hierarchical data. We implement a treemap us-
ing the strip tilling algorithm [7] which ensures good readability and preserves the ordering of
the nodes. We replace the nested rectangles with icons (see Figure 5.8c). The advantage of a
treemap is its compact layout, but the structure of the hierarchy is more difficult to read. In the
evaluation, our domain experts rated the radial tree as the preferred choice for Cupid.

The hierarchical layout can also be used to modify the result of the hierarchical clustering,
where the user can manually split and merge clusters. In Figure 5.9a, for example, the user
clicks on the icons of two similar clusters (highlighted in red) and merges them by pressing the
minus button. The result is shown in Figure 5.9b. Clusters can be split as well by marking
different 3D shapes in the radial tree, for example, using a detail window (see Figure 5.9c) and
by pressing the plus button. Since the ordering within a cluster does not provide information,

58

Figure 5.9: Two similar clusters in (a) are merged in (b). (c) Using a detail window, (d) selected
members of a cluster are split into new clusters.

the new cluster is simply added at the end of the sub-nodes in Figure 5.9d. The user can also
change the ordering of the sub-nodes by dragging.

5.4 Nested Icons

We nest geometric representations in Cupid using icons. The icons can either represent a cluster
of similar 3D shapes or depict the individual cluster members at the bottom level of the hierarchy.
The icon’s background represents the color of the cluster, and the size/area indicates the number
of cluster members. If an icon is selected (for merging or splitting a cluster), then the color of the

59

Figure 5.10: Types of icons: (a) Shaded geometry, (b) variability visualization, (c) sharp edges,
and (d) starplots.

icon is inverted. The creation of an icon is shown in Figure 5.10. This consistent representation
in both views ensures a good user experience. By default, the shaded geometry is shown from
the same point of view set by the user (see Figure 5.10a). For icons representing a cluster,
we display the 3D shape of the cluster member with the shortest Euclidean distance between
its parameter values and the average values of the cluster. In the following, we describe three
alternatives to the shaded geometry.

In some applications, the variability of the members within a cluster is in focus. For this
purpose, we encode the variance between the nearest vertices of the cluster members to the
cluster representative using a color map (see Figure 5.10b). This enables the user to see constant
and varying regions of the 3D shapes within a cluster. As another alternative representation, we
offer an illustration of the object’s silhouette which is very important for comparing 3D shapes.
Following the idea of iWires [40], the sharp edges of the geometry are drawn to display just
enough information to identify the 3D shape. Additionally, the shaded geometry is shown with
low opacity (see Figure 5.10c).

60

Figure 5.11: Detail window: (a) Visualization of the shaded shapes, (b) Visualization using a
starplot

Finally, Cupid can depict derived geometric properties as starplots [21]. These are created
analog to parallel coordinates but with polar coordinates. To ensure good readability, we only
plot the convex hull of the line-paths for the cluster members. Because starplots are well suited
for showing outliers, they enable the user to find implausible cups quickly, e.g., by looking at de-
rived parameters such as shape stability (see Section 6.1). An example is shown in Figure 5.10d.

All visualizations are linked which enables the user to investigate clusters of similar 3D shapes
across different views (compare to the juxtaposition view in Section 3.6). The icons in both views
support the same operations which enables consistency during interaction. Clicking on an icon
selects the related cluster. Mouse-over enlarges the related icons in both views and highlights
the cluster in the composite parallel coordinates. Additionally, the user can drill-down into sub-
clusters by clicking on the icon of an intermediate node. While the radial tree already displays
the sub-clusters, an animated transition is performed in the composite parallel coordinates. In
the composite scatterplot matrix the nodes are only replaced.

The 3D shapes of underlying sub-clusters are shown in a detail window. Usually, the shaded
geometries are depicted side-by-side. An example is shown in Figure 5.11a. This representation
follows the idea of small multiples presented in Section 3.2. Visualizing different shapes side-
by-side enables the user to compare them easily. The same representation is shown, if the user
selects a variability visualization or the sharp edges icon. Only the icons are replaced with the
variability visualization or with the sharp edges. If the user selects the starplot representation,
a starplot is shown in the detail window. Additionally, Cupid displays all line paths of the cor-
responding objects and the geometric properties’ names. An example is shown in Figure 5.11b.
The detail window enables to select shapes. If a shape is selected, the cluster can be split to
modify the hierarchical clustering and the corresponding line path is shown within the compos-
ite parallel coordinates. Selecting of shapes within the small multiples representation is done
with clicking on the shape. In the starplot representation, the shapes can be selected using the
brushing tool. This approach follows the idea of linking and brushing, presented in Section 3.7.

61

5.5 Additional Features

All presented visualizations provide a basic zooming tool. The user can translate and scale
the visualization. While in the scatterplot matrix and the hierarchical clustering only a region of
interest is enlarged, the B-spines are automatically faded-in at high zooming levels. Furthermore,
a basic fish-eye view is provided for all visualizations. The fish-eye transformation enlarges a
region of interest and scales down the other parts (see Section 3.7). The fish-eye view is created
with the following transformation:

T (d) = 1/
(√

1.0− d2 ∗ tan Θfov ∗ 0.5
)
,

where d is the Euclidean distance of the actual point to the center of the projection, and Θfov is
the angle of the field of view (formula from PanQuake [74]).

Besides the composite parallel coordinates, scatterplot and hierarchical layout, Cupid pro-
vides a simple shape browser. The shape browser shows a list of all shapes using icons at the
bottom. The user can select a shape by clicking on the icon. The selected shape is shown in
the middle of the display. Additionally, the browser is linked with the other views. If the user
selects an object the shape is also shown in the shape browser.

62

CHAPTER 6
Geometric Properties

Cupid provides multi-dimensional visualizations and representations of the cluster hierarchy for
visual exploration of similar 3D shapes and the corresponding parameters (compare to Tasks 1
and Task 3). In addition, we provide derived geometric properties that help the user to identify
interesting 3D shapes such as implausible or deformed cups (compare to Task 2). The properties
can be depicted in the composite parallel coordinates, as background of the scatterplot matrix,
or in the icons using starplots.

In the next section, we present our set of geometric properties in detail. In Section 6.2, we
describe our approach for integrating the properties in the composite parallel coordinates. In
Section 6.3 we discuss the approach to integrate the derived properties in the composite scatter-
plot matrix.

Figure 6.1: Visualization of a cup (shaded and x-ray) with the convex hull, the center of gravity
and the origin of the coordinate system (created with MeshLab [28]).

63

Figure 6.2: Tip over - Fall test: Some time steps of the tip-over test.

6.1 Derived Geometric Properties

In the pre-processing stage (see Figure 4.1b), we calculate the following geometric properties in
addition to the similarity. We use these properties for exploring the parameter space:

• Surface area:
∑|T |

i=1Ai, where Ai is the area of a trianglei and |T | is the number of
triangles or a cup.

• Volume enclosed by the mesh V of a cup.

• Convexity: V/C, where V is the volume enclosed by the mesh and C is the volume
enclosed by the convex hull (see Figure 6.1).

• Shape stability: 1− ‖d−b‖r , where d is the origin of the coordinate system of the 3D shape
(see Figure 6.1), b is the center of gravity of the shape (see Figure 6.1), and r is the radius
of the bounding sphere.

• Number of crossing faces
• Euler characteristic |V | − |E| + |T |, where |V | is the number of vertices, |E| is the

number of edges, and |T | is the number of triangles. If the cup has an handle, then
it should return 0, otherwise 2. If the Euler characteristic is neitjer 0 nor 2, then the
meshtriangulation is invalid.

We have chosen these properties because they enable to detect invalid shapes (number of
crossing faces larger than zero, Euler characteristic large) and to describe characteristics of cups
such as shape stability or convexity. All properties are translation, rotation, and scale invariant.
Finding good properties that describe 3D shapes is still an open problem. In order to deal with
arbitrary geometries, we will include further parameters such as the fractal dimension of shapes
(used to evaluate plants) in future work. Besides the geometric properties, we perform a drop
test using a physics simulation engine (compare with Umetani et al. [96]):

• Tip over - Fall test: We drop a cup, and measure the orientation of the cup after 30
seconds. If the cup tips over, then the cup is not stable. Figure 6.2 shows an example of
the simulation.

64

Figure 6.3: (a) A function plot in the parallel coordinates shows the derived geometric property
surface area with respect to two parameters in order to identify possible correlations (like in
(b)). (b) Function plots in the scatterplot matrix

6.2 Visualization of Geometric Properties in Parallel Coordinates

The derived geometric properties can be represented by starplots (see Section 5.4) or mapped to
the axes of the parallel coordinates. The starplots can be enlarged in the detail windows, which
are linked to the parallel coordinates. If the user selects a region of interest, the corresponding B-
splines of the parallel coordinates are shown. This technique enables a result-driven exploration
of the parameter space using linking and brushing.

Additionally, we add a function plot to each axis (see Figure 6.3a). Compare this to over-
loading views presented in Section 3.6. These plots show the function f : x → g, where x
is a parameter value of the geometry generator and g is a user-selected geometric property. In
the function plot, we show the regression between the parameter value and the geometric prop-
erty. This representation gives the user a hint about a possible correlation between the parameter
and the geometric property and hides noise resulting from other parameters. Our function plots
are similar to those in HyperSlice [97] at the diagonal positions of the matrix. Moreover, the
function plots are linked with the composite parallel coordinates. A simple mouse-over in the
function plot selects the corresponding B-spline in the composite parallel coordinates. This
feature is useful to analyze outliers.

Additionally, HyperSlice [97] add 2D slices for the visualization of pairs of parameters. Our
approach provides a similar visualization using the B-splines of the parallel coordinates. The
geometric properties can be mapped to color and opacity, which are specified with a user-defined
transfer function. For example, B-splines representing cups with a small surface area are shown

65

in green in Figure 6.3. The user can also fade-in (or hide) the B-splines in order to prevent visual
clutter or to analyze a subset. For example, the user can hide all B-splines, which represent cups
with no self-intersecting faces (property number of crossing faces is 0). The displayed B-splines
represent invalid parameter combinations.

6.3 Visualization of Geometric Properties in the Scatterplot matrix

The composite scatterplot matrix also enables to analyze the geometric properties. We inte-
grate the geometric properties in the background. Furthermore, the composite scatterplot matrix
provides function plots.

The geometric properties can be mapped to the color and opacity of the markers with a user-
defined transfer function. This visualization enables to detect parameter regions, which results
in invalid 3D shapes (i.e., 3D shapes contains errors or tip over in reality). Additionally, Cupid
provides the function plot, presented in Section 6.2, at each coordinate axis. This function plot
is very good to analyze the effect of each parameter. Figure 6.3b shows an example.

66

CHAPTER 7
Implementation

In this chapter the software architecture and relevant implementation details of Cupid are pre-
sented. The next section gives an overview of the system architecture. In Section 7.2, we discuss
all implementation details. In the last section, we present all relevant aspects of the cup generator
as well as the corresponding parameter space.

7.1 Overview of the System

We implement Cupid in VolumeShop [20], which is a 3D visualization framework and rapid
prototyping toolkit. VolumeShop is implemented in C++, and the user-interface is built with Qt.

The main strength of VolumeShop is its modular design. All components like renderings
and object loading can be extended by a plug-in mechanism. The plug-ins enable to adapt
VolumeShop to the needs of the visualization. Additionally, the modular design of VolumeShop
ensures a good separation between data, logic and rendering, according to the model-view-
control (MVC) pattern. VolumeShop provides the following plug-ins:

• Renderer plug-ins are commonly used to display data using a particular rendering algo-
rithm [20].

• Interactor plug-ins are used to process user input such as mouse events. Additionally, the
interactor plug-in can display graphical output [20].

• Compositor plug-ins are responsible for combining the output of multiple renderers and
interactors in a viewer [20].

• Importer plug-ins enable to load data into a resource such as a volume or an image [20].

• Exporter plug-ins enable to write resource data [20].

• Editor plug-ins enable to provide advanced GUI elements for controlling certain param-
eters [20].

67

Figure 7.1: Overview of Cupid. (a) Pre-processing pipeline: First, the user defines the param-
eter space. Then, the cup generator creates the cups. Finally, the similarity is measured and
the geometric properties are calculated. (b) Before the user can explore the cup generator, the
parameter space, the cups, the result of the similarity measurement and the derived geometric
properties are imported. Then, Cupid calculates the hierarchical clustering. At last, the user
selects the desired visualization.

• Host plug-ins provide a text-based interface to VolumeShop objects. They can be used for
making VolumeShop scriptable in a certain language [20].

Besides of VolumeShop, a lot of other open source (information) visualization applications
and libraries are available like The Visualization Toolkit (VTK) [99] and Pandas [73]. In contrast
to VolumeShop, they provide several implementations of visualizations like scatterplots and par-
allel coordinates. However, they only provide a very basic representation of such visualizations.
Features, like the branching technique and edge bundling, are not provided. Thus, we have to
create our visualizations from scratch.

VolumeShop provides several basic data structures to share data. If a data object is modified,
an action handler notifies all plug-ins that use the data. Furthermore, VolumeShop provides
the linking of the application’s properties. The user can define a link between two properties
across different plug-ins. If two properties are linked, a change of one property updates all
the linked properties. This implementation enables an easy communication between several

68

Figure 7.2: Examples of configurations of Cupid. (a) Parallel coordinates and radial tree, (b)
Parallel coordinates and treemap, (c) Starplot + dendrogram, (d) Parallel coordinates and shape
browser

plug-ins. The excellent support for implementing integrated and linked visualization techniques
makes VolumeShop to an ideal visualization framework for the Cupid system.

