
Graphical Histories of Information Foraging

Manuela Waldner 1 Stefan Bruckner 2 Ivan Viola 1

1 Vienna University of Technology, Vienna, Austria 2 University of Bergen, Bergen, Norway
{waldner|viola}@cg.tuwien.ac.at Stefan.Bruckner@uib.no

ABSTRACT
During information foraging, knowledge workers iteratively
seek, filter, read, and extract information. When using mul-
tiple information sources and different applications for infor-
mation processing, re-examination of activities for validation
of previous decisions or re-discovery of previously used in-
formation sources is challenging. In this paper, we present
a novel representation of cross-application histories to sup-
port recall of past operations and re-discovery of informa-
tion resources. Our graphical history consists of a cross-scale
visualization combining an overview node-link diagram of
used desktop resources with nested (animated) snapshot se-
quences, based on a recording of the visual screen output dur-
ing the users’ desktop work. This representation makes key
elements of the users’ tasks visually stand out, while exploit-
ing the power of visual memory to recover subtle details of
their activities. In a preliminary study, users found our graph-
ical history helpful to recall details of an information forag-
ing task and commented positively on the ability to expand
overview nodes into snapshot and video sequences.

Author Keywords
interaction history; graph visualization; provenance.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

INTRODUCTION
Information foraging is an integral part of knowledge work-
ers’ sensemaking processes, covering adaptive seeking, fil-
tering, reading, and extracting of information to generate
hypotheses or make decisions [28]. Often, these informa-
tion foraging tasks require multiple specialized tools, auxil-
iary applications, and different information sources. Exam-
ples include investigative journalists synthesizing informa-
tion from various sources into a coherent newspaper story,
public authorities collecting and re-distributing information
from and to various channels, or biologists building structural

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
NordiCHI ’14, October 26–30 2014, Helsinki, Finland
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2542-4/14/10$15.00.
http://dx.doi.org/10.1145/2639189.2641202

Figure 1. WindowTrails of a biochemical modeling task: information
from various online sources is collected and interpreted to define a model
of a biochemical reaction in a specialized simulation software (1). The
history graph contains a node for each recorded view. Two nodes are ex-
panded to activation sequences (2) and a video sequence (3), respectively.
A linked view (5) shows the selected node (4) in full detail.

and physiological models by integrating information from on-
line protein databases, pathways, experiments, and scientific
publications.

Whenever these knowledge workers need to re-examine pre-
vious steps of their information foraging activities or re-visit
information resources, they are facing a serious challenge.
While many applications provide operation or browsing his-
tories, these individual histories cannot coherently capture an
entire cross-application information foraging task. They ei-
ther facilitate document re-location based on contextual cues
(such as last usage times and related documents [26, 18, 13]),
or provide a single-application visual operation history (such
as image editors or visualization software [22, 14, 12]).

Our work WindowTrails is a first attempt to bridge the gap be-
tween browsing histories and operation histories of individual
applications through a visual summary of cross-application
information foraging. The main challenge we address in this
paper is how to visually convey the structure of information
flow across multiple information sources and applications,
while still being able to explore fine-grained operations in full
detail. Our graphical desktop history allows users to explore
their task histories on multiple levels of detail in a structural

and a temporal approach. We contribute a novel steerable
graph-based history, with semantically zoomable node repre-
sentations to aid recognition of key desktop elements and re-
call of exact operation details in a nested visualization (Figure
1). Thereby, we exploit the power of the user’s visual mem-
ory by constructing our graphical history from a recording
of visual screen changes and low-level user input. We gath-
ered first user feedback in a preliminary user study by asking
users to recall details of an information foraging task after a
few days with the aid of either WindowTrails or a list-based
history interface.

RELATED WORK
Our work covers aspects of graphical operation and brows-
ing histories, as well as graph visualization. We review the
related work from the two distinct subfields in the following
subsections.

Graphical Histories and Provenance
Graphical operation histories have been recognized as impor-
tant tools to review and summarize previous activities [14],
to learn and compare workflows [20], to facilitate undo and
redo actions during task operation [14, 25, 12], and for esti-
mating task durations [32]. Most commonly, operation his-
tories are represented as lists containing textual descriptions
and small thumbnails (e.g., image editors). When exploring
potential visual representations of workflows, Kong et al. [20]
found out that users expect to see snapshots of the results, but
also of important intermediate steps. Therefore, several re-
searchers generate continuous operation histories based on a
video stream or representative snapshots: For instance, Klem-
mer et al. [19] create a timeline view with thumbnails for each
recorded user action. In Chronicle, Grossman et al. [12] hi-
erarchically aggregate key actions into a limited number of
expandable meta-thumbnails, and Ma [22] represents the vi-
sual exploration workflow of a scientific visualization in a
node-link diagram, where nodes show snapshots of the vi-
sualization and links represent operations, like transfer func-
tion adjustments. Heer et al. [14] also consider undo-redo ac-
tivities and arrange sequential visualization states in branch-
ing timelines. While these examples are all tightly integrated
into an application, Nakamura and Igarashi [25] demonstrate
a method to construct compact application-independent in-
teraction histories as storyboards. We were inspired by these
rich histories and explored possibilities to translate some con-
cepts to cross-application scenarios, where task work is frag-
mented across multiple resources. We also rely on a screen
recording to visually summarize user operations. However,
we visually embed the recorded interaction sequences of dif-
ferent application windows into a larger network of appli-
cations and information resources that all contributed to the
user’s task.

