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Fig. 1: Visual analysis for mesh comparison. We propose YMCA, a system that combines explicit encoding, juxtaposition and
quantitative measures to allow the user to compare multiple meshes. YMCA conveys an overview of the available data (a, b),
points to interesting features in the data (c) and allows for the inspection of local areas of interest (d,e).

Abstract—Polygonal meshes can be created in several different ways. In this paper we focus on the reconstruction of meshes
from point clouds, which are sets of points in 3D. Several algorithms that tackle this task already exist, but they have different
benefits and drawbacks, which leads to a large number of possible reconstruction results (i.e., meshes). The evaluation of those
techniques requires extensive comparisons between different meshes which is up to now done by either placing images of rendered
meshes side-by-side, or by encoding differences by heat maps. A major drawback of both approaches is that they do not scale
well with the number of meshes. This paper introduces a new comparative visual analysis technique for 3D meshes which enables
the simultaneous comparison of several meshes and allows for the interactive exploration of their differences. Our approach gives
an overview of the differences of the input meshes in a 2D view. By selecting certain areas of interest, the user can switch to a 3D
representation and explore the spatial differences in detail. To inspect local variations, we provide a magic lens tool in 3D. The location
and size of the lens provide further information on the variations of the reconstructions in the selected area. With our comparative
visualization approach, differences between several mesh reconstruction algorithms can be easily localized and inspected.

Index Terms—Visual analysis, comparative visualization, 3D data exploration, focus+context, mesh comparison

1 INTRODUCTION

Polygonal meshes are one of the most commonly used surface repre-
sentations in 3D computer graphics. Their explicit description of the
surface location in 3D together with local connectivity information en-
ables memory-efficient storage and provides a convenient data struc-
ture for a wide range of applications (e.g., in geometric processing).
For many tasks related to mesh creation and/or editing, a multitude of
proposed methods exist. Polygonal meshes may serve both as input
and output for a majority of such techniques.

As a consequence, the characteristics and capabilities of different
approaches for a common task have to be evaluated on the basis of
their results, which inevitably leads to the need to compare an – of-
ten large – number of similar meshes. While formal geometric prop-
erties (e.g., polygon areas) can be evaluated by purely mathematical
methods, aesthetic considerations almost always require a human in
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the loop. The pleasantness of the final form is of major importance
for several geometric processing tasks such as mesh resampling, mesh
denoising, and mesh reconstruction from point clouds. Especially the
last example is currently a hot topic in research [6], as the advent of
affordable scanners has made the creation of virtual representations
of real-world objects a commodity. Beyond computer graphics, other
fields that deal with 3D objects, like CAD or biomolecular modeling,
would also benefit from new trends for multi-mesh comparison.

As an exemplary use case, we further concentrate on mesh recon-
struction, which refers to extracting meshes from point clouds as ac-
curately as possible. A wide variety of techniques has already been
developed, and these algorithms differ (more or less) subtly in their re-
construction behavior – especially in the presence of noise, outliers or
other errors in the input data [7]. Furthermore, with almost every tech-
nique the output depends on several, partly very sensitive, parameters
with varying suitability for different kinds of data. All these facts cre-
ate a large space of possible results when reconstructing a mesh from a
point cloud. Especially the evaluation of a new technique currently re-
quires extensive laborious comparisons, not only between samples of
the approach in its own parameter space, but also to existing state-of-
the-art methods. Such comparison tasks are additionally complicated
by the fact that the desired outcomes can be highly task-dependent and
difficult to quantify, which makes visual inspection unavoidable.

Comparative visualization refers to the process of visually depict-
ing differences and similarities in two or more datasets [23]. Within
the last years various comparative visualization systems have been de-
veloped, which demonstrate that there is a strong demand for the sup-
port of comparison tasks in various domains. According to Gleicher et
al. [16] there are three main approaches to compare data: juxtaposition
(i.e., side-by-side comparison), superposition (i.e., blending), and ex-
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Fig. 2: Common mesh comparison approaches. Current tools employ
either statistical evaluation (a), juxtaposition (b) or explicit encoding
by color (c) to show differences between meshes (Section 2).

plicit encoding (i.e., difference encoding by some abstract parameter).
Up to now, the tool-set for visual comparisons of mesh reconstruc-

tions is limited to statistical evaluation (e.g., global error), simple jux-
taposition, or explicit encoding by color (Figure 2). The existing ap-
proaches do not scale well with the number of instances, and basically
support only pairwise comparisons. Color-coding of differences only
partially characterizes the behavior of the underlying algorithm (e.g.,
whether the data is smoothed).

We believe that a combination of explicit encoding, juxtaposition
and quantitative measures can support mesh comparison tasks and pro-
vide more insight into the underlying data. We propose YMCA, a new
comparative visual analysis approach which allows users to compare
several meshes against each other. Our application, on the one hand,
helps to identify areas in the data where reconstruction algorithms pro-
duce different results, and also allows for a detailed exploration of lo-
cal variations. On the other hand, our system supports users in gaining
insight into the characteristics of different mesh reconstruction algo-
rithms. The main features of our approach are:

• Comparison of multiple entities: Our visual analysis methods
are designed to overcome the problems of previous approaches
that do not scale well with a larger number of meshes. With our
approach users are able to get an overview of all studied algo-
rithm results. It is also possible to evaluate the performance of
individual algorithms against others.

• Focus+context: As a starting point of the analysis process, we
provide an overview of the comparison results. Users can then
further concentrate on local variations and explore them in more
detail without losing the context information.

• Flexibility: The proposed visual analysis tools can be applied to
different mesh comparison tasks, e.g., comparing meshes after
mesh simplification, as well as comparing different reconstructed
meshes. The approach is neither tied to certain type of mesh
(e.g., watertight mesh), nor to a certain mesh comparison metric.