An overview of Cupid is depicted in Figure 7.1. We use VolumeShop for visualizing the ge-
ometric parameter space and for controlling the pre-processing steps. Before the visualizations
run the first time, the user has to define the parameter space and to execute the pre-processing
pipeline. The user describes each parameter by its name, type, and the sample range. Moreover,
the number of samples to generated as well as the sampling technique has to be determined.
Cupid offers standard random sampling and low-discrepancy sampling using the Halton, Sobol
or Hammersley sequence. Then, the application creates a batch file. The batch file calls the
geometry generator to create the 3D shapes. Then, Cupid calculates the similarities between
each combination of shapes and the corresponding geometric properties. After calculating the
pre-processing steps the user imports the data, and Cupid calculates the hierarchical clustering.
After creating all data, Cupid generating the desired visualizations. The user can select between
several visualizations. In Figure 7.2 several example configurations of Cupid are given.

69

7.2 System Components

Cupid is composed of a collection of components, as seen in Figure 7.1. In the following sec-
tions, all system components are presented in detail.

Parameter Set Editor (Editor)

The parameter set editor is the central control point of Cupid. The editor is used to describe the
parameter space, to load the data, and to perform the hierarchical clustering. Cupid loads the
data by invoking the importer functions.

The editor provides a user interface to create the parameter space. As presented in Sec-
tion 4.1, the user has to define the parameter names, the parameter type, and the sample range.
Additionally, the user chooses the number of samples and the range to be sampled. Then, the ge-
ometric shapes are calculated using the geometry generator. Afterwards, the similarity between
all pairs of shapes are calculated, along with the geometric properties.

As soon as the data are loaded, Cupid creates the hierarchical clustering. As presented in
Section 4.2, the user can define the thresholds st, and ∆st. If the user modifies the parameters,
the hierarchical clustering is recalculated, and the visualizations are notified to update.

Pre-processing Pipeline: Similarity Measurement and Geometric Properties

Cupid derives geometric properties and calculates the similarity with external applications. Out-
sourcing to external applications enables it to replace pre-processing operations quickly and test
different pre-processing pipelines.

For calculating the similarity measure, the shapes are aligned first. We use the ICP algorithm
of the Point Cloud Library (PCL) [82] for this task. Then, we search for each vertex of the
first mesh the nearest vertex in the other mesh and sum-up the distances. This process can be
efficiently solved using a kD-tree.

In the last step, some geometric properties are derived from the 3D shapes. While the surface
area, shape stability, and the number of self-crossings can be calculated easily, the volume of
an arbitrary, watertight mesh is more complex. Cupid voxelizes the geometry using the method
from Crane et al. [31]. The resulting voxels are counted to calculate the volume. The first step is
to calculate the axis aligned bounding box (AABB) of the shape. Then, each triangle of the shape
is rendered into a slice of a 3D texture using an orthogonal projection. The near plane of the
orthogonal camera is set to match the current slice. The far plane is set to infinity. Additionally,
a stencil buffer is initialized to zero. Then, all triangles of the shape are rendered. The stencil
buffer is incremented if the triangle passes the back face test. Otherwise, the stencil buffer is
decremented. Voxels are created for each non-zero entry in the stencil buffer. The algorithm
repeats this process for each slice of the 3D texture. The stability tests are performed using the
open-source Bullet physics engine [23].

70

Cups and Parameters Loader (Importer)

The parameter space and geometric properties are stored using XML files. The 3D shapes are
given in the commonly used Wavefront object format. Both formats store the data as ASCII
characters and are readable by humans.

Loading a large set of shapes is a time-intensive task. Our first object loader implemented in
C needs more than two minutes to load the data set. This loader streams the files in the memory
and reads the data using the sscanf function. To reduce the time for loading shapes, we use
file mapping. Using file mapping loads the complete data set into the main memory without
streaming the files. Furthermore, we find the conversion from ASCII characters to floating-point
numbers to be a bottleneck. Loading the data by converting a char-array to float using the atof -
function takes around one minute (using an Intel Core 2 Duo processor with 2.26 GHz, and
Windows 8; see Section 9.7). Using an own conversation function, which does not process any
error handling, reduces the time for loading significantly. Instead of loading the data in one
minute, our loader imports the data in less than two seconds (the same configuration, only the
atof -function is replaced with our conversion).

Parallel Coordinates, Scatterplot Matrix, Hierachical Layout, and Shape Browser
(Renderer)

As presented in the earlier sections, Cupid provides composite parallel coordinates, scatterplot
matrix, hierarchical layouts and a shape browser. All visualizations are linked. The visualiza-
tions can be adjusted by modifying their properties. To link the visualizations, we create internal
objects, which save the current visualization state. These states are used to communicate be-
tween the visualizations. To adjust the visual representation, the user can adjust the properties
of the visualization. The user can change the size of the icons, fade-in (fade-out) the colored
polygons in the parallel coordinates, and much more. The properties are useful to test different
visualizations, e.g., the user can fade-out all icons in the parallel coordinates, but visualize a
label using the hierarchical clustering. In the appendix, an overview of all properties is given.

All visualizations are created using OpenGL and GLSL as shader language. This combina-
tion provides enough computational power to reduce the latency of our visualizations. The main
advantage of using our architecture is that individual tasks are outsourced into shader programs,
e.g., the display of the basic visualization elements is done using the shader. The CPU passes
all data that are needed to calculate the visualizations (value of geometric property, color, etc.).
The graphical elements are created using a geometry shader. Changing the representations can
be easily done by selecting another shader. This architecture enables a better separation between
logic and viewing code.

sRGB (Compositor)

The visualizations and the interactors have to be combined for rendering. We implement a
simple compositor. The compositor renders all visualizations into a framebuffer object (FBO).
Then, the visualizations are converted from the linear RGB color space to the sRGB color space.
Optionally, the fish-eye view is rendered (see Section 5.5).

71

Figure 7.3: The cup geometry generator: On the right panel, the GUI elements are shown.

7.3 Cup Generator

As an application example, we explore the results of a cup generator that is used for testing
the object recognition capabilities of a domestic robot. The parameter space consists of eleven
parameters (see Table 7.1). Certain parameters define parts of the cup such as handle type
or number of corners, and other parameters represent global modifiers of the shape such as
convexity. Additionally, the cup generator creates texture coordinates and enables to morph
between several cups.

The cup generator is implemented using Blender. [16] Blender is an open-source 3D com-
puter graphics software used for creating animated films, video games, visual effects, and 3D mod-
els. Blender provides tools for 3D modeling, UV unwrapping, texturing, animating, and much
more. Additionally, Blender supports Python scripting for the creation of new features, proto-
typing, importing from and exporting to other formats, and for the implementation of custom
tools. We use Python to implement the cup generator.

The cups, created by the cup generator, consist of a cup body and a handle. First, the genera-
tor creates a basic cup body. This body is defined by the number of corners, the type and size of
the bulge at the top, and the width at the top, center, and bottom of the body. If the user applies
the morphing feature of the cup generator, a shape is created, which saves a correspondence be-

72

Parameter name Description Type
number of corners roundness of cup discrete
convexity side convexity from side-view continuous
convexity top convexity from top-view continuous
bottom width width of cup at bottom continuous
center width width of cup at center continuous
top width width of cup at top continuous
bottom type type of bottom categorical
bulge at top if true, then a bulge is created categorical
size of bulge size of the bulge continuous
handle type type of handle (e.g., round, open, closed) categorical
handle size size of handle discrete

Table 7.1: Parameters of the cup generator.

tween the cups. Afterwards, the cup generator creates the handle depending on the parameters
handle type and handle size. If the cup should be morphable, also the correspondence between
the handles is calculated. In the next step, the body and handle are joined. In the last step, we
smooth the cup and modify the cups according to the convexity parameters.

Figure 7.3 shows an example of the cup generator. On the right side, the GUI of the cup
generator is seen. The user can define the parameters of the cup. Additionally, the generator
can also be used from the command line. The parameters of the cup are set by using environ-
ment variables. This feature enables to sample the parameter space of the geometry generator.
Table 7.1 gives an overview of all parameters of the cup generator.

73

CHAPTER 8
Results

In the introduction, we present several tasks for analyzing a geometry generator. In this chapter,
we provide solutions to the tasks presented in Section 1.1 using Cupid. In Section 8.1, we present
workflows to analyze the effect of each parameter. Then, a workflow is discussed in Section 8.2
to select shapes according to some parameter values for using a query-based exploration of the
cup generator. Subsequently, the tasks, presented in the introduction (see Section 1.1), are in
focus. In Section 8.3 we evaluate the cup generator to find categories of similar shapes (see
Task 1). Furthermore, we present our workflow to find invalid cups (see Task 2). According
to the third task, we present in Sections 8.5 and 8.6 our workflow to determine the influence of
parameters and to identify sensitive regions of a parameter (see Task 3).

We also evaluate our application together with domain experts of testing computer vision
(CV) applications. All details of the evaluation are presented in Section 8.7.

8.1 Analysis of the Effect of the Parameters

A very important task is to understand the changes resulting from the parameters. Even if a
geometry generator has a description of each parameter, it is wise to analyze the effect of each
parameter. The description can be ambiguous, or the result of a parameter can be difficult to
understand.

In the composite parallel coordinates, we use the line brush tool and the icons to evaluate
the effect of a parameter. The line brush tool is a well-suited tool to select all shapes within a
region without considering to the clustering. We usually start at the low end of the parameter
range. Then, we brush a line upwards. If the brushing tool crosses a line path, the corresponding
shape is shown in the detail window. To understand the effect of a parameter, the user looks for
continuous changes of the 3D shapes. This workflow is well suited for parameters, especially,
if the parameter strongly influences the 3D shapes. Another workflow for understanding the
change of a parameter is to use the icons. The user can compare icons of the same cluster in
different parameter regions. The detail window represents all members of the cluster. The user

75

Figure 8.1: Query-based Exploration: (a) Selection of round cups using the line brush tool.
(b)Result after spliting the round cups. (c) Result after splitting of cups with high convexity (d)
Detail window shows all round, convex cups with an angular handle. Note that the convexity
also depends on other parameters, such as the top width, center width and bottom width.

can estimate the change of the parameter when comparing the parameters of different parameter
regions.

Analyzing the effect of the parameter is not limited to composite parallel coordinates. The
composite scatterplot matrix can also be used though. The user analyzes the marker’s position.
Instead of employing the line brush tool, the user selects the markers with the lasso tool.

76

8.2 Query-based Exploration of the Geometry Generator’s
Parameter Space

The icons and the line brush tool are great tools for the selection of a region-of-interest, and
to investigate the impact of a parameter. However, in some application scenarios, the user may
want to select shapes according to some specific parameter values (e.g., all cups with a high
convexity side parameter and an angular handle). For example, the user might need to see all
cups with a high number of corners, high convexity, and a square handle. In Section 2.1, several
applications are presented to query shapes according to attributes.

Cupid also provides a query-based workflow using the merging and splitting tool at the
composite parallel coordinates. First, all shapes are grouped into one cluster. Then, the user
can select all shapes within a parameter region of interest and split the cluster. The resulting
cluster groups all shapes with the parameter region. The user can repeat this process for the
other parameters. An example of this workflow is given in Figure 8.1. First, all shapes with a
high number of corners are grouped into a cluster. Then, the shapes with a high convexity value
are selected, and lastly, the shapes with an angular handle. The resulting shapes can be explored
with the detail window. This task is not limited to the parameters of geometry generator, but
geometric properties can also be used. For example, the user can select all round shapes with a
high stability value.

In some application scenarios, the user is interested in selecting a combination of two param-
eters. For example, the user wants to select all cups with a similar parameter value for convexity
top and convexity side. First, the ordering of the parallel coordinates has to be adjusted. Both
parameters need to be placed side-by-side. Then, the user has to mirror one parameter horizon-
tally. Next, the user selects all B-splines which overlap in the center between both parameters
using the lasso tool. The desired cups are shown in the detail window. To select a combination
of three or more parameters, the user uses the merging and splitting tool. First, the user groups
all B-splines into a cluster, which overlap. The user repeats this process for the other parame-
ter combinations. The B-splines are split from the cluster which do not overlap. The resulting
cluster contains the desired cups. Note: This approach only works with a bundling factor of 0.

An easier workflow is the use of the composite scatterplot matrix. Instead of the line brush
tool, the lasso tool has to be used to group shapes. First, the user hides all scatterplots that show
other parameter combinations. Then, the user selects only the markers that are located in the
diagonal position of the scatterplot. A combination of three or more parameters can be chosen
with the splitting and merging tool.

However, we recommend the use of the composite parallel coordinates if the user wants to
limit the range of each parameter, for example, if the user wants to select all angular shapes with
a high convexity and a round handle. If the user wants to query a mix of parameters, then the
composite scatterplot matrix approach is the right choice (compare with Harrison et al. [43]).

77

Figure 8.2: Some examples of detected categories: The cups vary in profile, roundness, handle
and width.

8.3 Finding Similar 3D Shapes and the Corresponding Parameter
Values

The first task is to characterize the generated 3D shapes. We want to detect all variations of the
shapes and to identify the corresponding parameter values. Some example shapes are shown in
Figure 8.2.

Initially, the results from the hierarchical clustering are inspected in the radial tree. We
can adjust the parameters of the clustering interactively to improve the results (e.g., having
between five and nine clusters at the top hierarchy level). After this step, clusters can be split or
merged manually. In Figure 8.3a, for example, the 3D shapes within the top cluster look rather
different from their parent and are thus split into separate clusters. In contrast, the sub-clusters
in Figure 8.3b look very similar to their parent. The leaf elements group only very similar
3D shapes together by DBSCAN, which uses a low similarity threshold st. Furthermore, the
user can quickly detect variations of shapes within a cluster using the starplot.

After clustering the 3D shapes, the corresponding parameter values can be studied easily
using the composite parallel coordinates or scatterplot matrix. We only need to highlight (mouse-
over) the selected icon because all views are linked. The corresponding cluster is highlighted
in the multi-dimensional visualization. In the following, we use the hierarchical clustering to
analyze the parameter space in detail.

8.4 Finding Invalid and Implausible 3D Shapes

The next task is to find unwanted or (physically) implausible cups. Such shapes would affect
computer games or evaluation systems for computer vision and thus need to be identified. Cupid
derives geometric properties to detect unwanted 3D shapes (see Section 6.1). Such cups can, for
instance, have a high value for shape stability or a very small volume of the enclosing shape.
Moreover, erroneous meshes can be detected using the number of crossing faces. By mapping
the derived properties to the axes in the composite parallel coordinates, the scatterplot matrix or
by using the starplot icon, the user can quickly identify such shapes.

