
OpenSfM
Ein kollaboratives Structure-from-Motion System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Matthias Adorjan, BSc
Matrikelnummer 0927290

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Michael Birsak

Wien, 24. April 2016
Matthias Adorjan Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

OpenSfM
A collaborative Structure-from-Motion System

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Matthias Adorjan, BSc
Registration Number 0927290

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Michael Birsak

Vienna, 24th April, 2016
Matthias Adorjan Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Matthias Adorjan, BSc
Heidegasse 2a
7400 Oberwart

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. April 2016
Matthias Adorjan

v

Acknowledgements

Firstly, I would like to thank everyone who supported me during my studies at the
Technical University of Vienna and the work on this thesis. In particular, I want to
express my gratitude to my advisors Michael Birsak and Michael Wimmer for their
helpful input and support during the research and development work of my thesis.

Special thanks to Markus Schütz, who supplied me with valuable advices for the front-end
development and background information about his Potree renderer, which we use in
this thesis.

Furthermore, I wish to thank the technicians of the Institute of Computer Graphics at
the TU Vienna and especially Stephan Bösch-Plepelits for his support on setting up the
needed client-server architecture.

At last I would like to thank my family and my girlfriend Katharina, who always stand
behind me and supported me patiently during my studies.

vii

Danksagung

Ich möchte mich zunächst bei jedem bedanken der mich während meines Studiums und
bei der Erstellung dieser Arbeit unterstützt hat. Besonders möchte ich mich bei meinen
Betreuern Michael Birsak und Michael Wimmer für die hilfreichen Ratschläge und für
ihre Unterstützung meiner Diplomarbeit und der damit einhergehenden Forschungs- und
Entwicklungsarbeit bedanken.

Ein besonderer Dank gilt Markus Schütz, der mir wertvolle Tipps für die Erstellung der
Frontend-Anwendung, sowie detaillierte Informationen zu seinem Potree-Renderer gab,
den wir in unserer Anwendung verwenden.

Weiters möchte ich mich bei den Technikern des Computergraphik-Instituts der TU Wien,
insbesondere bei Stephan Bösch-Plepelits, für seine Unterstützung beim Aufsetzen der
benötigten Client-Server-Architektur bedanken.

Zu guter Letzt gilt mein Dank meiner Familie und meiner Freundin Katharina, die
während meines Studiums immer hinter mir standen und mich geduldig unterstützten.

ix

Abstract

Besides using high-cost laser scanning equipment to capture large point clouds for
topographical or architectural purposes, nowadays other, more affordable approaches
exist. Structure-from-motion (SfM) in combination with multi-view stereo (MVS) is
such a low-cost photogrammetric method used to generate large point datasets. It refers
to the process of estimating three-dimensional structures out of two-dimensional image
sequences. These sequences can even be captured with conventional consumer-grade
digital cameras.

In our work we aim to a establish a free and fully accessible structure-from-motion system,
based on the idea of collaborative projects like OpenStreetMap. Our client-server system,
called OpenSfM, consists of a web front-end which lets the user explore, upload and edit
SfM-datasets and a back-end that answers client requests and processes the uploaded
data and stores it in a database.

The front-end is a virtual tourism client which allows the exploration of georeferenced
point clouds together with their corresponding SfM-data like camera parameters and
photos. The information is rendered in the context of an interactive virtual globe. An
upload functionality makes it possible to integrate new SfM-datasets into the system
and improve or extend existing datasets by adding images that fill missing areas of the
affected point cloud. Furthermore, an edit mode allows the correction of georeferencing
or reconstruction errors.

On the other side the back-end evaluates the uploaded information and generates geo-
referenced point datasets using a state-of-the-art SfM engine and the GPS data stored
in the uploaded images. The generated point clouds are preprocessed, such that they
can be used by the front-end’s point cloud renderer. After that, they are stored together
with the uploaded images and SfM parameters in the underlying database.

On the whole, our system allows the gathering of SfM-datasets that represent different
sights or landmarks, but also just locally famous buildings, placed all over the world.
Those datasets can be explored in an interactive way by every user who accesses the
virtual tourism client using a web browser.

xi

Kurzfassung

Neben der Verwendung von teuren Laserabtastgeräten zur Aufnahme von großen Punkt-
wolken für topographische oder architektonische Zwecke existieren heutzutage leistbarerer
Alternativen. Structure-from-motion (SfM) ist in Kombination mit Multi-View Stereo
(MVS) so eine kostengünstige photogrammetrische Methode mit deren Hilfe man große
Punktdatensätze erzeugen kann. Unter SfM versteht man die Schätzung dreidimensionaler
Strukturen aus zweidimensionalen Bildsequenzen. Diese Sequenzen können auch nur mit
konventionellen Digitalkameras aufgenommen werden.

In dieser Arbeit wollen wir ein freies, uneingeschränkt zugängliches Structure-from-motion
System, basierend auf der Idee kollaborativer Projekte wie OpenStreetMap, aufbauen.
Unser Client-Server-System mit dem Namen OpenSfM besteht aus einem Web-Frontend,
das es dem Benutzer erlaubt SfM-Datensätze anzusehen, hochzuladen oder zu editieren
und einem Backend, das auf Clientanfragen antwortet und die hochgeladenen Daten
verarbeitet und in einer Datenbank speichert.

Das Frontend ist ein virtuelles Tourismus-System über das man verortete Punktwolken
und die dazugehörigen SfM-Daten wie Kameraparameter oder Fotos erkunden kann.
Die Information wird im Kontext eines interaktiven virtuellen Globus gerendert. Eine
Uploadfunktionalität macht es möglich neue Datensätze in das System zu integrieren
und bestehende Datensätze zu verbessern oder zu ergänzen, indem man ihnen Fotos
hinzufügt, die Bereiche der Punktwolke abdecken, die noch nicht erfasst sind. Weiters
erlaubt ein Editiermodus die Korrektur von Verortungs- oder Rekonstruktionsfehlern.

Am anderen Ende wertet das Backend hochgeladene Informationen aus und generiert
mithilfe eines State-of-the-Art SfM-Systems und den GPS-Daten der Fotos verortete
Punktwolken. Die generierten Punktwolken werden vorverarbeitet, sodass sie vom Punkt-
wolkenrenderer des Frontend’s verwendet werden können. Danach werden sie zusammen
mit den hochgeladenen Fotos und SfM-Parametern in der dem System zugrundeliegenden
Datenbank gespeichert.

Im Großen und Ganzen erlaubt unser System das Sammeln von SfM-Datensätzen die über
die ganze Welt verteilt sind und die verschiedene Sehenswürdigkeiten oder Wahrzeichen,
aber auch nur lokal bekannte Gebäude, repräsentieren. Diese Datensätze können von
jedem Benutzer der das virtuelle Tourismus-System über seinen Webbrowser aufruft
interaktiv erkundet werden.

xiii

Contents

Abstract xi

Kurzfassung xiii

Contents xv

1 Introduction 1
1.1 Motivation and problem statement . 3
1.2 Contribution . 4
1.3 Structure of the work . 5

2 Related work 7
2.1 Peer-production-based projects . 7
2.2 3D photo exploration applications . 15

3 The reconstruction pipeline 23
3.1 The classic reconstruction algorithm . 23
3.2 Alternative approaches . 35
3.3 Applications . 36

4 Working with large point clouds 37
4.1 Basic data structures . 37
4.2 Large point cloud rendering . 40

5 Geographic coordinate systems 47
5.1 World Geodetic System 1984 (WGS84) . 47
5.2 Local ENU reference frame . 50
5.3 Coordinate conversions . 50

6 Implementation 57
6.1 System overview . 57
6.2 The front-end: A virtual tourism client . 58
6.3 The back-end: SfM, point cloud preparation and database interface 73
6.4 The OpenSfM database . 81

xv

7 Results 85
7.1 System . 85
7.2 Performance tests . 86
7.3 The OpenSfM workflow in practice . 88
7.4 Limitations . 91

8 Conclusion 93
8.1 Future work . 94

Bibliography 97

CHAPTER 1
Introduction

One of the major goals in computer graphics research has always been the creation and
visualization of realistic models that describe real-world objects. With increasing CPU
and GPU power, the visual realism of the digital representatives of such real-world objects
has steadily improved.

Nowadays, real-world objects can be virtually explored from arbitrary perspective in real
time. This is especially useful if they cannot be investigated in detail without causing
damage to them in real world. Furthermore, computer graphics algorithms make it
even possible to experience real-world events that cannot be observed in real life any
more. This especially occurs in the field of archaeology or cultural heritage, where the
observed items suffer from decay or other destructive forces. In order to work with data
that describes such real-world objects, it has to be recorded and transformed into a
computer-readable representation.

One way to define a real-world object’s surface is to describe it as a point cloud, which
denotes a set of distinct point positions in space. For capturing point clouds, several
techniques exist that can be mainly divided into triangulation-based methods and methods
that don’t use correspondences for surface reconstruction. Additionally, a distinction
between techniques that use active 3D sensors (usually laser scanning) and passive
image-based photogrammetric methods can be made [25].

The principle of triangulation-based techniques is depicted in Figure 1.1. In this active
approach, a laser source emits light that is reflected by the target object and detected
by a laser sensor. Since the distance c and angle between the laser and sensor is known,
and the incident angle α of the laser at the sensor can be recognized, the distance b
from the laser to the scanned target surface can be calculated by means of triangulation.
This can be done for each point on the scanned object’s surface to generate its digital
representation. Due to physical constraints, the accuracy of this approach decreases with
increasing distance between the laser source and the target object [12][101].

1

1. Introduction

Scanned object

α

a

c

b

Laser source

La
ser

sen
sor

A

B

C

Figure 1.1: Triangulation-based laser scanning: The known positions and orientations of
a laser source and its sensor are used by means of triangulation to calculate the distance
between the laser source and a scanned object.

For long-range acquisition, other methods like laser pulse-based, also known as time-of-
flight laser scanning is used. They send single laser pulses towards the observed object
and the time it takes for a pulse to return to the source is measured. Since the speed of
light is well known, it can be used together with the laser beam orientation to compute
the distance between the laser source and the target object. Figure 1.2 shows the principle
of time-of-flight laser scanning. First the laser source emits a laser pulse. This pulse is
then reflected at the surface of the scanned object and sent back to the source. After
time ∆t the laser pulse reaches the source where it is captured. ∆t can then be used to
compute the distance to the object.

Besides using high-cost laser scanning equipment to capture large point clouds for
topographical or architectural purposes, nowadays other, more affordable approaches
exist. Structure-from-motion (SfM) in combination with multi-view stereo (MVS) is such a
low-cost passive photogrammetric method used to generate large point datasets. It refers
to the process of estimating three-dimensional structures out of two-dimensional image
sequences. These sequences can even be captured with conventional consumer-grade
digital cameras.

To acquire a point cloud out of a series of photographs, the photos can be fed into a

2

1.1. Motivation and problem statement

Laser source

Laser source

Scanned object

Scanned object

∆t

Figure 1.2: Time-of-flight laser scanning: The time ∆t it takes for a laser pulse to return
to its source is measured and used to calculate the distance between the laser source and
the scanned object.

state-of-the-art SfM-engine. Such an engine detects corresponding image points in the
given input images and reconstructs three-dimensional points by means of triangulation,
as depicted in Figure 1.3. The projection matrices, representing the extrinsic and intrinsic
camera parameters, needed for point reconstruction can be computed simultaneously
with the reconstruction. Additionally, bundle adjustment algorithms are used to refine
the outcome and minimize an appropriate cost function [81]. At last, MVS is used to
generate a dense reconstruction using the camera information revealed by the previously
executed SfM algorithm. There also exist MVS algorithms that use the points of the
sparse reconstruction as an additional input. Details about SfM and MVS algorithms
are described in Chapter 3. For the sake of convenience and for easier notation, we use
the terms SfM-dataset and SfM-data in this thesis to describe a dataset consisting of
extrinsic and intrinsic camera parameters obtained with the help of SfM and the dense
scene reconstruction computed using MVS.

1.1 Motivation and problem statement
The resulting point clouds cannot only be used for topographical or architectural purposes,
but also for interactive exploration of photo collections in 3D using point cloud rendering
software. With the help of structure-from-motion and multi-view stereo, everyone can
visualize his photographs in form of three-dimensional point clouds.

The problem is that these point clouds are usually only accessible by the user who created
them. They are stored on his local file system, and sharing this information can be
difficult, since point clouds are usually stored in very large data files, which makes copy
operations time consuming. Furthermore, a lot of different, partly proprietary, point
cloud file formats don’t allow easy sharing of point datasets.

We want to solve this problem by establishing a central database for SfM-data, which
can be accessed via a front-end by everyone connected to the internet. Our front-end

3

1. Introduction

C1

u1

û1

C2

x

û2
u2

Figure 1.3: Triangulation in structure-from-motion algorithms: A 3D point x can be
computed from the viewpoints (u1, u2, ...) measured from different views (C1, C2, ...) by
intersecting their back-projected viewing rays, which are visualized as solid lines in the
figure. Due to measurement errors this rays usually don’t intersect exactly. Thereforex
is the 3D point, which minimizes the sum of squared errors between the measured and
calculated viewpoints (û1, û2, ...). This figure is redrawn as seen in [81].

serves as a virtual tourism client and can be used to explore important sights and cultural
heritages, but also locally famous buildings, like small old churches, mills or statues in
a virtual way by using the point clouds stored in our spatial database. Additionally, a
user can share his own photographs and point clouds with the help of our system in
order to make them accessible to other users. Our system obviates the need for manually
copying large point cloud files between different clients and allows to maintain additional
information about the stored photographs and point clouds.

Another problem we target is that recent work on 3D reconstruction just results in 3D
models of important buildings and landmarks (e.g. [1]). This is due to the fact that
the authors usually use online photo-sharing platforms like Flickr as image source. On
such sites one can generally just find photos of famous sights, because sideways and
locally important buildings are rarely photographed and therefore not present. Our web
front-end offers an upload possibility, where users can import photos of local regions and
reconstruct them in 3D. Additionally, it makes it possible to fill holes of existing models
by adding missing images to the datasets.

1.2 Contribution

The main contribution of this thesis is the development of a free, fully accessible system
for efficiently storing and visualizing SfM-datasets, based on the idea of the collaborative

4

1.3. Structure of the work

OpenStreetMap project [72], called OpenSfM.

During the work on this thesis we establish a spatial database, which stores SfM-data, like
extrinsic and intrinsic camera parameters and input images, together with the resulting
point clouds. A web application serves as a user interface to the underlying database
and allows the exploration and modification of the stored datasets in an interactive way.
Additionally, the front-end makes it possible to feed an SfM-engine at the server, which
generates point clouds out of uploaded image data that are then saved to the database.

1.3 Structure of the work

This thesis is built up of different chapters. After the introducing words of this chapter
there are following upcoming parts:

Chapter 2: Related work
This chapter discusses various free-access, free-content and collaborative systems,
which serve as a model for our idea of such a system for SfM-datasets, like Open-
StreetMap [72]. Furthermore, some existing structure-from-motion based 3D photo-
gallery approaches are reviewed in more detail.

Chapter 3: The reconstruction pipeline
In this section the basic reconstruction pipeline is introduced together with some
alternative approaches.

Chapter 4: Working with large point clouds
This chapter deals with different methods for storing and rendering large point
clouds, especially those that are used in our framework implementation.

Chapter 5: Geographic coordinate systems
Since our application georeferences the 3D reconstructions and presents them on a
globe, one must know the fundamentals about geographic coordinate systems to
understand the implementation details described in the following chapter. This
section covers the basics of map algebra concerning the algorithms used in our
implementation.

Chapter 6: Implementation
Here the implementation of our framework is described in more detail and an overall
view on the code structure is given.

Chapter 7: Results
This part of the thesis shows the results of our implementation. The front- and
back-end features are described in more detail and executed performance tests are
presented here.

5

1. Introduction

Chapter 8: Conclusion
Finally, the conclusion sums up the thesis and introduces some suggestions on what
can be done in future works regarding the implemented framework.

6

CHAPTER 2
Related work

Since this thesis affects various areas of computer science, a broad theoretical background
knowledge is needed to understand it. This chapter gives an overview of other projects
that are based on the same idea of a so-called peer production model, where a community
provides freely usable and editable data. Furthermore, other photo-gallery systems
based on structure-from-motion and/or multi-view stereo are introduced and reviewed.
Reconstruction and point cloud specific details are described in Chapter 3 and Chapter 4.

2.1 Peer-production-based projects
The new possibilities that came with the introduction of the Internet allow the collabora-
tion of people across the world on very large virtual projects. Compared to collaborative
works in the Pre-Computer-Age, those virtual projects are novel in terms of scope and
space. While important projects in human history like the Egyptian pyramids or the
Great Wall of China were realized by thousands or ten-thousands of workers, large
virtual projects nowadays have millions of contributors. To implement such large projects
successfully, a new working process is needed. Yochai Benkler, Professor of Law at the
Yale Law School, calls this process peer production and describes it as follows [10]

Definition 1 Peer production describes a process by which many individuals, whose
actions are coordinated neither by managers nor by price signals in the market, contribute
to a joint effort that effectively produces a unit of information or culture.

Science can be defined in exactly the same way. Scientists usually don’t follow direct
research orders by their Dean or work according to market signals. They work indepen-
dently on a specific problem and finally bring their solutions together. The difference
between scientific work and peer-production projects is the importance of the resulting
product to the broad mass of people [10].

7

2. Related work

Free software based on peer-production is widespread over the Internet. The nowadays
most frequently used web server, the Apache web server, is a product of collaborative
software development [70]. Not just free software is based on peer-production, most of
the content accessible via the Internet can be seen as the result of a very large project
involving a collaborative community. While free software is implemented by people who
share their thoughts through the Internet, user-generated content, which makes up the
World Wide Web, is created directly on it. Generally, such collaborations can be classified
into three types: Social spaces, Content spaces and Cosmographies [39].

Social spaces are mainly social networks that have emerged in the last few years. People
that join such networks can upload and share personal information, videos or music clips
with their friends, family or colleagues. The biggest and most popular social network,
in terms of the number of contributors, is Facebook with an average of 1.39 billion
monthly active users in 2014 [26]. Besides social networks, there are other systems that
are focused on establishing platforms for social interaction. These include online forums
and chatrooms, but also massively multiplayer online role-playing games (MMORPGs),
like World of Warcraft, which reached its highest subscriber count of 12 million players
in 2010 [13]. In such games, users can communicate with each other in an online universe
with the help of controllable avatars.

In content spaces, large amounts of information is stored. This information is uploaded and
downloaded, or produced and consumed, by the users of these spaces. Therefore, Ritzer
and Jurgenson call these users prosumers [80]. Photo- and video sharing platforms, like
Flickr, Instagram or YouTube are the most important content spaces. While Instagram
is used by over 400 million users to share more than 80 million photos a day, on YouTube
approximately 400 hours of video material is uploaded every minute in 2015 [54][104].
Another form of content space is the online encyclopaedia Wikipedia, which is built up
on the wiki collaboration model. This model allows anyone to add, edit or delete content
from a Website. Wikipedia is the largest online encyclopaedia with about 36.4 million
articles in 246 languages [113]. For more details about Wikipedia see Section 2.1.2.

Cosmographies contain information about the Earth, as their central element. Platforms
like Google Maps store different types of information, like photographs, video and user
comments that represent places of the real world. The OpenStreetMap database contains
more than 4.9 billion GPS coordinates produced by approximately 2.4 million users,
which are used to create a virtual map of the world (see Figure 2.2) [73]. Wikipedia can’t
be only seen as a content space, but also as a cosmography. There exist thousands of
encyclopaedia entries that describe real world places in detail.

Our project can be classified into the categories cosmographies and content spaces, since
we store the geographic locations of the generated point clouds together with useful
information about them.

The following sections give an overview about two well known projects based on a
collaborative community, namely OpenStreetMap and Wikipedia.

8

2.1. Peer-production-based projects

2.1.1 OpenStreetMap

Figure 2.1: The OpenStreetMap browser interface allows easy access to the underlying
spatial data. The data can be viewed or edited after logging into the OSM system. [72].

The goal of the OpenStreetMap (OSM) project, founded by Steve Coast, is the creation
and distribution of a freely available and editable map of the world. The access to
spatial data has been made easier since the launch of this project in 2004. Until then the
creation and distribution of cartographic material was reserved to governmental agencies
or cartographic organizations. Surveyors, geographers and cartographers travelled all over
the world to collect spatial information and transcribed it to paper. A lot of knowledge
and expensive equipment was needed to map the Earth onto paper or enter the measured
information into a computer system. Anyone who wanted access to the recorded geodata
had to pay high license fees and the usage was restricted by several copyright rules. These
barriers made it impossible for private persons or small companies to access high-quality
geospatial information [5].

With the removal of selective availability of theGlobal Positioning System (GPS) signal
in 2000, it became easier to collect spatial data. The GPS was originally developed for
military usage by the U.S. Department of Defense. The project started in the 1970s
and the system became fully operational in 1995, when it used 24 satellites for location
determination. The constellation with 24 satellites ensure that from every point on earth
4 satellites are visible. This fact allows to derive a users 3D position by using the known
positions of the four visible satellites. The GPS satellite constellation was expaneded
recently, such that today 31 operational satellites are used for global positioning. The
additional satellites are used for precision improvement and failure safety. Until the year
2000, the high-precision GPS signal was reserved for U.S. military use only, while the
civilian GPS signal was deliberately degraded. With the removal of this degradation it is
nowadays possible to determine one’s position with better than 3.5 meters horizontal
accuracy. With the help of Differential GPS (DGPS) an accuracy of distincly lower than

9

2. Related work

1 meter can be achieved. Here an additional ground station, with a well known location
and a GPS receiver is used. As long as the measured location is near to a ground station,
the inaccuracies in the measurements are similar for the GPS receiver in the ground
station and the GPS receiver at the interested location. Therefore this inaccuracy can be
easily subtracted out of the computed geolocation, which at last improves the accuracy
of the final result [75][107][106].

The free availability of this high-precision GPS signal, affordable simple GPS receivers,
the rise of the personal computer and the Internet made it possible to create a system
like OSM. Since the beginnings of OSM in 2004, the numbers of registered users and
contributions has increased steadily to approximately 2.4 million users and about 4.9
billion track points in November 2015, as can be seen in Figure 2.2 [73].

Figure 2.2: A graph showing the rapidly increasing user and contribution numbers of
OSM [73].

Most of the registered users use the provided OSM technical infrastructure for data
administration and collaboratively editing of the world map to follow the goals of OSM.
Furthermore, there exists a core group of volunteers and software developers which
dedicates its spare time to steadily improve the OSM infrastructure, maintain the servers,
implement additional front-end features, and so on.

The OSM infrastructure consists of several distinct components as depicted in Figure 2.3.
They can be classified into geodata, editing software, backend, rendering algorithms and
visualization layer.

10

2.1. Peer-production-based projects

When visiting the OSM website www.openstreetmap.org, an online mapping interface
becomes visible, which shows rendered OSM data. This interface is called Slippy Map,
which uses the JavaScript APIs OpenLayers or Leaflet to display so called map tiles.
Those tiles are prerendered squared raster images, which represent a map when displayed
in a grid arrangement.

The tiled map data is rendered by an open source renderer called Mapnik. The rendering
process runs on the tile server tile.openstreetmap.org, which also stores the
resulting rasterized tiles. Mapnik uses the formatted data stored in a PostgreSQL
database with PostGIS extension. This database runs on the tile server too and is filled
by the osm2pgsql script which converts the OpenStreetMap data stored on the core OSM
database server to a format, that can be handled by the renderer. This conversion is done
on minutely diffs, so called planet diffs, which are created by a Java-based commandline
application called osmosis. Besides the Mapnik renderer, these diffs are also used by
other parts of the OSM infrastrucure. Nominatim, for example, is a search tool that uses
these planet diffs to filter the whole OSM dataset by name and address.

map tiles

Mapnik

Planet diffs

osm2pgsql

OpenLayers

Leaflet

Slippy Map

iD

osmosis

Nominatim

API

JOSM

WMS
services

Bing imagery

GPX traces,
photos, notes

Mapping
parties PostGIS

PostgreSQL
backend

geodata editing backend rendering visualzation

Figure 2.3: Sparse overview of the OSM infrastructure. Diagram simplified redrawn as
seen in [73].