In contrast to operation histories, browsing or file histories
have been developed to re-discover resources [13], to resume
a task after an interruption [26, 30], but also to assess the
usability of web sites [16]. These histories typically do not
try to convey what the user has done, but rather which re-
sources have been used, which have been used in concert,
and at which times. Prominent examples are conventional

web browsers that represent their history as a time-ordered
list of web site titles. YouPivot [13] augments such web
histories with contextual cues, such as public calendar data
or the user’s twitter activities, and a stream graph visual-
ization to highlight times of high user activities in different
online resources. WebComets [9] uses a timeline-based ap-
proach, where individual web page visits are horizontally ar-
ranged according to their visit time and duration, and verti-
cally clustered by browser tabs. The Context-Aware Activ-
ity Display [30] represents groups of related documents in
bubbles, where groups are automatically defined based on
the user’s interaction history. None of these browsing his-
tories assists users in recalling their actions in detail by vi-
sually summarizing what they actually have seen. In con-
trast, Ayers and Stasko [2] represent web histories as trees,
where nodes can be expanded to thumbnail previews of the
web sites. Similarly, WebQuilt [16] uses a zoomable network
of website thumbnails to visualize user traces through web
pages. While single screenshots of web pages may support
recall by visual memory, we believe that a much more de-
tailed operation recall can be facilitated if users are presented
with what they actually have seen in a window (e.g., where
they have scrolled) and what they did in their applications
(e.g., what text they entered). Our work therefore differs, as
we try to reconstruct multiple meaningful snapshots of the
users’ work process, and allow them to watch short interac-
tion sequences on demand.

A common way to present file system and document prove-
nance is a graph structure. In the Open Provenance Model
[24], a directed provenance graph is specified to express
causal relationships and dependencies between “things”. For
instance, the VisTrails graph [7] illustrates the dataflow to
generate a scientific visualization. The document provenance
graph by Jensen et al. [18] visualizes how information is
transported through files, such as by copy-paste, save-as, or
e-mail attachment operations. Orbiter [23] and InProv [5]
show reads and writes of processes and files in a semanti-
cally zoomable node-link diagram and as a radial tree, re-
spectively. Footprints [35] and WebQuilt [16] visualize users’
web site traffic in node-link diagrams. A problem with these
graph-based approaches is that the temporal aspect is lost.
Therefore, Schmidt et al. [32] presented a compound graph of
history elements grouped into temporal sub-sequences. Our
work extends these graph-based approaches by visualizing a
cross-scale graph, where users can selectively expand nodes
to an animated history sequence.

Compound, Time-Dependent, and Nested Graphs
A compound (di)graph is a graph sharing its vertices with a
rooted tree [33, 34]. A subgroup of compound graphs are
hierarchical graphs, where nodes are repeatedly aggregated
into subgraphs in meta-nodes [34]. In a graph hierarchy, only
the leaf nodes of the hierarchy define the input graph, and all
subgraphs must be connected [1]. Examples for graph hier-
archies using node-link diagrams are GrouseFlocks [1] and
Orbiter [23]. TreeNetViz [11] and InProv [5] display graph
hierarchies in radial layouts. These systems are steerable,
meaning that users can interactively generate cross-scale net-
works, visualizing nodes from different hierarchy levels at the

same time [11]. All of these examples use homogeneous node
representations across all scales. Our cross-scale node-link
diagram is not only steerable with respect to the graph lay-
out. It also provides the user with semantic zooming on the
node representation with each hierarchy level change – from
abstract application icons and thumbnails to short recorded
interaction sequences.

Graph representations usually do not convey a temporal se-
quence of events. Card et al. [8] therefore use a timeline to
control which time span is visualized in their TimeTree. Sim-
ilarly, users can analyze node-link diagrams of player moves
and ball passes of temporal soccer game phases in SoccerSto-
ries [27]. Others combine structural and temporal data into a
single static compound graph, such as TimeRadarTree [6]. In
our WindowTrails system, users are provided with different
interaction techniques to explore the temporal aspect of the
graph. In addition, users can expand nodes to reveal nested
[17, 15] time-ordered sequences of recorded window states.

WINDOW TRAILS
Human memory is an adaptive system, which makes infor-
mation that is no longer needed gradually less accessible
[31]. Consider, for instance, a bioinformatician trying to
model a biochemical reaction. She first browses various on-
line resources, such as databases of biochemical pathways,
enzymes, functional genomics experiments, and biomedical
literature. As she extracts evidence from these resources, she
gradually refines her model in a biochemical simulation soft-
ware. A few months later, she wants to adapt her model but
can no longer recall in full detail the information sources and
operation steps she took that led to her model design. An-
other more trivial information foraging task could involve a
person planning a journey for two travellers. He browses dif-
ferent resources to come up with an initial travel plan. As he
outlines this travel plan to his co-traveller, they may disagree
on a few aspects, such as the proposed flight time or the se-
lected hotel. Being able to recall alternative options that were
initially discarded, such as a cheaper hotel, could help to ap-
ply corrections to the initial travel plan. We simulated such a
scenario in our preliminary user study.

Operation and browsing histories should facilitate recall of
task details after a longer time, when the memory of the task
has already vanished. However, the problem with exhaustive
digital histories is that they make it hard to distinguish rel-
evant from irrelevant material [3]. So how can we support
users in discovering one single piece of information or a sin-
gle operation in a history covering an entire task spanning
over hours? We formulated three core requirements for our
graphical histories reflecting these challenges:
R1: Aid recognition of key elements.
R2: Support re-tracing of activities from these key elements.
R3: Allow parts of the history to be explored in full detail.