While invalid cups can often be detected automatically, we are also interested in cases that
are difficult to describe by the derived properties. For example, if a cup looks like a beer mug, it
is very difficult to decide between cup and no cup. A beer mug is very stable and can be used just
as a cup. The difference between a beer mug and a cup depends on semantic knowledge. Another
example are cups with a very small handle. Some users classify them as unwanted and others

78

Figure 8.3: Parent and child icons in the blue rectangle look different and are thus split into
separate clusters. In contrast, the icons in the pink rectangle belong to the same category. Icons
highlighted with the red rectangle are labeled as unwanted cups by the user.

as cups with novel design. To handle such ambiguous cases, the user has to manually determine
the validity of the cups. In the radial tree, we first inspect the icons located at the bottom level
of the hierarchy. Since the icons are grouped by their similarity, it is easy for the user to spot
outliers. In Figure 8.3, the cups inside the red rectangle have been labeled as unwanted by the
user. The corresponding B-spline curves are drawn in the linked composite parallel coordinates,
where we can investigate the respective parameter values. In the composite scatterplot matrix,
the corresponding markers are highlighted. We can also change the view-point for the cups or
use a detail window for further inspection.

79

Figure 8.4: Exploring the influence of parameters on the created cups: The orange (a) and
turquoise (b) clusters cover large regions of the parameter center width but only a small region
of parameter convexity side.

8.5 Evaluation of the Influence of Parameters

According to Task 3, we study the influence of parameters in this section and identify sensitive
regions in the parameter space in the next section. The clustering provides information about
the influence and sensitivity of the generator with respect to its parameters.

To determine the influence of a parameter, we use the composite parallel coordinates and
analyze the distribution of clusters of similar 3D shapes. If the polygon of a cluster covers only
small portions of a parameter range, the parameter has high influence because small changes
have a large effect on the resulting geometry. As an example, see the orange and turquoise clus-

80

ters for the parameter convexity side in Figure 8.4. In contrast, if large changes in the parameter
value result in similar 3D shapes, the parameter has low influence. The individual polygons (or
branches) of a cluster then cover large portions of the parameter range, e.g., see the orange and
turquoise clusters for center width in Figure 8.4.

Next, we investigate 3D shapes that have been classified as noise by the clustering. Many
such shapes have been generated by small values for the parameter number of corners. We select
those shapes using a line brush and inspect the cups in a detail window. As shown in Figure 8.5c,
the corresponding cups look very angular. Moreover, the clusters in this parameter range are very
narrow, while the clusters for larger values of number of corners are larger. This is not surprising
because changing from three to four corners has a higher influence on the generated 3D shape
than changing from 30 to 31, for example. Using additional detail windows, we can investigate
the influence of number of corners on the roundness of the generated shapes.

We analyze other parameters in a similar way. For example, the parameter convexity side
also has a high influence on the resulting cups because the individual clusters cover only small
parameter ranges and modify the profile of the shape (see Figure 8.5b). In contrast, the parameter
center width has low influence because it influences the shape in combination with top width and
bottom width. The respective clusters in Figure 8.5a cover larger portions of the parameter range.

The evaluation of the influence of the parameters can also be solved using the composite
scatterplot matrix. Usually, it is enough to plot one scatterplot with the analyzed parameter as
row (or column). We only analyze the x-axis (or y-axis) of all icons, because the y-axis (x-axis)
depends on the other parameter. If the icons cover only a small portion of the parameter range,
then the parameter has a high influence because small changes have a large effect on the resulting
geometry. In contrast, if large changes in the parameter value result in similar 3D shapes, the
parameter has low influence. The icons of a cluster cover large portions of the parameter range.
It is important to note that the icons depend on the parameter to analyze and another one. So,
several icons of the same cluster occur (because the other parameter affects the position of the
icons). We recommend the use of the composite parallel coordinates because the distribution of
icons is easier to follow.

However, the composite parallel coordinates and scatterplot matrix can also be used to ana-
lyze pairs of parameters. We can use the same workflow as presented earlier, but both (or more)
parameters have to be consider. In the composite parallel coordinates, the user have to analyze
the location of the icons as well as the colored polygons. The pair of two parameters has to be
visualized close together, and the user has to apply a low branching parameter (to see a high
level of detail). If each icon is connected to only one other icon, then the pair of parameters has
a high influence. If the icons are connected with several other icons of the other parameter, then
the combination of parameters has low influence. In the composite scatterplot matrix, the user
can visualize a pair of coordinates in one scatterplot. If only few, big clusters are shown over
the entire scatterplot, then the pair of parameters has a high influence. If a big cluster is located
in a small area of the scatterplot, than the combination of parameters has a high influence. If the
icons corresponding to the cluster are located over the whole area, then no correlation occurs.

Our presented workflow is able to find the influence of a parameter. Note, that it is mean-
ingful to consider the effect of each parameter separately while analyzing the influence (see
section 8.1). If no effect of the parameter can be detected, then the influence of the parameter

81

is low, regardless of the distribution of icons. Furthermore, finding the effect of each parameter
helps to understand the geometry generator. Common sources of errors are the similarity mea-
surement, and a too low sampling rate. Generally, we recommend to sample the parameter space
with low discrepancy sequences with a high sampling rate. Low discrepancy sequences ensure
that the whole parameter space is covered uniformly.

The derived geometric properties can also be used to evaluate the influence of a parameter.
The idea is to find correlations between a parameter of the generator and the derived geometric
properties using the function plots (e.g., surface area or shape stability). If such a correlation is
found, the parameter has a high influence on the selected geometric property (and on the result).
An example is shown in Figure 6.3, where the parameter surface area influences the derived
convexity of the shape (see Figure 6.3). The function includes some noise because also other
parameters affect the convexity.

8.6 Sensitivity Analysis of Parameter Regions

The last task is to find sensitive parameter regions. As discussed in the introduction, a sensitive
region of a parameter affects the resulting 3D shapes more than other regions of the same param-
eter. From this follows that parameter regions where a lot of clusters are located are potential
parameter areas with a high sensitivity. A good starting point for finding sensitive regions is
to look for narrow clusters or noise. The number of corners is such an example that has been
discussed already (see Figure 8.5c).

The main challenge of finding a sensitive region is to identify whether the number of clusters
within a (small) region depends on the current parameter or its interplay with other parameters.
In Figure 8.5c, for example, several clusters with round cups but different silhouettes can be
seen. The difference results from other parameters such as handle type and convexity side. In
contrast, the clusters with lower values for number of corners have different roundness, where
the variations stem mainly from the parameter itself. The corresponding region has a high sen-
sitivity.

Another example of a parameter with high influence is convexity side. To identify sensitive
regions, we analyze the parameter in the same way as the parameter number of corners. As
shown in Figure 8.5b, this parameter varies the profile of the 3D shape. Low convexity values
result in concave cups and high convexity values result in convex cups. While the cups at the top
and bottom (mainly) differ according to the amount of convexity/concavity, a significant change
is found in the middle. The clusters in the middle contain straight cups (neither convex nor
concave), the clusters above and below differ according to the convexity.

As presented earlier, sensitive regions of a parameter are regions, where a small change of
the parameter results in large changes of the shapes. The changes of the parameter can also be
detected using the starplot icon to visualize the derived geometric properties. If high variations
in the starplot occurs, then the shapes differ. If the variation of the starplot is low, then the
shapes should be similar. The advantage of this technique is that variations of shapes can be
detected easily. The user only has to analyze the variations of the derived geometric properties.
A disadvantage of this technique is that the user can only see significant changes, if a geometric
property changes. However, the surface area and the volume enclosed by mesh parameters

82

Figure 8.5: Comparison of selected 3D shapes using a detail window: (a) The orange cluster
covers a large portion of the parameter value with similar 3D shapes. (b) The parameter has
a high influence on the resulting shapes, since clusters are rather narrow. (c) Changes in low
values of number of corners already create different 3D shapes, while changes in large values
produce rather similar cups.

should vary, if a change of the parameter occurs. Furthermore, the variations of the geometric
properties are not equal to the similarity of two shapes. For instance, if both meshes are highly
convex (measured with geometric proper convexity), then the shapes are similar. If one shape
is more convex than the other one, both shapes can also be similar, because high changes of
convexity are not very important (i.e., one shape is a little bit more convex than the other).

The composite scatterplot matrix can also be used for the sensitivity study. We analyze the
position of the icons in a similar way as presented in the composite parallel coordinates. As
presented in Section 8.5 we only need to analyze a scatterplot, which visualizes the parameter

83

on one axis. However, we recommend the use of the composite parallel coordinates because the
distribution of icons is easier to follow.

8.7 Evaluation with Domain Experts

Our approach is evaluated by three domain experts for geometry generators and evaluation sys-
tems for computer vision. The domain experts have to solve tasks similar to those described in
the introduction. For the evaluation, we sample the cup generator with 100 cups using random
sampling. We only evaluate the composite parallel coordinates and the hierarchical layouts. As
presented in Chapter 8 the scatterplot matrix can also be used to solve the tasks. We recom-
mend to use the composite parallel coordinates because this visualization is better suited for
high dimensional parameters spaces (and is part of our main contribution).

At the beginning of the evaluation, the main functionality is presented, followed by a live
demonstration. Then, the domain experts have to solve the user tasks. They can ask questions if
something is ambiguous or not well traceable. After solving a task the domain experts report the
degree of difficulty and guidance of using Cupid. If the task is not solved successfully, potential
problems of the workflow are discussed to identify the weaknesses of our system. After solving
all tasks, the domain experts grade the used techniques according to usefulness and usability.

User Tasks

Our evaluation focuses primarily on the workflows and not the used visualization techniques.
For example, we are interested if the coloring of the clusters is sufficient to solve our tasks. The
domain experts have to solve the following tasks:

User task 1: Evaluation of the parameter space and geometric result: The first task is to give
an overview which groups of cups are generated. Then, the domain experts have to find
the associated parameter regions. We test several tree layouts. Additionally, the domain
experts have to explore the hierarchical clustering and rate the similarity of objects within
a cluster.

User task 2: Finding implausible cups: At first, the user needs to find examples of physically
implausible or unwanted cups. Physical implausible cups result from big handles or very
small bodies, for example. Also meshes with errors occur (e.g., crossing faces of the
surface). The domain experts have to find examples for both errors and the corresponding
parameter values.

User task 3: Determine the influence and sensitivity of parameters: In Tasks 1 and 2 the gen-
erated shapes are in focus. Task 3 requires the analysis of the parameter space to determine
the influence and sensitivity of a parameter. Three different parameters with varying influ-
ences are selected. The domain experts have to determine the effect of each parameter and
sort the parameters according to their influence. The parameter with the largest influence
is then used for a sensitivity analysis, i.e., the experts have to look for regions where the
resulting shapes have a high or a low variation.

84

Moreover, we asked the experts about the difficulty to solve the tasks, and about the useful-
ness of the visualization respectively the interaction tools.

Feedback from Domain Expects

The domain experts like the combination of the parallel coordinates with the radial tree. One of
them especially valued that Cupid allows to deal with a larger number of parameters at a time.
Due to our approach, they can now detect interrelationships between parameters of the geometry
generator rather quickly and identify sensitive parameter ranges, i.e., where a slight change has
a large influence on the created 3D shape. During the evaluation, the domain experts use the ra-
dial tree to get an overview of the clusters, while the parallel coordinates are used for inspecting
details. They see this combination as an intuitive way of exploring the geometry generator and
rate this combination as excellent. Including the spatial information into the abstract represen-
tation of the parameter space supports the easy exploration of the generated shapes. All domain
experts were able to assign the parameters to the resulting shape and vice versa.

The first user task of finding a group of similar shapes is easily solved by all domain ex-
perts. They explore the data set using the radial tree as described in Section 8.3. The domain
experts detect several categories of shapes and inspect the corresponding parameter values with
linking between the radial tree and the parallel coordinates. While the initial clustering presents
a good starting point for the exploration, some cups were wrongly assigned. This is because
our similarity metric works well for very similar shapes, but it has problems with less similar
shapes. In such cases, the domain experts interactively modify the clustering using the merging
and splitting tool. They rate the User Task 1 with a low degree of difficulty and a good support
by Cupid.

While solving User Task 1, the domain experts find some examples of implausible cups
(compare to User Task 2). For finding more implausible cups, they navigate through all clusters
at the top or middle hierarchy level and inspect their members. This can be done fast because
the cups within a cluster have similar characteristics. In contrast, the starplots and function plots
depicting the derived geometric properties are not used often. One domain expert explains that
the properties are not intuitive. After a discussion, the domain experts think that they are a useful
extension for specific tasks. For example, finding physically implausible cups can be done with
the shape stability property.

For evaluating the influence of a parameter on the result, the domain experts use the parallel
coordinates. They look for clusters that only cover a small portion of the parameter range (see
Section. 8.5). The effect of each parameter is explored using the line brush. The domain ex-
perts test different regions of the parameter space and analyze the variation of shapes in a detail
window. The domain experts like this integration of geometry into the parallel coordinates and
rate it as good. Furthermore, they use the function plots and tested several derived geometric
properties. Since the domain experts do not find reasonable geometric properties, they select
the properties by guessing. They rate the function plots as satisfactory. In summary, the do-
main experts rate the user task of evaluating the parameter influence with an average degree of
difficulty.

The domain experts denote the analysis of the sensitivity as the most difficult user task.
This task requires to analyze a combination of parameters because clusters can be affected by

85

several parameters (see Section 8.6). The domain experts explore various regions and study
the variations using line brushes. Additionally, the clustering is also used for their sensitivity
analysis. The domain experts identify several regions with different sensitivity. They rate this
user task with a high degree of difficulty because the relationships between parameters and
3D shapes are difficult to understand. Furthermore, the domain experts ask for methods to test
their own parameter combinations and to vary the sampling rate interactively. Testing their
own parameter combinations would enable a new workflow to vary only one parameter and set
other parameters to a default value. Varying the sampling interactively can be used to exclude
uninteresting regions of the parameter space.