The OSM dataset is maintained with the help of editors. There exist several OSM editors,
which can be used with an OSM account. The default application, which is launched
when clicking the edit-button at the OSM webpage is called iD. It is a Javascript-based
web application, which uses the OSM API to import spatial data and allows the editing
of existing data, like nodes, ways, relations or metadata tags. Another popular OSM
data editor is JOSM (Java OpenStreetMap Editor), which is a feature-rich cross-platform
desktop application that works browser independent.

11

www.openstreetmap.org
tile.openstreetmap.org

2. Related work

OSM supports a lof of data formats for import. The most common are GPX traces
(GPS eXchange format or GPX) which are recorded by GPS devices that support the
GPX interchange standard for geodata. Fortunately this standard is widely supported
- even smartphones with builtin GPS receivers can nowadays save the recorded spatial
data into GPX-files. Besides GPS coordinates, raster images can be imported into the
system too. Here, different interfaces to other geoinformation systems (GIS systems)
exist. For example, OSM supports the web map service (WMS) standard protocol,
which allows the import of georeferenced map images, either in raster or vector graphics
format. Additionally, other imagery services are supported, such as Microsoft’s Bing
maps. Mapping parties are another signature feature of OSM. These parties are local
workshops organized by the OSM community, which have the goal to create content
for specific local areas and establish local user groups to build up a community around
the project. One of the first parties was on the Isle of Wight in May 2006, where more
than 30 participants collected spatial data about all the roads and paths of the island by
moving around with GPS receivers. The geodata was at last imported into the OSM
system, which resulted in a nearly complete map of the island [45].

A lot of studies are published in literature that analyse the quality of volunteered
geographical information (VGI), as it is termed in [38]. Haklay et al. showed in their
work that the quality of VGI can be very good. They compared the OSM datasets to
the Ordnance Survey (Britain’s mapping agency) datasets in the UK. When evaluating
the data, they identified several different quality aspects, which they used to compare
the different datasets. The analysis revealed that the OSM data has an accuracy of
about 6m and the motorways and main roads referenced in the OSM road maps are
nearly identical to the Ordnance Survey’s road information. However, the analysis also
showed the inconsistency of the OSM datasets in terms of quality. There are places where
geographical information is collected and digitised very accurately, while other areas lack
information or are described imprecisely. For more details about the comparison and
analysis work, see [44]. Ciepluch et al. compared five areas of Ireland represented as
OSM datasets to the corresponding datasets of Google Maps and Bing Maps [17]. Since
Google and Microsoft don’t provide the vector data behind their online maps, it is not
possible to do a vector based comparison like Haklay et al. did in their analysis. The
authors solved this problem by exporting roads and point-of-interests from OSM to a
spatial format called KML. Furthermore, a web application was developed which allows
the overlay of KML files over Google Maps and Bing Maps. This setup gives them the
opportunity to do a visual comparison of the examined geodata. They finally concluded,
that none of the mapping systems are accurate over all five studied locations and all the
platforms have their advantages and drawbacks. OSM suffers from the fact, that there
are regions, especially in the countryside, where nobody wants to collect GPS data [17].

Nonetheless, with the help of an ever-growing community and a modern technical
infrastructure, the OSM project is well on the way to achieve its goal of a freely available
map of the whole world.

12

2.1. Peer-production-based projects

2.1.2 Wikipedia

Figure 2.4: Description of the term “Collaboration” in Wikipedia [116].

Wikipedia as another peer-production-based project has long since established itself as
a multilingual, free-content online-encyclopaedia. As of September 2015 Wikipedia has
about 370 million unique visitors each month, which makes it one of the most popular
websites world-wide [112].

Wikipedia is based on wiki software, which was developed by Cunningham in 1995 [60].
His WikiWikiWeb tool, whose name is based on the abbreviation for world-wide-web
“WWW” and the Hawaiian word “wiki” for “quick”, allows the direct editing of HTML
documents by anyone, who has access to them. Each change is documented and a revision
history is stored, which allows the comparison of different versions of a document [108].
Unlike OpenStreetMap, which allows only registered users to edit its map, Wikipedia
follows an open-for-all way. It is not needed to login before editing an article. A simple
click on the edit-button allows everyone, who is visiting the website to change its content,
like article prose, images, references or others. However, it is also possible to register as a
user on Wikipedia. When logged in, while editing articles, the edits are attributed to the
registered user’s unique user name. Otherwise the IP address of the user will be made
publicly visible, when document changes are made [114].

The principles and rules of Wikipedia are expressed in several essays. There exists no
single definition of the values and principles of Wikipedia. One of the most popular
summaries of what to consider when using Wikipedia are the so called five pillars of
Wikipedia, which consist of the following statements [115]:

1. Wikipedia is an encyclopaedia

2. Wikipedia is written from a neutral point of view

3. Wikipedia is free content that anyone can use, edit, and distribute

13

2. Related work

4. Editors should treat each other with respect and civility

5. Wikipedia has no firm rules

The first pillar expresses that Wikipedia is an encyclopaedia that possesses many features
of traditional, printed encyclopaedias or almanacs, like the Encyclopeadia Britannica. It
is not a dictionary, news paper or an advertising platform.

The neutral point of view (NPOV) introduced in the second statement, is a key principle
of Wikipedia. Articles should be written from a neutral point of view, which means
that multiple points of view on topics should be represented in an accurate, factual and
objective way. To achieve a neutral sight on a topic, no point of view should be seen as
the best or the truth. Additionally, it is useful to describe the disputes between different
views, rather than taking sides in them. The content of articles must be verifiable and
reliable, authoritative sources have to be cited.

The third principle prohibits copyright infringement. It states that copyright laws have
to be respected and plagiarism is not allowed. The content of Wikipedia is free, such
that anyone can use, edit and distribute it according to the terms of the Creative
Commons Attribution-ShareAlike 3.0 Unported License (CC BY-SA) and the GNU Free
Documentation License (GFDL). This means that articles and images are not owned by
anyone and are freely licensed to the public. It is recommended to use free media when
composing Wikipedia pages, however, it is possible to use non-free or fair-use media, but
this should be avoided.

The fourth pillar is to respect other contributors and follow the Wikipedia etiquette,
which among others states that one should treat fellow Wikipedians as one would like
others to treat oneself. Furthermore, good faith can be assumed and one has to be polite
and calm, when discussing conflicts on talk pages, which exists beside every article. This
rule is easier written than done, because it is not always followed by every contributor.
There can be one, who attacks others, for example by means of edit wars, where changes
of entries got immediately reverted out of spite. It such cases, it is hard to respect the
other contributor. However, over time Wikipedia developed rules and mechanisms to
temporarily or permanently ban such “difficult” users. A collective of administrators,
bureaucrats and stewards, which is elected by the community, monitors and maintains
the Wikipedia project. Users can be banned by the community by consensus, an elected
Arbitration Committee, the board of the Wikimedia Foundation and by the Wikipedia
founder Jimbo Wales.

“Ignore all rules (IAR)” is the fifth principle that should be followed, when a rule prevents
the improvement of Wikipedia’s content. There exist several Wikipedia guidelines and
policies regarding the content of articles, etiquette and behaviour, the deletion of pages,
the enforcement of defined standards and processes behind the project. Furthermore legal
policies concerning copyrights or terms of use are established. The IAR rule states that
nobody needs to read every Wikipedia policy before editing content. Contributors should
simply edit and write articles without always thinking about policies and guidelines.

14

2.2. 3D photo exploration applications

However, IAR doesn’t mean that anyone can fool around and act like an idiot. The basic
principles, like civility, still apply and IAR should always be used with an explanation,
why it has been used.

The above explained principles, the democratic structure and thousands of volunteers
allowed the establishment of a huge online encyclopaedia. The mobilization of so many
contributors has proved a key to the success of Wikipedia. According to the research
and findings of [52] there are three propositions that explain how Wikipedia was able
to attract a large number of volunteers. Firstly, Wikipedia has always defined itself
clearly as an encyclopaedia and nothing more (see first pillar above). Second, it is easy
to contribute to Wikipedia. While correcting small mistakes in written encyclopaedias
is often inconvenient, time-consuming and expensive (e.g. sending letter to publisher),
fixing typos or content in Wikipedia can be done with a simple click on the edit button.
Not even an account is necessary to edit articles of the online encyclopaedia, which makes
contributing even more attractive. At last, Wikipedia offers “low social ownership of
content”. The authorship of articles is not directly emphasized and there is no ranking
of contributors or reward system for contributions. This releases volunteers from the
obligation to contribute in order to achieve a specific reward or reputation. However,
there are other incentives to contribute to Wikipedia as found in [30]. Authors try to
write so called featured articles, which appear, when accepted, on the main page of
Wikipedia for a day. Although a Wikipedia article doesn’t explicitly belong to a single
author, users often claim authorship of articles on their user page to indicate that they
have done the most work on them. In the end, one can say that reputation or credits still
create the greatest incentives for contribution to peer production systems like Wikipedia,
as mentioned in most of the literature on peer production, even if those rewards are not
visible at first appearance [59].

Of course there is not always consensus and there will always be vandalism and edit wars,
but on the whole the Wikipedia project can be seen as a complete success.

2.2 3D photo exploration applications
Our frontend-idea is based on a series of projects on community photo collections
introduced at the University of Washington. As already stated in Section 2.1, online
photo platforms like Flickr have a growing community and billions of images are stored
on their servers. This fact is used by Snavely et al. for their work on 3D reconstruction,
visualization and image-based rendering [99].

They developed computer graphics algorithms, which are able to handle this huge amount
of photos taken from different viewpoints under several lighting conditions. Most of the
applications introduced by Snavely et al. are based on 3D scene reconstruction, where,
with the help of structure-from-motion (see Chapter 3), a geometric representation of the
scene is computed out of given input images. These input images can be taken from online
photosharing platforms like Flickr, but also from private offline photo albums. This scene
representation describes the camera pose of each photo, consisting of the position and

15

2. Related work

orientation of the camera in 3D space, a sparse scene reconstruction visualized by a 3D
point cloud and the information about which 3D point corresponds to which underlying
photograph. The gathered information, which they call midlevel representation, is then
used in their software for tasks like path finding between camera views and creation of
dense reconstructions, where an accurate point cloud representation of the 3D scene is
calculated [94] [99].

The following subsections describe applications designed for 3D photo exploration and
are strongly related to our work.

2.2.1 Photo Tourism

(a) Full-resolution photo, that appears, when
a user selects a photograph.

(b) Non-photorealistic rendering of a top-
down-view on the SfM-dataset representing
Prague.

Figure 2.5: Screenshots of the Photo Tourism application’s 3D interface. Image courtesy
of Snavely et al. [97]

The application software called “Photo Tourism”, developed at the GRAIL, the Graphics
and Imaging Laboratory of the University of Washington, offers a novel 3D interface for
browsing unordered, large photo collections [97]. Each image is placed at its corresponding
view point in the 3D scene. The user can traverse through these images by visiting each
viewpoint, which is computed using SfM algorithms. The viewpoints and directions of
the cameras are visualized by camera frusta. When selecting a camera, its image gets
rendered with the help of texture mapping at the backside of the frustum. The photo is
displayed opaque and in full-resolution, such that the user can see every detail of the
original image (cf. Figure 2.5a).

The movement between two cameras is calculated by linearly interpolating between the
camera positions, orientations and field of views. During camera transition, camera view
interpolation is used to display in-between images. To compute these in-between images,
two techniques are implemented, namely triangulated morphs and planar morphs. The
first mentioned technique uses 2D Delaunay triangulation to generate a 3D mesh for each

16

2.2. 3D photo exploration applications

of the two involved images and their corresponding reconstructed points. The images
are then texture-mapped onto their computed 3D mesh. Finally, the in-between view is
created by rendering each mesh from the current viewpoint. The two rendered images
are blended together using the distance from the viewpoint to the appropriate endpoints
as blending weights. Planar morphing between two cameras is done by projecting the
two images onto a common plane of their underlying points. The in-between views are
simply created by cross-fading between the projected images.

There exist several navigation functions within the application. Besides free-flight
navigation the system offers object-based browsing and moving between related views.
The related images of a currently displayed one are computed by projecting the points of
the active image into other photos and evaluating the projected motion of these points.
If the points have moved right, the other photograph is considered to be on the left side
of the currently viewed image. Object-based navigation allows to search all images which
depict an object selected by dragging a 2D box around an area of the currently shown
photo or point cloud. The system uses the reconstructed corresponding 3D points for the
search for suitable candidates.

The underlying SfM algorithm used by the application for 3D point reconstruction is
based on an early version of the Bundler SfM system [95]. The reconstructed sparse
3D point cloud is only used as a background for the rendered images and to model
correspondences between the viewpoints of each photograph and the scene. In contrast,
our system gives the computed point clouds a more important role, since we emphasize
their location in the world (cf. Chapter 7). Additionally, the “Photo Tourism” software
offers a non-photorealistic mode, which allows a more attractive overview of the scene, as
can be seen in Figure 2.5b.

The system also offers the possibility to extend the point cloud or photo collection with
new points or photos, by running the SfM algorithm just at a local level, involving just
a part of the underlying images. Furthermore, it is possible to annotate image regions.
These annotations are transferred to similar photos, which depict the same areas of the
scene.

2.2.2 Photosynth

Besides the above described application there exists other work on 3D scene reconstruction
and photo exploration. Photosynth, originally developed by Microsoft’s Live Labs, is
such an example [78]. This project was inspired by the research on “Photo Tourism” and
its algorithms are partly based on the work described in [94] and [96]. There currently
exist three different generations of Photosynth technology.

The first generation of Photosynth offers the user the ability to create and navigate
through so called “Synths”. The term stands for 3D scene reconstructions created with the
help of SfM algorithms. These “Synths” are generated with the help of an offline desktop
application and then uploaded to Microsoft’s Photosynth website or even embedded in
own blogs, websites or posted on social media platforms like Facebook. The viewing

17

2. Related work

software, based on Microsoft Silverlight (cf. [67]), offers nearly the same navigation
possibilities and user controls as the “Photo Tourism” application. The user can view
the different photos and close-ups by simply moving the mouse cursor around the screen.
If he enters a region, where a picture is available, a semi-transparent outline appears (cf.
Figure 2.6a). When the user clicks on this outline the high-resulting image is shown,
surrounded by the other photos nearby. It is also possible to get a 2D grid view of all
the photographs contained in the “Synth”. Furthermore, the user can switch to the point
cloud view, where the sparse scene reconstruction is visualized, as depicted in Figure 2.6b.

(a) “Synth” of a Sphinx showing the selected
photo and the semi-transparent nearby im-
ages as context.

(b) The point cloud view of the Sphinx re-
construction.

Figure 2.6: Screenshots of the original Photosynth application based on the research on
Photo Tourism. Image courtesy of Microsoft Research [78]

The second generation is not based on SfM, but on image-stitching technologies. It allows
the user to create and explore panoramas, even of gigapixel size, by stitching multiple
images together. As well as “Synths” these panoramas are created offline and can then
be published on any website or social media page, where they can be viewed with the
help of a Silverlight-based web application.

The third and latest generation of Photosynth is a completely revised version, which is
based on the Spin project of the Interactive Visual Media group of Microsoft Research [79].
The newest version is now built around a cloud computing platform called Microsoft
Azure [66]. This technology hosts a service, that allows the creation and exploration of
immersive 3D representations of photo collections. In contrast to the first generation,
this version allows more realistic transitions between the photographs. While the first
generation and the approach realized with the “Photo Tourism” paper uses simple planar
proxies for in-between view creation, the newest Photosynth version computes more
complex proxy geometries out of piecewise planar depth maps. These depth maps are
constructed for each input photo independently by solving a pixel labelling problem,
where a salient scene plane, extracted from a sparse 3D reconstruction, is assigned to
each pixel of an image. When interpolating between two views, each photo is projectively

18

2.2. 3D photo exploration applications

texture-mapped onto its corresponding proxy geometry in different off-screen render
passes. The resulting images are blended together, where regions with contributions from
both images are linearly cross-faded. More details about the algorithm introduced by
Sinha et al. can be found in [91]. However, this approach is just suitable for opaque
surfaces and cannot handle transitions in scenes where reflections or transmissions at
specular surfaces are present. Therefore, Sinha et al. introduced an enhancement of
the above described algorithm in their paper Image-Based Rendering for Scenes with
Reflections [90].

(a) 3D proxy geometry texture-mapped with
its corresponding photo.

(b) Annotations become visible when the
user hovers the mouse over a displayed circle,
which is placed nearby an important scene
object.

Figure 2.7: Screenshots of the third generation of Photosynth application. Image courtesy
of Microsoft Research [78]

The current application makes it possible to generate four different “Synths”: spin,
panorama, walk, and wall. Spin is created by taking pictures of an object while moving
around it. Panoramas are stitched from photos captured from a single location looking in
every direction. Walks are, as implied by the word, generated by following a path while
taking photographs. At last, walls are created by shooting pictures when sliding across a
scene. When navigating through the scene, the images are consequently mapped onto the
non-planar proxy geometries, as depicted in Figure 2.7a. Additionally, the application
allows the integration of annotations, as can be seen in Figure 2.7b.

Photosynth uses a system called Seadragon to stream image data. This system is able to
detect which part of an image at which resolution is currently viewed and sends just the
required data over the network. This makes it possible to view and explore such large
photo collections online in an interactive way in 3D.

2.2.3 PhotoCity

Another interesting project, related to our work, was realized by Tuite et al. at the
University of Washington. Their corresponding paper PhotoCity: Training Experts at
Large-scale Image Acquisition Through a Competitive Game was published in 2011 [105].

19

2. Related work

During the development of the PhotoCity platform they targeted the same problem as
our attempt, namely that just landmarks and important sights are photographed often
enough to be reconstructed as 3D point clouds. There exist not enough photos to recreate
less popular regions, like sideways or buildings with no meaning to the broad mass of
people.

PhotoCity is a game whose idea is to take as many photographs as possible to consequently
enhance the depicted object’s virtual 3D reconstruction. A player can extend existing
3D buildings or spawn new ones, called seeds. Seeds are dense scene reconstructions
generated out of 20 to 200 input images. The players can earn or capture flags, castles or
gems by following this game principle. Castles are captured by the player who has mostly
contributed to the corresponding 3D reconstruction. Flags are placed automatically
alongside walls of a building and get captured by players whose uploaded photos lead
to the most points nearby them. While castles and flags can change ownership during
game-play, gems are collectables that disappear after earned. They are similarly collected
as flags, but are not automatically placed by the system, but by administrators to animate
the players to reconstruct 3D structure at the gem’s locations. Figure 2.8a shows a map of
the campus of the University of Washington together with the flags and castles coloured
with the colour of the current owner or annotated with his user name. In Figure 2.8b the
positions are shown from where photos are taken to reconstruct the nearby building.

(a) PhotoCity map representing the campus
of the University of Washington and the
located castles and flags.

(b) A reconstructed building together with
the camera view positions visualized as black
triangles.

Figure 2.8: PhotoCity map and 3D reconstruction example. Image courtesy of Tuite et
al. [105]

The game was playable during a field study for six weeks between March and May 2010.
This study consists of a competition between forty-five players, each students either at
the University of Washington or the Cornell University. During this competition, the
players submitted over 109,000 photos, from which 68,000 photos were registered and
used for scene reconstruction.

This results in the fact that 60% of the uploaded photos are used in the 3D buildings,

20

2.2. 3D photo exploration applications

while reconstructions done by using images from photo-sharing sites like Flickr are usually
based on significantly less photos (cf. [1]). Tuite et al. summarized that unorganized
photo collections can never reach such a coverage of target objects as it was achieved
by the participants of their field study. Therefore, photos from online photo-sharing
platforms are mostly not suitable for precise 3D reconstruction, which explains why
models computed out of large community photo collections are based on a relatively
small number of images compared to the large number of input photographs.

21

CHAPTER 3
The reconstruction pipeline

The aforementioned reconstruction and photo exploration applications are based on
photogrammetry algorithms called structure-from-motion (SfM) and multi-view stereo
(MVS). SfM is, as its name implies, a method for estimating 3D structure and camera
motion out of a series of 2D images. While SfM only reconstructs a sparse scene structure,
MVS is a technique used to refine this sparse structure in order to receive a dense scene
reconstruction. This chapter describes both techniques and how they can be used as
parts of a classic reconstruction pipeline in more detail. Furthermore, an overview about
some alternative approaches in contrast to the traditional reconstruction algorithm is
given.

3.1 The classic reconstruction algorithm

As already mentioned in Chapter 1, triangulation is used in SfM algorithms to compute
3D points (cf. Figure 1.3). To do triangulation, the extrinsic and intrinsic camera
parameters that make up its projection matrix are needed. These parameters can either
be computed by calibrating the cameras before doing reconstruction or retrieved on the
fly during the reconstruction process with SfM [46].

3.1.1 Camera calibration

Camera calibration is the process of determining the extrinsic and intrinsic parameters
of an image sensor and its lens, in order to create its camera matrix or projection matrix
P , which is used to compute the projected position x of a 3D point X on an image plane.
While the extrinsic parameters describe the camera’s position and orientation in the
world, the intrinsic values stand for its internal characteristics like the focal length of
the lens, its skew, optical centre and distortion. The camera matrix can be described by
Equation 3.1, which is derived from a basic pinhole camera model (cf. Figure 3.1) [50].

23

3. The reconstruction pipeline

camera centre image plane principal axis

C

Ycam

Xcam

Zcam

X

p

x x

y

X

Y

Z

R, t

O

Figure 3.1: Pinhole camera model: The left part depicts the geometry of a pinhole
camera, where C is the camera centre or optical centre. The line from C perpendicular
to the image plane is called principal axis and the point where image plane and this axis
intersect is known as principal point p. The right side shows the Euclidean transformation,
consisting of a rotation R and translation t, between the world and camera coordinate
system. This figure is redrawn as seen in [50].

x = PX = K[R|t]X =

αx s x0
0 αy y0
0 0 1


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1

 (3.1)

It consists of the intrinsic matrix K and the extrinsic matrix [R|t], containing the rotation
R and translation t. x0 and y0 are the coordinates of the principle point (cf. Figure 3.1).
The parameters αx and αy describe pixel scale factors in x- and y-direction, which
are not equal if the pixels on a camera sensor are non-square. These parameters are
defined using the focal length f and the number of pixel per unit distance mx and my

in x- and y-direction. s defines the skew between the sensor axes. In addition to these
intrinsics derived from the camera matrix, there exist other internal parameters that are
not considered by the simple pinhole camera model and that describe optical distortion
effects. These cannot be computed with the help of linear matrix calculations, since
distortions are non-linear transformations. The most common type of distortion is radial
distortion, which occurs when points are displaced away (barrel) or towards (pincushion)
the image center. This results in straight lines having a curvature in their projection (cf.
Figure 3.2). Another type of distortion is tangential distortion, which occurs when the
image sensor isn’t completely parallel to the lens. The different types of distortion can
be eliminated by correction algorithms, like the ones introduced in [22][23][93].

After defining the transformation between 3D points and their projections, the question
is how to find the unknown variables. There exists a lot of literature on how to answer
this question. One of the most influential methods to compute these parameters was
introduced by Zhang in 2000 [122]. The technique presented in this paper is based on

24

3.1. The classic reconstruction algorithm

(a) Barrel (b) Pincushion (c) Fisheye

Figure 3.2: Different examples of radial lens distortion. Image courtesy of Szeliski [102]

a planar pattern, like a checkerboard, that is photographed from several positions and
orientations. The locations of distinctive features on the pattern, like the corners of
each chessboard square, must be known. Next the coordinates of these features are
extracted from each taken photo by means of pattern recognition algorithms, like the
Harris corner detector [47]. After that a homography H (cf. Equation 3.2) is computed,
that describes the relationship between the known feature locations of the planar pattern
and their coordinates extracted from the photographs (without loss of generality Z = 0
is assumed):

x = K

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
0
1

 = K

r11 r12 t1
r21 r22 t2
r31 r32 t3


XY

1

 = H

XY
1

 (3.2)

B = (K−1)TK−1 (3.3)

It can be seen, that the camera matrix P appears in this homography. Finally, H can
be computed by using a maximum likelihood approach. The homography can then
be used as a constraint to compute the matrix B (cf. Equation 3.3), from which the
intrinsic parameters, and therefore K can be retrieved. The extrinsic values per view
can be calculated by using the inverse of K and the corresponding homography. As
of now the extrinsic parameters and the intrinsic camera matrix have been recovered.
Distortion coefficients have not been computed yet, however, Zhang shows a way to
compute the coefficients for radial distortion by using an algorithm based on least squares.
More complex distortions are not covered in the paper. For more details about Zhang’s
algorithm see his publication [122].

