
Organisation of Image Collections

Martina Rasch
Student of Visual Computing

Vienna University of Technology
e0925447@student.tuwien.ac.at

1 Introduction

On the internet there are a lot of image col-
lections, for example on Flickr [2] or Imgur [3].
Many of them let any user upload photographs
or images. As a result, they have a large num-
ber of images, for instance Flickr had more than
10 billion image uploads in 2014 alone [6]. This
makes it difficult to find specific images or images
with certain attributes. Therefore, we propose a
new method for searching pictures in image col-
lections.

Existing image collections usually place the
images next to each other over several rows. Of-
ten there is a sidebar or a menu bar on top to
sort the images, or to filter some out by certain
parameters. Later in this paper we will call this
grid view, like Morrish did in his application [4].
An example of this can be seen in Figure 1, where
the site TinyPic [7] is shown.

Figure 1: The image portal site TinyPic [7].

Our method is based on the approach by
Morrish [4], called Internet Sites Pivot, which
is an application for comparing websites. The
websites are represented as small images having
attributes like country of origin, industry, rat-
ing and date of creation. When sorted, they are
shown in different columns depending on one of
their attributes. From now on we will call this
graph view, like it is called in the application.
In our work, we used the concept introduced by
Morrish, and applied it to image collections. Our
application allows to sort a set of images, and to
select groups of images according to certain at-
tributes (e.g., name, width, height, hue).

In this paper we will first describe what we
wanted to achieve with this application and after-
wards the implementation is discussed in detail.
At the end we will show that our method has
several advantages over the grid view. If the user
filters out some pictures, it is easier for him/her
to relocate a particular image, since he/she can
find it in the same column. As images in the same
range of the attribute are put in the same column,
groups of similar images often appear in the same
column, making it simpler to find groups. Fur-
thermore, because the range of the attributes is
written beneath the columns, it is easier to find
links between the images and the attribute ranges
and to find, and use, patterns in the image col-
lection.

2 Task Description

This section provides deeper insight into the goals
and features of our program. As already men-
tioned in the introduction, many image collec-



tions display the images one after another over
several rows, with a bar on top or on the side to
filter the images.

In constrast, our approach is to sort the im-
ages by a specific attribute and to divide them
into several columns. It supports two views: The
grid view, where all the images are lined up one
after another, and the graph view, which is shown
in Figure 2. On the right side of the interface
miniature versions of the websites are plotted.
They are sorted into columns by an attribute
which can be set in the bar on top. In the sidebar
on the left the images can additionally be filtered
by attributes. In January 2015 [4] the attributes
were industry, rating and date of creation, in Oc-
tober 2014 the images could also be sorted by
country of origin.

Figure 2: The graph view of the Internet Sites
Pivot [4] by Ian Morrish, which our approach is
based on.

In our program, the attribute used for sort-
ing and the range of the attribute can be chosen
on the left side, while the images can be filtered
on the right side. The attributes are the same
for both sorting and filtering. Nevertheless, fil-
tering is independent of sorting and all attributes
can be used for filtering whether they are already
used for sorting or not. Figure 3 shows our im-
age collection, where the images are sorted by the
attribute height.

Figure 3: Our implementation of an image collec-
tion.

3 Implementation

In this section we describe our implementation in
detail. We implemented our image collection us-
ing JavaScript and the KineticJS [5] library. The
image meta data is stored in a JSON file. When
our application is opened, it shows the images in
the order of the data in the JSON file. The user
can later return to this view by resetting all the
parameters using the reset button at the bottom
of the page or both the clear buttons on the left
and the right.

To divide the images into columns by at-
tributes, they are first sorted using selection sort.
Selection sort is used because of its simplicity.
Then the range of the selected attribute is es-
timated using the minimum and the maximum
value of this attribute in the pictures, and split
into equal ranges for each column. The maximum
number of columns can be set in the application,
while the actual number of columns depends on
the number of images. If all the images have the
same value for this specific attribute, there is only
one column. This can also happen if the number
of images to display is below a threshold, which
can also be set in the application.

The images can be sorted by the attributes
name, width, height, size, ratio, description, tag,
brightness or hue. The name, description and tag
are taken from the JSON file, the width, height,
size and ratio are directly taken from the image,
or calculated using width and height. For the
brightness and the hue the library ColorFinder
[1] is used to get the most often occurring color
from the pixels in the picture. The library offers
different functions for getting the dominant color,
for example one excluding black and white. This
is useful since many images return black or white
as the dominant color. Depending on the applica-
tion, it can be more helpful to use the second most
common color and get more diverse results. For
instance, in our case most images would end up in
two of the columns, if black and white where not
excluded. Furthermore, the most frequent color
in the image might not be the color the user per-
ceives as the most common color, depending on
where in the image the color is. For example, if
the object in the most common color is not an
object of interest to the user, or if the color is
only slightly more frequent than the second most
common color, the user might not judge the most
common color as the right choice. Therefore, we
use the function that promises to exclude both
black and white, although it still sometimes re-
turns black or white as the most prominent color.
This leads to the photographs being more evenly
distributed over the columns, as well as to a bet-
ter user experience, since fewer images that do



not seem to be of the same color are in the same
column. One downside of this approach is that
images that appear black or white are classified
as different colors, but we find that less problem-
atic than the other way round. To get the hue,
the RGB value is converted to HSV. However,
the HSV model does not include black and white
- although these are still needed, since black and
white have not been completely excluded by the
color finding library. Furthermore, colors which
are almost black/white also look black/white to
the human eye. For this reason, the range of the
hues is extended to contain black as the hue value
-1 and white as 361. The brightness is calculated
as the value of the HSV model. In Figure 4 the
images in the range from black over red to yellow
are sorted by the attribute hue.

