The Parameter Space of Cups: Cluster-based Exploration of a Geometry Generator’s Parameter Space
Michael Beham

Motivation
Evaluation of computer vision systems
- Real-world test-cases → expensive!

Idea: Simulate test-case
- Automatic test-case generation
- Using computer graphics

Application Area: household robot

Geometry Generators
- Generate 3D shapes
- Large variations
- Sample parameter space

Tasks
- Find similar 3D shapes and corresponding parameter settings.
 T1: Categorization
- Find errors and unwanted 3D shapes
 T2: Errors

- Determine sensitivity and influence of parameters on the resulting 3D shapes.
 T3: Influence & Sensitivity

Cupid[1]

Parameter Space
- Parameter
 - Name
 - Type
 - Sampling range
- Settings
 - Number of objects
 - Sampling type (Random, Halton, ...)

3D Shapes
- Cup Generator
 - 11 parameters
 - E.g., handle-type, convexity side, center width...
- Physically invalid detected categories
- Beer mug

Clusters
- Similarity Calculation
 - Iterative closest point algorithm
 - Closest point measurement
- Hierarchical clustering:
 - Agglomerative technique
 - Depending on similarity
 - User-adjustable

Visualization
- Composite Parallel Coordinates
 - Visualize parameter space
 - Embed spatial information
 - Hierarchical clustering of similar 3D shapes
 - Clusters represented by edge bundling and polygons
 - Detail window depicts all members of clusters

- Composite Radial Tree
 - Visualize hierarchical clustering
 - Modifying hierarchical clustering by split and merge

Optional
- Scatterplot Matrix Vis.
- Shape browser

Result

Feedback
- From domain experts of testing computer vision systems
 - Biologically-technique
 - Integration of shapes & clusters
 - Highlighting & brushing
 - T1: Categorization, T2: Errors

Conclusion
- Novel combination using well-known techniques
 - Composite visualization that combines the abstract parameter space with the resulting 3D shapes
 - Iterative techniques
 - Hierarchical clustering
 - Positive domain feedback

Kontakt: e0720417@student.tuwien.ac.at