25

3. The reconstruction pipeline

3.1.2 Auto-calibration and projective reconstruction using SfM

For most of the reconstruction use-cases it is not possible to pre-compute a camera
calibration and therefore a camera’s projection matrix, because the used camera lenses
for specific images are unknown or other parameters used for the calibration step are
not recoverable. However, there exists an approach that does not need a pre-computed
camera calibration, but detects the camera pose and intrinsics simultaneously with the
3D point reconstruction by only using image feature correspondences. This approach is
called structure-from-motion (SfM). Since the sparse reconstruction recovered by this
approach is unique up to a projective transformation, it is called projective reconstruction.
The process of determining the camera parameters during the computation of a projective
reconstruction is known as auto-calibration.

Figure 3.3 depicts the stages of a reconstruction pipeline, which all images have to pass in
order to finally get a high quality, dense 3D reconstruction represented as a point cloud.
The system developed during the work on this thesis is based on this reconstruction
pipeline. The following subsections give a more detailed view of the individual parts of the
pipeline concerning the SfM part. The final step that produces the dense reconstruction
uses an algorithm called multi-view stereo (MVS). This step is explained in more detail
in Section 3.1.3.

Feature detection

The first step of the pipeline is the feature detection step, where distinctive image interest
points are recovered, that can be subsequently used in the next step to find relations
between different images. There exist various feature detectors in literature.

One of the most prominent detectors is the SIFT algorithm proposed by Brown and
Lowe [14][62]. SIFT is an abbreviation for scale-invariant feature transform, which implies,
that the introduced algorithm delivers feature descriptors that are not affected by image
transformations like rotation or scaling. This means that the features of two images
can be compared with the help of their descriptors even if one image doesn’t have the
same rotation or scaling as the other. This is advantageous for typical reconstruction
use-cases, since often images are compared that are not even shot with the same camera.
SIFT finds features placed at the minima or maxima of a Difference-of-Gaussians (DoG)
function that are present at multiple scales, which explains the scale-independence of the
descriptor. For each feature a description vector containing 128 elements is computed.
The elements of this descriptor represent a 4x4 array of orientation histograms, each of
them having 8 bins (4× 4× 8 = 128), that contain orientation and magnitude values of
samples in a 16 × 16 region around the feature point (also known as key point). The
descriptor is rotation independent because the orientations are given relative to the
feature point’s dominant gradient direction. A GPU-based SIFT implementation called
SiftGPU is used by the SfM software VisualSFM, which we incorporate into our virtual
tourism system (cf. Chapter 6) [119][120].

26

3.1. The classic reconstruction algorithm

Input image Feature detection Finding correspondences

Dense reconstruction Camera pose and 3D point recovery

Figure 3.3: The classic reconstruction pipeline: Each image passes through the stages
feature detection, feature matching, camera pose detection (motion), sparse reconstruction
(structure) and at last dense reconstruction using multi-view stereo (MVS).

Another often used and widely accepted feature detector is SURF (Speeded Up Robust
Features) introduced by Bay et al. in 2006 [8]. In contrast to SIFT, which uses the
Difference-of-Gaussians (DoG) function for feature extraction, the algorithm behind
SURF detects interest points with the help of a Hessian matrix together with integral
images. The descriptor is based on a distribution of Haar wavelet responses of values in
the neighbourhood of the key point. Compared to SIFT, this descriptor contains only
64 values, which should make comparison operations faster. According to the authors,
SURF is faster and in certain situations more precise than SIFT. However, different
comparisons show that on the whole SIFT delivers the more accurate results and mostly
more features, while SURF comes with less computation time. On the other hand, there
exist implementations of SIFT that improve the runtime by using a smaller descriptor.
For time-sensitive applications, SURF or SIFT with a smaller feature descriptor should
be preferred. If time is not that important, the classic SIFT method delivers the most

27

3. The reconstruction pipeline

accurate features [7][56].

A more recently proposed feature detection algorithm is called ORB (Oriented FAST and
Rotated BRIEF) by Rublee et al. [83]. It combines the feature detector FAST (cf. [82])
with the feature descriptor BRIEF (cf. [16]). This combination results in a rotation
invariant interest point detector, that is according to the authors one magnitude faster
than SURF and even two magnitudes faster than SIFT. The drawback of ORB is, that
scale invariance is not adequately observed and therefore cannot be guaranteed, which
makes SIFT or SURF a better alternative when differently scaled images are going to be
processed.

Finding correspondences, motion and structure

After identifying the features, they can be used to find features correspondences between
the images, which are then used to recover the relative camera positions and orientations
(motion) and the locations of the 3D points (structure). The following paragraphs
explain how to obtain these correspondences and compute the camera parameters and
3D reconstruction.

Relations between the features in image pairs can be found by using a k-nearest neighbour
classification in feature space. Brown and Lowe suggest a k-d tree based implementation
to optimize the run-time [14]. Snavely et al. use the approximate nearest neighbour
algorithm by Arya et al. for feature matching [6][97]. The pair-wise matches are optimized
using a RANSAC (Random Sample Consensus) loop, where in each iteration a so called
fundamental matrix is calculated describing the relation between the two views. The
original matches are then verified by using the recovered matrix. Outliers which are
according to the matrix not geometrically consistent matches are removed. Besides a
brute-force method, that pair-wise matches all input images and therefore has O(n2)
complexity (cf. O-notation by Knuth [57]), in literature more enhanced implementations,
that are faster and have a better scaling behaviour regarding the number of input images
are proposed. Agarwal et al. use an approach commonly found in document-comparison
algorithms to find pairs of images that are similar to each other [1]. They assign “visual
words” to each SIFT feature, such that every image is described by a set of words.
This information can be used by document-retrieval algorithms to find similar images
for further feature matching computations. When using photos from internet photo
collections, it is often the case that most of the photographs represent nearly the same
scene. Snavely et al. proposed an approach that filters the input images by removing as
many images as possible without exceeding a bounded lose of accuracy and completeness
in the final reconstruction. The filtered image collection is called a skeletal set and is based
on the maximum leaf spanning tree of a match graph, where the input images represent
nodes that are connected by edges if the corresponding images have features in common.
The reconstruction revealed with the help of this skeletal set is an approximation to the
solution that would have been found with the full set of input images. However, the
runtime of the SfM algorithm can be reduced by this approach, since the camera poses
and 3D points are just calculated from a subset of input images [98].

28

3.1. The classic reconstruction algorithm

C

x

X

C′

x′

e e′

l′

baseline

l

Figure 3.4: Epipolar geometry: The epipoles e and e′ are defined by the intersections
between the camera baseline and the image planes. A projectionx of a 3D point X has
its corresponding projection x′ restricted to the epipolar line l′ going through its epipole
e′. l and l′ span up an epipolar plane containing the 3D point X. This figure is inspired
by an illustration seen in [81].

The above mentioned fundamental matrix F was nearly simultaneously introduced by
Faugeras et al. [27][28] and Hartley et al. [49][51] in 1992. It is a 3× 3 matrix describing
the epipolar geometry of two camera views, as can be seen in Figure 3.4. A projection x of
a 3D point X in one image has its corresponding projection x′ in the other image on the
so called epipolar line l′. The epipolar geometry and therefore the fundamental matrix
is independent of scene structure and depends just on the camera’s intrinsics and their
relative position and orientation. If a projection x has its corresponding projection x′ in
the other view, then the following condition, known as epipolar constraint, is satisfied [50]:

x′TFx = 0 (3.4)

This condition allows the computation of F only out of point correspondences between
the two images using the so-called eight-point algorithm. It was originally developed by
Longuet-Higgins in 1981, to compute the essential matrix out of at least eight image point
correspondences [61]. The essential matrix is a specialized version of the fundamental
matrix describing relations between calibrated cameras, while the fundamental matrix
also covers uncalibrated cases. However, Hartley showed that an optimized version of
this algorithm, that uses normalized image point coordinates, is able to recover the
fundamental matrix too [48]. The algorithm mainly consists of two parts. The first
part is the formulation and solving of a set of homogeneous equations. Such a system
of equations can lead to a unique result or a least-squares solution. The second step

29

3. The reconstruction pipeline

enforces the internal constraint of a fundamental matrix, namely that it is singular, which
means that the condition detF = 0 is fulfilled. Hartley and Zisserman proofed that it is
even possible to compute the fundamental matrix out of only seven correspondences by
making use of this singularity constraint [50].

Having determined F , it is subsequently used to recover the camera’s extrinsic and
intrinsic parameters, and therefore their projection matrices P and P ′ by means of
triangulation. Figure 3.5 depicts the idea behind triangulation in the context of SfM. It
can be seen that the image points x and x′ are back-projected along their viewing rays.
The reconstructed point X fulfils the epipolar constraint x′TFx = 0, when it is placed
on the epipolar plane, spanned by the epipolar lines of the two corresponding views, at
the intersection point of the two rays [50].

C

x

X

C′

x′

Figure 3.5: Triangulation: The reconstructed point X lies on the epipolar plane, spanned
by the epipolar lines of the two corresponding views, at the intersection of the two viewing
rays, originating at their camera’s center point and going through the image points x
and x′. This figure is redrawn as seen in [50].

The points of a scene can be reconstructed up to a projective ambiguity when using the
fundamental matrix. There exist two possible solutions to remove this ambiguity and
upgrade the reconstruction to a metric reconstruction that preserves length ratios and
angles between lines and is therefore similar to the real world, however the scale is still
indeterminable. One solution is to use the essential matrix instead of the fundamental
matrix to reconstruct the 3D points. The reconstruction is then unique up to a scale
factor and a four-fold ambiguity, which means that there are eventually four possible
solutions. However, there exists just one plausible solution where a reconstructed point
X lies in front of both cameras, which eventually makes the resulting projection matrices

30

3.1. The classic reconstruction algorithm

unique up to an arbitrary scale factor. As already mentioned above, the essential matrix
can only be retrieved if the camera’s intrinsic parameters are known. For uncalibrated
cases still a projective reconstruction must be computed with the help of the fundamental
matrix. This reconstruction has to be refined to a metric by using five or more ground
control points with known Euclidean coordinates XEi. With the help of these ground
control points a homography H should be computed, such that XEi = HXi. H can then
be used to compute the metric reconstruction {PM , P ′M , XMi}, consisting of the metric
projection matrices PM and P ′M and the reconstructed 3D points XMi, according to [50]
with

PM = PH−1 , P ′M = P ′H−1 , XMi = HXi (3.5)

Another way to convert the given reconstruction to a metric one is called stratified
reconstruction. Here, firstly an affine reconstruction is computed and at last it is
converted into a metric reconstruction. This method makes usage of different constraints
extracted from, for example, parallel or orthogonal lines in the scene. The process of
computing a metric reconstruction either directly or via an affine reconstruction out of a
projective reconstruction is called rectification [50].

Usually the process of computing structure and motion out of input images follows an
incremental approach. At first the cameras and 3D points are calculated using an initial
pair of input images. Subsequently one image after another is added to the existing
reconstruction, until all photos are processed. After each incrementation an operation
called bundle adjustment is performed. This time-critical algorithm minimizes the
reprojection error across all input images. Snavely et al. use the Levenberg-Marquardt
(LM) algorithm to solve this non-linear least squares problem [97][118]. Due to the
problem’s complexity, a lot of papers aim to improve that part of the reconstruction
pipeline in order to speed up the reconstruction process. Byröd and Åström suggest to
use iterative approaches like conjugate gradients, instead of the LM algorithm with its
cubic complexity, to solve the problem [15]. Wu et al. introduced a multicore bundle
adjuster implementation that runs on CPUs and GPUs up to 10 to 30 times faster than
conventional single core implementations, like the one by Agarwal et al. [2].

3.1.3 Dense reconstruction using MVS

Before this last stage of the reconstruction pipeline introduced in Section 3.1.2 an estima-
tion of the camera’s intrinsic and extrinsic parameters and a sparse scene reconstruction
are computed. For some applications, like image-based modelling and rendering, a more
accurate reconstruction is desirable. Multi-view stereo (MVS) approaches are able to pro-
duce a dense scene reconstruction out of stereo correspondences and camera parameters.
Since these properties are a result of the previous pipeline stages that make up the SfM
algorithm, all prerequisites for the final dense reconstruction step are given.

According to Furukawa and Ponce the different MVS approaches can be classified into
four categories, according to the generated scene’s representation [34]:

31

3. The reconstruction pipeline

• Voxels

• Polygonal meshes

• Multiple depth maps

• Patches

Voxel-based approaches generate a scene’s geometry on a regularly sampled 3D grid
known as volume. The accuracy of such methods is given by the sampling density of the
volume. Techniques based on polygonal meshes represent the surface of a scene with the
help of connected facets (flat faces). Other methods define the scene by using multiple
depth maps, one for each input image. These maps are finally fused into a single 3D
representation. At last patch-based techniques combine multiple patches or surfels into a
3D scene. These patches can be represented by points and the resulting scene is then
defined by a point cloud, which can be rendered with the help of point-based rendering
techniques. The following paragraphs give an overview about patch-based algorithms
that are even suitable for large outdoor scenes, because our work mainly focuses on
reconstructions of tourism sights or outdoor architecture scenes that are rendered as
point clouds at the client application (cf. Chapter 7) [34].

(a) Patch projection into image cells
Ci(x, y): The goal of the algorithm is
that each image cell contains at least
one patch projection.

(b) Patch expansion: Patches are expanded if neigh-
bouring image cells are empty and not expanded if
there already exists a projection of a neighbouring
patch in the cell or if they are not visible from the
camera’s viewpoint.

Figure 3.6: Concepts of the patch-based dense reconstruction algorithm by Furukawa
and Ponce. Image courtesy of Furukawa and Ponce [34].

Furukawa and Ponce introduced a patch-based multi-view stereo (PMVS) algorithm that
is able to reconstruct large scenes in an accurate and complete manner [34]. They propose
a three-step algorithm, that firstly generates a patch-based scene reconstruction which
is subsequently converted into a polygonal mesh and at last refined by a mesh-based
MVS algorithm. Since we don’t handle polygonal meshes in this thesis, we focus only on
the first part of the published algorithm, that is also used by the VisualSFM software,

32

3.1. The classic reconstruction algorithm

which is integrated into our web application (cf. Chapter 6). The patch-based algorithm
consists of the steps feature matching, patch expansion and patch filtering. The initial
feature matching step is required to generate a sparse set of patches. The second part
aims to expand the sparse set of patches such that each image cell Ci(x, y) contains at
least one projected patch (cf. Figure 3.6a). Figure 3.6b depicts cases where patches
can be expanded and cases where it is not necessary or possible to expand them. The
last step removes faulty patches, so-called outliers, that are not consistent with the
overall visibility information. For example, if two patches p and p′ are not neighbours
but projected to the same cell Ci(x, y) of an image Ci, then either p or p′ is filtered
out as an outlier, according to a given inequality. The expansion and filtering steps are
repeated n times. The authors suggest to iterate at least 3 times to get a dense result
with a minimum number of outliers or inaccuracies [34]. The algorithm by Furukawa and
Ponce was reused in their large scale approach Clustering Views for Multi-view Stereo
(CMVS) [33]. This method, as the name implies, clusters the input images into sets of
overlapping photographs and runs the reconstruction process for every cluster in parallel.
At last the single reconstructions are merged with the help of a parallelized out-of-core
merging algorithm. The authors showed that this technique is able to reconstruct large
point clouds with nearly thirty million points out of more than ten thousand input images
in reasonable time [33].

Vu et al. proposed a different approach in 2012 [109]. In contrast to the previously
presented work that uses patch expansion, they work with sparse depth maps that are
generated between pairs of input images. These depth maps are merged and clusters
of points are extracted according to their positions in the camera’s view frusta. After
that the clusters are split until their projected bounding boxes are small enough. With
the help of a 3D k-D tree the k-nearest neighbouring clusters are identified. A plane is
then created at each point’s neighbourhood using a least squares fitting algorithm. If
the plane fits the neighbourhood well (according to a thresholded matching score), the
point is retained and iteratively refined. In a second step the computed quasi dense point
cloud is triangulated using Delaunay triangulation. The extracted Delaunay tetrahedra
are labelled as inside or outside the object and at last a surface is generated that consists
of triangles that connect the inside and outside tetrahedra.

Goesele et al. produce multiple depth maps with their multi-view stereo algorithm [37].
As the algorithm by Furukawa and Ponce, their algorithm aims to reconstruct scenes
out of large community photo collections. They achieve that in multiple stages. First,
the distortions of the input images are removed and the camera’s extrinsic and intrinsic
parameters are computed using a robust metric SfM algorithm. Then, for each input
image a depth map is derived. Each input image is used once as a reference view for
stereo matching. To find appropriate neighbourhood images as candidates for stereo
matching, the authors proposed a two-level view selection scheme. First, a global view
selection at image level identifies candidate images. These images are further filtered
using local view selection at pixel level. This final filtering step identifies a subset of
images for each pixel that produce a stable stereo match. Having identified appropriate

33

3. The reconstruction pipeline

image subsets, a multi-view stereo algorithm based on a surface growing approach is
used to create the depth maps for each reference image. The surface growing algorithm
uses the points of the previously computed sparse reconstruction as input. Finally, the
generated depth maps can be merged and converted to a surface mesh with the help of
several different techniques. Goesele et al. use Poisson surface reconstruction in their
work [55].

Figure 3.7: The expansion process of the patch-based reconstruction algorithm with
prioritised patch expansion. Red crosses symbolize new correspondence pairs, the blue star
indicates the newly reconstructed 3D point and the green plus signs are the projections
of this point. See the text for more details. Image courtesy of Ylimäki et al. [121].

A more recent approach by Ylimäki et al. is based on patch expansion and is similar to the
approach by Furukawa and Ponce described above [121]. Their contribution is that they
use a so-called prioritised patch expansion algorithm that outperforms non-prioritised
approaches, like the PMVS method, in accuracy, completeness and time. The previously
matched features and corresponding sparsely reconstructed 3D points called “seeds” are
ordered into a priority queue according to their similarity. This queue is processed
sequentially, such that the best placed seed always comes first. Each of the seeds in the
queue is expanded. This expansion process is depicted in Figure 3.7, where s describes
the currently processed seed. To expand it, the method searches for new correspondence
pairs in the neighbourhood of the current seed in the corresponding reference views. A
new 3D point is reconstructed by means of triangulation. At last the newly created point
is projected into all other images and the matches are evaluated. If a specified quality
threshold is exceeded, the new point is added to the reconstruction and the priority
queue, so that it can be processed by a later iteration. This expansion process continues

34

3.2. Alternative approaches

until the queue is empty. After that a new process can be started with initial seeds
placed nearby holes or at outer boundaries of the reconstruction to increase its accuracy
and completeness. Compared to the PMVS algorithm, this approach lacks an additional
filtering step, which is, according to the authors, one reason, that their algorithm exposes
an improved computational efficiency. Furthermore, the best-seeds-first tactics guarantees
the good quality and accuracy of the reconstruction.

3.2 Alternative approaches

Besides the classic incremental approach described in the previous section, there exist
other attempts to solve the 3D reconstruction and camera pose estimation problem. One
of those are batch or global approaches where, unlike the incremental algorithm, all
camera estimates are calculated at once. The advantage of global methods compared to
sequential or incremental methods is, that expensive intermediate bundle adjustment
and outlier removal algorithms are not needed, because all parameters are computed
simultaneously and therefore no error propagation can occur due to a sequentially growing
reconstruction. This fact allows a more efficient computation, as shown by Sinha et al.
in their proposed version of a global SfM algorithm that performs up to two orders of
magnitude faster than incremental SfM [92]. They firstly extract vanishing points (VPs)
and feature point matches that are used to recover all camera rotations. After that the
camera positions and 3D points are all estimated at once using a linear reconstruction
approach. Finally bundle adjustment is applied to the completely reconstructed model
and all cameras.

Hierarchical SfM techniques are mostly out-of-core algorithms that produce several partial
scene reconstructions and finally merge them together into one overall solution. The
drawback of such algorithms is that they still need an intermediate bundle adjustment
step to reduce error propagation, like the classic incremental approach. However, they
are largely parallelizable and usually perform better than sequential SfM, as shown by
Gherardi et al. [35]. Their technique organizes the input images in a tree hierarchy, called
dendrogram. At the reconstruction stage, the tree hierarchy is followed starting at the
leaves, where a two-view reconstruction similar to the one performed by an incremental
approach, is computed. Moving towards the root at each node either an additional
image is added to the reconstruction or two reconstructions are merged. To improve the
computational efficiency compared to incremental SfM, the used tree must be balanced,
otherwise the benefit of the hierarchical method vanishes. To enforce the tree balancing,
the views are ordered by the number of common keypoints and the distribution of those
points over the image. Then agglomerative clustering is used to generate the dendrogram.
Based on a balanced dendrogram, the complexity of the SfM algorithm can be improved
from O(n5) to O(n4) (cf. O-notation by Knuth [57]), where n denotes the number of
input images [35].

Another different approach to the traditional reconstruction pipeline are so called SLAM
(Simultaneous Localization and Mapping) algorithms that are used to solve a similar

35

3. The reconstruction pipeline

problem as SfM, but in real-time. That is the reason why SLAM is often called the
real-time SfM. While SfM algorithms usually recover camera parameters and a 3D
reconstruction from a large unordered set of input images, SLAM is used mainly in
robotics to track and reconstruct the movement and view of a single camera (monocular)
or a pre-calibrated stereo camera rig. Since SLAM approaches focus on robot or camera
localization and real-time map creation, they don’t use expensive error minimization
approaches like bundle adjustment in order to reconstruct accurate 3D scenes. They
only produce sparse or at most semi-dense scenes or maps. However, with ongoing
hardware improvements and increasing computational possibilities the results of SLAM
and SfM approaches converge. Engel et al. introduced an interesting approach in 2014
known as Large-Scale Direct Monocular SLAM or LSD-SLAM [24]. While SfM and
SLAM algorithms are usually based on feature detection and matching, their featureless
approach directly works with image intensities. The camera is tracked with the help
of image-to-image alignment, where the camera’s pose is estimated with respect to a
current keyframe by using the previous frame as initialization. The map is reconstructed
in form of depth maps by filtering over a lot of pixel comparisons and matches [24].

3.3 Applications
In addition to the usage in tourism applications as seen in Chapter 2, nowadays SfM
algorithms can be used successfully to reconstruct whole cities from very large photo
collections, as shown by Agarwal et al. in their publication “Building Rome in a day” [1].
They presented a system which is able to reconstruct the city of Rome out of 150K
photographs within a day using a cluster of 496 compute cores and a novel parallel SfM
algorithm.

Another interesting application field of SfM is interactive modelling of urban scenes.
Reitinger et al. proposed an augmented reality application based on SfM, where a “scout”,
equipped with a mobile PC, a USB camera and a GPS receiver, explores the city and
sends a series of georeferenced photographs to a remote server. The server computes a
3D reconstruction, stores it in a database and sends it back to the scout’s mobile device,
where he can explore the 3D registered reconstruction [77].

Due to the increasing accuracy and completeness of their reconstructions, SfM approaches
have become a low-cost and affordable option beside high-cost laser scanning installations
in the field of geoscience and cultural heritage. There exist several papers, comparing
the results of laser scanning and SfM in the mentioned application fields [4][111].

As already stated in Section 3.2 so called SLAM methods are used in robotics for robot
localization and environment reconstruction. Nuchter et al., for example, use their SLAM
technique for creating a 3D reconstruction of an abandoned mine by an autonomous
robot [71]. Mars rover research also experiments with SLAM based algorithms, like
FastSLAM [68], for their autonomous robots.

36

CHAPTER 4
Working with large point clouds

Structure-from-motion algorithms are used to retrieve camera poses and 3D reconstruc-
tions out of a number of input images, as already mentioned in Chapter 3. The resulting
reconstructions can be stored and visualized using different data structures, like meshes,
depth maps and point clouds. Since our work is based on point clouds and our front- and
back-end implementation, including the database, must handle even large outdoor models,
this chapter gives an overview about methods of working with such large point-based
scene representations.