We designed a couple of early draft visualizations for histo-
ries of desktop resource usage, from simple time-dependent
lists to complex information flow visualizations similar
to Sankey diagrams. The well-known node-link diagram
thereby was the most compact and at the same time the most
easily understandable representation, according to informal

user feedback. We therefore chose a node-link diagram as
initial history representation to provide an overview of history
elements and their relations. Node-link diagrams are known
to be well suited for exploration of relatively small graphs
and for path-finding tasks [10]. They are a ubiquitous choice
to describe complex time-dependent systems, such as state
transition diagrams [29], scene transition graphs for videos
[36], sports activities [27], provenance [24, 7, 18, 22], UML
activity diagrams, or biochemical pathways. In a node-link
diagram of an information foraging task, relevant “informa-
tion sinks”, where collected information was processed and
synthesized, should be easily detectable, while related “infor-
mation sources” should be visually connected to these sinks.

However, classic node-link diagrams do not convey any tem-
poral information and also do not summarize what the user
did or has seen. Therefore, we nest linear snapshot sequences
into these nodes that can be expanded on demand. We pro-
vide nodes in multiple levels of detail, so users can gradually
drill down from an abstract node representation to short his-
tory sequences in full temporal resolution.

Our WindowTrails system is composed of two core com-
ponents, as described in more detail in the following sub-
sections: 1) a recording component, capturing the visual
desktop history of the user and 2) the steerable visualization
of this information foraging history with three levels of detail.

Data Collection
Our graphical information foraging history is based on a
comprehensive recording of low-level input events and vi-
sual screen changes during the user’s information foraging
work. The recording can be invoked on demand whenever
the user performs some knowledge-intensive work. The fol-
lowing data is recorded:

We keep track of all windows that have been in use during the
user’s task. As single windows are often used to show differ-
ent documents or information sources, we furthermore distin-
guish between different views of a window. We define a view
as a distinct content (e.g., document or web page) shown in a
window. This content-centric approach is a common granu-
larity used for distinguishing distinct history items in existing
file and browsing histories, such as web browsers. In our data
structure (Figure 2 middle), views represent Level 1 nodes. In
the history visualization, these nodes are the initial collapsed
nodes of the node-link diagram at start-up (Figure 3 left).

Whenever the user performs a focus switch (i.e., a new
window receives the input focus) or the active document
within a window is switched, we save a focus switch event.
A focus switch event is described by the following tuple:
(vprev, vcurr, t), where vprev and vcurr denote the previously
and currently active view, respectively, and t is a time stamp.
In the graph, focus switch events represent the edges between
nodes (Figure 2 right), and each tuple also corresponds to one
Level 2 node of vcurr (Figure 2 middle).

We furthermore store all visual updates on the screen as the
following tuple: (v, type, rect, img, t), where v is the cur-
rently active view, type describes the type of the update (full

1 2 5 9 10 3 4 6 7 8 11 12

1 2 3 4 5 6 7 8 9 10 11 12

time

A

B1

C1 11 12

A B C

A1 A2 B1 C1 C2 A3

Level 1
Views

Level 2
Focus Periods

Level 3
Video
sequences

B A

C

Desktop Interaction

History
Database

A1 A2 A1 A3 B1 C1 C2

A
Snapshot

Cross-Scale Graph Visualization

Timeline

Full-Scale
Snapshot

Figure 2. System overview, illustrated with three example windows and an exemplary user selection in the resulting cross-scale graph: (left) desktop
interaction with three application windows (A, B, C), recorded into the history database; (middle) the temporal sequence of the recorded events (num-
bers in timeline at the bottom), the hierarchical data structure (top) with exemplary user-defined cut through three hierarchy levels (blue background),
and (right) the resulting cross-scale graph with a linked full-scale view and timeline. In this example, the user expanded the nodes B, C, and C2.

window, key-frame, or partial update), rect is the visual up-
date’s position and extents, img is the link to the actual image
data, and t is the event’s time stamp. Key-frames are partial
updates covering a fraction of the active window’s size larger
than a pre-defined threshold. Each key frame is a Level 3
node (Figure 2 middle) and is represented as a fully expanded
animated node in the history visualization (Figure 3 right).

Finally, we capture low-level input events as (v, type, t), with
v denoting the active view, type distinguishing between a
mouse button press, a key press, and a scroll wheel input, and
t as time stamp. This information is used to determine the
nodes’ relative sizes in the node-link diagram, as described in
the next subsection.

Cross-Scale Graph Visualization
Based on the recorded data, we construct a tree structure (cf.,
Figure 2 middle). While the second and third hierarchy lev-
els represent temporal sequences, the first level corresponds
to a network of views. We present the collected data in a
compound directed graph, which is described in more detail
below.

Level 1: View Network — The first level of the tree de-
fines the base network, with which the visualization is initial-
ized when the user loads a history. It is visualized as node-
link diagram of views, with distinct views as nodes and fo-
cus switches between views as directed links (Figure 3 left).
Each link is associated with a focus switch time. A node’s in-
coming and outgoing links with the smallest and largest time
values, respectively, define the node’s time interval [ts, te].
The opacity of the links encodes the number of the switches
between two adjacent views.