At the end of the evaluation, an interview about the techniques provided by Cupid is done.
The domain experts appreciate the interactive techniques like linking and brushing. The integra-
tion of clustering into the parallel coordinates using illustrative methods is also rated between
good and excellent. The domain experts appreciate the possibilities provided by Cupid. They
rate the integration of geometry between good and excellent and like the different types of icons.
The methods using derived geometric properties are rated lower because the workflow is not so
intuitive.

86

CHAPTER 9
Discussion

In the previous section, we present our application Cupid to analyze the parameter space of
geometry generators, and we discuss some use cases (see Chapter 8) to solve the tasks introduced
in Section 1.1. This chapter focuses on a critical reflection and open issues of Cupid.

In this chapter, we discuss Cupid in detail. First, we discuss our similarity-based cluster-
ing. In Section 9.2, we examine the composition of the used visualization techniques as well
as their interplay. Then, we review the composite parallel coordinates and scatterplot matrices
(see Section 9.3) as well as the different algorithms to display the hierarchical clustering (see
Section 9.4). In Section 9.5, the icons are reflected on detail, and in Section 9.6 the geometric
properties are treated. We present the results of the performance evaluation of Cupid in Sec-
tion 9.7. In the last section, we conclude with the strengths and weaknesses of Cupid.

9.1 Similarity-based Clustering

The similarity-based clustering is one of the key elements of Cupid. The similarity-based clus-
tering is built on a vertex-to-nearest-vertex similarity measurement and a density-based clus-
tering. Cupid uses the vertex-to-nearest-vertex measurement to measure the similarity between
two shapes. As discussed in Section 4.2, we search for each vertex of a shape the closest vertex
of the other 3D shape. Then, we measure the Euclidean distance and calculate the mean of all
distances. We use this approach because it is straightforward, and the measurement can detect
small differences. In Figure 9.1, some examples of the differences between meshes are shown.
If two shapes are similar, the similarity measurement results in a value between 0.0 − 0.01. If
the shapes are not similar, then our similarity measurement results in a value higher than 0.1.

However, this measurement also has some troubles with measuring the similarity between
two geometric shapes. Figure 9.1c shows an example. The three shapes differ, in particular,
in the convexity. Even through the target shape is slightly concave, the similarity measurement
considers a somewhat convex cup to be more similar than a concave cup. The vertex differences
between the target and the slightly convex shape are lower than the vertex differences between
the target and the concave cup.

87

Figure 9.1: Three shapes and some examples of the corresponding similarity value.

This issue comes as no surprise since the vertex differences are not equal to the similarities
between geometric shapes. An alternative approach is the use of feature-based techniques (pre-
sented in Section 3.8). At first, a set of features is calculated that can differentiate between 3D
shapes. The features build up a shape descriptor, which is a multi-dimensional vector (called
feature-vector). Then, the shape descriptors are compared using a metric, and a value of similar-
ity between the two shapes is returned. The performance of the similarity measurement depends
on the features and metric used. Finding a global solution that works for all different classes
of shapes is still an open topic. In particular, the calculation of the similarity within a cate-
gory of objects is still very complicated, and the user or an administrator often has to find a set
of features for each application area. This task is very time-intensive because a great deal of
knowledge about the parameter space is needed. However, Cupid should help to obtain such
knowledge. An alternative approach would be the use of algorithms for the automatic selection
of the features. Such techniques build up a feature descriptor from a list of available features.
Implementing this method is very time-intensive because a lot of different features have to be
calculated. Furthermore, the automatic selection of features is still an open problem. We pre-
fer our simpler approach because we focus more on the visualization of the parameter set from
geometry generators, and not to find a perfect solution for measuring the similarity.

88

After measuring the similarity of the objects, the shapes are clustered according to similarity
using a hierarchical adaptation of the DBSCAN algorithm. All shapes, which are more similar
than a user-defined threshold, are grouped together into a cluster. As a result, each geometric
shape within the cluster is similar to at least one member of the cluster. We use this clustering
algorithm because the number of clusters is not known beforehand (as opposed to k-mean’s
algorithms), and the shape of a cluster can be arbitrary (instead of EM-algorithms). Furthermore,
different similarity measurements can be used, as well as different metrics. The extension to
hierarchical clustering is straightforward.

In summary, our presented similarity-based clustering approach is not a perfect solution to
cluster a set of shapes. As presented, our similarity-based clustering results in a good initial
clustering, but the user needs to modify the outcome because misclassification can occur. If
the user detects some false-classification, the hierarchical clustering can be changed quickly by
using the splitting and merging tool.

9.2 Combination of Multi-Dimensional Visualizations,
Hierarchical Layout, and Hierarchical Clustering

As presented in the previous chapters, we use composite parallel coordinates, a composite scat-
terplot matrix, and hierarchical layout to analyze the abstract parameter space of the geometry
generator. Before we discuss all visualizations in detail, we analyze the composition of the
different visualizations. The interplay between the visualizations is the focus of this section.

A critical challenge of this work is to visualize many 3D shapes. As presented in Chapter 4,
we use a novel cluster-based approach to group similar shapes. The geometry generator can
result in many clusters because the geometry generator creates many objects. We group the
clusters with hierarchical clustering. First, Cupid shows an overview representation. Then,
the user explores the details on demand (compare with zooming presented in Section 3.7). An
animated transition preserves the mental map of the user. This technique reduces visual clutter
because the hierarchical clustering reduces the number of objects to display (showing only 4-5
overview clusters instead of 30). The user interactively drills down the hierarchical clustering to
explore all details of the geometry generator.

For color assignment, we also use hierarchical clustering. Each cluster of the top-level clus-
ter gets its own color. As presented in Section 5.1, we use the color scheme of Colorbrewer [44].
They provide 12 colors that are well-suited to discriminate different elements. If the clustering
results in more than 12 overview clusters, we use the same colors multiple times. More than 12
overview clusters is an exceptional case. We chose this approach because the colors are well-
suited to differentiate. Using more than 12 colors is not useful because the human recognition
of colors is limited.

However, if the user wants to compare different clusters with different (grand-) parent clus-
ters, the user needs to drill down through several parent clusters. The composite parallel coor-
dinates and the scatterplot matrix will present many clusters. The user could lose the mental
map. To handle this problem, we use a novel combination of the visualization of the multi-
dimensional parameter space and the representation of the hierarchical clustering. While the
multi-dimensional visualizations depict the parameter space in detail, the hierarchical layout

89

gives an overview of the hierarchical clustering (compare with overview+detail presented in
Section 3.7). To navigate through the visualizations, we link all visualizations (compare with
the juxtaposition view presented in Section 3.6).

This combination also enables additional workflows. For example, the user can fade-in the
B-splines in the composite parallel coordinates. Using the highlighting tool, the user can select
the corresponding B-splines in the hierarchical clustering view. This feature can be used to
explore the hierarchical clustering. The advantage of this approach is that only some B-splines
are added to the visualizations instead of many colored polygons. This feature is very useful if
the user wants to compare clusters with different (grand-) parent clusters.

Another advantage of our approach is that the user has visualizations, which are well-suited
for the data. While the radial tree, dendrogram, and treemap are well-suited for analyzing the
hierarchical clustering, the composite parallel coordinates and the scatterplot matrix are helpful
for analyzing the abstract parameter space. As presented in Chapter 8, the visualization of
the hierarchical layout is well-suited for Tasks 1 and 2. The visualization of the hierarchical
clustering is useful for Task 3.

As presented in Chapter 7, Cupid provides a modular design. The user can select between
different visualization techniques like composite parallel coordinates, composite scatterplot ma-
trix, and radial tree. The user can modify many different properties. For example, the icons in the
composite parallel coordinates can be hidden, and the radial tree can be used for the exploration
of the geometry generator. Cupid can be adjusted to the needs of the user and the application
area.

In conclusion, our combination of different visualization techniques simplifies the explo-
ration of the geometry generator’s parameter space. The hierarchical clustering reduces the
number of objects to display. The used visualization techniques are well-suited for analyzing
the parameter space. Using linking, the user can navigate through the different visualizations
quickly.

9.3 Visualization of the Multi-Dimensional Parameter Space

The parameter space is visualized using composite parallel coordinates or the composite scatter-
plot matrix. Both methods are common visualization techniques to visualize the multi-dimensional
data. As presented in Section 3.1, these techniques are examples of geometrically transformed
displays, which trys to find a meaningful projection from the multi-dimensional space to the
2D screen.

Alternative approaches use dimension reducing methods, like the principal component anal-
ysis (PCA) and the multi-dimensional scaling (MDS) algorithm. Such algorithms reduce the
high-dimensional input space to the low-dimensional visual space. For example, the PCA al-
gorithm reduces the dimensions with linear transformations and tries to preserve the target dis-
tances of the parameter space. The MDS algorithm preserves the global distances (e.g., similar-
ity) and is used by Design Galleries [68]. Talton et al. [93] extend the MDS approach to generate
a semantic map. The main advantage of such an approach is that very high-dimensional spaces
can be visualized. In contrast to the scatterplot matrix and parallel coordinates, such methods
can be used to visualize highly dimensional data. Scatterplot matrix and parallel coordinates re-

90

Figure 9.2: Effect of edge bundling without clustering. A bundling value of 0 results in a
visualization of the line paths. Higher bundling values result in round B-splines.

sults in too complex visualization. Dimension reduction methods do not represent the parameter
space completely. For example, the PCA method combines several parameters in a new pa-
rameter. However, Cupid has been developed to analyze the complex relationships between the
parameters and the resulting 3D shapes. The reproduction of the multi-dimensional parameter
space is very important. Our composite multi-dimensional visualizations represent the multi-
dimensional parameter space in a sufficient way. They are very suitable for analyzing the tasks,
presented in Section 1.1.

Besides showing of the parameter space using a multi-dimensional visualization approach,
another methods is to employ a template object, respectively, a representative. The user can
modify the template object (respectively, a representative) and the corresponding shape is shown,
i.e., the most similar shape to the template object. The geometric shape is in focus, and the user
can analyze all details of the shape. Such visualization is suitable, if the user wants to query a
specific representation. Additionally, abstract data is visualized using linked visualizations, like
starplots. The main advantage of such visualizations is, that the user can explore the parameter
space in a goal-oriented way. If the user is interested in a special variation of a part of the
shape, e.g., the handle of the cup, he only deforms the part and all variations are shown (i.e.,
different variations of handles). This workflow is called inverse-design. This workflow is helpful
for the exploration of shapes, especially, if the user looks for a special shape. Cupid does not
support a similar workflow. The user has to look for shapes using the parameter space. However,
exploration of a set of geometric shapes using a geometry generator is useful for our task only
to a certain limit. We want to compare different shapes for categorization. A representation
showing several shapes is missed. The other tasks presented in Section 1.1 need also some

91

Figure 9.3: Effect of edge bundling with clustering. Higher bundling values result in bundling
of B-splines of the same cluster. (compare it with Figure 9.2)

representation of the set of geometric shapes. Projection-based techniques are better suited for
our purposes.

In summery, projection-based visualization technique like parallel coordinates and the scat-
terplot matrix are best suited for our purpose. In the next sections, the parallel coordinates, and
scatterplot matrix are discussed in more detail.

Composite Parallel Coordinates

Parallel Coordinates are a powerful visualization technique to represent a multi-dimensional
parameter space.

Parallel Coordinates display a set of n-dimensions with n-parallel straight lines. The straight
lines are equally spaced and are called axes. A datum in the n-dimensional space is represented
as a polyline with a vertex at each parallel axis. The position on each axis corresponds to the
value in the associated dimension. As shown in Figure 9.2, this representation results in a lot
of visual clutter between two coordinates, which makes it difficult to read. Our data are too
complex for the standard technique. To reduce visual clutter, we use edge bundling as presented
in Section 5.1. In Figure 9.3, different values of the bundling parameter β are shown. When
comparing it to Figure 9.2, the B-spline are clustered in Figure 9.3. The bundling reduces
the overlapping of line paths, if the B-splines are clustered and the B-splines are clustered.
The representation of the clustering is easier to read because line paths of the same cluster are
bundled together. Figure 9.4 shows an example of different values of the bundling parameter β.
We recommend a bundling value between 0.8 and 1.0. However, the user can modify the edge
bundling interactively.

92

Figure 9.4: Edge bundling: Effect of B-splines on the colored polygons.

In parallel coordinates, the clusters are usually displayed by coloring of the line paths. First,
a unique color is assigned to each cluster. Then, the line paths are colored with the cluster’s
color. Cupid also supports this technique. However, this technique is difficult to read, if the
multi-dimensional data is complex. As shown in Figure 9.2 a lot of line crossings occur. To
reduce the visual clutter, Cupid provides a level of detail representation using colored polygons.
Each polygon shows the extent of the clusters. The user can define the level of detail to display.
In Figure 9.5 an example with different levels of detail is shown. The highest level of detail
results in the representation of the line paths and the lowest level of detail in the representation
of the extent of the clusters. As shown in Figure 9.5, lower levels of detail reduce visual clutter.
Using an intermediate level of detail gives enough details but does not result in visual clutter.

Cupid allows to display the colored polygons with different styles. The standard represen-
tation is to draw colored polygons. Alternatives are the additional representation of the contour,
shadow, and contour with shadow. The motivation of providing different styles is to enable an
easier distinction between clusters, and to highlight the selected cluster. In Figure 9.6 an ex-
ample of the parallel coordinates view with different styles is shown. The colored polygons

93

Figure 9.5: Level of detail (LOD): While a tiny branching width results in a visualization of the
B-splines (high level-of-detail), a high branching width results in a visualization of the extend
of the cluster (low level-of-detail).

can be better distinguished, if the contour or shadow is used. However, the different styles can
also result in visual clutter, especially, if a lot of details are shown in the polygons. The more
complex styles add additional elements to the representation. We use the more complex styles
primarily to highlight the selected cluster. Our default settings are standard colored polygons for
all non-selected clusters, and the contour style for the selected cluster.