4.1 Basic data structures

Nowadays structure-from-motion and multi-view stereo algorithms can output point
clouds consisting of millions of points, as can be seen in [1]. Laser scanners are even
able to capture billions of points. In order to deal with such large amounts of point data
several data structures exist (cf. overview by Samet [85]). This section describes some
fundamental representations on which the more enhanced data structures and rendering
methods, like the one discussed in Section 4.2, are based on.

4.1.1 Quadtree / Octree

A quadtree, originally proposed by Finkel and Bentley in 1974, is a two-dimensional
hierarchical data structure that is well suited for fast point searching [29]. A quadtree
consists of nodes, which are generally axis-aligned quads. The space occupied by a node
is subdivided into four non-empty subspaces, that contain further nodes (that can be
again subdivided), or empty subspaces. The subdivision splits each node’s space along
axis-parallel lines. Samet’s overview contains different types of quadtrees used for point
storage [85]. They generally differ in how the space division is done and where the points
are stored.

37

4. Working with large point clouds

A point quadtree subdivides the space at lines that intersect in a data point. It can
be seen as a simple two-dimensional binary search tree, where the firstly inserted point
serves as the root node. Subsequently inserted points are placed at the quadrant derived
from the point’s metrics (for example its location in a two-dimensional space). Data
points are stored in inner nodes as well as in leaf nodes. Searching and insertion time
complexity is O(log(n) (cf. O-notation by Knuth [57]), where n denotes the number of
currently stored points. An example of a point quadtree is depicted in Figure 4.1a [85].

Quadtrees where spaces are not subdivided at data points are called trie-based quadtrees.
Such quadtrees split a node’s space along lines that go through the center of a node, or at
arbitrary positions within the node’s space. In the context of point data with indiscrete
properties (like floating-point coordinates) a trie-based quadtree is called point region
quadtree (PR quadtree). While a point quadtree stores data points at each node, in a
PR quadtree points are only saved in leaf nodes, as can be seen in Figure 4.1b. The time
complexity of search and insertion operations depends on the depth of the PR quadtree.
In contrast to the two described variations of quadtrees, which contain only at most one
point per node, bucketed versions of this data structure are able to store more than one
point per node [85].

A

B

C

D

E

F

(a) Point quadtree: The node spaces are
subdivided at data points. Each node can
contain data points.

A

B

C

D

E

F

(b) PR quadtree: The node spaces are sub-
divided at their centres. Only leaf nodes
contain data points.

Figure 4.1: Quadtree variants for point storage. The figures are inspired by illustrations
seen in [85].

The quadtree data structure can be easily extended into three-dimensional space. The
extended 3D data structure is called octree and was introduced by Meagher in 1980 [65].
In contrast to a quadtree, each node can hold at most eight instead of four children. The
above described variations in space division and point storage can be similarly applied to
octrees [85].

38

4.1. Basic data structures

4.1.2 B-Tree

The B-Tree invented by Bayer and McCreight in 1972 is a self-balancing tree that allows
any number of child nodes at any node [9]. Therefore it can be seen as a generalization of
the classic binary search tree, which allows only two child nodes per parent node. Since
it is self-balancing, each leaf node is at the same tree level. Like a point region tree, the
B-Tree stores data points only at leaf nodes, while the internal nodes are just used for
the derivation of a search path, when looking for specific data points.

The B-Tree is primarily used as data structure for secondary, external data storage,
because it is optimized for storing and reading large data blocks. Due to its self-balancing
property, the height of a B-Tree is kept low, which further leads to a reduction of slow
disk accesses when searching for a specific dataset. Therefore, it is commonly used
in databases and file systems, like Microsoft’s NTFS and Apple’s HFS+ [11]. Other
variants like B∗-Trees and B+-Trees are developed to further improve the performance
of a B-Tree as a data structure for external memory. The B∗-Tree optimizes his fill-rate
by sharing keys between neighbouring interior nodes. This leads to a more dense and
lower tree, where non-root nodes are at least 2/3 full instead of just 1/2, which further
increases the storage utilization and makes search operations faster, when compared to
the conventional B-Tree. The B+-Tree speeds up search operations by directly linking
leaf nodes for faster sequential access. Search, insertion and deletion operations have only
logarithmic time complexity O(log(n)), where n denotes the number of stored records [18].
Figure 4.2 shows a B-Tree of order 5, where the order describes the maximum number of
children of a non-leaf node [85].

5 11 16 21

1 2 3 4 6 7 8 10 12 13 14 15 17 18 19 20 22 23 24 25

Figure 4.2: A B-Tree of order 5, where a non-leaf node has at most 5 children. The keys
stored in the nodes are used for searching specific datasets, which are linked in the leaf
nodes. This figure is redrawn as seen in [9].

4.1.3 R-Tree

The R-Tree extends the idea of the B-Tree to multidimensional spaces [43]. An R-Tree
divides the point data into n-dimensional regions and builds up a region hierarchy. The
regions are defined by the minimum bounding rectangles (MBRs) of the data points they
contain. Each parent knows just the bounding boxes of its children. The data points
itself are stored in the leaf nodes. Like the B-Tree, the R-Tree is a balanced tree, which
means that each leaf node is at the same tree level. Searching for a specific point is done

39

4. Working with large point clouds

by using the MBRs. This approach makes it possible to ignore whole subtrees, if the
searched point doesn’t lie within their bounding boxes. That leads to the fact, that just a
fraction of nodes are visited and therefore needed during a search operation. This nodes
can be paged to memory on demand, which makes a R-Tree suitable for large amounts
of data that cannot be loaded into memory at once, like the point data stored in spatial
databases. Figure 4.2 depicts an example of a R-Tree.

R1 R2

R3 R4 R5 R6

R7 R8 R9 R10 R11

(a) R-Tree

R2

R1
R3

R4

R5

R6

R7

R8
R9

R10 R11

(b) The bounding boxes of the nodes stored
in the R-Tree depicted in (a)

Figure 4.3: R-Tree together with the bounding boxes of its nodes. These figures are
simplified redrawn as seen in [43].

It can be seen that there are many overlapping regions, which minimize the search
performance of an R-Tree in cases where a searched point lies in the overlapping part of
two regions. In such cases both subtrees need to be expanded and queried. An R∗-Tree
reduces the overlap of regions by using split and reinsertion algorithms. The R+-Tree
goes one step further and prohibits the overlap of two search regions. The drawback of
this constraint is, that objects that belong to more than one region must be stored in
each region separately (e.g. a polygon that extends to several search regions). However,
in the case of points this drawback is negligible and R+-Trees boost the search speed
because all search regions are just covered by at most one search node, which makes
unnecessary subtree expansions impossible [85].

4.2 Large point cloud rendering

Finding a suitable data structure for point datasets is an inevitable task when it comes to
rendering the point clouds. Especially when dealing with large datasets that exceed the
graphics memory, optimized data structures are needed to ensure an acceptable real-time
performance. The previous section already introduced some basic representations which

40

4.2. Large point cloud rendering

provide the basis for the rendering techniques described in the following paragraphs.

4.2.1 QSplat

Rusinkiewicz and Levoy proposed a data structure called QSplat for the storage and
rendering of large point clouds [84]. They organize point clouds in a bounding-sphere
hierarchy which is preprocessed and stored on the disk. The preprocessing algorithm
creates this tree-like hierarchy by splitting the input point cloud along its longest bounding
box axis. This operation retrieves the two bounding spheres of the tree root’s children.
This splitting operation is repeated until a node’s bounding sphere contains just a single
point. The points are stored in the leaf nodes of the bounding-sphere hierarchy. Internal
nodes store the averaged values of their children, which makes it possible to render the
point cloud in different LODs. The hierarchy is stored by traversing it in breadth-first
order starting at the root node, which means that the levels of the tree and therefore
the different LODs are stored sequentially in the file on the disk. Each LOD or tree
level contains the whole point cloud in a more or less dense representation. This fact
allows the rendering of a low-resolution point cloud by only reading the first part of the
file, that stores the QSplat. A heuristic based on the projected point size on the screen
decides which LOD is used when rendering the point cloud. Since large point datasets
usually exceed the internal memory, the levels are loaded on demand from the disk. To
further improve rendering performance, a visibility check allows to skip the loading of
whole subhierarchies of the QSplat data structure, if their bounding spheres are outside
the camera’s view frustum.

Figure 4.4: A scene represented as a QSplat and rendered by using a square, circle or
Gaussian splat kernels. Image courtesy of Rusinkiewicz and Levoy [84].

Figure 4.4 depicts rendering results of the QSplat algorithm using different splat kernels.
It can be seen that the Gaussian kernel delivers the best result with less aliasing compared
to the other renderings. However, according to the authors it takes four times longer to
render a scene with a Gaussian kernel than with a square kernel. Another problem of

41

4. Working with large point clouds

the QSplat approach is, that each leaf node stores just one single point and rendering is
therefore done point-by-point, which is not very efficient when using modern GPU-based
rendering techniques, since they perform better when transferring larger blocks of data
to the GPU.

4.2.2 Layered Point Clouds

Another rendering and storage method for large point clouds is the approach by Gobbetti
and Marton called layered point clouds (LPC) [36]. In contrast to the QSplat algorithm,
LPC stores up to M points in each node of the tree-like hierarchy, making the data
structure better optimized for GPU-based rendering. As QSplat, LPC uses a binary
tree hierarchy that splits each node at its longest bounding box axis. Each node stores
uniformly subsampled points of the original input cloud. After storing points in the data
structure, these are removed from the input cloud. The remaining point cloud is further
split along its longest bounding box axis and the two resulting chunks are subsampled to
generate the child nodes of the previously created parent. This process is repeated until
a node contains ≤M points. Figure 4.5 shows the LPC data structure created from the
input point cloud. It can be seen that each child node locally increases the density of the
point cloud stored in its parent node.

Figure 4.5: LPC data structure: The input point cloud is split into equally sized chunks.
These chunks are stored out-of-core in a repository on a local or remote filesystem and
are loaded on demand during the rendering process. They are further used to build up a
level-of-detail hierarchy, where each child node locally refines the point cloud stored in
its parent node. Image courtesy of Gobbetti and Marton [36].

The point cloud chunks are stored in compressed form in a point cloud repository either
on a local or remote filesystem, which is accessed via NFS mounts or HTTP connections.
The repository is structured in a way, such that the storage order is the same as the

42

4.2. Large point cloud rendering

traversal order, when rendering the point cloud. This order is breadth-first, which means
that the point cloud rendering process renders a coarse level of detail, which is refined
by loading further child nodes. The needed nodes are requested from the repository if
they are not currently available in the graphics card memory. Additionally, an index tree,
representing the parent-child relationships of the data structure, stores unique links that
identify the several point clouds saved in the repository. When rendering the cloud, the
index hierarchy is traversed down until a specific level of detail is reached. The required
level of detail is computed for a current view point by using the maximum distance
between the projected visible points.

4.2.3 Instant Points

Instant Points proposed by Wimmer and Scheiblauer in 2006 is another out-of-core
algorithm used to render large point clouds [117]. Like the algorithms described in
the previous sections, the instant points method also builds up a hierarchy in order to
allow out-of-core rendering in several levels-of-detail. The data structure created by this
algorithm is an octree-based representation named nested octree.

Figure 4.6: The nested octree data structure, as basis of the instant points rendering
algorithm, simplified illustrated in 1D as a nested bintree. The bintree is of order 5, while
the outer and all its inner bintrees have order 3. The points are stored in internal and
leaf nodes. Image courtesy of Scheiblauer [86].

43

4. Working with large point clouds

Wimmer and Scheiblauer distinguish between inner and outer octrees in their data
structure. The outer octree specifies the traversal order for rendering and the inner
octrees, which are bound to a maximum depth, actually store the points. Each node of
the outer octree has a corresponding inner octree and each node of an inner octree can
store at most one point. The bounding boxes of the inner octree’s root nodes are the
same as the bounding boxes of the outer octree nodes they belong to. Figure 4.6 depicts
a one-dimensional nested octree, which is in fact a nested bintree. The inner bintrees
are represented by different colours and the outer bintree is visualized with bold black
edges and square nodes. It can be seen, that the bintree is full, because each of its levels
contain points [86].

The nested octree is precomputed by iterating through the points of the original input
point cloud. The octree is build up from top to bottom, first inserting into the inner
octree of the outer octree’s root node. If all nodes of the inner octree are occupied, the
subsequently inserted points are saved in inner octree’s inscribed at the appropriate child
node of the outer octree’s root. Generally, the recursive insertion algorithm iterates
through all nodes of the outer octree until it finds an inner octree that is not fully
occupied and offers a suitable free node for a currently processed point. A main novelty
of the instant points rendering algorithm is the LOD creation by using the inner octrees.
When the camera is far away from the scene, such that it is sufficient to render just the
root node of the outer octree, the rendering algorithm can use the levels-of-detail of the
inner octree to further reduce the number of rendered points. However, when the camera
comes closer to the scene more outer octree nodes are needed for a satisfying result. In
such cases more points than needed are rendered, as can be seen in Figure 4.6, where
each of the bins in level 2-4 contain points from different inner octree nodes. Because
ultimately all points of an inner octree, corresponding to a requested outer octree node,
are rendered, it can happen that more than one point per bin is drawn, although it would
be sufficient to render just one point per bin.

When rendering the point cloud the outer octree is loaded completely into memory
and traversed in order to create a priority queue using the size of the node’s projected
bounding box as priority value. The queue is then iterated and nodes are filtered out
according to several conditions. Outer octree nodes are only considered for rendering,
if the projected bounding boxes of the lowest nodes stored in the corresponding inner
octrees are larger than a predefined threshold, which is usually 1 pixel. Candidate nodes
are view frustum culled before rendering, removing nodes that are not visible from a
current view point. Furthermore, nodes that are not in graphics memory are requested
from an external storage and skipped in the rendering process of the current frame.
Instant points uses a budget-based rendering approach, which means that a user-defined
maximum number of points must be considered when rendering the point cloud. If
the points stored in the inner octree of a candidate node would exceed this maximum
number, the node is skipped and the iteration of the priority queue is stopped. Inner
octrees collected during this filtering process are finally stored in a render queue, which
is actually traversed during rendering. When a node of an outer octree is rendered, all

44

4.2. Large point cloud rendering

points of the inscribed inner octree are drawn [86][117].

To optimize the rendering process, points that are not rendered any more are inserted
into a least-recently-used cache (LRU) in the main memory and deleted from the graphics
card’s memory. If a point is needed for rendering subsequent frames, they are loaded
from the external memory, only if they are not available in the LRU-cache [86][117].

4.2.4 Potree

The web-based point cloud renderer Potree, which we use in our front-end implementation
(see Section 6.2), is based on a simplified version of the nested octree data structure
used by the instant points rendering algorithm [87]. In detail, instead of differentiating
between outer and inner octrees, Potree uses just one octree, which stores points in all
nodes: root, internal and leaf nodes [88].

In contrast to the nested octree data structure described in Section 4.2.3, that stores
all points of the original input point cloud, the points stored in the original Potree data
structure are uniformly selected with the help of a user-defined point spacing. This
spacing value defines the minimum distance between two points in the root node. For
each level below the root level this distance is halved, which leads to a more detailed
representation of the point cloud in those levels, because they contain more points [88].
However, since Potree version 1.3, all points of the input point cloud are stored. The
minimum distance check is only applied for non-leaf nodes. Points in leaf nodes are
not affected by this constraint and contain all points that are rejected by the internal
nodes [87].

Again levels-of-detail are introduced by the data structure behind the Potree renderer.
The octree’s root stores a sparse version of the original input point cloud. Combining
the points of the root with points from subsequent child nodes, makes the resulting point
cloud more dense until it reaches it’s highest LOD when all octree levels are rendered.
Figure 4.7 illustrates the described principle [87].

During the rendering process the octree nodes are loaded on demand. Each of the nodes
is stored in a separate file in the file system. Furthermore, the octree hierarchy is split
into hierarchy chunks, each of them described in a hierarchy file. The description of a
hierarchy contains a node and a predefined number of its descendants. For each of the
nodes, the number of stored points is saved. All hierarchy files together describe the
octree hierarchy of the whole point cloud.

Before loading the point data stored in the node files, the hierarchy file of the first
chunk is loaded and processed in order to decide which nodes are actually rendered. For
this purpose Potree uses a priority queue to sort the nodes according to their screen
projected size. This is done for the child nodes of each parent node separately to decide
the processing order of its children in subsequent iterations. Nodes (and their children)
that are not inside the current view frustum are rejected. Furthermore, nodes with a
screen projected size below a predefined threshold are discarded. Potree also uses a

45

4. Working with large point clouds

(a) Points stored in
the root node.

(b) Points stored in
the first child of the
root node.

(c) Points of the
root and its first
child combined.

(d) Points of the
root and all of its
children combined.

Figure 4.7: An illustration of the LOD representation as implemented in the octree-based
data structure used by the Potree renderer. While the root node contains only a sparse
version of the stored point cloud, combining the points from all octree nodes increases
the level-of-detail and leads to a more dense point cloud. Image courtesy of Schütz [87].

point budget, to bound the number of rendered points to a maximum value in order
to guarantee real-time frame rates. This means that the tree-traversal is stopped when
a node exceeds the budget or when there are no further nodes to process. Nodes that
are considered visible are requested from the server, unless they are already loaded into
memory. When a node has a hierarchy file attached (same file name, but other file
extension), the hierarchy chunk contained in this file is also downloaded from the server
and processed as described above. Since it is not possible to store an infinite number of
points in memory, not needed points are removed by using a least-recently-used cache
(LRU). When a specified number of points are in memory, points from the LRU-cache
are removed before new ones are requested from the server.

Since we adapted the octree generation and loading algorithm for our application, more
details about it are covered in Section 6.3.

46

CHAPTER 5
Geographic coordinate systems

The visual tourism client realized during the work on this thesis is based on point
clouds that are georeferenced and placed on a globe. Therefore, our implementation
uses geographic coordinate systems to describe point positions and transformations. To
be able to follow the details presented in the implementation chapter (see Chapter 6),
this chapter gives a short overview of the used coordinate systems and the map algebra
behind them.

5.1 World Geodetic System 1984 (WGS84)

The World Geodetic System (WGS) is a standard used in geodesy, cartography and
other earth sciences for defining positions on the Earth. Its latest version named WGS84
originated in 1984 and was last updated in 2004. The standard defines a coordinate
system for the Earth, a reference ellipsoid approximating the Earth’s surface and a geoid
derived from a gravitational model, that defines the nominal or mean sea level. The
global positioning system (GPS) is one of the important applications that are based on
the WGS84 standard [53].

5.1.1 Reference coordinate system

The coordinate system defined by the WGS84 standard is a Cartesian coordinate system
having its origin at the Earth’s center of mass. Figure 5.1 depicts the coordinate system
defined by its origin and its three orthogonal axes. The z-axis is derived from the reference
pole defined by the International Earth Rotation Service (IERS) and coincides with the
Earth’s rotation axis [64]. The x-axis lies on the equatorial plane, that passes through
the origin, is orthogonal to the z-axis and intersects the IERS reference meridian at
0◦ longitude. This meridian, also known as prime meridian, passes approximately 102
metres east of the Royal Observatory in Greenwich [63]. At last the y-axis, computed as

47

5. Geographic coordinate systems

XWGS84 YWGS84

ZWGS84

IERS Reference Pole (IRP)

IERS
Reference
Meridian (IRM)

Earth’s Center
of Mass

Figure 5.1: Definition of the WGS84 coordinate system. This figure is redrawn as seen
in [53].

the cross product of the other two axes, completes the right-handed and earth-centered
orthogonal frame. Additionally, the WGS84 frame is an earth-fixed coordinate system,
which means that its axes are fixed with respect to the Earth’s surface. The Earth doesn’t
rotate about the z-axis of the coordinate system, but the coordinate system rotates with
the Earth. Because of these two properties the WGS84 coordinate system is a so called
Earth-centered, Earth-fixed (ECEF) coordinate system or a Conventional Terrestrial
System [58].

5.1.2 Reference ellipsoid

The WGS84 reference ellipsoid or WGS84 datum is a geocentric ellipsoid of revolution
that is defined by four parameters [53]:

• Semi-major axis (equatorial radius) a = 6378137.0m

• Reciprocal of flattening 1/f = 298.257223563

• Angular velocity of the Earth ω = 7292115.0× 10−11rad/s

• Earth’s gravitational constant GM = 3986004.418× 108m3/s2

48

5.1. World Geodetic System 1984 (WGS84)

The semi-major axis and the flattening are used to describe the ellipsoid geometrically,
whereas the other two are physical parameters that are used by some geodetic applications,
for example, to approximate the Earth’s gravitational field.

When it comes to coordinate conversion tasks, as described in Section 5.3, another
important geometric parameter of the ellipsoid is needed. The ellipsoid’s semi-minor axis
or polar radius b can be derived from a and 1/f as following [53]:

b

a
= 1− f → b = a(1− f) ≈ 6356752.314245m (5.1)

There exist several other geometric and physical parameters that can be computed with
the help of the four defining parameters mentioned above. However, for our purpose
these parameters are not needed and therefore not discussed in more detail. For further
information about the WGS84 reference ellipsoid see the technical report containing its
detailed definition [53].

Geodetic coordinates

Besides the usage as an Earth’s surface approximation, the reference ellipsoid is also used
to define a so-called geodetic coordinate system. Such a coordinate system describes
curvilinear coordinates known as geodetic latitude and geodetic longitude. The geodetic
latitude φ is the angle between the equatorial plane and the normal to the reference
ellipsoid at a given point. The geodetic longitude λ is the angle between the plane of
the prime meridian and the plane of a given meridian. Longitudes are usually measured
positively from the prime meridian eastwards and negatively westwards. Latitudes are
usually measured positive from the equator northwards and negative southwards [76].
The altitude or height as the third components of a geodetic coordinate is usually given
as the distance above the reference ellipsoid. GPS is an example, that uses height values
above the WGS84 reference ellipsoid [32]. However, there exist some applications that
define the height above mean sea level (MSL), which can differ significantly from the
height above the ellipsoid as depicted in Figure 5.2. Figure 5.3 shows the relationship
between the different coordinate systems used by our system.

5.1.3 Geoid

The third part completing the WGS84 standard is the definition of a geoid based on
an earth gravitational model. The geoid represents the shape of the Earth’s ocean
surfaces considering the influences of the Earth’s rotation and gravitation and ignoring
disturbances like winds, tides, waves, etc. The mean sea level can be identified by the geoid.
Compared to the reference ellipsoid, which is a mathematically idealized representation of
the Earth’s surface, the geoid is a more irregular surface that is, however, still smoother
than the Earth’s real topographic surface. Figure 5.2 depicts the relationship between
the three different surfaces [76]. It illustrates that the difference N between the geoid
and the reference ellipsoid can be significant. Therefore it is important to distinguish

49

5. Geographic coordinate systems

between the height above the ellipsoid and the height above the geoid, which is known
as the height above mean sea level (MSL). Our application is based on height values
relative to the reference ellipsoid.

To compute the mean sea level and therefore the geoid several earth gravitational models
exist. The latest released version that describes a gravitational model relative to the
WGS84 ellipsoid is the Earth Gravitational Model 2008 (EGM2008). The EGM consists
of a number of so called spherical harmonic coefficients that are used to mathematically
approximate the geoid.

Reference Ellipsoid
Geoid (MSL)

Topographic SurfaceHh

N

Figure 5.2: The relationship between the reference ellipsoid, the geoid defined by the
gravitational model and the real topographic terrain. Here h denotes the height above
the reference ellipsoid, H the height above mean sea level andN the difference between
the ellipsoid and the geoid. This figure is inspired by an illustration seen in [32].

5.2 Local ENU reference frame
For transformations, like user modifications to correct georeferencing errors in our
application, a local ground reference frame is more intuitive and convenient than the
global ECEF or geodetic coordinate system. Therefore we introduce a local Cartesian
coordinate system called East-North-Up (ENU), that is defined by a tangent plane to
the reference ellipsoid at a specific location. The axis pointing eastwards is labelled with
x, the northward axis y and the normal to the tangent plane defines the z-axis of this
local coordinate system, that is shown coloured in green in Figure 5.3 [110].