The paper is organized as follows: Section 2 contains a survey of
previous work related to the topics of comparative visualization, mesh
reconstruction, and focus+context interaction techniques. Section 3
provides an overview of the tasks and challenges we address. In Sec-
tion 4, the process of identifying mesh differences is described, and
our interactive visualization tools are introduced. Implementation de-
tails are discussed in Section 5 and results are presented in Section 6.
We also collected feedback which is described in Section 7 to evaluate
our approach. In Section 8 we discuss the advantages and limitations
of our approach and an outlook on future work is given. The paper is
concluded in Section 9.

2 RELATED WORK

The work presented in this paper is located in the field of compara-
tive visualization. In the last years a great variety of systems and ap-
proaches for comparative visualization have already been developed,
which are discussed in this section. Since we compare several meshes
in 3D, we included a comparison of our approach to existing tech-
niques in the area of mesh comparison. The meshes we use have been
reconstructed from point clouds, and here we revert to well-studied
findings from the field of surface reconstruction. Our work makes use
of several well-known interaction concepts (i.e., focus+context and
linking and brushing), which are also discussed in this section.

Comparative visualization. Some approaches from the field of
comparative visualization deal with comparing 2D data (e.g., im-
ages [33]), but there is also a representative group of systems used to
compare 3D data. Some of these approaches analyze multiple 3D data
structures (e.g., shapes or volumes) by comparing 2D representations
of the data [14, 24]. Malik et al. [21] proposed a method to compare
different volume datasets by analyzing 2D slices. Other methods con-
centrate on the comparison of data in 3D, similar to our approach. Ma-
suda et al. [22] visually analyzed 3D shapes of ancient Chinese bronze
mirrors by color-coding their differences. Watashiba et al. [31] used
critical point graphs to depict similarities in volume datasets. Alabi et
al. [1] presented a method for side-by-side comparison of surfaces in
3D. All together, these systems show the demand for tools that explic-
itly support comparison tasks in 2D as well as in 3D.

Mesh comparison. Due to the need to evaluate mesh editing
tools (e.g., for mesh simplification), many approaches have been de-
veloped that support mesh comparison. Various techniques focused
on the mathematical background and established metrics which can
be used to compare meshes. Aspert et al. [4] proposed an approach
to measure differences between two meshes by using the Hausdorff
distance. Roy et al. [26] introduced a new mesh comparison method
using an attribute deviation metric. MeshLab, by Cignoni et al. [9],
was implemented to combine mesh comparison as well as mesh edit-
ing tools. In our work we focus on visual support for mesh compari-
son, and some interesting approaches have already been developed in
this area. Cignoni et al. [11] presented Metro, a system that allows for
pairwise comparison of surfaces. A similar approach was later pro-
posed by Silva et al. [28]. Their system, which is called PolyMeCo,
allowed users to compare meshes against a reference mesh. Existing
approaches for mesh comparison use color to encode the differences
and present the results by juxtaposition. Therefore, they are limited
to a small number of meshes. Apart from zooming, the systems also
do not provide means to inspect local areas. In our approach we ex-
tend these ideas to provide means to compare multiple meshes, and to
inspect local regions in more detail.

Surface reconstruction. The acquisition of virtual representa-
tions of scanned real-world objects from point clouds is referred
to as surface reconstruction. In contrast to point-set surface-
representations [2, 3], this paper focuses on mesh reconstruction from
point clouds. Meshes are reconstructed according to different formu-
lations of implicit surfaces defined on the input points, ranging from
locally fitted tangent planes [18], radial basis functions [8], to Poisson
reconstruction [20]. All these techniques exhibit their own character-
istic reconstruction behavior in terms of robustness and accuracy, and
require various parameters which influence the result. Berger et al. [6]
present a benchmark tool for surface reconstruction algorithms, where
the user can test different algorithms on different point cloud datasets.
When presenting the results, they use juxtaposition where rendered
models are placed side by side. This way the complex task of finding
relevant differences in the data is shifted to the user.

Linking-and-brushing. The concept of linking-and-brushing is
well-known in visualization. It refers to the connection of two or more
views in a way that a change to the representation in one view affects
the representation in the other one as well [30]. Linking-and-brushing
is a very flexible concept that can be applied to many different data
representations, like 2D data (e.g., scatter plots [5]) as well as 3D
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Fig. 3: Overview of our visual analysis approach. The input data consists of a set of n meshes and one reference mesh. The surface deviations
of the meshes are calculated to get the corresponding variance map (Section 4.1). Afterwards high-variance regions are located in the data
(Section 4.2). The results are finally presented in an interactive visualization as described in Section 4.3 and Section 4.4.

data [15]. We use linking-and-brushing to keep track of user selec-
tions. Elements in our summary representations can be selected, which
will mark them as selected also in the detailed view (and vice versa).

Focus+context. The strength of focus+context and in-place in-
teraction techniques is that they give an overview of the available data,
but also allow us to further inspect details on demand. Several fo-
cus+context approaches can be found in the literature [12]. Similar to
linking-and-brushing, focus+context is a very flexible concept which
has already been applied in many different visualization approaches
(e.g., scatter plots [25] or sets of images [27]). To locally explore
data in 3D, Zhao et al. [32] employed focus+context with local shape
preservation by using conformal mapping. Cignoni et al. [10] estab-
lished a 3D magic lens tool with user-specific content (e.g., different
rendering techniques or the result of filtering operations). In our sys-
tem we use a magic lens tool, which is similar to the two latter ap-
proaches. The user can employ this tool to make selections, which
will provide more detailed insights into certain data parts. The selec-
tion is made on the 3D representation of the data, whereby the context
of the selection is always preserved.