Moreover, the user can modify the opacity and the saturation of the colored polygons. The
effect of modifying the colored polygon’s opacity and saturation is shown in Figure 9.7. Both
parameters enables to highlight the selected cluster.

If the user drills down a cluster, an animated transition is performed. The animated transition
morphs the parent cluster to the child clusters. This technique preserves the mental map of the
user. Only successive small changes are shown, instead of showing all changes instantly. This
technique is useful, if the cluster is only split in less than five child elements. If a drill down

94

Figure 9.6: Different styles of the colored polygons.

results in more than five child clusters, it is difficult to follow the animated transition because
too many changes occur simultaneously. To handle this issue, the user can control the speed of
the animated transition. Optionally, the user can also navigate through the animated transition
by selecting a specific timestep using a slider. We conclude, that the animated transition helps
to preserve the mental map, but too many changes can confuse the user.

As presented in Section 8.2, selecting a combination of parameters is very cumbersome
with the composite parallel coordinates. The user needs to mirror a parameter, and applying a
bundling factor of 0. A similar task is to analyze two parameters concerning correlations. This
task is also very difficult to analyze with the parallel coordinates. As evaluated by Harrison et
al. [43] correlations can be easier analyzed with a scatterplot. Thus, we recommend the use of
our composite scatterplot matrix for such tasks.

95

Figure 9.7: Variation of the opacity and saturation of colored polygons

Composite Scatterplot Matrix

Besides composite parallel coordinates, Cupid provides a scatterplot matrix to visualize the
multi-dimensional parameter space.

The main advantage of the composite scatterplot matrix is that this representation is easy to
understand. Scatterplots are a common visualization technique to display two parameters. For
instance, Piringer et al. [76] use a scatterplot for displaying a parameter space of 2D function
ensembles. Busking et al. [24] use this technique to display a set of shapes. If more than two
parameters have to be displayed, scatterplot matrices are a commonly used technique to visualize
multi-dimensional data. The matrix arrangement enables to analyze the entire parameter space
easily. Another advantage of a scatterplot matrix is that all combinations of parameters are
shown in one plot. The scatterplot matrix can be used to compare one or more parameter to all
other parameters.

96

Figure 9.8: Visualization of many parameters: (a) Visualization of seven parameters, (b) Visu-
alization of nine parameters.

The main disadvantage of the scatterplot matrix is the inefficient use of screen space. Dis-
playing each combination of more than five parameters results in tiny scatterplots. Figure 9.8
shows two scatterplot matrices with too many parameters. All scatterplots in the matrix are tiny.
However, if not every combination of parameters is in focus, the user can hide some scatterplots.
Showing only some coordinates results in more space efficient representation. Additionally, Cu-
pid provides the possibility to enlarge columns and rows. If the user enlarges a column (or row),
the Cupid downsizes the other columns (respectively rows).

In the composite parallel coordinates, we provide several techniques to enhance the readabil-
ity. The illustrative techniques reduce visual clutter, and the animated transition preserves the
mental map of the user during a drill-down operation of a cluster. Our composite scatterplot ma-
trix does not provide similar visualization techniques. Advanced visualization techniques would
be very desirable. The correspondence between icons and markers is only visually encoded us-
ing the coloring. The markers have the same color as the icons. To differentiate between a lot
of different colors is very difficult for the human recognition. If the user drills down a cluster
of interest, he has to find the changes in the icons. The radial tree is very useful for this task.
However, animating the changes of a drill-down operation would enhance the user experience.

In conclusion, the scatterplot matrix is suitable for comparing only small numbers of param-
eters. This technique is commonly used, if more than five parameters are shown, the scatterplot
matrix is difficult to understand. In such cases, we recommend the use of the parallel coordinates
approach.

9.4 Hierarchical Layout

Cupid represents hierarchical clustering with hierarchical layouts. As presented in Section 5.3,
Cupid provides a circular dendrogram, a radial tree layout, and a treemap layout.

97

Figure 9.9: Without shifting (a) and with shifting (b) of the overlapping icons. Using shifting
results in a better use of space. (c) The corresponding tree (without transformation)

The circular dendrogram and the radial tree layout are common examples of node-link di-
agrams. As discussed in Section 5.3, the main difference between these layouts is that the
intermediate nodes are not drawn. For example, in the circular dendrogram, the relationship
between the leaf elements is only shown using hierarchical lines. Circular dendrograms are
commonly used to visualize hierarchical clustering because the intermediate nodes can result in
visual clutter. However, the hierarchical clustering only results in a tree with a height of four
and less intermediate nodes. So, drawing the intermediate nodes does not lead to visual clutter.

The circular dendrogram and radial tree result from an additional transformation of the tree
(dendrogram) using polar coordinates. We prefer this transformation because the outcome makes
a better use of space. Our hierarchical structure has four levels and few intermediate nodes, but
many leaf nodes, compared to the number of leafs. The transformation to polar coordinates
enables us to draw more leaf elements of the same size than when using the common method.
Additionally, Cupid checks for overlapping icons. If two icons overlap, one icon is shifted. This
technique ensures a better use of space because the icons can be drawn larger (see Figure 9.9a,
b).

Besides the two node-link diagrams, Cupid provides a treemap layout to visualize the hi-
erarchical clustering. The main advantage of using treemaps is the best use of space, but the
hierarchy is harder to read. As discussed in Section 5.3, Cupid uses the strip layout as a tilling

98

algorithm. As explained in Section 3.5 other tilling algorithm, like slice-and-dice or squarified,
exist with different strengths and weaknesses. The strip tilling algorithm results in an ordered
treemap, with proper aspect ratios and high stability. As shown in Figure 5.8c, the aspect ratio
of the resulting treemap is just as satisfying. Some rectangles have a very bad aspect ratio, espe-
cially the dark orange/brown rectangles and the gray rectangles represent outliers. This results in
small icons, because they are quadratic. The ordering of the nodes is preserved. The rectangles
with the same parent cluster are placed side by side. Moreover, the user can modify the ordering
using the drag tool. In future work, we will add some attributes to the ordering, e.g., similarity
between the clusters at the top level. Furthermore, the ordering in the treemap is equal to the
node-link layouts. Using the same ordering in different layouts preserves the mental map of the
user.

The comparison of the different tree layout methods does not result in a best representation.
While the radial tree and circular dendrogram enable a proper representation of the hierarchical
structure, the treemap uses the display space more efficiently.

In Section 3.5, a number of other algorithms are discussed for the representation of hierar-
chical data. Layered diagrams like sunburst diagrams or icicles, provide a more space efficient
layout than node-link diagrams. As shown in Figure 3.9, the rectangles of layered diagrams
have a very low aspect ratio. While a low aspect ratio is well suited for drawing labels, our icons
need an aspect ratio of around one (the icons are quadratic). So, the use of layered diagrams is
less suitable for Cupid. Circular treemaps are a variation of treemaps, and - as presented in Sec-
tion 3.5 - circles are used instead of rectangles. This representation has the advantage of being
easier to read. However, the representation uses the display space inefficiently. The provided
node-link diagrams produce a more readable layout, and the treemap, a more space-efficient
representation. Furthermore, in the other representations, rectangular icons are used. The use of
circles instead of rectangles would reduce the consistency between the visualizations.

In summary, the selected representation is a proper selection from the recent state-of-the-art.
The hierarchical layout is primarily used to display the hierarchical clustering. Additionally,
the hierarchical layout is linked to the parallel coordinates and scatterplot matrix. The combi-
nation of the multi-dimensional representation and the hierarchical layout follows the idea of
overview+detail. While the multi-dimensional representation shows the details of the parameter
space, the hierarchical layout provides an overview representation. The hierarchical layout in-
dicates which icons are currently shown in the parallel coordinates. If the user loses focus, the
hierarchical layout helps to understand the current visualization. Furthermore, some tasks are
easier to achieve using the hierarchical clustering (Task 1 and Task 2) while the third task can be
achieved using the composite parallel coordinates or the scatterplot matrix.

9.5 Nested Icons

Cupid nests the geometric representation using icons. Usually, shaded geometry is used to
visualize the shapes. Cupid uses Phong shading and the Phong reflection model for drawing the
shaded geometry. This technique results in a smooth representation of the shaded geometry with
low hardware requirements. Additionally, Cupid provides three alternatives to shaded geometry.

99

Figure 9.10: An example of different icons: (a) Standard geometry (b) Variations within the
cluster (only the handle varies within the cluster), (c) Illustration of the silhouette (d) Corre-
sponding geometry properties of the cluster

Comparing a set of shapes can be a time-intensive task. The user has to compare several
shapes manually at different parameter positions. To support the user, Cupid we encode the
variance between the nearest vertices of the cluster members to the cluster representative using
a color map. This technique enables one to see constant and varying regions of the 3D shapes
within the cluster without analyzing individual members of the cluster. Figure 9.10 shows an
example. The members of this cluster only vary at the handles. The handle is colored in blue
and pink, while the body of the cup is green. The pink color represents varying regions and the
green color shows constant areas. The blue color represents small varying regions. The user
sees varying areas quickly.

Another issue using shaded geometry is the representation of small icons. Especially in the
scatterplot matrix, the icons can be tiny if many parameters are analyzed. As an alternative
representation to the shaded geometry, Cupid offers an illustration of the object’s silhouette.
Following the idea of iWires [40], the sharp edges of the geometry are drawn to display just
enough information to identify the 3D shape. Additionally, the shaded geometry is shown with
low opacity. Giving only the sharp edges simplifies the recognition of small icons because only
the necessary details are depicted. In Figure 9.11, a comparison between the two representations
at different sizes is shown. The silhouette enables the recognition of smaller icons.

Finally, Cupid can depict derived geometric properties as starplots. These are created analo-
gous to parallel coordinates but with polar coordinates. To ensure good readability, the plot only
shows the convex hull of the line paths. They enable the user to find implausible cups quickly,
because starplots are well suited for showing outliers. For example, a low stability value indi-
cates an implausible cup (see Section 6 for more information). The starplots enable the display
of three to eight parameters. If Cupid visualizes more than eight parameters, the visualization is
hard to read.

The selected icons are the result of comparing different visualizations. As an example, we
tried a visualization for the variations in a cluster by plotting a contour of each shape. This
technique was presented by Busking et al. [24]. Regions where several contours are shown

100

represent variations of the cluster. The main disadvantage of this technique is that the contour
slice represents only a small part of the shape. We also try to blend the members of the cluster
on top of each other. This method produces results, where constant regions are drawn with
high opacity and variations with less opacity. Similar to the contour visualization, a shape of
the cluster can be difficult to analyze. Using our simpler techniques provides a visualization,
which is easier to read. As an alternative to the starplots, we also test small multiples of the bar
chart. For each member of the cluster, we show one bar of the bar chart. Each bar chart encodes
one geometric property of the shape. Additionally, we use color coding of the luminance of
the bar chart according to the value. Cupid represents the bar chart from the top. The color
coding enables to identify the geometric properties. This representation is similar to dense pixel
displays. The user can interactively change the camera position to see the histograms. This
representation is much harder to read than the starplots, especially if the cluster contains many
members.

Icons are used to represent a cluster. To analyze the members of the clusters, Cupid provides
detail windows. If the user selects shaded geometry as icons, all members of the cluster are
depicted side-by-side. If the user selects the sharp edge mode, a similar representation is given.
Only the shaded geometry is replaced by the sharp edge representation. The display of the
shapes side-by-side follows the idea of small multiples. As discussed in Section 3.2, small
multiples are an excellent technique to display many shapes without confusing the reader. The
main disadvantage of this representation is that having too many objects reduces the readability
of the shapes.

If the user wants to analyze the geometric properties in detail, a starplot visualization is also
given in the detail windows. As presented in Section 5.4, the starplot is displayed over the entire
detail window. Using linking and brushing enables an interactive selection of shapes, depending
on the geometric property. As presented in Section 8.4, linking and brushing is an excellent tool
for selection of invalid or unwanted shapes.

In summary, the different representations of the shaded geometry improve the visualization
of the nested shapes. While analyzing, the variation enables a quick comparison between mem-
bers of a cluster. The sharp edges approach supports the visualization of tiny icons. The user
can select the styles at run time. All presented techniques are a good trade-off between the
complexity (the amount of data to display) and readability.

9.6 Geometric Properties

Cupid provides a set of geometric properties which are derived from the geometric shapes. As
seen in Section 6.1, some general properties are calculated, like surface area and volume, and
some properties for a particular task, like the shape stability measure. Additionally, we perform
a simulation to determine the stability of the cups. The user can employ geometric shapes to find
invalid shapes (e.g., with the properties: Euler characteristic and number of crossing faces) and
physically implausible shapes (e.g., with the stability property and the tip-over test). However,
the set of geometric properties is rather limited. For other application areas, the set of derived
geometric properties has to be extended.

101

Figure 9.11: Comparision between shaded geometry and sharp edges with different sizes:
While, (a) show the shape rendered with Phong Shading, (b) is rendered using sharp edges.
The silhouette can be easier recognized using the sharp edges.

Besides the visualization of the parameter space and the shapes using novel composite multi-
dimensional visualizations, Cupid also provides techniques to visualize the geometric properties.
The user can choose between different visualization techniques, like starplots and function plots.
Providing different techniques reduces the limitations of a single method.

The starplot icon shows the geometric properties of all objects within a cluster. In sec-
tion 9.5, we discuss the starplot icon in detail. This method is appropriate if the user wants to
explore the variation of the geometric properties. A disadvantage of the starplot is that the repre-
sentation does not directly relate to the data (compared with icon-based displays in Section 3.1
and Keim [59]). The users have some problems with understanding the geometric properties
(see Section 8.7). Furthermore, if the user wants to compare the geometric properties with the
parameter space, this technique is difficult to use. Therefore, Cupid provides other techniques
which focus on this task.