5.3 Coordinate conversions
The previous sections defined different coordinate systems that we deal with in our
application. To optimize the rendering process and simplify matrix calculations, it is
often necessary to switch between different frames, depending on the computation task.
Furthermore, several services like the Bing Location Service we use in our front-end
implementation, deliver results in geodetic coordinates. However, to use such coordinates
during the rendering process with WebGL or OpenGL, they have to be converted to
Cartesian coordinates. This section describes algorithms we used to convert coordinates
between geodetic and Cartesian frames. Geodetic longitude is labelled as λ, geodetic
latitude as φ, and height above the WGS84 ellipsoid as h. Cartesian coordinates are

50

5.3. Coordinate conversions

XECEF YECEF

ZECEF

Prime
Meridian

North

East

Up

φ

λ

Figure 5.3: Different coordinate systems used by our application: The global ECEF
coordinate system (blue), the geodetic coordinate system (red) and the local ENU frame
at a given location on the ellipsoid surface. This figure is inspired by a drawing seen in
[110].

denoted by (x, y, z) and if the point lies on the ellipsoid surface it is denoted by (xs, ys, zs).
The WGS84 ellipsoid is centred at the global origin and defined by its axis length’s
(a, b, c).

5.3.1 Geodetic to ECEF

Converting geodetic coordinates (λ, φ, h) to Cartesian coordinates (x, y, z) can be done
by using the geodetic surface normal n̂s and the unnormalized geodetic surface normal
ns at the surface point rs = (xs, ys, zs) [21].

n̂s = cosφ cosλ î + cosφ sinλ ĵ + sinφ k̂ (5.2)

ns = xs
a2 î + ys

b2 ĵ + zs
c2 k̂ (5.3)

The symbols î, ĵ and k̂ in Equation 5.2 and Equation 5.3 stand for the unit vectors
representing the axes of the ECEF coordinate system. Relating n̂s to ns, which point
both in the same direction but have different magnitudes leads to

51

5. Geographic coordinate systems

n̂s = γns. (5.4)

Substituting Equation 5.3 and rearrangement forms the following system of scalar
equations

xs = a2n̂x
γ

ys = b2n̂y
γ

zs = c2n̂z
γ

(5.5)

This system can be solved for rs = (xs, ys, zs) by using the implicit ellipsoid representation
denoted in Equation 5.6 as side condition to eliminate the unknownγ at the right hand
side.

x2
s

a2 + y2
s

b2 + z2
s

c2 = 1 (5.6)

However, this side condition forces the computed points to lie on the ellipsoid surface. For
points below or above the surface the input height h is used to compute a height vector
h = hn̂s along the surface normal n̂s. This vector is at last added to the previously
calculated surface point rs to retrieve the final point r = rs + h.

5.3.2 ECEF to Geodetic

The way from Cartesian coordinates of an arbitrary point to geodetic coordinates is not
as straightforward as the opposite direction. The approach that we use in our application
consists mainly of three steps. First, the arbitrary point is scaled to the geodetic surface
along its geodetic surface normal n̂s, which is the normalized h-vector seen in Figure 5.4.
This step is an iterative process as can be seen in the next paragraphs. After that a
simple conversion of the point on the ellipsoid surface to geodetic coordinates can be
made. At last the height is computed to move the point to its final position [21].

rs

r

r

rs

h

α0

α

Figure 5.4: Scaling a known point r along h to the surface in order to compute rs. rs
can then be used to calculate the geodetic coordinates in closed-form. For more details
see the text. This figure is redrawn as seen in [21].

52

5.3. Coordinate conversions

The first step, as already mentioned above, is the scaling of an arbitrary point, denoted
by its position vector r, to its surface point denoted by its position vector rs. This
procedure is illustrated in Figure 5.4. Equation 5.3 shows that an unnormalized surface
normal ns can be computed by using rs and the ellipsoid parameters (a, b, c). The height
vector h depicted in Figure 5.4 points in the same direction and therefore differs from
ns only by its magnitude, which we denote by α. Summarizing this paragraph, we can
define the vector r as following:

r = rs + αns (5.7)

Substituting Equation 5.3 in Equation 5.7, rearranging such that the searched vector
rs = (xs, ys, zs) is placed on the left-hand side leads to the following system of equations:

xs = x

1 + α
a2

ys = y

1 + α
b2

zs = z

1 + α
c2

(5.8)

α is now the only unknown left at the right-hand side, because we know the input
point r = (x, y, z) and the ellipsoid parameters (a, b, c). To find α the implicit ellipsoid
representation Equation 5.6 is used. Combining this equation with the equations seen in
Equation 5.8 result in the following equation:

S = x2

a2(1 + α
a2)2 + y2

b2(1 + α
b2)2 + z2

c2(1 + α
c2)2 − 1 = 0 (5.9)

This non-linear equation can be solved for the only unknown α by using an approximation
procedure known as Newton-Raphson method. For a value α that fulfils the equation
S = 0, the point rs on the ellipsoid surface is found. Initially, α is guessed as α = α0,
that would lead to a geocentric surface point, which lies at the intersection of the
ellipsoid and the position vector of the input point r, as can be seen in Figure 5.4. The
Newton-Raphson method now iterates by subsequently computing a new α according to
Equation 5.10 until a value is found that makes S sufficiently close to 0.

αi+1 = αi −
S(αi)
∂S(αi)
∂α

(5.10)

Having found α, rs can be computed as shown in Equation 5.8, which leads to the second
step. Converting the Cartesian coordinates of points on the ellipsoid’s surface to geodetic
coordinates can be done in closed-form using simple trigonometry. As already seen
above in Equation 5.3, an unnormalized surface normal can be computed by using the
surface point rs. This normal can be normalized using its length to obtain the normalized
geodetic surface normal n̂s at the surface point rs. n̂s is then used to calculate the
geodetic longitude λ and the geodetic latitude φ:

53

5. Geographic coordinate systems

λ = arctan
n̂y
n̂x

φ = arcsin
n̂z
||ns||

(5.11)

The height value h, as the last missing component of the (λ, φ, h)-tupel, is computed
from the height vector h = r − rs:

h = sign(h · r) ||h|| (5.12)

5.3.3 ECEF to/from ENU

The last conversion algorithm covered in this chapter is the conversion between two
Cartesian frames, namely the local east-north-up ENU frame and the global earth-
centered, earth-fixed ECEF frame [100].

To convert ENU coordinates to global ECEF coordinates, the frames must be aligned
such that their axes coincide. Figure 5.3 shows the relationship between the local, green
coloured ENU coordinate system and the global, blue coloured ECEF coordinate system.
It can be seen, that the frames can be aligned by two rotations. First a clockwise rotation
about the ENU’s east-axis by 90◦ − φ aligns the ENU’s up-axis with the ECEF frame’s
z-axis. Then a 90◦ + λ clockwise rotation about the ZECEF -axis aligns the east-axis of
the ENU frame with the x-axis of the ECEF-frame. The angles λ and φ are the geodetic
coordinates of the ENU frame’s origin on the ellipsoid surface. Combining these two
rotations leads to the following transformation:

 XECEF

YECEF
ZECEF

 =

 − sinλ − cosλ sinφ cosλ cosφ
cosλ − sinλ sinφ sinλ cosφ

0 cosφ sinφ


 E
N
U

 (5.13)

The column vectors of the rotation matrix are the unit vectors pointing in the axis
direction of the ENU frame given in ECEF coordinates. It can be seen that the third
column vector consists of the coefficients used in Equation 5.3, which define the normalized
geodetic normal n̂s at the origin of the ENU frame.

The conversion from ECEF to ENU coordinates is done by using the inverse transformation
of Equation 5.13. Since the transformation matrix is a rotation matrix with the property
R−1(α) = RT (α), the inverse transformation matrix is simply the transposed original
transformation matrix:

 E
N
U

 =

 − sinλ cosλ 0
− cosλ sinφ − sinλ sinφ cosφ
cosλ cosφ sinλ cosφ sinφ


 XECEF

YECEF
ZECEF

 (5.14)

The above described transformations rotate vectors from the ECEF frame to the ENU
frame and vice-versa. However, they lack the translation from the global origin to the

54

5.3. Coordinate conversions

origin of the local coordinate system. This translation is defined by the Cartesian position
vector of the ENU frame’s origin at the ellipsoid surface, because the origin of the ECEF
frame is defined as the center of the ellipsoid at (0,0,0).

55

CHAPTER 6
Implementation

This chapter aims to provide technical details about the realized collaborative structure-
from-motion system. Special code snippets are reviewed and the overall code structure
of the implemented framework is explained in more detail.

6.1 System overview

The individual parts of the client-server architecture of our OpenSfM system are depicted
in Figure 6.1.

What a user sees when visiting our webpage opensfm.cg.tuwien.ac.at is the front-
end, which acts as an interface to the underlying structure-from-motion system. With
the help of the front-end the user can browse or edit existing SfM-datasets or add new
datasets to the system. More details about the front-end implementation and features
are covered in Section 6.2.

Since our system is a client-server application, the front-end generates requests, which
are processed at the server-side by our back-end implementation. The server application
answers client requests and processes the data that is uploaded onto the system by using
a number of independent worker threads, which finally notify the user about a successful
or unsuccessful processing of their data. Furthermore, it provides an interface to the
OpenSfM database, which stores the data that is presented by the front-end. Section 6.3
gives more detailed information about the back-end realization.

The underlying OpenSfM database contains the data populated into the structure-from-
motion system. Client requests are usually fulfilled by the server application using the
information provided by the database. The table layout and database-related details are
introduced in Section 6.4.

57

opensfm.cg.tuwien.ac.at

6. Implementation

Client Server

Job Table

OpenSfM Database

Webserver

Upload

Explore

Mail
Notification

Worker
Threads

Figure 6.1: A user accesses our system via a webpage that shows the OpenSfM front-end.
This virtual tourism system offers different modes that enable either upload, edit or
exploration features. The uploaded information is processed with the help of a job
pattern. The webserver inserts jobs consisting of input parameters for the SfM engine
and the point cloud preparation, the users email address and an ID that identifies the
uploaded images on the servers file system into a database table (red arrows). A second
web application polls this database table and starts worker threads that process their
assigned job with the help of VisualSFM, a state-of-the-art SfM engine, and inserts the
finally generated and preprocessed SfM-dataset into the OpenSfM database (blue arrows).
The user is notified per mail about the final processing state (black arrow). If his data
was processed successfully, he can visit the OpenSfM front-end to explore the generated
point cloud together with its corresponding camera information (green arrows).

6.2 The front-end: A virtual tourism client

The front-end is realized as a single-page web application using HTML, CSS and JavaScript
with WebGL. HTTP requests are sent to the webserver with the help of the XmlHttpRe-
quests API. This API allows sending and receiving data in form of HTML, XML, plain
text, JSON objects and even byte streams. This makes it possible to request any form of
data from the server, which is especially useful for handling the renderer requests (for
more details see Section 6.2.3).

58

6.2. The front-end: A virtual tourism client

6.2.1 Code structure

To ensure a modular and easily maintainable front-end code structure, the JavaScript
code is organized by using “widgets” that break the code and the user interface into small
independent and reusable parts. The widgets are implemented following the so-called
asynchronous module definition (AMD) specification that allows an asynchronous loading
of the widgets and their dependencies. In the context of AMD, a widget represents a single
module that is loaded together with its dependencies on demand using the dynamic script
loader RequireJS. To further reduce the loading time of our front-end, the JavaScript and
CSS files are minified by using the RequireJS library. This minification step removes all
unnecessary characters from the source code without changing its functionality in order
to reduce its file size and therefore the loading time of the application.

When implementing the widgets, we followed the model-view-viewmodel (MVVM) pattern
that separates the presentation layer from the business logic. To realize this pattern
in JavaScript, we use a library called Knockout. This library allows the definition of
data-bindings for the elements of the view layer. This means that when the data referred
to in the bindings changes, the presentation layer automatically refreshes itself in order
to render the correct underlying information. Each of our widgets consists of a view with
data-bindings dynamically created using JavaScript and a viewmodel, also realized using
JavaScript, that contains the business logic behind its corresponding view. The following
listing describes the widgets we use in our front-end implementation:

CesiumWidget
The CesiumWidget is a module from the CesiumJS library that renders the main
interface of our webapplication: the globe [3]. The locations of the SfM-datasets
are marked on the globe using viewport-aligned icons.

PotreeViewer
The PotreeViewer integrates the Potree renderer [87] into our virtual tourism system.
This widget gets active when a user chooses a dataset by double-clicking an icon
rendered on top of the globe.

GeoCoder
The GeoCoder widget is based on the geocoder widget contained in the CesiumJS
library and allows the user to search for and visit specific addresses on the globe.
This widget is realized by using the Bing Maps location webservice, that returns
geographic coordinates for a specific input address. We improved the geocoder
widget of the CesiumJS library by adding an autocompletion feature.

BaseLayerPicker
The BaseLayerPicker widget is like the CesiumWidget a module from the CesiumJS
library. However, we replaced the view of the widget with our own view implemen-
tation that fits the graphical user interface (GUI) of our front-end. This widget
allows to switch between different globe textures/tiles and terrain meshes.

59

6. Implementation

VerticalTabBar
The VerticalTabBar widget represents the main menu of our webapplication. It is
placed on the right border of the screen and contains several menu items which are
used to interact with the system.

SfmUploadForm
The SfmUploadForm widget represents the form one has to fill in when he wants
to add new datasets to the system or extend existing datasets.

SfmPopupMenu
The SfmPopupMenu widget appears when a user selects a location on the globe,
where more than one dataset is placed. This popup menu allows an additional
selection to identify the desired dataset.

Several CallbackButtons
The OpenSfM front-end contains several buttons that execute a specific functionality
when clicked. Such buttons are defined with the help of a callback function, that is
executed when the user clicks the button.

6.2.2 System modes and GUI

In the OpenSfM front-end the user can switch between four different modes that we call
system modes. The graphical user interface (GUI) is adapted to the currently active
system mode and is implemented in JavaScript using the user interface library jQueryUI.
The following subsections explain the different system modes and their GUIs in more
detail.

Overview mode

Figure 6.2: Screenshot of the OpenSfM webapplication in overview mode.

60

6.2. The front-end: A virtual tourism client

The overview mode depicted in Figure 6.2 is active when the user enters our webpage.
He can explore the globe and search for SfM-dataset locations, marked by red location
signs, either by manually navigating on the globe or by using the GeoCoder on the top
left corner. When he double clicks a location sign, the underlying SfM-dataset is loaded
and the application switches to the view mode described below. If the selected location
offers more than one dataset, an additional selection must be done via a popup menu to
switch to the desired SfM-dataset.

(a) OpenSfM upload form and its menu button (b) Layer picker and its menu button

Figure 6.3: The upload and layer picker menus that are accessible via the menu items
depicted beneath each form.

Furthermore, the overview mode allows to add new datasets to the system by using the
SfM upload form that can be accessed by clicking the upload button (cf. Figure 6.3a).
The form is partitioned into five input areas. The first part at the top lets the user insert
the name of the dataset. The second input field allows the definition of a fixed camera
calibration that is used by the SfM engine at the backend for the 3D reconstruction.
The third area consists of three input fields. Here the user can enter alternative values

61

6. Implementation

for controlling the point cloud preprocessing step at the backend that generates the
octree data structure needed by the Potree pointcloud renderer. The email address that
must be entered into the next field is used to inform the user about the final processing
result of his uploaded image data. Finally, the last input area is the most important.
Here the user defines the images that are uploaded to the system and that are used
for 3D reconstruction. Furthermore, the user has the possibility to upload a so-called
gcp-file (ground control points) that is a simple text file containing GPS coordinates
of at least 3 input images. This file is needed if the uploaded images do not contain
localization information in their EXIF tags. Otherwise the back-end cannot georeference
the generated point cloud and the final processing step fails (cf. Section 6.3).

The layer picker shown in Figure 6.3b allows to switch between different globe tiles and
terrain meshes offered by the BaseLayerPicker widget included in the CesiumJS API. By
default the Bing maps tiles are rendered on the WGS84 ellipsoid. However, as can be
seen in the figure, several other imageries and terrains like the OpenStreetMap tiles and
the STK World Terrain meshes can be chosen.

View mode

Figure 6.4: Screenshot of the OpenSfM webapplication in view mode.

The user enters the view mode by double-clicking an icon, placed on the globe, that
represents an SfM-dataset. The camera moves to the dataset and the renderer starts
drawing the corresponding point cloud and cameras. As can be seen in Figure 6.4, the
vertical menu on the right side of the application now contains four additional menu
items. The menu item depicted in Figure 6.5a allows zooming to the viewed dataset if the
user looses the dataset while navigating on the globe. A click on the button represented
by Figure 6.5b enters the edit mode that is described below. The download button
shown in Figure 6.5c lets the user download the viewed dataset as a compressed zip-file
containing the dataset images, the VisualSFM nvm-project file that describes the camera

62

6.2. The front-end: A virtual tourism client

parameters and the underlying sparse reconstruction, an alignment aln-file that stores
the transformation extracted by georeferencing and a user transformation specified with
the help of the edit mode. The fourth menu item depicted in Figure 6.5d exits the view
or edit mode and returns to the overview mode. Besides these four icons, both menus
already available in overview mode are still active. However, the SfM upload menu is
now used to extend the currently viewed dataset by uploading additional images.

(a)
Zoom to dataset
(view/edit mode)

(b)
Enter edit mode
(view mode)

(c)
Download
dataset

(view/edit mode)

(d)
Exit view/edit

mode
(view/edit mode)

(e)
Save user

transformations
(edit mode)

Figure 6.5: Different menu items available in view and edit mode.

An info box in the bottom-right corner of the screen contains additional information about
the dataset. The current version of OpenSfM stores just the dataset name. Therefore
the internal dataset ID is the only additional information to be displayed here.

Figure 6.6: Menu used to control the rendering of the point cloud and cameras.

Furthermore the menu shown in Figure 6.6 and placed below the GeoCoder in our
application can be used to control the point cloud and camera rendering. The menu
is realized using the lightweight user interface library called dat.gui. It shows how

63

6. Implementation

many octree nodes and points are currently rendered. The point budget of the point
cloud renderer that defines the maximum number of renderable points, can be adjusted
using this menu. A checkbox allows to show or hide the cameras of the SfM-dataset.
Furthermore the appearance of the rendered point cloud can be controlled. Here the point
size, the used point size calculation algorithm, the material and the rendering quality
can be adjusted. The different parameters are covered in more detail in Section 6.2.3.
Another menu entry is used to adapt the step size used in the edit mode, when translating
the point cloud. The last two entries are used to control debug flags that let the user
show or hide the axes of the point cloud’s local coordinate ENU coordinate system and
the nodes of the point cloud’s octree data structure.

Edit mode

Figure 6.7: Screenshot of the OpenSfM webapplication in edit mode.

The edit mode is activated by clicking the “Enter edit mode” button placed in the
vertical menu on the right side of the screen. It allows the selection and transformation
of point clouds. Within the edit mode, the button used to enter the edit mode is replaced
by a save button shown in Figure 6.5e. The save button is needed to store the user-
defined transformations in the database. When the dataset is visited again, the stored
transformations is applied to the point cloud.

As can be seen in Figure 6.7, a selected point cloud is marked by rendering the outline of
its bounding box in red colour. The point selection algorithm implemented in the Potree
library is used to select the point clouds. This algorithm simply renders 3 byte point
indices (RGB component) and 1 byte octree node indices (alpha component) into an
offscreen render target that fits the application’s window size. When the user clicks on
the screen, the buffer entries in a fixed-size area around the mouse position are checked.
If there are indices rendered in this area the point with the index that is rendered nearest

64

6.2. The front-end: A virtual tourism client

to the mouse position is selected. At last, the point cloud that contains this point is
selected.

Having selected a point cloud, different keyboard short-cuts exist to transform it. Ta-
ble 6.1 lists all available operations together with their short-cuts. The precision of the
transformations can be adjusted in the rendering menu by setting an appropriate step
size in the “Edit” submenu.

Transform Short-cut Transform Short-cut
Translate north Up Rotate CW east-axis Alt + Right
Translate south Down Rotate CCW east-axis Alt + Left
Translate east Right Rotate CW north-axis Alt + Up
Translate west Left Rotate CCW north-axis Alt + Down
Translate up Plus Rotate CW up-axis Alt + Plus
Translate down Minus Rotate CCW up-axis Alt + Minus
Increase uniform scale Shift + Plus
Decrease uniform scale Shift + Minus

Table 6.1: Keyboard short-cuts in edit mode.

Photo mode

(a) Low-quality image (b) High-quality image

Figure 6.8: Screenshot of the OpenSfM webapplication in photo mode.

The photo mode is entered by double-clicking an image in the view mode. The viewing
camera moves to the image of the selected camera such that it fits the screen space and
the globe navigation is deactivated (for more details see Section 6.2.5). Furthermore,

65

6. Implementation

in contrast to the view mode, which simply renders small thumbnail images, the photo
mode loads a high-quality version of the image. Figure 6.8 depicts a screenshot of the
photo mode. The left picture shows the low-quality image that is replaced in photo mode
by its corresponding high-quality image as can be seen in the right picture. The reason
for not loading the high-quality images already in view mode is that in view mode several
hundred cameras could be rendered with their images placed as a texture on their view
planes. Assigning each view plane a high-quality texture would unnecessarily fill up or
even exceeded the graphics memory, because in overview mode the user usually focuses
on the rendered point cloud instead of the camera images. Therefore we decided to load
the high-quality texture just on demand, when the user enters the photo mode for a
specific camera. The texture is replaced again with its low-quality thumbnail version
when the user leaves the photo mode and returns to the view mode by double-clicking
the screen.

6.2.3 Rendering

Since our front-end is a WebGL-based application, 3D rendering algorithms played an
important role during the development process. In our application we distinguish between
two renderers that create the output presented to the user. The renderer implemented in
the CesiumJS library is the main renderer of our application. It is responsible for the
background rendering including the globe with its tiles and meshes. The second renderer
used in our system is an implementation based on the ThreeJS framework, which is a
high-level JavaScript interface to the low-level WebGL API [69]. It is used to render the
actual SfM-dataset including the point cloud data structure with the help of the Potree
library.

Rendering virtual globes is not as straightforward as it may seem. The CesiumJS
library approximates the shape of the virtual globe by using the tessellation pipeline for
generating subdivision surfaces. However, when we deal with virtual globes, we deal with
large world coordinates too. As already mentioned in Chapter 5, the ECEF coordinate
system defined on the WGS84 ellipsoid covers the whole world, containing places with
large coordinates, like the ones on the equator with an x-coordinate of 6378137.0 in metres,
and even larger distances between two locations. To handle WGS84 coordinates and
distances in the ECEF coordinate system, double-precision values are needed. However,
WebGL is based on the OpenGL ES 2.0 specification for mobile 3D rendering and does
not support double-precision floating-point values in the shader code [40]. Therefore,
precision artifacts like z-fighting and jittering can occur when dealing with such large
coordinate values. The rendering algorithm realized in the CesiumJS library overcomes
these precision problems by partitioning the rendered scene into multiple view frustums
and rendering it relative to the eye. The scene partitioning approach increases the
depth precision and allows rendering large view distances without any z-fighting artifacts.
Rendering the scene relative to the eye or camera and splitting up the double-precision
vertex positions into two single-precision floating-point numbers by separating the high
and low bits removes the jittering artifacts. For more detailed information about efficient

66

6.2. The front-end: A virtual tourism client

Figure 6.9: Debug view showing the multiple view frustums into which the globe is
partitioned on rendering. This is needed to remove z-fighting artifacts that may appear
due to large vertex positions that suffer from floating-point round-off errors when using
32-bit vertex attributes in WebGL.

virtual globe rendering see the book by Cozzi and Ring, that describes the theoretical
background behind the CesiumJS library and the SIGGRAPH ’13 “Rendering massive
virtual worlds” course notes [21][89].