To make intensively-used information sinks visually distinc-
tive, nodes are scaled according to the amount of user ac-
tivity associated. For calculating the node size, we count the
number of recorded low-level input events associated with the
node’s view and weigh them according to their event type. We
weigh scroll wheel events lower than mouse clicks and key
presses, so views where information was actively processed
(e.g., by typing text) clearly stand out. A force-directed graph
layout assures that frequently visited views are located cen-
trally, and that views being used together are placed in close
proximity.

In an early version of the visualization, Level 1 nodes were
represented as application icons. However, collected data
from real scenarios and feedback from users (see Preliminary
User Study) suggested that information collection tasks of-
ten lead to a large number of views associated with the same
application and application icon, respectively. This was pri-
marily the case for the web browser, where each loaded web
site was shown as a separate node with the same icon in the
node-link diagram. We therefore changed this representation
for large views in the final version of our visualization: Above
a given node size threshold, Level 1 nodes are represented by
a combination of icon and thumbnail. The thumbnail thereby
shows the last recorded snapshot of the view in the history.

Consider the simplistic example in Figure 3 left: While the
web browser window “B” and the PDF viewer “C” were used
to collect information, the user entered the retrieved infor-
mation into the word processing document “A”. As the user
switched back and forth from the word document to the two
information sources, node “A” is placed in the center, with
links to the related elements. The increased activity in the
word processor leads to a clearly distinct node size of “A”.
While this network fulfills our first requirement R1 to guide
the user’s attention to the most actively used and closely re-
lated history items, it is not possible to determine which ac-
tivities have been performed in more detail.

Level 2: Storyboard of Application States — Level 1
nodes can be expanded to a linear sequence of window snap-
shots to show a temporal sequence of application states. As
application-independent histories cannot access any semantic
task information to segment the history into meaningful por-
tions, we provide one snapshot for each time a view was in
focus (Figure 3 middle). Each snapshot node has one incom-
ing and one outgoing link to a different view, defined by the
recorded focus switch events. The two links define the node’s
focus time interval [ts, te]. The snapshot sequence substi-
tutes the icon+thumbnail representation in the initial graph
layout. Neighboring Level 1 nodes can be minimally shifted
to prevent collisions, and will return to their original locations
when the node is collapsed again.

Node thumbnails show the last recorded visual state of the
view in the node’s focus time interval. Thus, an expanded

Figure 3. Cross-scale graph visualization for four example views A, B, C, and a terminal window: (left) the initial Level 1 network; (middle) A expanded
to Level 2; (right) C2 expanded to Level 3. Labels were added for illustration purposes, with the current node level in brackets.

snapshot sequence of a view represents a visual summary of
discrete operation steps in an application – i.e., of what the
user has seen while performing the task. The snapshot se-
quence should help the user identify key actions from which
related items can be re-traced by following incoming and out-
going links (→ R2). In the simple example of Figure 3 mid-
dle, the user can observe the changes in document “A” for
each focus period, and can also follow the links to the in-
formation sources visited before and after the selected focus
period.

Level 3: Video Sequences — If the user was producing a
long piece of work in a single view without consulting other
information sources, a single Level 2 snapshot may represent
a long operation period. Therefore, users can expand indi-
vidual snapshots one level further, splitting the period into
shorter sequences for a fully detailed exploration. We aggre-
gate all visual update events associated with the view’s fo-
cus period into multiple sequences with a pre-defined maxi-
mum length and at least a single key-frame within the period.
Changes between two subsequent nodes are depicted by ani-
mated snapshots. Animated Level 3 nodes are overlaid by a
transparent arrow and a small progress bar below the node to
clearly indicate that the full operation history of a particular
time period is replayed.

In the example of Figure 3 right, the user expanded the second
Level 2 node of PDF document “C” to determine which parts
of the document had been read. Since the recorded interaction
sequence is very short, the Level 3 sub-graph consists only of
a single node in this example. This fulfills our final require-
ment R3: Once identified, items of interest can be explored
in full detail, by watching short video sequences of recorded
user operations.

Interactive History Exploration
WindowTrails are not meant to be static. In contrast, interac-
tively drilling down from the overview network to real-time
interaction sequences is a core concept of our graphical his-
tory. The compound graph representation thereby provides
structural access to history items. The detailed exploration
is happening through multiple linked views. In addition, we
provide interaction techniques to explore the history tempo-
rally.

Semantic zooming is the core concept of our interactive his-
tory visualization. Starting from the Level 1 network, users
interactively create cross-sections through the graph hierar-
chy by left-clicking on nodes, as depicted in Figure 3. To
collapse expanded nodes, they right-click on any child node.

In addition, users can filter the graph representation by se-
lecting a focus node with the middle mouse button. The trans-
parency αn of a node n is then defined by its shortest distance
dn (i.e., number of links in the shortest connecting path) to
any focus node in the graph:

αn = α0 +
(1− α0)

dmax
(dmax − dn + 1),

where α0 is the minimum node opacity, dn is the node’s dis-
tance to the nearest focus node, and dmax is the maximum
distance of a node to a focus node to be displayed. In prac-
tice, we chose α0 = 0.2 (with α0 ∈ [0, 1]) and dmax = 1.
This means that all nodes that do not directly link to a focus
node will be shown with minimum opacity. Multiple nodes
can be put into focus to emphasize certain operations. Focus
nodes are rendered with red borders.