3 CHALLENGES OF MULTI-MESH COMPARISON

The need to compare different meshes can be the result of various
geometric operations. As an exemplary use case, we focus on the
reconstruction of meshes from point clouds. Several meshes can be
constructed from the same point cloud with different algorithms. The
algorithms differ in their reconstruction behavior [7], which means that
the resulting meshes exhibit subtle differences. The analysis of such
datasets poses interesting challenges. We therefore introduce Your
Mesh Comparison Application (YMCA) of choice, which addresses
the challenges of multi-mesh comparison, as discussed below:

Notion of quality. When reconstructing a point cloud, the user is
interested in surfaces that match the shape of the original specimen as
accurately as possible. In practice, users often face a trade-off between
the preservation of geometric detail and the robust removal of scan-
ning artifacts like noise or holes. From a statistical point of view, the
quality of a reconstruction is defined by the residual distances of each
surface point from the reference shape. However, a statistical evalua-
tion alone hardly communicates a full understanding of a technique’s
strengths and weaknesses on different types of data. For example,
it might happen that algorithms with a low overall error rate smooth
certain features in the data, which might not be desired by the user.
YMCA presents a general error measurement to the user, and also al-
lows to judge the visual quality of the resulting shapes. Giving the user
insights into the results and providing him/her the possibility to com-
pare them against each other, also supports understanding the behav-
ior of the different reconstruction algorithms. For example, users will
identify undesired characteristics like over-smoothing or sensitivity to
noise. YMCA provides means to quickly eliminate algorithms from
further comparisons if they do not show a desired behavior, which can
help to narrow down the search space quite fast.

Complexity and scalability. Current mesh comparison methods
provide means to inspect the shape and error of a mesh sample individ-
ually [6], or allow for mostly pairwise comparisons among the sample

set [9, 28]. These methods quickly become unsuitable for larger sam-
ple sets, e.g., when using multiple samples in the parameter spaces of
different reconstruction algorithms. YMCA provides a compact visual
overview that presents individual quality information (e.g., reconstruc-
tion error) in the appropriate context and that shows the most relevant
differences at a glance. It is no longer necessary to scan/rotate/zoom
into several 3D meshes one after another, since the mesh elements can
now be explored at once.

Evaluation. For newly developed reconstruction techniques, a
common task is their evaluation and classification with respect to ex-
isting methods. So far these required a tedious exploration of the high
dimensional space spanned by the input data (e.g., shape, or amount
of noise) and the algorithm parameters (e.g., kernel functions or band-
width). With YMCA it is possible to quickly extract the regions on the
mesh where the algorithm of interest shows better/worse results than
the other ones it is compared to. YMCA can extract the most prob-
lematic regions of the mesh, which are those where the reconstruction
results have a high variance.

None of the existing methods used for mesh comparison accommo-
date the above aspects so far (Section 2). YMCA allows for an intu-
itive, guided and flexible visual analysis of a scalable set of similar
meshes to explore the differences among them.

4 YMCA – YOUR MESH COMPARISON APPLICATION

YMCA combines explicit encoding, juxtaposition, parallel coordi-
nates, and interaction techniques (i.e., linking-and-brushing and fo-
cus+context) to convey an overview of mesh differences, and to allow
the user to inspect local areas of interest.

As mentioned in Section 3, we focus on triangular mesh data pro-
duced by different mesh reconstruction algorithms. The data has been
created by the surface reconstruction benchmark tool implemented by
Berger et al. [6]. The meshes are already registered. No pre-processing
(e.g., filtering) has been applied to the meshes. In addition, a reference
mesh is assumed to be available for every point cloud. See the discus-
sion in Section 8 for our strategy, if such a reference is not available.

To provide a condensed representation of all differences in the data,
we propose to project the variances of the mesh deviations onto the
reference mesh. The calculation of the variances is described in Sec-
tion 4.1. In addition, we locate problematic regions (i.e., regions of
high variance) in the model to provide additional guidance to the user
when exploring the data. The detection of such regions is outlined
in Section 4.2. The problematic regions are used to build a paral-
lel coordinates plot to visualize the performance of the reconstruction
algorithms (Section 4.3). The inspection of local areas provides in-
teresting insights into the behavior of the reconstruction algorithms.
The visual analysis tools of YMCA are described in Section 4.4. The
whole pipeline of YMCA is outlined in Figure 3.

4.1 Calculation of Error Variances
The visual analysis of variations in multiple meshes requires the com-
putation of mesh differences. For the mesh comparison we use an
attribute deviation metric as described by Roy et al. [26]. This met-
ric compares meshes in a pairwise manner and calculates point-wise
deviations from a reference mesh to another mesh. The deviation is
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Fig. 4: Surface-aware Mean-Shift. Instead of using an isotropic kernel
(a), we employ a surface-aware Mean-Shift with an anisotropic kernel
(b) around the current mean xi. This prevents the means from moving
away from the model surface (xc). Instead, by considering the normal
vector N, the means stay close to the intrinsic surface (x j).

defined as the distance between a vertex of the reference mesh and the
nearest point on the surface of the other mesh.

Our approach is not tied to a certain type of metric. In this pa-
per we concentrate primarily on the calculation of the regions of high
variance (Section 4.2) and the visual analysis of the mesh differences
(Section 4.3 and 4.4). The metric to calculate the mesh differences
may be exchanged, as it is outlined in Section 8.

Given n input meshes M1, . . . ,Mn, the mesh comparison results in a
set of n surface deviation values (in the following simply denoted by
errors) for every vertex in the reference mesh Mref. We then calculate
the per-vertex error variances (based on the n error values) for all ver-
tices in Mref. In YMCA, we call this discrete distribution of variances
the variance map.