One of our contributions when it comes to rendering the OpenSfM front-end was the
integration of the ThreeJS-based OpenSfM renderer into the CesiumJS rendering pipeline.
We choose ThreeJS for rendering the SfM-datasets because the Potree library is also
built upon this library, which made the integration of the Potree’s point cloud loader
and renderer easier. The illustration depicted in Figure 6.10 shows how we integrated
our OpenSfM renderer into CesiumJS’ rendering pipeline. The left part of this figure
contains the main packages of the CesiumJS library. The core package drawn at the
bottom offers several mathematical algorithms like coordinate system transformations
described in Chapter 5. The non-public renderer above is the interface to the underlying
low-level WebGL API and actually draws the frames. The most important element
for our work is the scene package that dispatches different high-level commands to the
renderer. The datasource layer encapsulates different CesiumJS scene types and offers
loaders for different assets like map tiles or 3D models. The widget package consists
of several useful modules like the CesiumWidget that renders the globe or the above
mentioned BaseLayerPicker. When integrating our renderer into the rendering pipeline
of the CesiumJS library we modified the render method in the scene package. This
render method gets a scene object that contains a list of frustums for multi-frustum
rendering and a list of commands that encapsulate the final draw calls as parameters.
We added an additional parameter that represents a ThreeJS renderer object. This
customRenderer implements a render method that takes a near and far value for multi-

67

6. Implementation

Post-Processing

OpenSfM

Translucent

Opaque
Ground Clamped

Globe
Sun

Atmosphere
Sky Box

Cube Maps
Shadow Maps

Compute
Potential Visible Set

Update

Core

Renderer

Scene

Data sources

Widgets

render
rendered
once

rendered
once
per frustum

Figure 6.10: (left) The main elements of the CesiumJS framework. To integrate our
OpenSfM renderer into the CesiumJS rendering pipeline we have to modify the render-
method of the Scene package. (right) The pipeline that is traversed during rendering.
We render our scene objects after the CesiumJS render command that draws opaque
objects and before the one that draws translucent objects. For more details see the text.
This figure is inspired by illustrations seen in [19][20].

frustum rendering. These values are needed by our OpenSfM renderer to draw the scene
in the same partitioned way as the CesiumJS renderer in order to achieve correct depth
testing across objects drawn by different renderers. Furthermore, our renderer draws the
SfM scene after the opaque objects and before the translucent objects of the CesiumJS
scene to prevent errors when rendering transparent CesiumJS scene objects. Another
thing that has to be considered when harmonizing both renderers is to reset the WebGL
state after having drawn the SfM scene in order to avoid conflicts with the following
draw calls done by the CesiumJS renderer.

Coordinate systems and precision problems

The OpenSfM renderer itself uses the Potree library to render the octree-based point
cloud data structure. Besides the point cloud it also renders the cameras together with
their photographs that build the basis of the whole SfM-dataset.

When rendering georeferenced scene objects in a large coordinate system like ECEF,
precision problems can occur, as already mentioned above. However, our system is not
affected by such precision issues, because the scenes that are rendered by our OpenSfM
renderer do not cover large distances in the ECEF coordinate system. Furthermore, the
points are originally stored in the database in a local coordinate system used by the

68

6.2. The front-end: A virtual tourism client

X

Y

Z

local VisualSFM
coordinate system

Y

Z

X

global ECEF
coordinate system

Figure 6.11: (left) The point datasets are originally stored in the database in a local
coordinate system defined by VisualSFM. (right) To correctly place the dataset onto
the surface of the globe, the local coordinates have to be converted into global ECEF
coordinates.

VisualSFM software, that is used for reconstructing the scene and generate the point
clouds. This right-handed coordinate system is often used in computer vision applications
and has its y-axis pointing downwards and z-axis pointing in viewing direction into the
scene, as can be seen in the left part of Figure 6.11. These point coordinates are directly
used as single-precision vertex positions pvsfm in the vertex shader.

The double-precision georeferencing transformation matrix Mgeo is used as a part of the
scene object’s model matrices to finally place the whole scene into the global geographic
ECEF coordinate system, as can be seen in the right part of Figure 6.11. This georefer-
encing places the dataset at its correct location on the virtual globe. Furthermore, the
synchronization of the coordinate systems used by the independent renderers allows an
easy synchronization of their viewing cameras as can be seen in Section 6.2.4. However,
since this transformation is part of the scene object’s model matrices, these must be
defined in double-precision. The same applies to the camera’s view matrix Mview, which
also contains large values, since the camera is placed in the global ECEF coordinate sys-
tem. As already mentioned above, WebGL does not support double precision values and
uniforms in the vertex shader. Therefore, it is not possible to use the model matrix and
the view matrix directly in the shader. However, combining both matrices to a so called
model-view matrix Mmv and uploading this matrix as a uniform to the GPU solves our
precision problem, because the large values in the two matrices are eliminated on matrix
multiplication. This means, that if the camera is close enough to the rendered scene,
the model-view matrixMmv will always contain values representable by single-precision
floating-point numbers.

The following equation denotes the position computation in the vertex shader. The
matrix Mproj is the camera’s projection matrix, which is defined in single-precision.
The projection matrix is adapted before each render-call to the near and far values
defined by the CesiumJS renderer for multi-frustum rendering. It can be seen, that this

69

6. Implementation

computation only contains single-precision matrices and vectors, which finally prevents
precision artifacts.

gl_Position = Mproj ∗Mmv ∗ vec4(pvsfm, 1.0); (6.1)

The scenegraph

geoReference

cameraTransform

SfM camera

userTransform

terrainGroundTransform

ecefTransform

cameraUnscale

image plane

point cloud

one per
pointcloud

one per
SfM camera

Figure 6.12: The scenegraph that is rendered by the OpenSfM renderer.

Figure 6.12 shows the scenegraph that is traversed by our renderer during the drawing
process. It consists of three object nodes, depicted as ellipses with gray background, that
store the actual scene objects and six transformation nodes that ensure that the scene
objects are rendered at their correct positions in the coordinate system.

The point cloud node contains the point cloud object defined in the Potree library. This
object represents the octree-based data structure that is converted into primitives on
rendering. A loader algorithm that dynamically requests and reloads points from the
server application on demand depending on the view and point cloud position adds to or
removes points from this point cloud object.

70

6.2. The front-end: A virtual tourism client

For each SfM camera object in the scene, one cameraTransform, cameraUnscale, SfM
camera and image plane node exists. The cameraTransform node moves the SfM camera
to its correct position in the local VisualSFM coordinate system. Since this coordinate
system has its y-axis pointing downwards another 180◦ rotation about the x-axis has to
be done to fit the coordinate system used by WebGL in order to correctly rotate the
SfM camera frustum visualizations. The cameraUnscale transformation is necessary to
undo scaling operations contained in the userTransform or geoReference nodes placed
higher in the scenegraph. Otherwise, the SfM camera frustums visualized with simple
line geometry would be scaled according to the point cloud scale, which is not desired.
The SfM camera node contains the frustum visualization and the image plane node a
plane geometry textured with the photo behind the SfM camera.

The geoReference node converts the points and camera locations stored in local VisualSFM
coordinates in the database to local ENU coordinates (cf. Chapter 5). This transformation
is necessary to easily apply user transformations stored in the userTransform node, since
they are defined in this local geographic coordinate system. Furthermore, terrain tiles
that are loaded by the layer picker widget result in a translation of the whole dataset
along the up-axis of the coordinate system. This translation is represented by the
terrainGroundTransform node and ensures that the OpenSfM scene is still visible at the
surface of the globe. To obtain the correct translation value, the loaded terrain dataset
is sampled at the center of the OpenSfM scene’s bounding box. The ecefTransform node
transforms the whole scene from ENU to ECEF coordinates, to finally get an OpenSfM
scene that is represented in the same coordinate system as the CesiumJS scene into which
it is placed. Since an OpenSfM scene can contain more than one point cloud, namely
one point cloud per reconstructed scene, all nodes from the point cloud node upwards
appear once per point cloud in the OpenSfM scene.

6.2.4 Camera synchronization

As already mentioned in Section 6.2.3, we use two renderers to draw the front-end output.
The CesiumJS renderer draws the globe in the background and our OpenSfM renderer,
which we integrate into the CesiumJS rendering pipeline, draws the point cloud with the
help of the Potree library and the cameras. However, each of these two renderer instances
uses its own camera. These two cameras have to be synchronized in order to create a
correct rendering output. This synchronization is done before rendering each frame by
equalizing the camera matrices. Here it has to be considered that the CesiumJS camera
matrix is defined column-wise, while the ThreeJS camera is defined row-wise. Listing 6.1
shows the code snippet that synchronizes the ThreeJS camera with the CesiumJS camera.

1 var civm = cesium . viewer . camera . inverseViewMatr ix ;
2
3 camera . matrixWorld . s e t (
4 civm [0] , civm [4] , civm [8] , civm [1 2] ,
5 civm [1] , civm [5] , civm [9] , civm [1 3] ,
6 civm [2] , civm [6] , civm [1 0] , civm [1 4] ,
7 civm [3] , civm [7] , civm [1 1] , civm [1 5]) ;

71

6. Implementation

8 camera . matrixWorldInverse = new THREE. Matrix4 () ;
9 camera . matrixWorldInverse . g e t I n v e r s e (camera . matrixWorld) ;

10
11 var c = camera . c l one () ;
12 c . near = near ;
13 c . f a r = f a r ;
14 c . updateProject ionMatr ix () ;

Listing 6.1: Synchronization of the CesiumJS camera with the ThreeJS camera.

It is known that the inverse view matrix represents a cameras transformation matrix,
that places the camera in a specific orientation in world space. Therefore in line 3 of
Listing 6.1 the ThreeJS camera’s world matrix is set to the inverse view matrix of the
CesiumJS camera. Since we deactivated an automatic update of the ThreeJS cameras
matrices, in line 9 we have to set the inverse world matrix manually. The remaining lines
of the code snippet handle the fact that CesiumJS does multipe view frustum rendering,
as already mentioned in Section 6.2.3. Therefore we have to adjust the ThreeJS camera’s
projection matrix such that its near and far plane equal the near and far plane of the
currently rendered CesiumJS view frustum. To avoid reference problems, we clone the
camera for this step.

6.2.5 Photo exploration

A user can enter our front-end’s photo mode by double-clicking a photograph in view
mode. This double-click triggers an animation that moves the main camera in front
of the photo, such that the photo fills the screen. This animation is achieved by a
linear transformation between a start position and orientation defined by the main
camera’s current state and an end position and orientation. The end orientation is
extracted from the SfM camera’s view matrix that belongs to the selected photo. The
end position in world space is the position in perpendicular distance d in front of the
image plane. Figure 6.13 illustrates the mathematical background behind the calculation
of this distance d by using the formula denoted in Equation 6.2.

d = s

2 tan α
2

(6.2)

In cases where the camera’s aspect ratio is less than the SfM camera’s aspect ratio, α
denotes the vertical field of view angle in radians and s the image plane width in world
space. This finally leads to a camera placement that fits the image plane to the screen
height. If the camera’s aspect ratio is greater than or equal to the SfM camera’s aspect
ratio, α represents the horizontal field of view of the viewing camera in radians and s the
image plane height in world space. In this szenario the viewing camera is placed in world
space, such that the image plane fits the screen width. If both aspect ratios are equal,
the image plane is evenly displayed in full screen.

72

6.3. The back-end: SfM, point cloud preparation and database interface

α
2

s
2

d

Figure 6.13: Illustration of the math behind our photo mode. The viewing camera is
moved towards the selected photo, such that its frustum covers the whole image. This is
achieved by placing the camera in a perpendicular distance d in front of the image plane.
d is calculated using the trigonometric relationship denoted in Equation 6.2 between the
half field-of-view angle in radians α

2 and the half world space height of the image plane s
2 .

6.3 The back-end: SfM, point cloud preparation and
database interface

The back-end is a Java-based application hosted with the help of an Apache Tomcat
web server. It is implemented using the Spring Web MVC framework, which provides a
model-view-controller architecture that allows to build a clearly structured and loosely
coupled application [103]. Its central element is the so-called DispatcherServlet that
handles all HTTP requests by calling appropriate controller methods that process the
received input data and update the underlying model. These methods return HTTP
responses that are used by the client application to update its view rendered by the
browser.

6.3.1 Code structure

The back-end code is organized in several modules to realize a multi-layered software
architecture. Each layer implements a different logical part of the back-end. The following
listing shortly describes the individual modules:

73

6. Implementation

OpenSfM-Web
This module contains the implementation of the above mentioned controller. The
methods of our SfmDataController class are invoked by the DispatcherServlet
according to the request URL sent by the client. The controller functions call the
underlying service-layer methods that implement the business logic. Furthermore,
this module contains the presentation layer consisting of the front-end code in the
webapp folder. This is required to easily build the final web application using the
Maven build tool [31] for the back-end build and the Gulp build system for the
front-end build [42].

OpenSfM-Service
Here the service-layer of our multi-layered architecture is realized. This layer encodes
the business rules that define how data can be added, edited or deleted. Here the
different algorithms are implemented that generate the octree-based Potree data
structure. Furthermore, different file importer and exporter for VisualSFM project
files (nvm-files) and point cloud files (ply-files) are realized. The implementation of
the interface to the VisualSFM engine is also part of this module. The methods of
this layer usually invoke persistence-layer methods if processed data changes must
be stored in the database.

OpenSfM-Persistence
The persistence layer acts as an interface to the underlying database. It consists of
so-called data-access-objects (DAOs) that offer methods to read information from
the database or write data into the database.

OpenSfM-Job
The job module contains a second independent web application that polls a database
table to detect and execute tasks. These tasks are enqueued by the main application
that has its presentation layer in the OpenSfM-Web module.

OpenSfM-Log
This module is a helper module that implements a logging functionality for the two
above mentioned web applications. It adds an additional page to the applications
that offers access to the last 500 log entries. This module is realized with the help
of the logback logging library.

6.3.2 Processing Potree renderer requests

The renderer requests created by the Potree point cloud renderer and all other HTTP
requests are handled at the server-side by the OpenSfM back-end by evaluating the
request URL using so-called URI templates. Listing 6.2 contains the method declaration
of the controller function that handles the renderer requests on the server-side. The value
parameter of the @RequestMapping-annotation describes the request URL as an URI
template that contains the two variables sfmid and pclid. These variables are evaluated
in the method header by using the @PathVariable-annotations. The wildcard at the end

74

6.3. The back-end: SfM, point cloud preparation and database interface

of the URL is evaluated by the DispatcherServlet and leads to a call of this function for
every request targeting a URL pattern that starts with /cloud/sfmid/pclid.

1 @RequestMapping (va lue=" / cloud /{ sfmid }/{ p c l i d }/∗∗ " , method=RequestMethod .GET)
2 pub l i c @ResponseBody ResponseEntity<byte [] > loadHierarchyAndNodes (

@PathVariable S t r ing sfmid , @PathVariable S t r ing pc l id ,
HttpServ letRequest r eque s t) ;

Listing 6.2: Controller method declaration of the function that handles the Potree
renderer requests.

The sfmid and pclid are used to find the requested point cloud. The remaining last part
contains a hierarchy path that uniquely identifies a required octree node. If this last part
ends with the extension .bin, the point data of a node is requested, otherwise, if it ends
with .hrc the underlying octree hierarchy information must be returned to the Potree
renderer at the client-side.

Having identified the hierarchy path’s extension, an appropriate service-layer method is
called that requests the required information from the database via a data-access-object
of the persistence-layer. The data delivered from the database is preprocessed such that
the response sent to the client can be interpreted correctly by the Potree renderer. For
more details about the database behind the OpenSfM backend see Section 6.4.

A readable hierarchy byte stream contains a list of 5-byte packets. The first byte contains
a mask describing a node’s children and the remainig four bytes represent the number
of points stored in the node. This information is selected from the database using a
recursive hierarchical query that traverses the octree node hierarchy. The bytes in the
returned byte array must be in little endian order which means that they are ordered
from least significant to most significant. This means for a 1-byte children mask of the
form 00000011 that a node r has two descending children r0 and r1.

A valid point data byte stream describes each point of the requested octree node by using
3× 4 byte unsigned integer position data and 4× 1 byte unsigned char colour data. The
points are already stored in this packed format in the database (cf. Section 6.4. However,
the used database extension adds an additional 10-byte header to each point, describing
the endianness and a reference to a point format definition, that must be truncated when
retrieving the data. Like the hierarchy data explained above, the returned binary point
data must be in little endian order.

6.3.3 Task processing

The back-end realizes two different task processing approaches. The first one is an
asynchronous approach where the main web application inserts task descriptions into a
database table. A task description consist of task parameters, a function to be called on
task execution and a callback mail address. The database table is polled by a second
application that detects new tasks and executes them using the information stored in
the table. A notification is finally sent to the deposited mail address. This approach is

75

6. Implementation

used for the time-consuming SfM tasks that reconstruct the point clouds and generate
the octree-based representation that is stored in the database. The second approach is
synchronous, which means that a requested task is immediately executed by the main
application and the result is returned to the client. This task processing method is used
for simple requests like the above-described renderer requests, texture loading requests
for the SfM camera’s image planes and also requested download tasks that allow the user
to export a dataset from the system and store it on his own file system for further usage.

The next two subsections explain the asynchronous SfM tasks and the synchronous
download task in more detail.

SfM tasks

If a user uploads new images to the system, these images are either used to generate
a new SfM-dataset or to extend an existing SfM-dataset. Which of the two SfM tasks
gets triggered is controlled by the currently active system mode in the front-end, as
already mentioned in Section 6.2.2. If the overview mode is active, a new SfM-dataset is
created using the uploaded image information. Otherwise the currently active/rendered
SfM-dataset will be extended to improve its 3D reconstruction.

In both cases a new task entry is created in the task table of the OpenSfM database. This
entry stores different task-related properties like the parameters for the 3D reconstruction
and octree-generation in a JSON-String attribute, the mail address entered in the front-
end and the method that is invoked at the task execution. The method name marks
a task as a “generation” task that creates new SfM-datasets or a “resume” task that
extends existing datasets. The generated task-id, which is a database sequence value, is
finally used to retrieve a folder on the server’s file system that contains the uploaded
images until the processing task deletes the folder when it is finished. The status attribute
represents the current state of task processing:

• UPLOADING - data upload is in progress

• PENDING - task waits for execution

• EXECUTING - task is getting executed

• COMPLETED - task execution finished successfully

• ERROR - an error occurred during task execution

Additional attributes like tasktimestamp, status and error are used for logging purposes.

A second web application implements a so-called CronJob that polls a task table according
to a configured cron expression stored in the application’s property file on the server.
We configured our job application such that the table gets polled every minute to
detect unprocessed tasks waiting for execution. If an unprocessed task is found, the

76

6.3. The back-end: SfM, point cloud preparation and database interface

job application tries to start a new worker thread that finally executes it. However,
the application can spawn only up to five worker threads for task processing due to
performance reasons and hardware limitations, because the subsequently called SfM
engine requires a lot of system memory especially when it has to process a lot of input
images. If all threads are running, pending tasks must wait for processing until a worker
thread finishes its task.

The VisualSFM engine that reconstructs the 3D scene offers a socket interface that can
be used to control the communication between our application and the SfM engine (cf.
Section 6.3.4 for more details). To run several engines in parallel, each of them has to
listen on a different socket port. We achieve this by maintaining a thread-safe port-list
that contains all currently used ports. If a new worker thread gets started, the next free
port below the starting port 9999 is assigned to it. The VisualSFM engine is then started
by the thread in server mode listening to commands on the assigned socket port. After
having started the engine, our worker thread sends commands according to the assigned
SfM task to it. The engine processes the received commands to generate a georeferenced
dense scene reconstruction out of the input images stored in the corresponding task folder
on the server and, in case of a “resume” task, existing information from the OpenSfM
database. The worker thread uses the SfM engine’s output stored in the same task
folder to create an octree-based point cloud representation that is finally persisted in the
underlying OpenSfM database.

Download task

Besides the asynchronous SfM tasks that are executed by a separate web application,
there exist synchronous tasks that are executed directly by the main web application.
The download task is one of those synchronous tasks.

Its only input parameter is the sfmid of the currently viewed dataset. The download
task uses this id to fetch the information about the dataset from the database. It
saves the VisualSFM project file that stores the SfM camera parameters and a sparse
reconstruction, the input images and alignment-files containing the transformation used
for georeferencing and the user-defined transformation to a temporary folder on the
server. The content of this folder gets subsequently compressed into a zip-file that is
finally sent to the client. The user can save the generated file on his local file system and
use the downloaded content for further offline processing.

6.3.4 VisualSFM integration

The above described SfM tasks use a state-of-the-art SfM-engine called VisualSFM to
generate dense 3D scene reconstructions that are georeferenced using the GPS information
stored in the input images. The output of the SfM-engine is stored in the task folder
on the server for further reprocessing by our web application. The 3D reconstruction
process is divided into several subtaks, as already mentioned in Chapter 3. First of
all, the uploaded input images must be loaded by the SfM engine. After that, features

77

6. Implementation

and correspondences between features are detected. These are subsequently used to
compute a sparse reconstruction and to recover the SfM camera’s extrinsic and intrinsic
parameters. At last a dense reconstruction is generated, which approximates the real-
world scene depicted by the input images. Since our application requires a reconstruction
in geographic ECEF coordinates, an additional georeferencing step converts the local
point coordinates into global ECEF coordinates.

To execute the aforementioned subtasks, VisualSFM offers two interfaces that can be
accessed in a programmable way. We implemented two steering algorithms, each of them
using a different engine interface.

Commandline interface

One way to control the VisualSFM engine programmatically is by using its command line
interface. The following listing shows the “generate”, the “resume” and the “georeference”
commands that are executed via the command line.

1 #generate new reconstruction
2 VisualSFM sfm+merge+pmvs+k=1024 ,800 ,1024 ,600 . / . / output .nvm
3
4 #resume existing reconstruction
5 VisualSFM sfm+merge+resume+fixcam+pmvs . / input .nvm . / output .nvm
6
7 #georeference reconstruction
8 VisualSFM sfm+loadnvm+gcp . / input .nvm . / output .nvm

Listing 6.3: Commands to execute the VisualSFM engine via the command line.

The first command in the listing generates a new reconstruction. The “merge” keyword
forces the SfM-engine to try to merge several smaller sparse reconstructions into a single
bigger reconstruction in order to minimize the number of output point clouds. This is
done before the dense reconstruction step that is triggered by the “pmvs” parameter.
The last “k” attribute submits a fixed camera calibration to the engine. This speeds
up the reconstruction process, because the engine doesn’t need to recover the camera
intrinsics because they are already given as input parameters (cf. Chapter 3 for more
details).

The second command resumes an existing reconstruction. Before starting the reconstruc-
tion process, the original VisualSFM project file together with the images used in the
previous reconstruction process must be exported from the OpenSfM database and saved
into the task folder on the server’s file system that contains the newly uploaded images.
Additionally, a text file named ./input.nvm.txt must be saved in the same directory
containing a list of all input images for the “resume” task. The “resume” keyword
forces the SfM-engine to only calculate missing information during the reconstruction
process. This means for example, that already calculated feature correspondences are
reused and not recalculated. The “fixcam” attribute makes sure that cameras reused
from the existing reconstruction stay at the same location as before. This allows us to

78

6.3. The back-end: SfM, point cloud preparation and database interface

leave existing camera entries in the database untouched and only insert newly added
cameras into the database. However, it is not guaranteed that the newly generated dense
reconstruction contains the already stored points of the previous dense reconstruction.
Therefore we have to drop the point clouds stored for the involved SfM-dataset and
recompute the whole octree-based point cloud representation for the extended dense
reconstruction.

The third command in Listing 6.3 georeferences the generated reconstruction. This
process converts the local point coordinates into global coordinates in the geographic
cartesian ECEF coordinate system. Unfortunately, via the command line interface it
is not possible to use the GPS information stored in the EXIF data of the uploaded
input images. Therefore, an alternative approach is to upload a ground-control-point-file
(gcp-file) that contains at least three SfM-camera locations in geodetic coordinates. This
file must be named ./input.gcp. Since this approach is not very user-friendly, we finally
decided to control VisualSFM using its socket interface described in the following section.

Socket interface

An alternative way to communicate with the VisualSFM engine is via its socket interface.
As it turned out, this way is the favourable one, because it allows to use the GPS
information stored in the input images for georeferencing, which is not possible when
using the command line interface.

To use the socket interface to access the VisualSFM application, a VisualSFM instance
must listen on a specific port to detect commands sent by our web application. In
Section 6.3.3 we already described how a unique port is determined for each VisualSFM
task process. The following listing shows the command that is used to start the engine
in server mode such that it can handle received commands via the specified socket port.