The function plots are well suited if the user wants to find a relationship between a parameter
and a geometric property. Finding a relationship between a parameter and a geometric property
gives information about the effect of a parameter (see Section 8.1), and the influence of a param-
eter (see Section 8.5). The relationship can be linear, quadratic, cubic, or another function. If no
correlation is shown (the function plot shows some noise), then the parameter does not depend
on the geometric property. Additionally, the linear regression between the parameter and the
geometric property is displayed in the function plots to support the user in finding a relationship.

The main difficulty is to select the appropriate geometric property. A common method of
doing so is guessing if the user has no information about the effect of a parameter. However, if
the parameter is labeled and a description of the parameter is given, the user can take this in-
formation to select a suitable geometric property. Note that the geometric properties are derived
from the geometric shapes. A geometric property can be influenced by other parameters of the
parameter space. The effects of other parameters result in noise. For example, the parameter
convexity side changes the surface area, but other parameters also lead to a change of this prop-
erty (e.g. handle type or convexity top). As shown in Figure 6.3, the functionplot displays a
relationship between the convexity side and surface area, but some noise also results from other
parameters.

In the composite parallel coordinates, the geometric properties can be mapped to the B-
spline’s user-defined color and opacity using a transfer function. We apply this technique mainly

102

to highlight invalid parameter combinations. For instance, a low stability measure shows invalid
shapes because the cup would tip over in reality. The user can look for agglomerations of invalid
B-splines to find invalid parameter regions or parameter combinations. The user can visualize
the geometric properties of all shapes of the parameter space. Rendering many B-splines can
result in visual clutter. However, the user can also select a subset of the B-splines with the icons
or the line brush tool.

In the composite scatterplot matrix, a similar representation show the geometric properties
in the background, as presented in Section 6.3. This representation is well-suited to visualize
invalid parameter combinations because it only displays a subset of the parameter space. The
parallel coordinates technique is better suited for this task. However, the scatterplot technique
can be used to find a correlation between parameters and geometric properties.

In conclusion, each of the visualization techniques is well-suited for a particular task. The
main disadvantage of the geometric properties is that the user needs some knowledge about how
to apply of each method. Even the domain experts have some problems with the use of geometric
properties, as discussed in section 8.7. In future work, we will evaluate the visualization of
the geometric properties to find an easier depiction, and we will extend the set of geometric
properties.

9.7 Performance

We implement Cupid in VolumeShop [20], which is a 3D visualization framework and rapid-
prototyping toolkit. The provided visualizations are implemented using C++ and OpenGL. Cu-
pid requires a GPU that supports at least OpenGL 3.3. For the evaluation of the performance
of Cupid, an Intel Core 2 Duo processor with 2.26 GHz, 6 GB main memory, and an AMD
Radeon HD 3400 mobile graphic processor running Windows 8, is used. This configuration
is the minimal system requirement for running Cupid. This combination results in around ten
frames-per-second (fps). We also test Cupid using an Intel Core i5 processor with 3.3 GHz, 8
GB main memory, a Nvidia GT 440 graphics card, and Windows 7. This configuration gives us
enough computational power to achieve interactive frame rates (>16 fps).

In summary, the system requirements for rendering the visualizations are medium. We do
not speed up the application because interactive frame-rates are enough for our purpose. The
primary bottleneck of Cupid’s visualizations is not the number of polygons to draw, but the high
number of rendering calls.

The pre-processing pipeline is very time-consuming, especially, the measurement of the
similarity. Despite the use of kD-trees and a fast implementation of the iterative closest point
(ICP) algorithm, the similarity-based measurement needs at least three hours for 100 cups (with
the Intel Core 2 Duo processor). Cupid measures each combination of the shapes and has to
find for each vertex the closest vertex of the other 3D shape. In future work, we will speed up
this task. The calculation of the derived geometric properties needs around one hour for 100
cups. The most time intensive task is the simulation and finding crossing faces. However, the
pre-processing pipeline can be executed off-line.

103

9.8 Conclusion

The evaluation of Cupid shows that this system enables to solve the tasks presented in Sec-
tion 1.1. Applying this novel combination of visualization techniques to depict the multi-
dimensional parameter space allows the user to analyze its complexity. The hierarchical layout
gives an excellent overview and helps the user to explore the set of geometric shapes.

However, Cupid has some limitations. One limitation is the simple similarity-based mea-
surement, because it is very time intensive. Also, the quality of the similarity measure is a
problem. Some miscalculations can occur. Using a faster algorithm would enable to provide an
interactive steering of the geometry generator. The steering would allow for testing user-defined
parameter combinations at run time.

Another limitation of Cupid is that high-dimensional parameter spaces are hard to evaluate.
If more than 15 parameters have to be displayed with parallel coordinates, the visualization
becomes very complicated to read. The limit for the scatterplot matrix is by approximately five
parameters. So, the user has to select some of the parameters to visualize. If the geometry
generator has more parameters, the whole parameter space of a geometry generator cannot be
visualized in a sufficient way.

In comparison to the state of the art, where the applications can only solve one task, Cu-
pid provides workflows to solve different tasks. Several workflows to solve various tasks, are
presented in Chapter 8. The combination of different visualization techniques (like parallel coor-
dinates, starplots and radial trees), and different data (parameter space, 3D shapes, and geometric
properties) enables to get new insights in the parameter space of a geometry generator.

Our solution uses well studied (visualization) techniques and combines them in a novel way.
The evaluation with domain experts (see Section 8.7) reveals that the provided composite visu-
alizations are useful for the tasks. Cupid is rated with a high degree, especially, the composite
visualization, the representation of the clustering, and the provided manipulation tools, like the
line brush tool. The domain experts see the demand for Cupid, and they want to use it in their
workflow. The high interest in Cupid indicates that there is potential for future work.

104

CHAPTER 10
Summary and Future Work

This chapter summarizes the main contributions and concludes this thesis. Moreover, future
perspectives of research are presented in the last section.

10.1 Summary

In this thesis we present a novel visualization approach for exploring the parameter space of a
cup generator. Our general goal is to understand the complex relationships between parameter
space and the resulting geometric shapes. In particular, we identify three tasks by analyzing the
parameter space of a geometry generator:

• Find similar 3D shapes and the corresponding parameter settings

• Find errors and implausible 3D shapes

• Determine the sensitivity and influence of parameters on the result

After providing a detailed evaluation of the most relevant previous works, we conclude with
the demand for a new visualization system to explore ta geometry generator’s parameter space.
Motivated by the tasks described above, we introduce a new approach called Cupid to efficiently
analyze the result of a geometry generator. While other approaches only focus on one task, our
new approach supports all three tasks.

We present novel composite parallel coordinates and scatterplot matrix visualizations to ex-
plore geometry generators. Our visualizations combine both the abstract parameter space of the
generator and the resulting cups into one visualization. While the parameter space is visualized
with well-known visualizations like parallel coordinates and a scatterplot matrix, the geometric
shapes are nested into the visualization using icons. This combination allows the user to study
the complex relations between both domains.

To reduce visual clutter and to find similar 3D shapes, Cupid provides hierarchical clustering.
Our approach supports levels-of-detail by controlling the similarity of objects and the details of

105

the clustering. Our presented technique enables the user to drill down the hierarchy to explore
all details. We use the cluster hierarchy for coloring. The hierarchical clustering can be modified
using the merging and splitting tool. Additionally, the hierarchy of the clustering is visualized
using linked hierarchical layout algorithms like radial trees, circular dendrograms, and treemaps.
While the visualization of the multi-dimensional parameter space enables the user to explore
all details of the parameter space, the radial tree layout gives an overview visualization of the
parameter space.

The composite parallel coordinates use several illustrative techniques like edge bundling, a
level-of-detail representation using colored polygons, and different cluster styles. Using illus-
trative techniques reduces the visual clutter to ensure better readability. The hierarchy can also
be explored with the composite parallel coordinates. In order to preserve the user’s mental map,
an animated transition is provided that morphs a selected parent cluster into its sub-clusters.

For quickly finding implausible objects, we derived geometric properties, which are also
helpful for a sensitivity analysis of the parameter regions and their degrees of influence. The
geometric properties are visualized using a starplot icon and function plots. Additionally, Cupid
enables us to map the geometric properties to the B-spline’s coloring and opacity, which are
specified by user-defined transfer functions. In the scatterplot matrix, the geometric properties
can be visualized as a background color. Providing linking and brushing enables a result-driven
exploration of the parameter space.

We also present how to use our novel system to solve parameter space exploration tasks. As
an application example, we explore the results of a cup generator. The parameter space consists
of 11 parameters like the number of corners, handle type, and convexity. Each of the presented
tasks could be solved using the provided composite visualizations of the parameter space.

In Chapter 9, we discuss Cupid. The critical reflection shows the strengths and weaknesses of
our presented approach. The combination of well-suited visualization techniques lets us analyze
the relations of the parameters to get new insights. Additionally, domain experts in computer
vision testing evaluate Cupid in Section 8.7. The response from the domain experts is positive.
They see the demand for this tool and want to use it in their current workflow. However, we also
detect some limitations. These will be the subject of future work.

10.2 Future Work

Future work will focus on a re-design of the pre-processing steps, especially, the similarity
measurement. We use a simple similarity measure because we primarily concentrate on the
visualization of the complex parameter space. We identify the time-intensive calculation and
some problems with the similarity measurement as the biggest issues of our approach. A re-
design of the similarity calculation should focus on solving this problem.

In order to re-design the pre-processing steps, other application areas will be evaluated,
like an airplane or car generator. New application areas could require changes in the similarity
measurement. In order to deal with other geometric shapes, we will include further parameters
such as the fractal dimension of shapes (used to evaluate plants).

The quick response of the pre-processing pipeline (especially, the similarity measurement)
would enable to provide visual steering. Visual steering provides new workflows for analyzing

106

the parameter space of geometry generators. For example, the influence of each parameter could
be evaluated very quickly. Instead of studying the variations of the cluster members using the
icons or the parameter regions using the line brush tool, visual steering enables a new workflow.
The user only varies one parameter and sets other parameters to a default value. Then, the user
only has to analyze the newly generated shapes, which are not influenced by any other parameter.
Furthermore, the sampling rate of sensitive parameter regions could be increased to analyze such
areas in more detail.

In order to address new domain areas, the visualization techniques have to be evaluated for
new requirements. For example, the parameter space of another geometry generator could be
larger, than the parameter space of the cup generator. Furthermore, to provide visual steering a
tool for querying a set of parameter combinations has to implemented.

In this thesis, we focus on the visualization of a complex parameter space. However, a result-
driven exploration of the set of geometric shapes using manipulation would provide new oppor-
tunities to analyze the geometry generator. This workflow would be very helpful, especially if
the user wants to explore a set of shapes in a goal-oriented manner. Interactive manipulation of
shapes enables to analyze the parameter space more intuitively.

107

APPENDIX A
Additional material

A.1 Components

In this section the input and output of all components are presented. First, the parameter set
editor saves the parameter space using an XML file, and samples the geometry generator using
a batch file. To ensure that the obj files can be read, we convert all float values to a unique
representation. In the next step, the similarity is measured. In the last step, the geometric
properties are calculated.

Parameter space

The parameter space is saved using an XML file. Each object is saved within an XML-Tag:
cup. Within the tag each parameter is saved with its name, type, and value. An example is seen
below:

<?xml version="1.0"?>
<cups>
<cup>
<cg_corners0 type="Integer">13</cg_corners0>
<cg_convex type="Float">0.224403</cg_convex>
<cg_convexXY type="Float">-0.0500809</cg_convexXY>
<cg_bottomtyp type="Integer">1</cg_bottomtyp>
<cg_buttom type="Float">0.588794</cg_buttom>
<cg_center type="Float">0.702902</cg_center>
<cg_top type="Float">0.651784</cg_top>
<cg_wtop type="Integer">0</cg_wtop>
<cg_handleType0 type="Integer">1</cg_handleType0>
<cg_handleSize type="Integer">3</cg_handleSize>
<cg_smoothing type="Integer">1</cg_smoothing>

109

<cg_pathname type="String">objs5/0.bobj</cg_pathname>
</cup>
<cup>
<cg_corners0 type="Integer">9</cg_corners0>
<cg_convex type="Float">0.546434</cg_convex>
<cg_convexXY type="Float">0.450655</cg_convexXY>
<cg_bottomtyp type="Integer">1</cg_bottomtyp>
<cg_buttom type="Float">0.298227</cg_buttom>
<cg_center type="Float">0.0191351</cg_center>
<cg_top type="Float">0.618091</cg_top>
<cg_wtop type="Integer">0</cg_wtop>
<cg_handleType0 type="Integer">0</cg_handleType0>
<cg_handleSize type="Integer">2</cg_handleSize>
<cg_smoothing type="Integer">1</cg_smoothing>
<cg_pathname type="String">objs5/1.bobj</cg_pathname>
</cup>
....

Sampling of the Geometry Generator

To call-up the geometry generator a batch file is created. For each parameter an environment
variable is created with the corresponding value. Then, the geometry generator is called.

set cg_bottomtyp=1
set cg_buttom=0.588794
set cg_center=0.702902
...
"Blender\blender.exe" --python script.py

set cg_bottomtyp=1
set cg_buttom=0.298227
set cg_center=0.0191351
...
"Blender\blender.exe" --python script.py
...

The environment variables are always created automatically. The geometry generator can
use the environment variables or the XML file (presented earlier).

Obj Format

To load geometric shapes, Cupid supports the Wavefront’s OBJ files. As presented in chapter 7,
this file type is human readable, and is supported by most 3D modeling software. An example
is given in the following.

110

v 0.449602991342545 0.393326997756958 0.033215999603271
v 0.461780995130539 0.424383997917175 0.001642000046559
...
vt 0.001124234343443 0.459650239340432
vt 0.12393493434ß344 0.129239029020923
...
vn 0.000000000000000 1.000000000000000 0.000000000000000
vn 0.000000000000000 0.000000000000000 1.000000000000000
....
f 1/1/1 219/219/219 253/253/253
f 1/1/1 253/253/253 107/107/107
....