Figure 4: The image collection sorted by the at-
tribute hue.

Besides sorting, the number of images can
be reduced by filtering the images using the afore-
mentioned attributes. The filtering attribute does
not have to be the sorting attribute. Figure 5
shows how the number of images is reduced from
100 to 12 by sorting by height and additionally
filtering the images by width. To assist the user
in keeping track of the steps he/she has done and
to go back to previous states, breadcrumbs are
placed above the canvas. These breadcrumbs are
buttons which return the application to the step
written on the button by clicking on it. To dis-
tinguish the sorting and the filtering attributes,
the buttons and breadcrumbs for sorting are kept
in blue, and those for filtering in red.

For the details of an image, the user can click
on an image to open an enlarged view. The at-
tributes of the image are shown to the right of the
image. After closing the detail view, the website
returns to the previous view. Figure 6 shows an
example of the detail view.

4 Results

Our application allows to visualise an image col-
lection in a way where the user can interactively
look for and view photographs. In contrast to

Figure 5: The collection sorted by height and fil-
tered by width to reduce the images to a small
number.

Figure 6: One of the images in detail view.

other image collections, our application supports
a new view, the graph view, and a new way to
search images. If the pictures are sorted, they are
divided into multiple columns using the sorting
attribute. Images can also be filtered to decrease
the number of images.

One of the advantages over the grid view is
that if the filtering is modified, the user has a ref-
erence of where each image will go, since he/she
knows it will remain in the same column. In the
grid view, the image could land anywhere de-
pending on how many images are filtered away.
Therefore, our approach allows to easily retrieve
pictures with some specific parameters. Figure 7
shows the image collection before and after a fil-
tering step in grid view and graph view. In the
grid view an image that remains on the screen
can land anywhere on the canvas, while in the
graph view it stays in the same column. In the
grid view of our program the image even moves
to a location below its previous spot, because the
images are scaled to fit on the canvas. In other
approaches the image sizes will stay the same, and
the images will only move to the left, or to rows
above the original row. The area where the image
could end up is still very large if the picture was
not in one of the first rows to begin with, or if the
image collection or the number of the remaining
images is large.

Another benefit of our application is that the
splitting by attribute makes it more convenient



Figure 7: The first and the second image are in grid view, the other two in graph view. The first and the
third image were taken before, the others after the filtering step. In the grid view, the image marked in
red moves from the middle to the outer left and to a spot below the original location, in the graph view,
it nearly stays at the same spot and is therefore easier to relocate.

to find similar images, or images belonging to the
same group, as they end up in the same or in
neighbouring columns. In Figure 8 it can be seen
that the sorting by hue places most of the pictures
of the medieval pageant in the second column,
because they were taken in the same environment
under similar lighting conditions.

Figure 8: The image collection sorted by hue.
The second column includes many photographs
of the medieval pageant.

Since the range of the attributes is written
beneath the columns, it is also easier to find pat-
terns in the collection. The user might find com-
binations of sorts and filters which lead to im-
ages taken by a specific camera, at a specific lo-
cation or under specific conditions displayed on
the screen or in the same column. For instance,
as shown in Figure 9, sorting the pictures by
name alone reveals that one camera names pic-
tures starting with c and another starting with i.
The user can investigate the cause and use it for
later searches.

In conclusion, our method has several advan-
tages over the grid view: Orientation is easier for
the user, since he/she has a reference where im-
ages will end up, even if he/she changes the set-
tings. Moreover, certain splits show groups of im-
ages in the same column, simplifying the search
for groups. Furthermore, the link between the im-
ages and the attributes is more obvious, since the
images are sorted and split up by the attributes,
which can also be conceived better, since the at-
tribute ranges are written beneath the columns.
Of course, all of these advantages are not present
in every search, but they can lead to a better user

Figure 9: Sorting by name reveals that there are
at least a camera who names images starting with
c and another naming images starting with i.

experience overall.

5 Future Work

In future work additional attributes for sorting
and filtering could be added. Especially the hue
attribute could be altered. In our work we used
the hue of the HSV model to compare the hue
values, which does not include black and white.
Therefore we extended the model by adding -
1 as black and changing 361 to white. Other
models could be used to sort by hue, or a com-
pletely other way to sort by color might be tested.
It would also be interesting to divide the im-
ages into black-and-white images, grayscale im-
ages and color images. This would need a con-
sideration of the colors of all the pixels in the
image, not only the most frequent one. In addi-
tion, the problem, that the most often occurring
color is not necessarily the color perceived as the
most common one by the user, could be solved.
Other sorting methods based on the distribution
of pixels in the images could also be investigated.

Another possibility would be to allow the
user to add and delete images and to change their
meta data. Finally, adding pictures from image
uploading sites would also be interesting.

References

[1] ColorFinder, http://pieroxy.net/blog/pages/color-



finder/index.html

[2] Flickr, https://www.flickr.com/

[3] Imgur, http://imgur.com/

[4] I. Morrish, Internet Site Pivot,
http://www.wssdemo.com/livepivot/,
10.01.2015 18:54

[5] E. Rowell, KineticJS, http://kineticjs.com/,
10.01.2015 19:49

[6] thenextweb.com, thenextweb.com,
http://thenextweb.com/apps/2015/01/10/canon-
dslrs-and-iphone-5-dominated-photo-
posting-on-flickr-in-2014/, 15.1.2015 18:25

[7] TinyPic, TinyPic,
http://de.tinypic.com/images.php,
11.1.2015 16:26