4.2 Automatic High Variance Localization
To guide the user in the comparative analysis and exploration process,
we provide an overview of the surface regions showing the h highest
error variances. These are assumed to be the most interesting areas for
comparison due to the high disagreement between the reconstruction
methods. To this end, we use the variance map computed in the pre-
vious section to locate local maxima in the distribution of per-vertex
variances on the surface. These maxima are found by employing a
weighted Mean-Shift [13] algorithm in R3 on the set of mesh vertices,
where the per-vertex variances define the weights. This is done once
in a pre-processing step, directly after the variance map computation.

A set of initially random samples xi, i = 1 . . .N of mesh vertices
are iteratively shifted toward modes in the variance distribution using
a smooth kernel θ(r) = e−4(r/s)2

of finite support s. One iteration step
is given as

x′i =
∑ j θ(δi j)σ

2
j p j

∑ j θ(δi j)σ
2
j

(1)

where σ2
j gives the variance at vertex j, while p j is its location in R3

and δi j denotes its distance to the sample xi.
However, an isotropic kernel might let samples move away from

the intrinsic surface described by the local neighborhood of vertices
(Figure 4a). Thus, we need to constrain the sample movements close
to the local surface around xi (Figure 4b). We employ a surface-aware
distance metric δi j , which incorporates the surface normal ni into the
weighting kernel as given by

δi j =
∥∥p j− xi

∥∥+ ∣∣〈ni, p j− xi
〉∣∣ . (2)

After the samples converged to different high-variance modes on the
surface, similar points are discarded, and the remaining ones sorted
by their amplitude. This gives a list of hot-spots that we use in the
consecutive visual analysis procedure (Section 4.4). Besides the posi-
tions pi of the hot-spots, we are also interested in their extent, which is
given by the weighted sample standard deviation σ of variance values
at every hot-spot.

4.3 Parallel Coordinates Plot
The list of hot-spots created in the previous section can be used to
span a multi-dimensional feature space. The space is defined by the
number of hot-spots h and the error values en for every input mesh at
the hot-spot positions. We propose to use the high-dimensional visu-
alization technique of parallel coordinates [19] to analyze this multi-
dimensional feature space. Every hot-spot defines one axis in the par-
allel coordinates plot, and the dimensions of the axes are given by the
global minimum and maximum error values. The input meshes are
represented as lines in the plot (Figure 5).

The axes in the plot are initially sorted according to the hot-spots’
weighted sample standard deviation σ of variance values. The sorting
of the axes can be interactively changed by the user. The parallel co-
ordinates plot gives an overview of the error rate of the reconstruction
algorithms in regions of high variance.

4.4 Visual Analysis
YMCA provides interactive tools to explore the results of the mesh
comparison analysis. The main elements of the user interface are il-
lustrated in Figure 1.

Overview image. To provide an overview of the differences in
the data, we propose a rendering of the reference mesh (Figure 1a). A
heat map is projected onto the mesh according to the current variance
map. The default heat-map colors range from blue (low variance) to
red (high variance). If necessary, the color scale can be changed by
the user by selecting different colors for the minimum and maximum
variance values. The reference mesh rendering allows the user to in-
spect differences in the data without having to inspect all individual
meshes, because the relevant information is aggregated in one view.
An example for an overview image can be seen in Figure 6.

Hot-spots and parallel coordinates. In the user interface, the
hot-spots are arranged in a parallel coordinates plot as described in
Section 4.3. The parallel coordinates plot, where the hot-spots are
embedded in, represents the input meshes as lines, indicating their lo-
cal error value at the hot-spot positions (Figure 1b). To interact with
the data, the users can change the ordering of the axes and also elim-
inate individual hot-spots by mouse interaction. It is also possible to
create new hot-spots during the analysis (see below). To give the user
an idea about the position and size of the hot-spots, they are repre-
sented by thumbnail images of the mesh displayed at the correspond-
ing parallel coordinates axes (Figure 1c). The thumbnail images are
created when a hot-spot is created in the system. The reference mesh
is used to generate the images, and the viewports are given by the
corresponding hot-spots’ locations. The images can be activated by
mouse interaction in the interface. When clicking on one of them, the
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Fig. 5: Parallel coordinates plot. We can use the hot-spots (Sec-
tion 4.2) to create a multi-dimensional feature space, defined by the
number of hot-spots t1...th and the error values e at those positions for
all input meshes. The hot-spots are represented as thumbnail images,
and the input meshes m1...mn are defined by lines.
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Fig. 6: Overview image. In this figure the reference mesh with a pro-
jected heat map according to the variances in the data is shown (a), as
well as some mesh regions in more detail (b).

overview is automatically rotated to the location of the hot-spot. The
optimal viewing angle is calculated by aligning the viewing direction
with the normal vector of the hot-spot and centering it in the viewport.
To emphasize the hot-spot locations, we use a focus+context approach
in the rendering of the mesh. We employ opaque rendering only to the
hot-spot area, while the rest of the mesh is depicted with high translu-
cency (Section 4.5). The user can use the parallel coordinates plot
and the hot-spots to quickly depict input meshes containing undesired
results and eliminate them from further analysis.

Magic lens. Besides providing an overview of the data, YMCA
also supports means to further inspect local variations. We propose a
magic lens tool (Figure 1d) which can be used to select a certain region
of the mesh. The magic lens is circular, because drawing a circle is a
very intuitive way of selecting objects. A colored circle drawn over
the mesh indicates the current location of the lens. The size can be
dynamically adjusted. Since the circle is transparent, the selected part
of the reference mesh is also shown.