Similarity Measurement

The similarity measurement application loads two 3D shapes and calculates the similarity. The
result is written to a text-file.

The command to start the measurement is

iterativeclosestpoint.exe 1.obj 2.obj
transf12.txt transf21.txt result1to2.txt result2to1.txt result.txt

where iterativeclosestpoint.exe is the names of the application, 0.obj, 1.obj
are the name of the 3D shapes. transf01.txt saves the resulting transformation of the ICP
algorithm (transf21.txt is the transformation of mesh2 to mesh1), result1to2.txt
contains the similarity of mesh 1 to mesh 2 (result2to1.txt the similarity between mesh 2
and mesh 1), and result.txt contains the similarity measurment between 0.obj and 1.obj.

Geometric Properties

The geometric properties are calculated in an own application. To derive the geometric proper-
ties for a 3D shape, the command is as follows:

VolCalc.exe 1.bobj output_props.txt

The application calculates the properties, and appends the results in a text file as follows:

...
0.108215 0.0285488 4.61137 2 0.246393

After calculating the geometric properties for all 3D shapes, the XML file is created as
follows:

CreateXMLStatistic.exe nameProps.txt outputProps.txt statsgeom.obs

111

In nameProps.txt the names of the derived parameter are saved, and in outputProps.txt
the result for each cup.

The derived geometric properties are saved using an XML file. The geometric properties of
a geometric shape are saved within an XML-element: Geometry. Each derived property gets an
own tag, where the type and the result is saved. An example is seen below:

<?xml version="1.0"?>
<GeometryStatistic>
<Geometry>
<NumSelfCrossing type="Float">0</NumSelfCrossing>
<Area type="Float">4.61137</Area>
<Volume type="Float">0.108061</Volume>
<Extent type="Float">0.149362</Extent>
<EulerNumber type="Float">2</EulerNumber>
<Barycenter2Center type="Float">0.358527</Barycenter2Center>
<Convexity type="Float">0.246043</Convexity>
...
</Geometry>
<Geometry>
<NumSelfCrossing type="Float">0</NumSelfCrossing>
<Area type="Float">2.23552</Area>
<Volume type="Float">0.0365732</Volume>
<Extent type="Float">0.137836</Extent>
<EulerNumber type="Float">2</EulerNumber>
<Barycenter2Center type="Float">0.327175</Barycenter2Center>
<Convexity type="Float">0.282991</Convexity>
...
</Geometry>
...
</GeometryStatistic>

A.2 Properties of the Visualizations

We use a lot of different algorithms to visualize the parameter space. The algorithms can be
controlled using properties. In the following, we give an overview of all parameters:

Parameter name Description
Data:
Parameter space Defines the parameter space to visualize
Geometry Defines the shapes to visualize
Geometric Properties Defines the geometric properties to visualize
Geometric Properties Defines the geometric properties to visualize
Cluster:

112

Time Actual Time for a user-controlled animation
Parameter Threshold Level of detail of the colored polygons
Standard Style Style of all colored polygon
Selected Style Style of the selected colored polygon
Standard Opacity Opacity of all colored polygon
Selected Opacity Opacity of the selected colored polygon
Standard Saturation Saturation of all colored polygon
Selected Saturation Saturation of the selected colored polygon
Outlier Line Width Line width of all lines
Standard Linewidth Line width of the lines, which are not selected
Selected Linewidth Line width of the lines, which are selected
Outlier Linewidth Line width of outliers
Standard Linewidth Opacity Opacity of the lines
Selected Linewidth Opacity Opacity of the selected lines
Icon:
Type Type of icons
Size Size of icons
Projection Projection matrix of the integrated icons. Can be ad-

justed for modifying the camera to render to shapes.
View View matrix of the integrated icons. Can be adjusted

for modifying the camera to shapes.
World World matrix of the integrated icons. Can be ad-

justed for modifying the camera to shapes.
Transferfunction Transfer function to visualize the variability of

shapes.
Line:
Bundling Amount of edge bundling
Standard Width Width of B-splines
Selection Width Width of selected B-splines
Standard Color Color of B-splines
Selected Color Color of selected B-spline
Transferfunction Transfer function to visualize geometric properties
Parallel coordinates:
Width Width of the coordinate
Color Color of the coordinate
Plot:
Projection Projection matrix of the parallel coordinates. Can be

adjusted for zooming.
View View matrix of the parallel coordinates. Can be ad-

justed for zooming.
World World matrix of the parallel coordinates. Can be ad-

justed for zooming.

113

Degree of Curve Degree of the regression function
Parameter:
Parametername Switch on/off the visiblity

Table A.1: Parameters of Parallel Coordinates

Parameter name Description
Data:
Parameter space Defines the parameter space to visualize
Geometry Defines the shapes to visualize
Geometric Properties Defines the geometric properties to visualize
Icon:
Type Type of icons
Size Size of icons
Projection Projection matrix of the integrated icons.
View View matrix of the integrated icons.
World World matrix of the integrated icons.
Transfer function Transfer function to visualize the variability of

shapes.
Plot:
Projection Projection matrix of the scatterplot matrix. Can be

adjusted for zooming.
View View matrix of the scatterplot matrix. Can be ad-

justed for zooming.
World World matrix of the scatterplot matrix. Can be ad-

justed for zooming.
Degree of Curve Degree of the regression function
Polar coordinates Polar transformation

Table A.2: Parameters of scatterplot matrix

Parameter name Description
Data:
Parameter space Defines the parameter space to visualize
Geometry Defines the shapes to visualize
Geometric Properties Defines the geometric properties to visualize
Icon:
Type Type of icons
Size Size of icons
Projection Projection matrix of the integrated icons.
View View matrix of the integrated icons.
World World matrix of the integrated icons.

114

Transfer function Transfer function to visualize the variability of
shapes.

Plot:
Layout-Type Layout-type of tree
Projection Projection matrix of the tree representation. Can be

adjusted for zooming.
View View matrix of the tree representation. Can be ad-

justed for zooming.
World World matrix of the tree representation. Can be ad-

justed for zooming.
Hierarchy Color Color of hierarchical edges.

Table A.3: Parameters of the tree representation

Parameter name Description
Geometry Defines the shapes to visualize
Size Size of icons
Projection Projection matrix. Can be adjusted for modifying

the camera to render to shapes.
View View matrix. Can be adjusted for modifying the

camera to shapes.
World World matrix. Can be adjusted for modifying the

camera to shapes.
Table A.4: Parameters of the shape browser

115

Bibliography

[1] B. Allen, B. Curless, and Z. Popović. The space of human body shapes: Reconstruction
and parameterization from range scans. ACM Transactions on Graphics, 22(3):587–594,
July 2003.

[2] D. Archambault, H. Purchase, and B. Pinaud. Animation, small multiples, and the effect
of mental map preservation in dynamic graphs. IEEE Transactions on Visualization and
Computer Graphics, 17(4):539–552, April 2011.

[3] Z. Armstrong and M. Wattenberg. Visualizing statistical mix effects and Simpson’s para-
dox. IEEE Transactions on Visualization and Computer Graphics, 20(12):2132–2141,
December 2014.

[4] J.-P. Balabanian, I. Viola, and M. E. Gröller. Interactive illustrative visualization of hier-
archical volume data. In Proceedings of Graphics Interface 2010, GI ’10, pages 137–144,
Toronto, Ont., Canada, Canada, 2010. Canadian Information Processing Society.

[5] M. Balzer and O. Deussen. Voronoi treemaps. In Proceedings of the Proceedings of the
2005 IEEE Symposium on Information Visualization, INFOVIS ’05, pages 7–, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[6] R. Becker and W. Cleveland. Brushing scatterplots. Technometrics, 29(2):127–142, 1987.

[7] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quantum treemaps:
Making effective use of 2D space to display hierarchies. ACM Transactions on Graphics,
21(4):833–854, October 2002.

[8] M. Beham, W. Herzner, M. E. Gröller, and J. Kehrer. Cupid: Cluster-based exploration
of geometry generators with parallel coordinates and radial trees. IEEE Transactions on
Visualization and Computer Graphics, 20(12):1693–1702, December 2014.

[9] M. Beham and M. Hochmayr. Flowvisframe: http://cg.tuwien.ac.at/
courses/Visualisierung/2010-2011/Beispiel2/Beham_Hochmayr/
index.html. Accessed: 2015-01-08.

[10] M. Beham and C. Steiner. Hierarchical edge bundle 1.0: http://cg.tuwien.ac.
at/courses/InfoVis/HallOfFame/2011/Gruppe02/Homepage/index.
html. Accessed: 2015-01-08.

117

http://cg.tuwien.ac.at/courses/Visualisierung/2010-2011/Beispiel2/Beham_Hochmayr/index.html
http://cg.tuwien.ac.at/courses/Visualisierung/2010-2011/Beispiel2/Beham_Hochmayr/index.html
http://cg.tuwien.ac.at/courses/Visualisierung/2010-2011/Beispiel2/Beham_Hochmayr/index.html
http://cg.tuwien.ac.at/courses/InfoVis/HallOfFame/2011/Gruppe02/Homepage/index.html
http://cg.tuwien.ac.at/courses/InfoVis/HallOfFame/2011/Gruppe02/Homepage/index.html
http://cg.tuwien.ac.at/courses/InfoVis/HallOfFame/2011/Gruppe02/Homepage/index.html

[11] W. Berger, H. Piringer, P. Filzmoser, and M. E. Gröller. Uncertainty-aware exploration of
continuous parameter spaces using multivariate prediction. Computer Graphics Forum,
pages 911–920, 2011.

[12] P. Berkhin. A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, and
M. Teboulle, editors, Grouping Multidimensional Data, pages 25–71. Springer Berlin
Heidelberg, 2006.

[13] E. Bertini, A. Tatu, and D. A. Keim. Quality Metrics in High-Dimensional Data Visualiza-
tion: An Overview and Systematization. IEEE Symposium on Information Visualization
(InfoVis), 17(12):pages 2203–2212, December 2011.

[14] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass and magic
lenses: The see-through interface. In Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’93, pages 73–80, New York,
NY, USA, 1993. ACM.

[15] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In Proceedings
of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’99, pages 187–194, New York, NY, USA, 1999. ACM Press/Addison-Wesley
Publishing Co.

[16] Blender. http://www.blender.org/. Accessed: 2015-01-08.

[17] M. Booshehrian, T. Möller, R. M. Peterman, and T. Munzner. Vismon: Facilitating anal-
ysis of trade-offs, uncertainty, and sensitivity in fisheries management decision making.
Computer Graphics Forum, 31(3pt3):1235–1244, June 2012.

[18] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1121–1128, November 2009.

[19] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2301–2309, December 2011.

[20] S. Bruckner and M. E. Gröller. VolumeShop: an interactive system for direct volume
illustration. In Proceedings of IEEE Visualization 2005, pages 671–678, 2005.

[21] S. Bruckner and T. Möller. Result-driven exploration of simulation parameter spaces
for visual effects design. IEEE Transactions on Visualization and Computer Graphics,
16(6):1468–1476, 2010.

[22] C. Buchheim, M. Jünger, and S. Leipert. Improving walker’s algorithm to run in linear
time. In Revised Papers from the 10th International Symposium on Graph Drawing, GD
’02, pages 344–353, London, UK, UK, 2002. Springer-Verlag.

[23] Bullet Physics Engine. http://bulletphysics.org/. Accessed: 2015-01-08.

118

http://www.blender.org/
http://bulletphysics.org/

[24] S. Busking, C. P. Botha, and F. H. Post. Dynamic multi-view exploration of shape spaces.
Comput. Graph. Forum, pages 973–982, 2010.

[25] J. Carriere and R. Kazman. Research report: Interacting with huge hierarchies: beyond
cone trees. In Proceedings of the 1995 IEEE Symposium on Information Visualization,
INFOVIS ’95, pages 74–, Washington, DC, USA, 1995. IEEE Computer Society.

[26] S. Chaudhuri and V. Koltun. Data-driven suggestions for creativity support in 3d model-
ing. In ACM SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA ’10, pages 183:1–183:10,
New York, NY, USA, 2010. ACM.

[27] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On visual similarity based 3d
model retrieval. Compututer Graphics Forum, 22(3):223–232, 2003.

[28] P. Cignoni, M. Corsini, and G. Ranzuglia. MeshLab: an open-source 3d mesh processing
system. ERCIM News, 2008(73):129–136, 2008.

[29] A. Cockburn, A. Karlson, and B. Bederson. A review of overview+detail, zooming, and
focus+context interfaces. ACM Computing Survey, 41(1):2:1–2:31, January 2009.

[30] D. Coffey, C.-L. Lin, A. G. Erdman, and D. F. Keefe. Design by dragging: An interface
for creative forward and inverse design with simulation ensembles. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2783–2791, December 2013.

[31] K. Crane, I. Llamas, and S. Tariq. Real Time Simulation and Rendering of 3D Fluids,
chapter 30. Addison-Wesley, 2007.

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society, Series B, 39(1):1–38,
1977.

[33] S. R. dos Santos and K. W. Brodlie. Visualizing and investigating multidimensional func-
tions. In Proceedings of the Symposium on Data Visualisation 2002, VISSYM ’02, page
173, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

[34] S. A. Elavarasi and J. Akilandeswari. Survey on clustering algorithm and similarity mea-
sure for categorical data. ICTACT Journal on Soft Computing, 4(2), 2014.

[35] B. Engdahl. Ordered and unordered treemap algorithms and their applications on hand-
held devices. In Master’s Degree Project, Stockholm, Sweden, 2005.

[36] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings Knowledge Discovery and
Data Mining, pages 226–231, 1996.

[37] M. Fisher and P. Hanrahan. Context-based search for 3d models. ACM Transactions on
Graphics, 29(6):182:1–182:10, December 2010.