1 #start VisualSFM in server mode
2 VisualSFM l i s t e n+log <port>

Listing 6.4: Command to start the VisualSFM engine in server mode.

However, during implementation we ran into troubles when we tried to start VisualSFM in
server mode on a Linux-based operating system. The problem was that VisualSFM opens
a GUI, even when it is started in server mode. To display a GUI in a Linux environment,
access to the local X-server is needed. This access must be allowed manually on the
OpenSfM server by executing the command xhost localhost with a logged-in user. As
long as this user stays logged in, access to the local X-server is granted. Additionally, the
default display must be exported using export DISPLAY=:0, because the user executing
our web application is not logged in on the server’s local terminal.

Our server application communicates with the VisualSFM application in server mode by
sending command-IDs via the socket interface. These command-IDs uniquely identify
menu-items of the VisualSFM menu. This means, that a command sent to the VisualSFM

79

6. Implementation

server emulates a click on a menu-item in the VisualSFM GUI. This concept allows us
to access every feature of the VisualSFM application without having any limitations.
Therefore, we ultimately decided to use this interface for SfM engine control in our final
OpenSfM version. Figure 6.14 shows an example that illustrates the socket requests and
responses needed for densely reconstructing a scene out of a number of input images.

for all images - load image: 33166 <image path>
process finished

pairwise matching: 33033
process finished

dense reconstruction: 33471s
process finished

sparse reconstruction: 33041
process finished

Figure 6.14: Illustration of the socket communication between the OpenSfM server
application and the VisualSFM engine used to generate a dense scene reconstruction out
of input images. The italic letters denote the values that are sent via socket requests and
responses between the two applications. The IDs in these values identify commands that
are executed by VisualSFM.

6.3.5 Adapted PotreeConverter

The original PotreeConverter application that comes with the Potree renderer library
generates several files in an output folder, each of them representing an octree node and
storing its points. Our OpenSfM web application is designed around a database in the
persistence layer. Therefore we decided to adapt the original PotreeConverter such that
it stores the points of the octree nodes and their hierarchical relationship in database
tables (cf. Section 6.4).

We implemented our own converter that creates an octree hierarchy for each dense
reconstruction generated by the VisualSFM application based on the implementation
of the original PotreeConverter [87]. First of all, the axis-aligned bounding box of the
point cloud is calculated. This bounding box is used to compute a spacing value that
represents the minimum distance between two points in the octree’s root level using
Equation 6.3. If the user-defined diagonal fraction value is set to 0, the spacing value set
in the front-end’s upload mask is used. If this value is also 0, the value 250 is assumed as

80

6.4. The OpenSfM database

default diagonal fraction value and the spacing is computed using Equation 6.3.

spacing = bboxDiagonal

diagFraction
(6.3)

After that, each point is added one after another to the octree. Generally, when adding
points to a non-leaf node, the above computed spacing that is halved with each octree
level must be considered. This means that a point is only added to a non-leaf node if the
distance to any other point in the node is larger than the spacing value of the node’s
octree level. If this is not the case, the point is forwarded to the next octree level. Points
added to a leaf node are firstly stored in a point bucket until a bucket limit of 20000 is
exceeded. If this happens, the leaf node is converted to a non-leaf node by adding eight
child nodes to it and the points contained in its bucket are added to the (now non-leaf)
node considering the aforementioned distance test.

Similar to the original PotreeConverter algorithm, we use sparse Cartesian 3D grids to
optimize distance tests. Each node contains such a grid with equally sized cells having
a side length equal to the spacing at the node’s octree level. A point that is going to
be inserted is assigned a 3D grid cell according to its position in space. It is just tested
against points in the same grid cell and points contained in the neighbouring cells. This is
necessary to reduce the number of distance tests and therefore to speed up the conversion
process.

After every millionth processed point, the points are saved to a temporary database table
that is dynamically generated for the conversion process. Additionally, the current octree
node hierarchy is stored in the octreenodehierarchy table of the database. At the end of
the conversion process, the temporary table is used to group the points together by their
unique octree node index in order to generate a patch per octree node. These patches
contain the eventual points and are stored in the octreenode table of the database. For
more details see the next section.

6.4 The OpenSfM database
The database behind the OpenSfM web application is realized using PostgreSQL [41].
We decided to use this database due to its opensource status and its ability to efficiently
store points with the help of the pgPointcloud extension [74].

Storing large point datasets in a database is a challenge in different respects. First of all,
each point is usually described by several variables, which need to be accessed in an easy
way. OpenSfM uses eight parameters to describe a point. Besides the three-dimensional
position and and the four-dimensional RGBA colour parameters, an additional parameter
contains the index of the octree-node the point belongs to. Furthermore, a point dataset
consists of billions of points. Storing each of these points in a single database table entry
would not be very efficient. Retrieving records from tables with a large number of entries
is usually not very fast, due to the structure of database storage. Therefore, we group

81

6. Implementation

tasks

sfmdata pointcloud

camera

pointcloud_formats

consists of

consists ofconsists of

contains

defines

octreenodehierarchy

octreenode

id

params

tasktimestamp status
error

method

mailaddress

id

sfmid

pclid

thumbnail

distortion

name

focallength

image

aspectratio

rotation

translation
capturedate

id

name

sfmfile boundingbox

minimagedate maximagedate
1

n

1 n

1

n

1

1

n

1

id

sfmid

boundingbox

tightboundingbox

version

octreedir

spacing
scale

hierarchystepsize

pointattributes

georeftransform

usertransform

id

sfmid

pclid

parentid

hierarchypath

id

sfmid

pclid

patch

schema

Figure 6.15: Entity-relationship diagram illustrating the OpenSfM database table layout.

the points together into patches and store them as individual entries in the database
tables. This grouping step reduces the number of table entries significantly. Since we
do not retrieve single points from the database, but whole octree nodes, this is not a
limitation. We use a point patch to represent a single octree node containing all the
points that belong to this node.

6.4.1 The database table layout

The entity–relationship diagram (ER-diagram) depicted in Figure 6.15 illustrates the
table layout and relationships between the tables in the OpenSfM database scheme.
The sfmdata entity represents a SfM-dataset that consists of 1..n SfM camera entities
and 1..n pointcloud entities. Since each pointcloud entity is stored in the octree-based
Potree format, each entity has a relationship to its corresponding octree nodes. A

82

6.4. The OpenSfM database

octreenodehierarchy table stores the octree hierarchy by using a “parentid” column
that refers to a node’s parent node. To fulfill the Potree renderer’s loading requests,
for each node entry a “hierarchypath” value is stored to identify the requested nodes.
Each octreenodehierarchy entry refers to a octreenode table entry that stores the points
of a node using a PcPatch typed column. The pgPointcloud extension introduces a
PcPatch type that groups points together in a single table entry. The SQL commands in
Listing 6.5 are used to generate the entries of the octreenode table. A temporary table
temp_points_tempTableId is used to store the points during the octree generation process.
This table is created and dropped during runtime using a PL/pgSQL database procedure.
To uniquely identify it, its name contains the database sequence value “tempTableId”.
At the end of this process, the points stored in the temporary table are grouped by their
“OctreeNodeIndex” attribute in order to create the desired patches per octree node.

1 WITH t o I n s e r t AS (
2 SELECT PC_patch(po int) AS patch , PC_Get(point , ’ OctreeNodeIndex ’) AS node
3 FROM (
4 SELECT PC_MakePoint (1 , ARRAY[x , y , z , r , g , b , a , node]) AS point FROM

TEMP_POINTS_tempTableId AS pcr
5) tab le_point
6 GROUP BY PC_Get(point , ’ OctreeNodeIndex ’)
7) ;
8
9 INSERT INTO octreenode (SELECT node , SFMID, PCLID, patch FROM t o I n s e r t) ;

Listing 6.5: SQL commands to group points by their corresponding octree node and
insert them into the octreenode table.

When generating a table with a PcPatch typed column, the column type must refer to an
entry in the pointcloud_formats table that describes the format of a point stored within
a patch using a XML schema document. We use a schema that defines a point by its
three-dimensional 4-byte unsigned integer position attribute, its four-dimensional 1-byte
unsigned char RGBA colour attribute and an additional 1-byte octree-node-index that is
used to group the points of the same octree node together into patches. Point clouds
usually consist of a large amount of data. To deal with such a large amount within a
database, the pgPointcloud extension uses compression algorithms to reduce the required
storage size.

An additional tasks entity, which is not related to the aforementioned entities, represents
a task queue containing jobs that are processed by the back-end. This table is polled by
the server to detect new tasks, as already mentioned in Section 6.3.

83

CHAPTER 7
Results

This chapter shows the results of our implementation by demonstrating the features of
the OpenSfM application by means of a workflow example. Additionally, we present some
benchmarking results and performance numbers that can be used to prove the usability
of our system.

7.1 System

Since the OpenSfM system is based on a client-server architecture, two workstations were
needed during the implementation and testing work.

The development workstation was a system composed of an AMD Phenom II X6 1055T
processor, 16 GiB RAM and an AMD Radeon R9 270 GPU with 2 GiB GDDR5 video
memory that runs a Windows 8.1 x64 operating system. This workstation was used to
access the client application during the implementation work and for the performance tests
documented below. Furthermore, it hosted the server application during the development
process.

The finally released web application is hosted together with the OpenSfM database on
a server machine located at the Institute of Computer Graphics at the TU Wien that
is running Ubuntu 14.04 x64 on an Intel Core I7-2600K processor, 16 GiB RAM and a
CUDA-capable NVIDIA GeForce GTX 580 GPU with 1.5 GiB GDDR5 video memory.
The following performance tests are also executed on the release system hosted by this
server hardware.

85

7. Results

7.2 Performance tests

7.2.1 SfM-datasets

We tested our OpenSfM system with two datasets, each of them generated out of uploaded
input images. To get comparable values, the upload time was not considered in the
measurements. The smaller “OldMill” dataset consists of 1,587,152 points generated
out of 97 of the 101 uploaded images. The georeferenced images were taken using the
camera of a Sony Xperia Z1 Compact smartphone. The larger “Favoritenstraße” dataset
with 6,468,933 points was reconstructed from 268 of 352 input photographs. The photos
of this dataset were taken using a Canon EOS 5D DSLR camera. For georeferencing,
an additional gcp-file was uploaded containing GPS coordinates of 4 input photographs.
Figure 7.1 depicts five image samples from each of the used photo sequences together
with the resulting point cloud renderings.

7.2.2 Dataset generation performance

Dataset #PCLs spacing depth #point #img SfM Octree Total

OldMill 2 0.072 5 1,382,619 97 28m 2m 30m0.016 4 204,533
Favoritenstraße 1 0.394 8 6,468,933 268 207m 28m 235m

Table 7.1: Performance values of the SfM-dataset generation process.

Table 7.1 shows the results of the performance analysis of our back-end SfM-dataset
generation process. These values are snapshots that are taken during one single recon-
struction iteration and not averaged results of multiple reconstruction runs. The SfM
reconstruction process took advantage of the CUDA capability of the server’s GPU and
uses it for feature detection and matching.

The “OldMill” dataset consists of two reconstructed point clouds containing in total
1,587,152 points. It took around 30 minutes to generate the 3D reconstruction on the
aforementioned server workstation and store it in the OpenSfM database hosted on the
same machine. Approximately 28 minutes were needed for the reconstruction process,
which uses 97 input images to generate the point cloud representations. Here especially the
computation of the dense scene reconstruction using the CMVS algorithm by Furukawa
and Ponce (cf. Section 3.1.3) needed a lot of computation time. The remaining processing
time was used for generating the octree-based point cloud representation that was stored
in the database.

The “Favoritenstraße” dataset was reconstructed out of 268 input images and contains a
point cloud with 6,468,933 points. The reconstruction and preprocessing process took
approximately 4 hours, where 3.5 hours were used for reconstruction and half an hour
for the preprocessing and database storage. It can be seen that the computation time
increases with the number of input images and the number of reconstructed points.

86

7.2. Performance tests

(a) “OldMill” dataset: 97 of 101 input images were used to generate two point clouds
containing in total 1,587,152 points.

(b) “Favoritenstraße” dataset: 268 of 352 input images were used to generate a point
cloud containing 6,468,933 points.

Figure 7.1: Collages of the two datasets used for our performance tests.

7.2.3 Rendering performance

In Table 7.2 the results of our rendering tests are listed. All tests were done using Firefox
45 on the client machine mentioned above. As the results of the generation performance

87

7. Results

Dataset #points #rendered points #rendered nodes fps fps (cams off)

OldMill 1,587,152 174,819 29 38 54
1,454,680 209 32 35

Favoritenstraße 6,468,933 350,182 44 24 48
2,516,114 355 17 20

Table 7.2: Performance values of the SfM rendering process.

tests, the rendering test results are snapshots that represent single measurement values.
We measured the frames per second (fps) for two different view points for each of the
two examined datasets using adaptive point size and interpolated RGB point colours.
The resolution of the rendered canvas was 1680x900.

For the “OldMill” dataset we’ve chosen the view points such that in one case approximately
175k points in 29 octree nodes and in the other case 1.5M points in 209 nodes were
rendered. We measured acceptable 38 respectively 32 frames per second. When hiding
the 97 rendered SfM camera markers together with their image planes, the frame rate
increased to 54 respectively 35 frames per second.

The “Favoritenstraße” dataset was rendered from a view point far away from the dataset
such that all SfM cameras of the large dataset and a sparse octree level were visible.
Rendering 350k points in 44 visible octree nodes and 268 camera markers together with
their image planes resulted in 24 frames per second. When switching off the camera
representations the frame rate doubled to 48 frames per second. When moving closer to
the dataset, more octree nodes and points got rendered and the frame rate decreased.
We observed a frame rate of 17 frames per second when rendering 2.5M points in 355
nodes. The frame rate increased just slightly to 20 frames per second when switching off
the camera illustrations, since from the observed point of view only a small number of
SfM cameras were visible and therefore rendered.

7.3 The OpenSfM workflow in practice

This section explains three common use cases for our OpenSfM system accessible via
opensfm.cg.tuwien.ac.at in more detail.

7.3.1 Explore OpenSfM datasets

The possibly most common use case for our system is simply browsing through SfM-
datasets placed on the interactive globe rendered in the browser window. Datasets
can either be searched for by manually navigating through the map using panning and
zooming or by using the geocoder in the top left corner to search for specific geographic
locations.

88

opensfm.cg.tuwien.ac.at

7.3. The OpenSfM workflow in practice

When the user clicks a red dataset marker in the overview mode, an infobox appears in
the bottom-right corner displaying information about the dataset behind the selected
marker. However, if more than one dataset is placed at the mouse-click location, a
reselection is needed to uniquely identify a dataset. A double-click lets the application
load the selected dataset from the database and switches the front-end into viewing
mode.

In viewing mode, the SfM-dataset can be explored in more detail. The rendered SfM
cameras can be hidden/shown with the help of the small “render” menu visible below
the geocoder in the left part of the screen. Double-clicking a rendered SfM camera image
plane, the application switches to photo mode and moves the viewing camera in front of
the selected plane, such that it is displayed in fullscreen. The thumbnail image is replaced
by its corresponding high-quality image. By switching the SfM camera on and off, the
user can compare the reconstructed point cloud with the rendered image plane. Another
double-click on the photograph returns to view mode, where the user can explore the
reconstructed 3D scene with the free-flight viewing camera. He can change the point
cloud appearance by choosing between three point-size algorithms. “Fixed” point size
renders the points in the size that can be adjusted with the “point size” menu item.
“Attenuated” point size rendering uses the value defined by “point size” menu item to
specify the point radii in scene coordinates. “Adaptive” point size avoids holes in the
scene by adjusting the point sizes according to the point’s octree level. Points in higher
levels are usually rendered larger than points in lower and denser levels. Additionally,
the user can switch between the default RGB material that represents the scene colour
derived from the photographs and the tree material that visualizes the rendered octree
levels by assigning a different colour to each level. Furthermore, the user can choose
from three different rendering qualities. “Square” renders each point as a small square
and “Circle” renders small circles. In “Interpolation” mode colours between neighbouring
points are interpolated such that especially high frequency point cloud areas where points
may overlap are rendered correctly.

The download possibility allows the user to use the VisualSFM project file, the input
images and the corresponding point cloud files for further processing tasks independently
of our OpenSfM system.

7.3.2 Add new datasets

If a user cannot find a specific 3D reconstruction in our system, but has enough pho-
tographs of the original scene, he can upload these photos in order to generate a new
reconstruction and add it to our SfM system. In such a way our database can steadily
grow and our system can offer free access to a wide variety of different 3D scene recon-
structions spread over the whole world. Figure 7.2 depicts the workflow for adding a new
SfM-dataset to the OpenSfM system.

To add new SfM-datasets to the system, the user has to complete the SfM upload
form accessible via the top-most menu item of the menu bar on the right border of the

89

7. Results

(a) First, the user selects the input images and fills out the upload form. When submitting
the form, the upload process starts. After uploading a popup appears that informs the
user that his task got enqueued in the servers job queue. The server application notifies
the user per mail about the successful task processing.

(b) The user can return to our application by following the hyperlink in the notification
mail. When loading the dataset there can exist georeferencing errors like the one seen in
this picture...

(c) ...however, these errors can be easily corrected using the editmode of the OpenSfM
front-end.

Figure 7.2: The typical workflow of adding a new dataset to our application.

90

7.4. Limitations

application. With the help of this form the user can adjust the reconstruction process by
defining fixed camera calibration parameters, letting the SfM engine at the background
only recover the camera’s extrinsics and the 3D reconstruction and by configuring the
octree generation process by supplying a maximum octree depth and user defined spacing
parameters. The committed mail address is used just for email notification at the end of
the reconstruction process. “Add files” opens the file browser that lets the user choose a
number of images to upload. Having correctly filled the whole form, a “Submit” button
starts the upload process indicated by a progressbar. After the upload has finished, a
message informs the user that he gets notified per mail as soon as the reconstruction
process has finished.

The mail notification can contain either a success message or an error message. Errors
can occur if not enough images are uploaded or if the images are not suitable images
for reconstruction. One reason for this is that they do not overlap enough. A success
message contains a link to the OpenSfM webpage that lets the user easily return to our
system and explore his generated 3D scene reconstruction. However, in some cases it can
happen that the georeferencing done using the GPS data stored in the EXIF part of the
uploaded images is inaccurate and the resulting dataset is not aligned correctly as can
be seen in Figure 7.2b. The edit mode lets the user correct such errors by transforming
the point cloud such that it is at last located at its right position on the globe’s surface.

7.3.3 Extend existing datasets

Another use case covers the extension of existing datasets. If a user explores a dataset
that is not complete, he can add additional images in order to improve the appearance of
the 3D reconstruction and add further missing parts to it.

This process can be triggered in the same way as the creation of new datasets. However,
to add images to an existing dataset the user must be in the view mode of the targeted
scene. Being in view mode, he can open the SfM upload form and complete it in the
same way as in the use case described in Section 7.3.2. The reconstruction process at the
back-end now triggers a “resume” command that adds the images to the existing dataset.
The user gets again informed per mail when the “resume” process has finished and he
can return to the OpenSfM webpage to explore the improved SfM-dataset.

7.4 Limitations
Since our application at its current state is just the result of a proof of concept, there
exist several limitations. The main issues are described in the following subsections.

7.4.1 Rendering

We have shown that it is possible to combine two independent WebGL based rendering
engines such that the produced output can be explored in an interactive way. However,
when implementing our front-end we have not attached great importance to rendering

91

7. Results

performance, as can be seen in Section 7.2.3. Especially rendering the camera illustrations
and their image planes is a heavy weight on the performance, because we compute them
using an individual camera projection matrix for each camera that is multiplied in each
frame.

Additionally, the integration of the ThreeJS-based rendering engine into the CesiumJS
rendering pipeline limits the rendering possiblities of the Potree point cloud renderer.
Algorithms that require multiple render passes, like high-quality splatting, cannot be
used in the current version of OpenSfM. Furthermore, newer Potree features like Eye-
Dome-Lighting (EDL) are not tested and implemented in the OpenSfM front-end.

7.4.2 Point cloud processing

The PotreeConverter was successfully adapted to the new database persistence layer. The
processing performance is acceptable, however, we haven’t optimized it for benchmarking
and testing against the original converter. A drawback of this point cloud preprocessing
is that the whole octree needs to be recomputed if an existing SfM-dataset is extended.
This is required because not all points of the original SfM-dataset are contained in the
extended dataset. The recomputation process needs additional computation time and is
not always necessary, especially when the extended point cloud is similar to the original
one.

7.4.3 Stability and flexibility

The VisualSFM application used by our back-end is not always stable and can crash
unpredictably, especially when a lot of input images are used. It can occur that the user
waits several hours for a success result from our back-end and finally receives an error
message because of an unsuccessful CMVS processing step. This can be very annoying,
because our system doesn’t offer a partial rerun of the reconstruction process, which
means that all images have to be uploaded again and an additional full reconstruction
process has to be started in the hope for a successful outcome. Sometimes it can even
happen that the SfM engine crashes silently such that our back-end is not informed about
the fail. In such cases the back-end process waits for a response until an administrator
manually kills the VisualSFM or CMVS process on the server machine.

7.4.4 Georeferencing and edit mode

Georeferencing 3D reconstructions by using the GPS data stored in the input images is not
very accurate. Due to this inaccuracy and missing GPS information, the georeferencing
algorithm implemented in VisualSFM and used by our application can produce completely
wrong results as can be seen in Figure 7.2b. With the help of the edit mode the user
can correct these misalignments to a certain degree. Highly accurate georeferencing and
user-defined aligning as it is needed for geodesy and surveying is not possible with our
implementation. However, for our intended purpose as a virtual tourism application for
point cloud exploration the accuracy is sufficient.

92

CHAPTER 8
Conclusion

We introduced a structure-from-motion system based on the idea of collaborative projects
like OpenStreetMap. The client-server system called OpenSfM consists of a freely
accessible front-end that acts as a virtual tourism client allowing the exploration and
editing of SfM-datasets and a back-end that communicates with the front-end and
processes uploaded data that is finally stored in the underlying database.

The freely accessible virtual tourism client offers four different system modes. The
overview mode lets the user navigate on an interactive globe, rendered with the help of
the CesiumJS library, on which the SfM-datasets are placed either by manually zooming
and panning using mouse interactions or by jumping to locations on the globe using a
geocoder that translates postal addresses into geographic coordinates. Double-clicking
a dataset marker placed on the globe’s surface enters the system’s view mode. This
mode allows the exploration of the georeferenced SfM-dataset consisting of the 3D scene
reconstruction represented as point clouds rendered with the help of the Potree library
and corresponding SfM camera positions, orientations and photos. Selecting one of the
rendered photographs lets the front-end switch to the photo mode, which displays a
high-quality version of the image in fullscreen mode, which allows a comparison of the
photo and the reconstructed point representation. Furthermore, an edit mode allows the
correction of georeferencing and reconstruction errors.

Besides the exploration features, our front-end allows the upload of images into the system.
These images are used by the back-end to either generate new SfM-datasets, when done in
overview mode, or extend existing SfM-datasets when uploading in the view mode of the
corresponding dataset. For the generation of georeferenced, dense scene reconstructions,
the state-of-the-art SfM engine VisualSFM is used together with the clustered multi-view
stereo algorithm CMVS. The reconstruction and georeferencing process is controlled via
socket communication with the VisualSFM application, which runs on the same server
machine as our back-end application. VisualSFM georeferences the reconstructed point
clouds using the GPS data stored in the uploaded input images. The generated point

93

8. Conclusion

datasets are preprocessed and converted into an octree-based representation that can be
interpreted by the Potree point cloud renderer at the front end.

In summary, our system allows the gathering of SfM-datasets that represent different
sights or landmarks, but also just locally famous buildings, placed all over the world
by combining different state-of-the-art techniques at the persistence, processing and
visualization layer. Those datasets can be explored in an interactive way by every user
who accesses our virtual tourism client using a web browser. Furthermore, the download
possibility allows any user to save the SfM-datasets and point clouds on his local file
system for subsequent offline processing.

8.1 Future work
Our system shows that it is possible to establish a user-friendly, free and fully accessible
structure-from-motion platform that anyone with access to the Internet can use to
reconstruct large 3D scenes without any technical background knowledge and share the
reconstructions with other OpenSfM users. However, integrating complex algorithms
into a user-friendly system comes with several limitations as mentioned in Section 7.4.
Therefore one of the tasks of the future work on our system will be to overcome those
limitations.