Analyzing local variations. The current location and size of the
magic lens tool is used to present more detailed information about
the local behavior of the mesh reconstruction algorithms in a detail
view (Figure 1e). To provide quantitative information, a ranking of
the mesh algorithms is provided. The reconstruction algorithms are
sorted according to their corresponding accumulated error at the cur-
rent lens position. For every algorithm a rectangle is placed at the
corresponding position along an error scale. The scale ranges from the
global minimum to the global maximum error. The user can activate
rectangles by mouse interaction to reveal the name of the algorithm at
this position. In addition to the ranking, further visual information is
needed for the analysis of the meshes, for which we added a data sum-
marization view. Here the meshes are classified according to their
accumulated error at the current lens position (Section 4.6 for further
information). This summary gives an overview of the variance and
possible problems at the current lens position. According to feedback
from domain experts, besides having an overview, it still is necessary
to have access to the individual meshes. Therefore, we allow the user
to see close-up views of the reconstructed meshes. If more than one
mesh is selected, we place the close-up views side-by-side according
to the concept of Small Multiples [29]. The meshes inside the close-
up views are color-coded according to the accumulated error at the
current lens position. Here we use a different heat map than the one
projected onto the reference mesh to make a clear distinction between
the variance and the local error values. All interface items are updated
every time the magic lens is moved or resized. An example of how a
detail view may look like can be seen in Figure 7.

Additional user controls. We provide some additional controls
which can be used to adapt the system’s interface elements accord-
ing to individual preferences. As mentioned above, the color scales
of the overview image and the close-up views of the reconstructed
meshes can be customized by the user. In addition, the upper and
lower bound of the color heat map in the overview image can also be
adjusted, which allows the user to concentrate on different variance
ranges. The render mode can be changed from hot-spot rendering to
heat-map rendering at any time. In the detail view, the user can decide
whether he/she wants to see the global ranking as well, and whether
he/she wants to concentrate on the data summarization, on the individ-
ual meshes, or both. Furthermore, it is possible to replace the reference
mesh by some other input mesh. Then all differences and variances are
re-computed and the data is re-loaded. This option allows the user to
compare one mesh against all others in the dataset.

4.5 Hot-Spot Rendering
The hot-spots in YMCA can be dynamically activated in the user inter-
face by selecting a hot-spot thumbnail in the parallel coordinates view
(Section 4.3). This automatically rotates the overview to an optimal
viewing angle to uncover the region of interest on the reference mesh.
However, in many cases the hot-spots are located in concavities of the
surface, which are often occluded by other parts of the mesh. Thus, a
clear view onto the hot-spot may be prevented, and the user might lose
the focus if he/she rotates the model.

We therefore use a visualization technique that removes any occlu-
sions of the interesting surface region by increasing the transparency
with the distance to the hot-spot. Given a pre-computed hot-spot po-
sition p and its extent σ , we employ a smooth transparency kernel
K(x) = e−4‖x−p‖4/σ 4

to put the hot-spot into focus (full opacity) while
removing occluding surface parts and at the same time providing back-
ground context (high transparency).

This is done by ray casting, using two render passes: First, in an ac-
cumulation pass, the whole mesh is drawn into a texture using accumu-
lative blending. Every fragment with corresponding surface position x
is weighted by the kernel K(x). This way, the resulting texture stores
for each pixel the weighted sum of surface colors along the respective
ray, as well as the sum of all weights. Then, in the normalization pass,
the accumulated values in the texture are normalized by the sum of
their weights and drawn onto the screen (Figure 8).
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Fig. 7: Detail view. When using the magic lens tool, the user can
hover over the reference mesh and inspect parts of it in more detail.
The global error value of the input meshes (a) and the local error at
the lens position (b) are displayed at the top. The meshes are classified
according to their local error value at the current position of the lens
(c). It is also possible to view individual mesh renderings (d).



Fig. 8: Hot-spot exploration. This figure shows a model rendered
in hot-spot mode (Section 4.5) with three different hot-spot examples
(different position and extend).

4.6 Data Summarization in the Detail View

To deal with scalability, and to provide a condensed overview of the
data, we decided to integrate a data summarization into the detail view
(Figure 7c). When hovering with the magic lens over the mesh, the
user should details about the underlying data, as well as a combined
summary. The purpose of the summary is to quickly inform the user
about the variability of the data at the current lens position, and indi-
cate whether further inspection would be necessary.

We propose to classify the reconstructions according to their accu-
mulated error at the current lens position. The variance at the current
lens position indicates the number of classes which are needed. After
detailed discussions with our collaborators we came to the conclusion
that dividing the data into three classes (best/middle/worst) is a very
intuitive way of presenting a summary of the data. Therefore, a max-
imum of three classes is allowed. We use two fixed thresholds that
define the final number of classes. An average image is used as class
representative to display the data.

Figure 9 gives an example of how the data summarization could
look like. If the variance at the current lens position is low, only one
class is created containing all meshes (Figure 9a). This shows that
all reconstruction algorithms produced the same result at this position.
The higher the variance, the more classes are created (Figure 9b). Such
positions on the mesh, where the reconstruction algorithms produced
very different results, might need further inspection by the user.

The proposed data summarization provides a good overview of the
data, where the user can quickly decide about a further local inspection
of the data. In addition to this level of abstraction, the average images
representing the classes still reveal the underlying information.

a

b
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Fig. 9: Data summarization. This figure shows two examples for data
summarization in the detail view when hovering over areas of low (a)
and high (b) variance.

5 IMPLEMENTATION

The pre-processing step, consisting of comparing the meshes and
calculating the variances, was implemented in C++. We used
MeshDev [26] to calculate the differences. The cost of the pre-
processing step, consisting of the calculation of the variance map and
the location of the hot-spots, depends on the number of meshes in the
input data set. No user input is required during the pre-processing step.
The interaction itself, which works in real-time, has been implemented
in C++ and OpenGL/GLSL. The application was tested on a machine
with an Intel i7 CPU, 12 GB of RAM and an NVIDIA GeForce GTX
580 graphics card. A comparison of the computation times and mem-
ory requirements during the analysis can be found in Table 1. A more
detailed description of the datasets can be found in Section 6.