119

[38] Y. H. Fua, , M. O. Ward, and E. A. Rundensteiner. Hierarchical parallel coordinates
for exploration of large datasets. In Proceedings of the Conference on Visualization ’99:
Celebrating Ten Years, VIS ’99, pages 43–50, Los Alamitos, CA, USA, 1999. IEEE Com-
puter Society Press.

[39] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz, and
D. Dobkin. Modeling by example. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04,
pages 652–663, New York, NY, USA, 2004. ACM.

[40] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or. iWIRES: an analyze-and-edit approach
to shape manipulation. ACM Transactions on Graphics, 28(3):33:1–33:10, July 2009.

[41] G. Hamerly and C. Elkan. Learning the k in k-means. In S. Thrun, L.K. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages
281–288. MIT Press, 2003.

[42] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. Simulation of cloud dynamics
on graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Con-
ference on Graphics Hardware, HWWS ’03, pages 92–101, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[43] L. Harrison, F. Yang, S. Franconeri, and R. Chang. Ranking visualizations of correla-
tion using weber’s law. IEEE Transactions on Visualization and Computer Graphics,
20(12):1943–1952, December 2014.

[44] M. Harrower and C. A. Brewer. Colorbrewer.org: An online tool for selecting colour
schemes for maps. The Cartographic Journal, 40(1):27–37, 2003.

[45] J. Heinrich and D. Weiskopf. State of the art of parallel coordinates. In Eurographics
2013 State of the Art Reports, pages 95–116, 2013.

[46] Here. http://www.here.com/. Accessed: 2015-01-08.

[47] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in
information visualization: A survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, January 2000.

[48] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchi-
cal data. IEEE Transactions on Visualization and Computer Graphics, 12(5):741–748,
September 2006.

[49] P. Huang, A. Hilton, and J. Starck. Shape similarity for 3d video sequences of people.
International Journal Computer Vision, 89(2-3):362–381, September 2010.

[50] D. Huber, A. Kapuria, R. R. Donamukkala, and M. Hebert. Parts-based 3d object clas-
sification. In Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR’04, pages 82–89, Washington, DC, USA, 2004.
IEEE Computer Society.

120

http://www.here.com/

[51] A. Inselberg. The plane with parallel coordinates. The Visual Computer, 1(2):69–91,
1985.

[52] II J. Q. Walker. A node-positioning algorithm for general trees. Softw. Pract. Exper.,
20(7):685–705, July 1990.

[53] T. J. Jankun-Kelly and K. L. Ma. Moiregraphs: radial focus+context visualization and
interaction for graphs with visual nodes. In Proceedings of the Ninth annual IEEE con-
ference on Information visualization, IEEE Symposium on Information Visualization (In-
foVis), pages 59–66, Washington, DC, USA, 2003. IEEE Computer Society.

[54] W. Javed and N. Elmqvist. Exploring the design space of composite visualization. In
Proceedings of the 2012 IEEE Pacific Visualization Symposium, PACIFICVIS ’12, pages
1–8, Washington, DC, USA, 2012. IEEE Computer Society.

[55] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241–254, 1967.

[56] KDirStat. http://kdirstat.sourceforge.net/. Accessed: 2015-01-08.

[57] J. Kehrer and H. Hauser. Visualization and visual analysis of multifaceted scientific data:
A survey. IEEE Transactions on Visualization and Computer Graphics, 19(3):495–513,
March 2013.

[58] J. Kehrer, P. Muigg, H. Doleisch, and H. Hauser. Interactive visual analysis of heteroge-
neous scientific data across an interface. IEEE Transactions on Visualization and Com-
puter Graphics, 17(7):934–946, 2011.

[59] D. A. Keim. Information visualization and visual data mining. IEEE Transactions on
Visualization and Computer Graphics, 8(1):1–8, January 2002.

[60] A. Keller. The fast calculation of form factors using low discrepancy sequences. In Pro-
ceedings Spring Conference on Computer Graphics (SCCG ’96), pages 195–204, 1996.

[61] M. Kilian, N. J. Mitra, and H. Pottmann. Geometric modeling in shape space. ACM
Transactions on Graphics, 26(3), July 2007.

[62] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for inter-
active volume rendering. IEEE Transactions on Visualization and Computer Graphics,
8(3):270–285, 2002.

[63] Z. Konyha, K. Matković, D. Gračanin, M. Jelović, and H. Hauser. Interactive visual
analysis of families of function graphs. IEEE Transactions on Visualization and Computer
Graphics, 12(6):1373–1385, November 2006.

[64] R. Kosara, S. Miksch, and H. Hauser. Focus+context taken literally. Computer Graphics
and Applications, 22(1):22–29, January 2002.

121

http://kdirstat.sourceforge.net/

[65] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic ge-
ometry for visualizing large hierarchies. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’95, pages 401–408, New York, NY, USA,
1995. ACM Press/Addison-Wesley Publishing Co.

[66] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented presen-
tation techniques. ACM Transactions on Computer-Human Interaction, 1(2):126–160,
June 1994.

[67] A. Lex, M. Streit, C. Partl, K. Kashofer, and D. Schmalstieg. Comparative analysis of
multidimensional, quantitative data. IEEE Transactions on Visualization and Computer
Graphics, 16(6):1027–1035, November 2010.

[68] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang,
H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design galleries: A general ap-
proach to setting parameters for computer graphics and animation. In Proceedings of the
24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’97, pages 389–400, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing
Co.

[69] K. Matković, D. Gračanin, B. Klarin, and H. Hauser. Interactive visual analysis of com-
plex scientific data as families of data surfaces. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1351–1358, 2009.

[70] K. T. McDonnell and K. Mueller. Illustrative parallel coordinates. Computer Graphics
Forum, pages 1031–1038, 2008.

[71] P. Musialski. Course: Modeling in computer graphics, http://www.cg.tuwien.
ac.at/courses/Modeling/. Accessed: 2015-01-08.

[72] M. Ovsjanikov, W. Li, L. J. Guibas, and N. J. Mitra. Exploration of continuous variability
in collections of 3d shapes. ACM Transactions on Graphics, 30(4):33:1–33:10, July 2011.

[73] Pandas - Python Data Analysis Library. http://pandas.pydata.org. Accessed:
2015-01-08.

[74] PanQuake - a quick Quake sourceport hack by Aardappel. http://strlen.com/
gfxengine/panquake/. Accessed: 2015-01-08.

[75] Y. I. H. Parish and P. Müller. Procedural modeling of cities. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01,
pages 301–308, New York, NY, USA, 2001. ACM.

[76] H. Piringer, W. Berger, and J. Krasser. HyperMoVal: interactive visual validation of
regression models for real-time simulation. Computer Graphics Forum, pages 983–992,
2010.

122

http://www.cg.tuwien.ac.at/courses/Modeling/
http://www.cg.tuwien.ac.at/courses/Modeling/
http://pandas.pydata.org
http://strlen.com/gfxengine/panquake/
http://strlen.com/gfxengine/panquake/

[77] H. Piringer, S. Pajer, W. Berger, and H. Teichmann. Comparative visual analysis of 2D
function ensembles. Computer Graphics Forum, 31(3):1195–1204, 2012.

[78] A. J. Pretorius, M. A. Bray, A. E. Carpenter, and R. A. Ruddle. Visualization of parameter
space for image analysis. IEEE Transactions on Visualization and Computer Graphics,
17(12):2402–2411, December 2011.

[79] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag
New York, Inc., New York, NY, USA, 1996.

[80] E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Transaction on Software
Engineering, 7(2):223–228, March 1981.

[81] J. C. Roberts. State of the art: Coordinated & multiple views in exploratory visualization.
In Proceedings of the Fifth International Conference on Coordinated and Multiple Views
in Exploratory Visualization, CMV ’07, pages 61–71, Washington, DC, USA, 2007. IEEE
Computer Society.

[82] R.B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, pages 1–4, 2011.

[83] J. Schmidt, M. E. Gröller, and S. Bruckner. VAICo: visual analysis for image compar-
ison. IEEE Transactions on Visualization and Computer Graphics, 19(12):2090–2099,
December 2013.

[84] J. Schpok, J. Simons, D. S. Ebert, and C. Hansen. A real-time cloud modeling, rendering,
and animation system. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’03, pages 160–166, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[85] H. J. Schulz. Treevis.net: A tree visualization reference. Computer Graphics and Appli-
cations, IEEE, 31(6):11–15, November 2011.

[86] H. J. Schulz, S. Hadlak, and H. Schumann. The design space of implicit hierarchy vi-
sualization: A survey. IEEE Transactions on Visualization and Computer Graphics,
17(4):393–411, April 2011.

[87] A. Shamir. A survey on mesh segmentation techniques. Computer Graphics Forum,
27(6):1539–1556, 2008.

[88] B. Shneiderman. Treemaps for space-constrained visualization of hierarchies. In http:
//www.cs.umd.edu/hcil/treemap-history/. Accessed: 2015-01-08.

[89] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach. vol-
ume 11, pages 92–99, New York, NY, USA, January 1992. ACM.

[90] P. P. J. Sloan, C. F. Rose III, and M. F. Cohen. Shape by example. In Proceedings of the
2001 Symposium on Interactive 3D Graphics, I3D ’01, pages 135–143, New York, NY,
USA, 2001. ACM.

123

http://www.cs.umd.edu/hcil/treemap-history/
http://www.cs.umd.edu/hcil/treemap-history/

[91] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes. A Survey on Procedural Modelling
for Virtual Worlds. Computer Graphics Forum, 33(6):31–50, 2014.

[92] R. Smith, R. R. Pawlicki, I. Kokai, J. Finger, and T. Vetter. Navigating in a shape
space of registered models. IEEE Transactions on Visualization and Computer Graphics,
13(6):1552–1559, November 2007.

[93] J. O. Talton, D. Gibson, L. Yang, P. Hanrahan, and V. Koltun. Exploratory modeling with
collaborative design spaces. ACM Transaction on Graphics, pages 167:1–167:10, 2009.

[94] T. Torsney-Weir, A. Saad, T. Möller, H.-C. Hege, B. Weber, J. Verbavatz, and S. Bergner.
Tuner: Principled parameter finding for image segmentation algorithms using visual re-
sponse surface exploration. IEEE Transactions on Visualization and Computer Graphics,
17(12):1892–1901, December 2011.

[95] E. R. Tufte. Envisioning information. Optometry & Vision Science, 68(4):322–324, 1991.

[96] N. Umetani, T. Igarashi, and N. J. Mitra. Guided exploration of physically valid shapes
for furniture design. ACM Transactions on Graphics, 31(4):86:1–86:11, July 2012.

[97] J. J. van Wijk and R. van Liere. Hyperslice - visualization of scalar functions of many
variables. In IEEE Transactions on Visualization and Computer Graphics, pages 119–
125, 1993.

[98] R. Vliegen, J.J. van Wijk, and E.J. van der Linden. Visualizing business data with general-
ized treemaps. IEEE Transactions on Visualization and Computer Graphics, 12(5):789–
796, September 2006.

[99] VTK - The Visualization Toolkit. http://www.vtk.org. Accessed: 2015-01-08.

[100] E. W. Weisstein. Tree. From MathWorld—A Wolfram Web Resource http://
mathworld.wolfram.com/Tree.html. Accessed: 2015-01-08.

[101] K. Wetzel. Circular treemaps, http://lip.sourceforge.net/ctreemap.
html. Accessed: 2015-01-08.

[102] J. J. Van Wijk and H. van de Wetering. Cushion treemaps: Visualization of hierarchical
information. In Proceedings of the 1999 IEEE Symposium on Information Visualization,
INFOVIS ’99, pages 73–, Washington, DC, USA, 1999. IEEE Computer Society.

[103] X. Xie, K. Xu, N. J. Mitra, D. Cohen-Or, and B. Chen. Sketch-to-Design: Context-based
Part Assembly. ArXiv e-prints, December 2012.

[104] O. Zendel, W. Herzner, and M. Murschitz. VITRO – model based vision testing for
robustness. Proc. Int’l. Symp. Robotics (ISR), pages 24–26, 2013.

[105] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. Int.
J. Comput. Vision, 13(2):119–152, October 1994.

124

http://www.vtk.org
http://mathworld.wolfram.com/Tree.html
http://mathworld.wolfram.com/Tree.html
http://lip.sourceforge.net/ctreemap.html
http://lip.sourceforge.net/ctreemap.html

	Introduction
	Problem Statement
	Contribution
	Thesis Structure

	State of the Art
	Visualization and Exploration of a Set of Geometric Shapes
	Parameter Studies
	Conclusion

	Methods
	Visualization of Multi-Dimensional Data
	Small Multiples
	Scatterplots
	Parallel Coordinates and Starplots
	Visualization of Hierarchical Data
	Composite Visualizations
	Interaction Techniques
	Clustering and Similarity Measurement

	Overview of Cupid
	Data Generation and Pre-Processing
	Coregistration and Hierarchical Clustering

	Composite Visualization of Abstract and Spatial Data
	Composite Parallel Coordinates
	Composite Scatterplot Matrix
	Visualization of Hierarchical Clustering
	Nested Icons
	Additional Features

	Geometric Properties
	Derived Geometric Properties
	Visualization of Geometric Properties in Parallel Coordinates
	Visualization of Geometric Properties in the Scatterplot matrix

	Implementation
	Overview of the System
	System Components
	Cup Generator

	Results
	Analysis of the Effect of the Parameters
	Query-based Exploration of the Geometry Generator's Parameter Space
	Finding Similar 3D Shapes and the Corresponding Parameter Values
	Finding Invalid and Implausible 3D Shapes
	Evaluation of the Influence of Parameters
	Sensitivity Analysis of Parameter Regions
	Evaluation with Domain Experts

	Discussion
	Similarity-based Clustering
	Combination of Multi-Dimensional Visualizations, Hierarchical Layout, and Hierarchical Clustering
	Visualization of the Multi-Dimensional Parameter Space
	Hierarchical Layout
	Nested Icons
	Geometric Properties
	Performance
	Conclusion

	Summary and Future Work
	Summary
	Future Work

	Additional material
	Components
	Properties of the Visualizations

	Bibliography