Users can explore details-on-demand in linked views by
hovering over a node with the mouse. The incoming and
outgoing edges of a hovered node are highlighted in semi-
transparent purple and green, respectively, and bidirectional
connections merge to gray. At the bottom, a timeline indi-
cates the focus periods of the selected node. On the right, a
linked view shows a full-scale snapshot associated with the
node. Figure 4 is a screenshot of our linked views, showing
details of node A2.

Finally, we allow users to trace interaction trails in the his-
tory in their temporal sequence. Consider Figure 5, where
it is impossible to tell which views were visited between the
two focus periods of the PDF document C without expanding
node A. To trace the visited views after the first visit of C,
the user hovers the left-most node of C to select it. After this
selection, we set the current time step t of the exploration to
the node’s start time ts. When the user presses the right arrow
key, we query the selected node’s outgoing link with time tl,
which results in the minimum Δt > 0, where Δt = tl − t.
The new highlighted node is the outgoing link’s adjacent node

12

3

4

5

Figure 4. Linked views to inspect details on demand: (1) the highlighted
node, (2) the incoming edge in purple, (3) the outgoing edge in green, (4)
the focus period in the timeline, and (5) the full-scale snapshot view.

(for instance, A in Figure 5 left), and t is set to tl. Similarly,
when stepping in reverse direction (by pressing the left arrow
key), we query the selected node’s incoming link with mini-
mum Δt = t−tl, where t is initially set to the selected node’s
end time te.

Figure 5. Re-tracing steps from C1 to C2 via the collapsed node A (large
green arrows). In the timeline, the time steps are shown (small green
arrows).

IMPLEMENTATION
Our WindowTrails implementation consists of two pieces of
software: a prototypical recording tool on the window man-
ager level and the interactive graphical history. Our proof-
of-concept history recorder is implemented as a plug-in to a
wide-spread OpenGL-based window manager for the X Win-
dow System (Compiz). When activated, the plug-in listens to
window mapping and unmapping events, focus switches (i.e.,
when a window receives the input focus and is restacked to
the top), and window manipulation events (moving and resiz-
ing). For each newly created window, we store the application
icon, the application name, and the command line argument
that initiated the window’s process. The latter is not used
in our current implementation, but could be utilized to re-
initiate the window’s process from the history interface. As
it is not possible to directly infer the windows’ loaded docu-
ments or URLs on the X Window System level, we addition-
ally keep track of the window titles to distinguish between
distinct views of a window. User activity is captured through
the X Window System’s XInput extension.

We utilize the X Window System’s XDamage extension to
be notified about “damaged” rectangular window regions that

require repaint. These regions are read back from the frame-
buffer through glReadPixels. Only if a window is mapped,
moved, or resized, we make a full window snapshot.

From these recorded damage regions, a snapshot of a view
v associated with a window w at a particular time t can be
reconstructed as follows: We first retrieve the last full visual
update of w before the requested time t, and load its asso-
ciated image to a texture texbase. Then, we query the time
associated with the last key-frame update tkf of v before t.
Finally, we gather all visual updates associated with v be-
tween tkf and t and copy them into texbase. In some occa-
sions, this leads to visual artifacts, when the key-frame at tkf
did not properly cover all previous window content. In our
examples, we chose a key-frame threshold of 0.5 – meaning
if more than half of the window’s size is repainted, it will be
treated as a key-frame. The lower this threshold, the fewer
images have to be accumulated into texbase because more
recorded updates will be labeled as key frames, but the more
likely it is that snapshots will be assembled incorrectly.

For animated Level 3 nodes, with a given start time ts and
end time te, we create one static texture for the node at ts, as
described above. Then, for each time step ti ≤ te, we create
a transparent texture texi with the dimensions of texbase and
copy all visual updates between ti and ti+1 into texi, where i
is the number of seconds passed since ts. We create a Level 3
node for every 10 seconds containing at least one key-frame.

The recorder writes all events to an SQLite database.
Recorded update regions are stored as PNG images to the
hard drive in their original dimensions.

This proof-of-concept recorder is sufficient to generate data
to demonstrate our interactive history visualization. However,
for long-term employment, several technical tweaks are rec-
ommended to improve the performance and applicability. In
particular, our recording tool generates an extensive amount
of image data by capturing window update regions in full res-
olution (e.g., around 1 GB per 30 minutes in our user study).
Down-scaling these images and image-based comparisons to
previously captured frames could significantly decrease the
amount of captured image data. Of course, with every down-
scaling, it will be harder for the user to identify detailed in-
formation in the reconstructed snapshots. Another useful ex-
tension could be the incorporation of inotify to additionally
observe file system changes, so nodes in the visualization can
actually link to their associated files and processes, respec-
tively. A complementary approach to restore entire system
states could be a combination with DejaView [21].

The graphical history itself is implemented as a stand-alone
Qt-application. It generates the compound graph recursively,
by first calculating the force-directed layout of all distinct
views in the history (using vtk), and then adding linear snap-
shot sequences of expanded nodes. If snapshot sequences
exceed the visualization width, they are scaled down. We
use the Box2D physics library to resolve occlusions between
expanded nodes and collapsed network nodes in a post-
processing step. Alternatively, a constraint-based graph lay-
out could be used to preserve the initial graph topology.