Table 1: Runtime and memory requirements. The first column gives
the name of the dataset. The second column shows the number of
meshes in this dataset. The next column contains the runtime for the
pre-processing, which consists of the calculation of the variances and
the localization of the hot-spots. The last column shows the amount of
memory used on the graphics card.

Dataset Meshes Pre-Processing Memory

Gargoyle 10 12.7s 82.6mb
Dancing-Children 100 86.9s 797.5mb
Daratech 15 17.2s 131.4mb

6 RESULTS

We used data from the field of point-cloud reconstruction to test our
approach (see also Section 4). The data was produced by different al-
gorithms, for example Poisson Surface Reconstruction (Poisson), Al-
gebraic Point Set Surfaces (APSS) and Multi-level Partition of Unity
Implicits (MPU). The reader is referred to the survey by Berger et
al. [6] for a more detailed description of the reconstruction algorithms.

We applied our approach to three different datasets. The first
dataset, called Gargoyle, comprises ten mesh reconstructions from a
virtual point cloud scan of a carved stone figure. The second dataset,
called Dancing-Children, consists of 100 mesh reconstructions from
a virtual point cloud scan of an ornament. The third dataset, called
Daratech, comprises 15 mesh reconstructions from a scan of an indus-
trial workpiece. Figure 10 shows renderings of the reference meshes of
the three datasets and further information about the mesh dimensions.

Different reconstruction algorithms perform with different accuracy
on different parts of a surface. The parallel coordinates plot in con-
junction with the hot-spot thumbnails (Section 4.3) enables the user to
understand the relative performance of different algorithms on a par-
ticular part of a surface, and at the same time allows him/her to visually
inspect the reconstructed surface and its quality. In Figure 11a, YMCA
visualizes an automatically identified artifact in the Daratech dataset
produced by the Wavelet algorithm (wrong mesh vertices highlighted
red), and clearly classifies this algorithm as an individual outlier on the
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Fig. 10: Datasets used to evaluate YMCA. All datasets consist of mesh
reconstructions from point cloud scans. The first one (a) is called Gar-
goyle, the second dataset (b) is called Dancing-Children, and the name
of the third dataset (c) is Daratech.
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Fig. 11: Outlier detection. The visual analysis tools of YMCA allow
users to quickly detect outliers, which might be caused by noise in the
data (a) or by a certain algorithm behavior like over-smoothing (b).

parallel coordinate axis, with relatively high reconstruction error. At
a different part of the model, the RBF algorithm stands out by falsely
closing a hole, where all remaining algorithms perform correctly (Fig-
ure 11b). By giving this integrated overview of the algorithms’ relative
performance on different surfaces areas (statistically and visually), the
hot-spot localization and the parallel coordinates plot allow the users
to quickly classify algorithms and judge their eligibility. A manual
comparison of all meshes is far more tedious and leads to particular
artifacts being easily missed.

In all three datasets, parts of the variance map exhibit rectangular-
shaped artifacts. We used the overview image and the magic lens (Sec-
tion 4.4) to further inspect those areas. With our tools we could find
out that these artifacts are always produced by the Poisson reconstruc-
tion algorithm (Figure 12). Apparently, this artifact is caused by the
limited resolution of the octree employed by the Poisson algorithm for
reconstruction. With the visual analysis tools of YMCA, this artifact
could quickly be related to the Poisson algorithm and explored visu-
ally. It is clearly visible in which part of the model the octree resolution
has to be adjusted to guarantee a smooth reconstruction.

With the data summarization used in the detail view (Section 4.6),
differences at the reconstructed mesh boundaries can be explored.
Blending the lens view of meshes of the same class allows a direct
comparison and visualization of the geometric variance of their bound-
aries. In Figure 13, two examples of different boundaries can be seen.

min
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Fig. 12: Artifact analysis. In all datasets rectangular-shaped artifacts
could be identified in the overview image (a). With the magic lens tool
it is possible to find out that these artifacts are caused by the Poisson
reconstruction algorithm (b).
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Fig. 13: Mesh boundaries. The summary view in the detail view en-
ables users to identify regions where the reconstruction algorithms
produce almost the same (a) or different (b) mesh boundaries, indi-
cated by a color band.

Parts of the boundary of the Gargoyle model have been reconstructed
in a similar way by all algorithms (Figure 13a), whereas in other parts
the boundaries of the reconstructed meshes differ more strongly (Fig-
ure 13b). The differences in the boundaries become visible as a color
band in the images. Different reconstructions may produce different
boundaries, due to different approaches to fit a surface to the point
cloud data. With YMCA it is now possible to explore these effects in
detail. The regions where boundaries differ are clearly visible when
inspecting the mesh with the magic lens. This helps the user to judge
which reconstruction would better represent the data.

The parallel coordinates plot of YMCA also proved to be very help-
ful in the analysis of large datasets. If such datasets shall be inspected,
it is very important to quickly narrow down the search space to suitable
reconstructions. Reconstruction algorithms that perform either gener-
ally very good, or very bad, in most cases can be identified. It is also
possible to eliminate algorithms from further analysis, if they do not
meet certain reconstruction requirements. An example is given by the
inspection of the Dancing-Children dataset, consisting of 100 meshes.
The resulting parallel coordinates plot can be seen in Figure 14. Here
it was possible to, for example, identify one algorithms (Fourier-3)
with a low error rate, and one algorithm with a high error rate (SPSS-
7) in all hot-spot regions. We also found one algorithm (Scattered-2)
that exhibits a varying error rate.