Rendering-specific shortcomings like unsupported high-quality point splatting and missing
Potree features like Eye-Dome-Lighting (EDL) should be tackled first. However, this
task could be hard and may require a lot of implementation work because our system
ultimately uses two nearly independent renderer implementations that maintain their
own rendering states, which is not very helpful when realizing special rendering effects.

Furthermore, the integration of the SfM engine at the back-end can be more flexible.
Instead of restarting the whole reconstruction process in error cases, rerunning just
individual steps of the reconstruction pipeline would significantly increase the usabil-
ity of our system. Additionally, the SfM-data extension algorithm can be improved
by implementing a heuristic that punctually adds points to the existing octree-based
representation that fill missing areas in the point clouds instead of completely dropping
existing reconstructions and replacing them with the newly generated ones.

Improving the accuracy of georeferencing would be another important task for future work
on our system. This improvement could be achieved by using additional control points
that refer to visible points in the input images instead of inaccurate camera locations
stored in the EXIF tags of the input images. VisualSFM supports such control points as
input gcp-files. However, the manual generation of such gcp-files is not very user-friendly.
Therefore, an interface to pick the points in the uploaded images at our front-end would
be desirable.

An additional useful feature would be morphing between photographs in photo mode, like
realized in the Photo Tourism application [97]. Also merging the overview mode with the
view mode would be another desirable improvement. Then instead of rendering single

94

8.1. Future work

SfM-datasets in view mode, SfM-datasets would be rendered depending on the camera’s
view point and direction directly in overview mode allowing to navigate seamlessly
between neighbouring datasets.

95

Bibliography

[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,
Steven M Seitz, and Richard Szeliski. Building rome in a day. Communications of
the ACM, 54(10):105–112, 2011.

[2] Sameer Agarwal, Noah Snavely, Steven M Seitz, and Richard Szeliski. Bundle
adjustment in the large. In Computer Vision–ECCV 2010, pages 29–42. Springer,
2010.

[3] Analytical Graphics Inc. (AGI) and open-source community. CesiumJS. URL:
http://cesiumjs.org/ (visited on March 22, 2016), 2016.

[4] DP Andrews, J Bedford, and PG Bryan. a Comparison of Laser Scanning and
Structure from Motion as Applied to the Great Barn at Harmondsworth, UK.
ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 1(2):31–36, 2013.

[5] Jamal Jokar Arsanjani, Alexander Zipf, Peter Mooney, and Marco Helbich. An
Introduction to OpenStreetMap in Geographic Information Science: Experiences,
Research, and Applications. In OpenStreetMap in GIScience, pages 1–15. Springer,
2015.

[6] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y
Wu. An optimal algorithm for approximate nearest neighbor searching fixed
dimensions. Journal of the ACM (JACM), 45(6):891–923, 1998.

[7] Johannes Bauer, Niko Sunderhauf, and Peter Protzel. Comparing several implemen-
tations of two recently published feature detectors. In Proc. of the International
Conference on Intelligent and Autonomous Systems, volume 6, 2007.

[8] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In Computer vision–ECCV 2006, pages 404–417. Springer, 2006.

[9] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large
Ordered Indexes. Acta Informatica, 1(3):173–189, 1972.

[10] Yochai Benkler. Freedom in the commons: Towards a political economy of infor-
mation. Duke Law Journal, pages 1245–1276, 2003.

97

http://cesiumjs.org/

[11] Wasim Ahmad Bhat and SMK Quadri. A Quick Review of On-Disk Layout of Some
Popular Disk File Systems. Global Journal of Computer Science and Technology,
11(6), 2011.

[12] François Blais. Review of 20 years of range sensor development. Journal of
Electronic Imaging, 13(1), 2004.

[13] Blizzard. World of Warcraft subscriber base reaches 12 million worldwide. URL:
http://us.blizzard.com/en-us/company/press/pressreleases.
html?id=2847881 (visited on December 11, 2015), 2010.

[14] Matthew Brown and David G Lowe. Automatic panoramic image stitching using
invariant features. International journal of computer vision, 74(1):59–73, 2007.

[15] Martin Byröd and Karl Åström. Bundle adjustment using conjugate gradients with
multiscale preconditioning. In British Machine Vision Conference, 2009.

[16] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. Computer Vision–ECCV 2010,
pages 778–792, 2010.

[17] Błażej Ciepłuch, Ricky Jacob, Peter Mooney, and Adam Winstanley. Comparison
of the accuracy of OpenStreetMap for Ireland with Google Maps and Bing Maps. In
Proceedings of the Ninth International Symposium on Spatial Accuracy Assessment
in Natural Resuorces and Enviromental Sciences 20-23rd July 2010, page 337.
University of Leicester, 2010.

[18] Douglas Comer. Ubiquitous B-tree. ACM Computing Surveys (CSUR), 11(2):121–
137, 1979.

[19] Patrick Cozzi. Graphics Tech in Cesium - Renderer Ar-
chitecture. URL: http://cesiumjs.org/2015/05/15/
Graphics-Tech-in-Cesium-Architecture/ (visited on March 19,
2016), 2015.

[20] Patrick Cozzi. Graphics Tech in Cesium - Rendering a Frame. URL: http:
//cesiumjs.org/2015/05/14/Graphics-Tech-in-Cesium/ (visited on
March 19, 2016), 2015.

[21] Patrick Cozzi and Kevin Ring. 3D engine design for virtual globes. CRC Press,
2011.

[22] Frédéric Devernay and Olivier D. Faugeras. Automatic calibration and removal of
distortion from scenes of structured environments. In SPIE’s 1995 International
Symposium on Optical Science, Engineering, and Instrumentation, pages 62–72.
International Society for Optics and Photonics, 1995.

98

http://us.blizzard.com/en-us/company/press/pressreleases.html?id=2847881
http://us.blizzard.com/en-us/company/press/pressreleases.html?id=2847881
http://cesiumjs.org/2015/05/15/Graphics-Tech-in-Cesium-Architecture/
http://cesiumjs.org/2015/05/15/Graphics-Tech-in-Cesium-Architecture/
http://cesiumjs.org/2015/05/14/Graphics-Tech-in-Cesium/
http://cesiumjs.org/2015/05/14/Graphics-Tech-in-Cesium/

[23] C. Brown Duane. Close-range camera calibration. Photogram. Eng. Remote Sens,
37:855–866, 1971.

[24] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-scale direct
monocular SLAM. In Computer Vision–ECCV 2014, pages 834–849. Springer,
2014.

[25] Remondino Fabio. From point cloud to surface: the modeling and visualization
problem. International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, 34(5):W10, 2003.

[26] Facebook. Facebook Reports Fourth Quarter and Full Year 2014 Results. URL:
http://investor.fb.com/releasedetail.cfm?ReleaseID=893395
(visited on December 11, 2015), 2014.

[27] Olivier D. Faugeras. What can be seen in three dimensions with an uncalibrated
stereo rig? In Computer Vision—ECCV’92, pages 563–578. Springer, 1992.

[28] Olivier D. Faugeras, Q-T. Luong, and Stephen J. Maybank. Camera self-calibration:
Theory and experiments. In Computer Vision—ECCV’92, pages 321–334. Springer,
1992.

[29] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval
on composite keys. Acta informatica, 4(1):1–9, 1974.

[30] Andrea Forte and Amy Bruckman. Why do people write for Wikipedia? Incentives
to contribute to open–content publishing. In Proceedings of 41st Annual Hawaii
International Conference on System Sciences (HICSS), pages 1–11, 2008.

[31] Apache Software Foundation. Apache Maven. URL: https://maven.apache.
org/ (visited on March 22, 2016), 2016.

[32] Witold Fraczek. Mean sea level, GPS, and the geoid. ArcUsers Online, 2003.

[33] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and Richard Szeliski. Towards
internet-scale multi-view stereo. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 1434–1441. IEEE, 2010.

[34] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview
stereopsis. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
32(8):1362–1376, 2010.

[35] Riccardo Gherardi, Michela Farenzena, and Andrea Fusiello. Improving the ef-
ficiency of hierarchical structure-and-motion. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 1594–1600, 2010.

[36] Enrico Gobbetti and Fabio Marton. Layered point clouds: a simple and efficient
multiresolution structure for distributing and rendering gigantic point-sampled
models. Computers & Graphics, 28(6):815–826, 2004.

99

http://investor.fb.com/releasedetail.cfm?ReleaseID=893395
https://maven.apache.org/
https://maven.apache.org/

[37] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M Seitz.
Multi-view stereo for community photo collections. In Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on, pages 1–8. IEEE, 2007.

[38] Michael F Goodchild. Citizens as sensors: the world of volunteered geography.
GeoJournal, 69(4):211–221, 2007.

[39] Mark Graham. Cloud collaboration: Peer-production and the engineering of the
internet. In Engineering earth, pages 67–83. Springer, 2011.

[40] Khronos Group. WebGL. URL: https://www.khronos.org/webgl/ (visited
on March 22, 2016), 2016.

[41] The PostgreSQL Global Development Group. PostgreSQL. URL: http://www.
postgresql.org/ (visited on March 21, 2016), 2016.

[42] GulpJS. GulpJS. URL: http://gulpjs.com/ (visited on March 22, 2016),
2016.

[43] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial Searching.
SIGMOD Rec., 14(2):47–57, 1984.

[44] Mordechai Haklay et al. How good is volunteered geographical information? A
comparative study of OpenStreetMap and Ordnance Survey datasets. Environment
and planning. B, Planning & design, 37(4):682, 2010.

[45] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps.
Pervasive Computing, IEEE, 7(4):12–18, 2008.

[46] Klaus Häming and Gabriele Peters. The structure-from-motion reconstruction
pipeline - a survey with focus on short image sequences. Kybernetika, 46(5):926–937,
2010.

[47] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, page 50. Citeseer, 1988.

[48] Richard Hartley et al. In defense of the eight-point algorithm. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 19(6):580–593, 1997.

[49] Richard Hartley, Rajiv Gupta, and Tom Chang. Stereo from uncalibrated cameras.
In Computer Vision and Pattern Recognition, 1992. Proceedings CVPR’92., 1992
IEEE Computer Society Conference on, pages 761–764. IEEE, 1992.

[50] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[51] Richard I Hartley. Estimation of relative camera positions for uncalibrated cameras.
In Computer Vision—ECCV’92, pages 579–587. Springer, 1992.

100

https://www.khronos.org/webgl/
http://www.postgresql.org/
http://www.postgresql.org/
http://gulpjs.com/

[52] Benjamin Mako Hill. Essays on volunteer mobilization in peer production. PhD
thesis, Massachusetts Institute of Technology, 2013.

[53] National Imagery and Mapping Agency. Department of Defense World Geodetic
System 1984: Its Definition and Relationships With Local Geodetic Systems, Third
edition. Technical report, National Imagery and Mapping Agency, 2000.

[54] Instagram. Celebrating a community of 400 million. URL: http:
//blog.instagram.com/post/129662501137/150922-400million (vis-
ited on December 13, 2015), 2015.

[55] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruc-
tion. In Proceedings of the fourth Eurographics symposium on Geometry processing,
volume 7, 2006.

[56] Nabeel Younus Khan, Brendan McCane, and Geoff Wyvill. SIFT and SURF per-
formance evaluation against various image deformations on benchmark dataset. In
Digital Image Computing Techniques and Applications (DICTA), 2011 International
Conference on, pages 501–506. IEEE, 2011.

[57] Donald E Knuth. Big omicron and big omega and big theta. ACM Sigact News,
8(2):18–24, 1976.

[58] Alfred Leick, Lev Rapoport, and Dmitry Tatarnikov. GPS satellite surveying. John
Wiley & Sons, 2015.

[59] Josh Lerner and Jean Triole. The simple economics of open source. Technical
Report 2, National Bureau of Economic Research, 2002.

[60] Bo Leuf and Ward Cunningham. The Wiki Way: Quick Collaboration on the Web.
Addison-Wesley Professional, 2001.

[61] H.C. Longuet Higgins. A Computer Algorithm for Reconstructing a Scene from
Two Projections. Nature, 293:133–135, 1981.

[62] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[63] Stephen Malys, John H Seago, Nikolaos K Pavlis, P Kenneth Seidelmann, and
George H Kaplan. Why the Greenwich meridian moved. Journal of Geodesy,
89(12):1263–1272, 2015.

[64] Dennis D McCarthy. IERS technical note 21. US Naval Observatory, 1996.

[65] Donald JR Meagher. Octree encoding: A new technique for the representation,
manipulation and display of arbitrary 3-d objects by computer. Electrical and
Systems Engineering Department Rensseiaer Polytechnic Institute Image Processing
Laboratory, 1980.

101

http://blog.instagram.com/post/129662501137/150922-400million
http://blog.instagram.com/post/129662501137/150922-400million

[66] Microsoft. Azure. URL: https://azure.microsoft.com/de-de/ (visited
on January 7, 2016).

[67] Microsoft. Silverlight. URL: http://www.microsoft.com/silverlight/
(visited on January 7, 2016).

[68] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. Fast-
SLAM: A factored solution to the simultaneous localization and mapping problem.
In AAAI/IAAI, pages 593–598, 2002.

[69] MrDoob. ThreeJS. URL: http://threejs.org/ (visited on March 22, 2016),
2016.

[70] Netcraft. October 2015 Web Server Survey. URL: http://news.netcraft.
com/archives/2015/10/16/october-2015-web-server-survey.html
(visited on December 9, 2015), 2015.

[71] Andreas Nuchter, Hartmut Surmann, Kai Lingemann, Joachim Hertzberg, and
Sebastian Thrun. 6D SLAM with an application in autonomous mine mapping. In
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, volume 2, pages 1998–2003. IEEE, 2004.

[72] OpenStreetMap. OpenStreetMap. URL: http://www.openstreetmap.org
(visited on November 30, 2015).

[73] OpenStreetMap. OpenStreetMap Wiki. URL: http://wiki.openstreetmap.
org (visited on December 13, 2015).

[74] pgPointcloud. pgPointcloud. URL: https://github.com/pgpointcloud/
pointcloud (visited on March 21, 2016), 2016.

[75] Frederik Ramm and Jochen Topf. OpenStreetMap: Die freie Weltkarte nutzen und
mitgestalten. Lehmanns Media, 2010.

[76] Richard H Rapp. Geometric geodesy: Part I. Lecture Notes, 1991.

[77] Bernhard Reitinger, Christopher Zach, and Dieter Schmalstieg. Augmented reality
scouting for interactive 3d reconstruction. In Virtual Reality Conference, 2007.
VR’07. IEEE, pages 219–222. IEEE, 2007.

[78] Microsoft Research. Photosynth. URL: http://photosynth.net/ (visited on
January 6, 2016).

[79] Microsoft Research. Spin. URL: http://research.microsoft.com/en-us/
projects/spin/default.aspx (visited on January 6, 2016).

[80] George Ritzer and Nathan Jurgenson. Production, Consumption, Prosumption
The nature of capitalism in the age of the digital ‘prosumer’. Journal of consumer
culture, 10(1):13–36, 2010.

102

https://azure.microsoft.com/de-de/
http://www.microsoft.com/silverlight/
http://threejs.org/
http://news.netcraft.com/archives/2015/10/16/october-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/10/16/october-2015-web-server-survey.html
http://www.openstreetmap.org
http://wiki.openstreetmap.org
http://wiki.openstreetmap.org
https://github.com/pgpointcloud/pointcloud
https://github.com/pgpointcloud/pointcloud
http://photosynth.net/
http://research.microsoft.com/en-us/projects/spin/default.aspx
http://research.microsoft.com/en-us/projects/spin/default.aspx

[81] D.P. Robertson and R. Cipolla. Structure from Motion. URL: http://mi.eng.
cam.ac.uk/~cipolla/publications/contributionToEditedBook/
2008-SFM-chapters.pdf (visited on November 30, 2015), 2008.

[82] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In Computer Vision–ECCV 2006, pages 430–443. Springer, 2006.

[83] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: an
efficient alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 2564–2571. IEEE, 2011.

[84] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point rendering
system for large meshes. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 343–352. ACM Press/Addison-Wesley
Publishing Co., 2000.

[85] Hanan Samet. Foundations of multidimensional and metric data structures. Morgan
Kaufmann, 2006.

[86] Claus Scheiblauer. Interactions with Gigantic Point Clouds. PhD thesis, Vienna
University of Technology, 7 2014.

[87] Markus Schütz. Potree. URL: http://potree.org/ (visited on February 2,
2016).

[88] Markus Schütz and M Wimmer. Rendering Large Point Clouds in Web Browsers.
Proceedings of CESCG, pages 83–90, 2015.

[89] Graham Sellers, Juraj Obert, Patrick Cozzi, Kevin Ring, Emil Persson, Joel de Vahl,
and J. M. P. van Waveren. Rendering Massive Virtual Worlds. In ACM SIGGRAPH
2013 Courses, SIGGRAPH ’13, 2013.

[90] Sudipta N Sinha, Johannes Kopf, Michael Goesele, Daniel Scharstein, and Richard
Szeliski. Image-based rendering for scenes with reflections. ACM Trans. Graph.,
31(4):100, 2012.

[91] Sudipta N Sinha, Drew Steedly, and Richard Szeliski. Piecewise planar stereo for
image-based rendering. In ICCV, pages 1881–1888, 2009.

[92] Sudipta N Sinha, Drew Steedly, and Richard Szeliski. A multi-stage linear approach
to structure from motion. In Trends and Topics in Computer Vision, pages 267–281.
Springer, 2012.

[93] Chester C Slama, Charles Theurer, Soren W Henriksen, et al. Manual of pho-
togrammetry, volume 4. American Society of photogrammetry, 1980.

[94] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the World from Internet Photo
Collections. International Journal of Computer Vision, 80(2):189–210, November
2008.

103

http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf
http://potree.org/

[95] Noah Snavely. Bundler. URL: http://www.cs.cornell.edu/~snavely/
bundler/ (visited on January 6, 2016).

[96] Noah Snavely, Rahul Garg, Steven M Seitz, and Richard Szeliski. Finding paths
through the world’s photos. In ACM Transactions on Graphics (TOG), volume 27,
page 15. ACM, 2008.

[97] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring
photo collections in 3D. In SIGGRAPH Conference Proceedings, pages 835–846,
New York, NY, USA, 2006. ACM Press.

[98] Noah Snavely, Steven M Seitz, and Richard Szeliski. Skeletal graphs for efficient
structure from motion. In CVPR, volume 1, page 2, 2008.

[99] Noah Snavely, Ian Simon, Michael Goesele, Richard Szeliski, and Steven M Seitz.
Scene reconstruction and visualization from community photo collections. Proceed-
ings of the IEEE, 98(8):1370–1390, 2010.

[100] J. Sanz Subirana, J.M. Juan Zornoza, and M. Hernández-Pajares. Transformations
between ECEF and ENU coordinates. URL: http://www.navipedia.net/
index.php/Transformations_between_ECEF_and_ENU_coordinates
(visited on February 15, 2016). Technical University of Catalonia, Spain.

[101] 3D Systems. 3D Scanners: A guide to 3D scanner technology. URL: http:
//www.rapidform.com/3d-scanners/ (visited on November 24, 2015).

[102] Richard Szeliski. Computer vision: Algorithms and applications. Springer Science
& Business Media, 2010.

[103] The Spring Team. Spring Framework. URL: http://spring.io (visited on
March 22, 2016), 2016.

[104] Tubefilter. YouTube now gets over 400 hours of content uploaded ev-
ery minute. URL: http://www.tubefilter.com/2015/07/26/
youtube-400-hours-content-every-minute/ (visited on December
13, 2015), 2015.

[105] Kathleen Tuite, Noah Snavely, Dun-yu Hsiao, Nadine Tabing, and Zoran Popovic.
PhotoCity: Training experts at large-scale image acquisition through a competitive
game. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1383–1392. ACM, 2011.

[106] Government U.S. GPS: Accuracy. URL: http://www.gps.gov/systems/
gps/performance/accuracy/ (visited on December 13, 2015).

[107] Government U.S. GPS: Space segment. URL: http://www.gps.gov/systems/
gps/space/ (visited on December 13, 2015).

104

http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates
http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates
http://www.rapidform.com/3d-scanners/
http://www.rapidform.com/3d-scanners/
http://spring.io
http://www.tubefilter.com/2015/07/26/youtube-400-hours-content-every-minute/
http://www.tubefilter.com/2015/07/26/youtube-400-hours-content-every-minute/
http://www.gps.gov/systems/gps/performance/accuracy/
http://www.gps.gov/systems/gps/performance/accuracy/
http://www.gps.gov/systems/gps/space/
http://www.gps.gov/systems/gps/space/

[108] Jakob Voss. Measuring wikipedia. In Proceedings of the ISSI 2005, 2005.

[109] Hoang-Hiep Vu, Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. High
accuracy and visibility-consistent dense multiview stereo. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 34(5):889–901, 2012.

[110] Likun Wang, Denis Tremblay, Bin Zhang, and Yong Han. Fast and Accurate
Collocation of the Visible Infrared Imaging Radiometer Suite Measurements with
Cross-Track Infrared Sounder. Remote Sensing, 8(1):76, 2016.

[111] MJ Westoby, J Brasington, NF Glasser, MJ Hambrey, and JM Reynolds. ‘Structure-
from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications.
Geomorphology, 179:300–314, 2012.

[112] Wikimedia. Report Card August 2015. URL: reportcard.wmflabs.org/
(visited on December 16, 2015), 2015.

[113] Wikimedia. Wikipedia Statistics, October 2015. URL: https://stats.
wikimedia.org/EN/Sitemap.htm (visited on December 13, 2015), 2015.

[114] Wikimedia. Wikipedia:About. URL: https://en.wikipedia.org/wiki/
Wikipedia:About (visited on January 3, 2016), 2016.

[115] Wikimedia. Wikipedia:Five pillars. URL: https://en.wikipedia.org/wiki/
Wikipedia:Five_pillars (visited on January 3, 2016), 2016.

[116] Wikipedia. Wikipedia. URL: http://en.wikipedia.org (visited on November
30, 2015).

[117] Michael Wimmer and Claus Scheiblauer. Instant Points: Fast Rendering of Unpro-
cessed Point Clouds. In SPBG, pages 129–136. Citeseer, 2006.

[118] Stephen J Wright and Jorge Nocedal. Numerical optimization, volume 2. Springer
New York, 1999.

[119] Changchang Wu. SiftGPU: A GPU implementation of scale invariant feature
transform (SIFT). URL: http://cs.unc.edu/~ccwu/siftgpu/ (visited on
January 20, 2016), 2007.

[120] Changchang Wu. VisualSFM: A visual structure from motion system. URL:
http://ccwu.me/vsfm/ (visited on January 20, 2016), 2011.

[121] Markus Ylimäki, Juho Kannala, Jukka Holappa, Sami S Brandt, and Janne Heikkilä.
Fast and accurate multi-view reconstruction by multi-stage prioritised matching.
IET Computer Vision, 2015.

[122] Zhengyou Zhang. A flexible new technique for camera calibration. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 22(11):1330–1334, 2000.

105

reportcard.wmflabs.org/
https://stats.wikimedia.org/EN/Sitemap.htm
https://stats.wikimedia.org/EN/Sitemap.htm
https://en.wikipedia.org/wiki/Wikipedia:About
https://en.wikipedia.org/wiki/Wikipedia:About
https://en.wikipedia.org/wiki/Wikipedia:Five_pillars
https://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://en.wikipedia.org
http://cs.unc.edu/~ccwu/siftgpu/
http://ccwu.me/vsfm/

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation and problem statement
	Contribution
	Structure of the work

	Related work
	Peer-production-based projects
	3D photo exploration applications

	The reconstruction pipeline
	The classic reconstruction algorithm
	Alternative approaches
	Applications

	Working with large point clouds
	Basic data structures
	Large point cloud rendering

	Geographic coordinate systems
	World Geodetic System 1984 (WGS84)
	Local ENU reference frame
	Coordinate conversions

	Implementation
	System overview
	The front-end: A virtual tourism client
	The back-end: SfM, point cloud preparation and database interface
	The OpenSfM database

	Results
	System
	Performance tests
	The OpenSfM workflow in practice
	Limitations

	Conclusion
	Future work

	Bibliography