USAGE SCENARIOS
To illustrate the capabilities of WindowTrails, we will revisit
the scenario of the bioinformatician attempting to re-trace her
biochemical modeling steps:

The bioinformatician loads the history she recorded while de-
signing the model and quickly spots the icon of her main sim-
ulation software popping out from the visualization (Figure
1-1). In addition, she clearly sees the most frequently used
tabs of her web browser, where initially those with direct con-
nections to her simulation software are most relevant for her.
She expands the simulation software node and hovers over the
snapshots to quickly review her operation steps. She identi-
fies a snapshot created when she was entering an important
reaction formula and selects it as focus element to filter the
items visited directly before and after (Figure 6-1). From this
snapshot, she follows the incoming trail to a browser tab that
was frequently accessed in her modeling task, showing infor-
mation on the reaction she had entered. To determine where
she found this reaction information, she expands the node and
selects the first snapshot in the sequence as another focus el-
ement (Figure 6-2). Now, the origin browser tab (an online
pathway visualization) pops into focus as well (Figure 6-3),
because it was visited directly before. Since this tab was ac-
tivated many times and links to a lot of different nodes, she
traces her steps back from the reaction formula using the ar-
row key until she reaches a node showing a pathway search
interface in the third re-tracing step. In the linked detail pre-
view, she can easily identify the search term she used to come
up with the reaction she was looking for. Since the timeline in-
dicates that the search window tab has been activated twice,
she expands the node, focuses on the second snapshot (Figure
6-4), and follows the outgoing link from the other snapshot of
the search interface. Surprisingly, the search result leads to
the same resulting pathway. With these findings, she can more
precisely recall the reactions and pathways she browsed and
studied in detail to come up with her initial model design.

As illustrated in this scenario, we envision our graphical his-
tories to be primarily an aid for knowledge workers to re-
examine their information foraging tasks. However, there
are also other application areas where WindowTrails could
be beneficial. For instance, it could be used to create inter-
actively explorable cross-application tutorials, in contrast to
the wide-spread video tutorials published on the web. Sim-
ilarly, intelligence analysts could use WindowTrails to share
and discuss their cross-application workflows with collabora-
tors. Human-computer interaction designers could evaluate
desktop field studies with WindowTrails, and evaluate how
the operation of a single application is embedded into a user’s
normal desktop routine.

PRELIMINARY USER STUDY
We conducted a preliminary user study with an early version
of WindowTrails to explore whether and to which extent vi-
sual histories help users recalling their information foraging
activities, and to detect potential room for improvement. For
that purpose, we invited seven paid regular computer and in-
ternet users (aged 26 to 36, 2 females, 4 computer scientists

1

2

3

4

Figure 6. Snapshot of the bioinformatician’s exploration steps with en-
larged thumbnails on the right: (1) the key activity spotted in the sim-
ulation software, (2) the first instantiation of the web site explaining on
the key reaction, (3) the pathway visualization containing a link to the
reaction, and (4) the search performed to come up with this pathway.

and 3 technical support workers) to perform a study consist-
ing of two parts:

In the first part, users were asked to plan a realistic journey
for themselves and a second person fulfilling a few given con-
straints. They could use any online resources and a few sup-
portive applications. The travel plan describing all transports,
etc. had to be entered into a text document. We stored all user
activities with our recording tool and the experimenter also
noted the users’ steps manually. We restricted the maximum
task time to 30 minutes. One user had to be dropped due to a
system failure during recording.

The second part of the study was scheduled three to six days
after the first part. In this second part, users had to answer
two types of questions: 1) corner stones of their final travel
plan (e.g., the airline company of the flight) and 2) details
about discarded alternatives (e.g., the name of the bus com-
pany of an airport shuttle they had considered but discarded).
The second set of questions was highly dependent on the first
study part and was prepared individually for each user. We
also interviewed users for the reasons why certain options
had been chosen or dropped (e.g., reasons why an alternative
flight connection they had obtained was finally discarded).
They were provided with the print-out of the travel plan cre-
ated in the first study part, as well as a graphical history.

We employed a between-subjects design for this second part,
assigning participants to one of two groups. For the first
group, we used an early version of WindowTrails to repre-
sent their interaction history. The control group was pre-
sented with their recorded interaction history as a temporally
sorted, scrollable list of window titles that were color-coded
by application type and linked to a timeline on the bottom.
Since there is no directly comparable visual history that sup-
ports in-depth cross-application task exploration, we chose
this simplistic baseline condition to get a first impression of
the added value of WindowTrails compared to a classic list-
based browsing history. Our hypothesis was that a recorded
history is of little help to recall task details when presented as
a simple list. With WindowTrails, however, we expected to
see that users would be able to recall many forgotten details.

We recorded the user activities by screen capturing and au-
dio recording and issued a questionnaire after the experiment
(Table 1). Both study parts were conducted on a workstation
with a 27-inch monitor, a quad-core 1.90GHz CPU, and 8GB
RAM.

Q1 The provided history was very helpful to remind me about details.

Q2 I consulted the history very often when I could not remember details.

Q3 The layout of history elements was very easy to understand.

Q4 In the history, I could find very quickly what I was looking for.

Table 1. Experiment questions (5-point Likert scale).

Results
We report results on the frequency of history usage to an-
swer questions that could not be fully recalled, and qualitative
feedback on the usability of WindowTrails.