0

0 1

0 1

0 1

1

Fourier-3 Scatt-
ered-2 SPSS-7

Fig. 14: Analyzing large datasets. The parallel coordinates plot is a
very helpful tool when analyzing large datasets. One algorithm with a
low error rate (Fourier-3), one with a high error rate (SPSS-7) and one
with a varying error rate (Scattered-2) in the hot-spot regions could be
identified very quickly.



7 EVALUATION

To evaluate our approach, we have collected qualitative feedback from
users experienced in working with meshes. From this feedback we
wanted to find out how useful the proposed visual analysis is for the
users, and we also discussed possible applications for future work.

Every feedback session lasted between 30 and 45 minutes. First the
motivation and the technique itself were explained to every participant.
Then they got a training dataset where they could test the interaction
possibilities. Afterwards they were presented a new dataset, and were
asked to name one or more reconstruction algorithms that produce ap-
propriate results for the given point cloud. They were also asked to
explain their decision. For this task they had ten minutes time. At
the end, we asked them to fill in a questionnaire with four questions
(described in Figure 15 and Figure 16).

We asked seven participants (six men, one woman) to participate
in our feedback study. Three of the participants have been working
in the field of point-cloud reconstruction for years, and therefore have
a lot of experience. Two other participants are experienced computer
scientists in the rendering field, where they are working with mesh
operations like filtering or simplification. Two participants are stu-
dents from the field of computer graphics. All participants agreed that
analyzing point cloud reconstructions is an important task, and that
existing methods do not provide sufficient assistance for this.

Six out of seven participants had no problem to solve the task of
finding an appropriate reconstruction algorithm for the given point
cloud. One participant ran out of time while solving the task. We com-
pared the results with reconstructions that were previously selected by
domain experts. It turned out that participants selected the most suit-
able reconstruction algorithms in all cases.

With the first three questions in the questionnaire we wanted to find
out more about the practicability of the system:

1. Does the system help to spot point cloud regions which are prob-
lematic for reconstruction?

2. Does the system help to decide which reconstruction algorithm
should be used?

3. Does the system help to better understand the strengths and
weaknesses of certain reconstruction algorithms?

The answers to these three questions can be seen in Figure 15. The
participants agreed that YMCA helps to spot the most problematic
regions in the reconstruction from a point cloud (Question 1). They
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Fig. 15: Evaluating the practicability of YMCA. Question 1: Does
the system help to spot point cloud regions which are problematic for
reconstruction? Question 2: Does the system help to decide which
reconstruction algorithm should be used? Question 3: Does the sys-
tem help to better understand the strengths and weaknesses of certain
reconstruction algorithms? YMCA proved to be very helpful for eval-
uating point clouds and finding the most suitable reconstruction.

also largely agreed that the system can help to identify the most ap-
propriate reconstruction algorithms for a given point cloud (Question
2). However, they were discordant about whether YMCA helps to bet-
ter understand how the reconstruction algorithms work (Question 3).
Some participants stated that algorithms can be judged in a visual way,
but for a detailed analysis additional information about the point cloud
(i.e., noise level) would be necessary. For future work, it would be
interesting to analyze the algorithms’ pipelines in more detail, and to
also take into account the influence of different parameter settings.

The fourth question in the questionnaire concerned which elements
of the user interface the participants found helpful during the analysis.
We asked which of the following elements they used the most:

• Variance map (i.e., overview image)

• Parallel coordinates (i.e., visualization of reconstruction results
in the parallel coordinates plot)

• Hot-spot localization (i.e., the possibility to click on hot-spot
thumbnails in the parallel coordinates plot and the hot-spot ren-
dering mode)

• Detail view and data summarization (i.e., detail view with close-
up views and ranking, and data summarization)

The answers to this question can be found in Figure 16. The overview
image showing the variance map was rated to be the most helpful inter-
face element for the users. This is not surprising, since at the one hand
this is the central interaction element of the system, and on the other
hand most users are already familiar with interpreting color heat maps
on 3D models. The parallel coordinates plot was very helpful for the
participants to compare the overall and local performance of individual
algorithms. They used this interface element especially to eliminate
reconstructions from further analysis. Although all users were con-
vinced about the fact that a list of hot-spots is already prepared when
starting the analysis, some of them did not like the hot-spot rendering
technique. They stated that it is confusing at the beginning and needs
more experience to be interpreted in the right way. The participants
also used the detail view to judge the local behavior of the algorithms.
Only one participant stated that the data summarization is sometimes
hard to interpret and would need a longer training period.

We also asked the participants about suggestions for future work.
During these discussions it turned out that the system inspired the users
quite a lot, and they had many suggestions for additional features and
applications. For the overview image, one participant stated that it
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Fig. 16: Evaluating the most helpful user interface elements. With this
question we wanted to find out which user interface elements the users
found the most helpful ones. All participants liked the variance map
and rated it to be very useful. Also the parallel coordinates plot and
the detail view were used by most of the participants. However, the
hot-spot rendering was sometimes confusing and therefore not rated
to be very useful in all cases.



would be helpful to see the reference mesh rendered in colors accord-
ing to the algorithms which perform best at certain points. This could
be a valuable hint in the analysis. Having a very colorful model means
that algorithms differ a lot, whereas having large uniformly colored
parts means that one algorithm performs better than all others in those
areas. For the data summarization in the detail view, the participants
suggested that sometimes it would be useful to be able to manually
adjust the class borders, or even do a classification by themselves (by
manually selecting algorithms).

The participants experienced with point cloud reconstruction also
stated that they liked the data summarization in the detail view, be-
cause it quickly provides an overview of the data at the current local
position. They also pointed out that summarization alone is not helpful
for them. To be able to judge which algorithm performs better than the
others, they still need to be able to access the individual input meshes.
Therefore, they also liked the possibility to depict all close-up views
of all meshes from one class in a Small Multiples display.

8 DISCUSSION

YMCA operates on a set of meshes which are compared to a reference
mesh and analyzes similarities and differences among them. Not many
suitable tool-sets exist that allow the efficient comparison of multiple
meshes. With YMCA it is now possible to quickly and visually an-
alyze mesh reconstruction results and depict the appropriate solution
for the given point cloud data. The system also provides an overview
of the critical areas in the available point cloud data, with respect to
different reconstruction approaches. Our system nonetheless has some
limitations, which point to interesting directions for future work.

For the data in this paper, reference meshes were given which could
be used to calculate the differences in the meshes. However, often this
is not the case when analyzing point cloud data (e.g., when scanning
real-world objects). In this case we propose to create an average mesh
out of the input meshes, and to compare the meshes against this aver-
age. This provides an initial overview of the differences in the data. If
the user is not satisfied with comparing the meshes against the aver-
age, he/she can exchange the reference and use some other input mesh
instead, e.g., the mesh that delivers the best reconstruction of certain
parts of the input data. YMCA already provides controls for exchang-
ing the reference mesh.

We used an attribute deviation metric [26] to calculate the mesh dif-
ferences. This paper is primarily about the visual depiction of mesh
differences, which means that the calculation of the differences is de-
coupled from the visual representation. The metric can be exchanged
with any other mesh difference calculation (e.g., curvature measure-
ments). We tested this by using geometric deviation [26], which can
be seen in Figure 17.

The variance map of YMCA gives an overview of the regions in
the point cloud where the reconstructions produce different results.
However, for some applications it might be interesting to see the global
error instead (i.e., regions where all reconstructions fail). To test this,
we used the mean squared error to aggregate the different errors into
one value per vertex. YMCA already provides means for exchanging
the metric, which can be also applied to using the error values for

ba

Fig. 17: Changing the metric from point distances (a) to geometric de-
viations (b) results in an alternative overview image as well as different
hot-spot locations.

visualization instead of the variances. At present this means that the
system has to be initialized with either the one or the other settings.
The user can only explore the results of one metric at a time. This is
something that we want to change in the future. We would also like to
work on possibilities where the metric can be changed during analysis,
while the settings (like selections in the parallel coordinates plot) are
still preserved for all metrics. This way it will be possible to select
a list of hot-spots (calculated by different metrics) and use them for
further analysis.

As pointed out during the evaluation, YMCA provides limited sup-
port in understanding the strengths and weaknesses of individual re-
construction algorithms. Our approach enables the user to visually
compare the results and therefore judge them, but domain experts
stated that additional information about the input data (e.g., noise
level) would be helpful. We plan to integrate this into the system in
the future.

Berger et al. [6] implemented a surface reconstruction benchmark
tool which can be used to test several reconstruction algorithms against
one point cloud dataset. Additionally, the benchmark tool provides
scanning simulations which can produce different point clouds of the
same model with different quality (e.g., add more or less noise to the
data). Then the benchmark tool can be used to apply the reconstruction
algorithms to different point cloud versions. This would span a param-
eter space for every reconstruction algorithm showing its strengths and
weaknesses (e.g., in the presence of noise).

We also would like to apply YMCA to other mesh datasets, for
example created by different mesh re-sampling or simplification al-
gorithms. It would also be interesting to explore other 3D datasets.
One possibility could be to explore differences in algorithms for iso-
surface construction. In the user interface we would like to add more
complex shading models with the possibility to change the lighting by
user-defined parameters. For the analysis we would like to provide
means that the user can define a new reference (e.g., a specific corner
or shape) the input meshes should be compared to.

During the evaluation, the domain experts also brought up another
promising idea for future work. For them it would be very helpful
to be able to export a 2D flattened or unrolled representation of the
current model showing all, or at least the most important, hot-spots in
one image, together with samples of the reconstructed meshes. Up to
now such illustrations are generated manually by rotating the model
and producing close-up views.

9 CONCLUSION

In this paper we presented Your Mesh Comparison Application
(YMCA), a new visual analysis application for the comparative vi-
sualization of multiple 3D meshes. Interactive tools are provided to
present an overview of the differences in the data, and to explore local
areas of interest in more detail. Our visualization approach combines
explicit encoding, juxtaposition, and parallel coordinates. It further
addresses the scalability problem of previous mesh comparison tools.

We applied our approach to meshes coming from different mesh
reconstruction algorithms that were applied to point clouds. With our
method, differences between several resulting meshes can be quickly
identified, and it is also helpful to explore individual characteristics of
the different mesh reconstruction algorithms.

In the future, it will be interesting to investigate other possible in-
teraction techniques. Especially for large datasets, we would like to
improve the interaction possibilities in the parallel coordinates plot
(e.g., by angular brushing [17]). We would also like to combine sev-
eral mesh comparison metrics into one system. Another direction for
further research is the fine-grained analysis of the parameter space of
the available mesh reconstruction algorithms. With our tool it could be
possible to identify strengths and weaknesses of the algorithms when
applied to different point clouds.
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Parameter Studies of Dataset Series. IEEE Transactions on Visualization
and Computer Graphics, 16:829–840, Sep. 2010.

[22] T. Masuda, S. Imazu, S. Auethavekiat, T. Furuya, K. Kawakami, and
K. Ikeuchi. Shape difference Visualization for ancient bronze Mirrors
through 3D range images. Journal of Visualization and Computer Ani-
mation, 14(4):183–196, 2003.

[23] H.-G. Pagendarm and F. H. Post. Comparative Visualization: Approaches
and Examples. In In: Visualization in scientific computing (H. Göbel
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