History Usage. All except two users could recall all details
of their final travel plan, as well as their considerations when
making the final decisions, without any digital support. How-
ever, users were unable to recall many details of discarded
alternatives without any history support. In the control group,
the users rarely consulted the history list when being unsure
about details. In contrast, users of the WindowTrails group
always utilized the visualization when in doubt (usage fre-
quencies are visualized in Figure 7 right, and a resulting vi-
sualization by one user is shown in Figure 8). This is also re-
flected in the questionnaire results: List-users found their his-
tory representation less helpful than the WindowTrails-users
and also consulted it less frequently according to their subjec-
tive judgment (cf., Figure 7 left, Q1 and Q2). After consulting
the histories, 75% (WindowTrails group) and 66.7% (control
group), respectively, of the final answers were correct. Feed-
back of WindowTrails users indicates that the snapshots of the
views (“when you see the pictures again, when you look at it:
oh yes, there was this hotel again, and that hotel...”), as well
as the compact representation of the entire history in the node-
link diagram (“here you have everything in one place!”) lead
to the increased helpfulness, compared to the list.

1

2

3

4

5

Q1 Q2 Q3 Q4

LIST

TRAILS

0

1

2

3

4

5

6

LIST TRAILS

correct

incorr.

Figure 7. Left: questionnaire results (blue=list, red=WindowTrails) for
the questions in Table 1. Right: Average number of times the list (left
bar) or WindowTrails (right bar) has been invoked, and whether the
resulting answer was correct (green) or incorrect (red).

History Usability. The list-based representation achieved
higher scores for understandability and the ease of finding
specific items in the questionnaire (cf., Figure 7 left, Q3 and
Q4). To better understand these differences, we report se-
lected qualitative feedback. Two WindowTrails users ex-
pressed subjective difficulties understanding the initial graph
layout. One user explained that he had difficulties finding
specific items because “you see so much... too much infor-
mation at the same time”. The other one complained that “I

Figure 8. Resulting visualization of one WindowTrails user in our study.
The nodes of the websites where she discovered her final flights, hotels,
and train connections between the two given destinations are highlighted
in green, blue, and yellow. The text document containing the final travel
plan is selected, and the hotel website node is expanded.

don’t know why the things are where they are”. Mind, how-
ever, that the version of WindowTrails used for the evaluation
employed solely application icons to show nodes in the ini-
tial Level 1 layout. According to their feedback, these two
users expected a more time-centric approach to explore their
history with a more powerful timeline to visit the recorded
views in their temporal sequence. The third user, however,
explicitly appreciated the graph layout because “[a] linear
[layout] would not be good, because you would constantly
have to scroll back and forth.”.

All three WindowTrails users commented positively on the
fact that nodes could be expanded into a linear sequence. One
user formulated it as “because then you have a documenta-
tion... you have a linear history, which maps back into this
nested history”. One user utilized animated Level 3 snap-
shots to determine detailed information and also appreciated
the concept: “This is good, that I don’t have to watch the
entire video [of the whole recorded history]”.

Discussion and Improvements
This preliminary study suggests that the proposed Window-
Trails history can be more valuable than a simple list of vis-
ited desktop resources. This is indicated by our observations
that WindowTrails users always consulted the visualization
when they were unsure about an answer, and also rated the
helpfulness of the history higher than users in the list group.

However, the study also revealed a usability problem of Win-
dowTrails: Two of three users reported that they found the
initial graph layout hard to understand. This was surpris-
ing for us, since graph layouts are widely used for describ-
ing complex time-dependent systems and the node-link dia-
gram was also the most easily understandable representation
in early draft stages of our system, according to informal user
feedback. From the two users’ feedback recorded during the
experiment, it seems that they both expected a more time-
oriented approach to explore their personal history. On the
other hand, the node-link diagram was also praised for its

compactness, which might have contributed to the fact that
it was used more often than the list. Also, our proposed con-
cept of expanding nodes into linear snapshot sequences was
immediately understood by all three users and well received.

In our final design of WindowTrails, we therefore applied
two changes to alleviate the raised usability problem without
eliminating the initial graph layout: First, we used a com-
bination of window snapshot and application icon for large
nodes. While this increases the criticized information density
of the initial graph layout even more, it makes it easier to rec-
ognize previously visited items on first glance. Second, we
added a standard focus+context technique to temporarily fil-
ter the visualization based on selected nodes (cf., Figure 6). In
an informal follow-up test, the focus+context technique was
a frequently utilized feature. Also, the adapted Level 1 rep-
resentation was found advantageous for identifying key ele-
ments, compared to the icon-based node-link diagram in the
user study. In the future, another useful extension could be
bidirectional brushing and linking between the timeline and
the graph visualization. While this is a well-known standard
approach (cf., for instance, [8, 13]), it could be a valuable add-
on for those users who rather want to explore their interaction
history – or parts of it – in a linear, time-based fashion.

The recorded histories for our usage examples and the pre-
liminary user study are shorter than one hour. While two
study users even found that this short history sequence leads
to a cluttered visualization, longer interaction histories will
result in an even larger number of views and nodes, respec-
tively. For longer histories, we will therefore investigate an
additional simplification level to maintain a compact repre-
sentation, for instance by a task-based window clustering as
proposed by Oliver et al. [26], in the future.

Our study has also shown that the amount of image data
recorded by our prototype is currently quite high. As out-
lined in the implementation section, down-scaling of recorded
images, recording only smaller sub-regions containing visual
changes, and capturing updates in a lower temporal resolu-
tion, can decrease the required storage. Also, discarding the
animated Level 3 video sequences and instead merging vi-
sual updates into a single static snapshot for each key frame,
such as proposed by Bezerianos et al. [4] or Nakamura and
Igarashi [25], further reduces the amount of stored images.

CONCLUSIONS AND FUTURE WORK
We presented WindowTrails to bridge the gap between single-
application operation histories and browsing histories in an
integrated cross-application desktop history. It utilizes a
steerable compound graph to provide a compact base repre-
sentation of used desktop resources with nested snapshot and
video sequences to re-trace discrete operation steps and to
link individual operation histories across applications. User
feedback from a preliminary study suggests that both, recall
through an image-based representation of history elements
and the compact representation of the entire task history in
a single diagram, are useful when recalling details of an in-
formation foraging task. Since some users found the initial
graph view unclear and expected a more time-centric explo-
ration, we added a focus+context technique to temporally fil-

ter the node-link diagram by selecting nodes of interest. In the
future, classic bidirectional brushing and linking between the
timeline and the graph visualization may furthermore support
a time-based exploration.

The design of WindowTrails is intended for graphical histo-
ries of information foraging tasks, typically ranging in time
spans of hours. The next step will be to integrate such a sys-
tem into the user’s real desktop environment. With constant
recording, it will be crucial to reduce the amount of recorded
image data and to apply visual clustering on the graph vi-
sualization to ensure compact representations even for days,
months, and years of recorded histories.

ACKNOWLEDGMENTS
This research has been financed by the Vienna Science and
Technology Fund (WWTF) through project VRG11-010, and
additional support has been provided by the EC Marie Curie
Career Integration Grant through project PCIG13-GA-2013-
618680. We thank our user study participants and Anne-
Kristin Stavrum for providing us with example scenarios.

REFERENCES
1. Archambault, D., Munzner, T., and Auber, D.

GrouseFlocks: Steerable exploration of graph hierarchy
space. IEEE Transactions on Visualization and
Computer Graphics 14, 4 (2008), 900–913.

2. Ayers, E. Z., and Stasko, J. T. Using graphic history in
browsing the world wide web. Technical Report
GIT-GVU-95-12, Georgia Institute of Technology, 1995.

3. Benjamin, A. S. Memory is more than just
remembering: Strategic control of encoding, accessing
memory, and making decisions. In Psychology of
Learning and Motivation, Aaron S. Benjamin and Brian
H. Ross, Ed., vol. Volume 48 of Skill and Strategy in
Memory Use. Academic Press, 2007, 175–223.

4. Bezerianos, A., Dragicevic, P., and Balakrishnan, R.
Mnemonic rendering: an image-based approach for
exposing hidden changes in dynamic displays. In Proc.
UIST 2006, ACM (2006), 159168.

5. Borkin, M. A., Yeh, C. S., Boyd, M., Macko, P., Gajos,
K. Z., Seltzer, M., and Pfister, H. Evaluation of
filesystem provenance visualization tools. IEEE
Transactions on Visualization and Computer Graphics
19, 12 (Dec. 2013), 2476–2485.

6. Burch, M., and Diehl, S. TimeRadarTrees: Visualizing
dynamic compound digraphs. Computer Graphics
Forum 27, 3 (2008), 823–830.

7. Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E.,
Silva, C. T., and Vo, H. T. VisTrails: visualization meets
data management. In Proc. SIGMOD 2006, ACM
(2006), 745–747.

8. Card, S., Suh, B., Pendleton, B., Heer, J., and Bodnar, J.
Time tree: Exploring time changing hierarchies. In IEEE
Symposium on Visual Analytics Science And Technology
(2006), 3–10.

9. Cernea, D., Truderung, I., Kerren, A., and Ebert, A.
WebComets: A tab-oriented approach for browser
history visualization. In Proc. IVAPP 2013, SciTePress -
Science and and Technology Publications (2013),
439–450.

10. Ghoniem, M., Fekete, J., and Castagliola, P. A
comparison of the readability of graphs using node-link
and matrix-based representations. In IEEE Symposium
on Information Visualization, 2004. (2004), 17–24.

11. Gou, L., and Zhang, X. TreeNetViz: Revealing patterns
of networks over tree structures. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (2011),
2449–2458.

12. Grossman, T., Matejka, J., and Fitzmaurice, G.
Chronicle: capture, exploration, and playback of
document workflow histories. In Proc. UIST 2010, ACM
(2010), 143–152.

13. Hailpern, J., Jitkoff, N., Warr, A., Karahalios, K., Sesek,
R., and Shkrob, N. YouPivot: improving recall with
contextual search. In Proc. CHI 2011, ACM (2011),
1521–1530.

14. Heer, J., Mackinlay, J., Stolte, C., and Agrawala, M.
Graphical histories for visualization: Supporting
analysis, communication, and evaluation. IEEE
Transactions on Visualization and Computer Graphics
14, 6 (Dec. 2008), 1189 –1196.

15. Henry, N., Fekete, J., and McGuffin, M. NodeTrix: a
hybrid visualization of social networks. IEEE
Transactions on Visualization and Computer Graphics
13, 6 (2007), 1302–1309.

16. Hong, J. I., and Landay, J. A. WebQuilt: a framework
for capturing and visualizing the web experience. In
Proc. WWW 2001, ACM (2001), 717–724.

17. Javed, W., and Elmqvist, N. Exploring the design space
of composite visualization. In Proc. PacificVis 2012,
IEEE (2012), 1 –8.

18. Jensen, C., Lonsdale, H., Wynn, E., Cao, J., Slater, M.,
and Dietterich, T. G. The life and times of files and
information: a study of desktop provenance. In Proc.
CHI 2010, ACM (2010), 767–776.

19. Klemmer, S. R., Thomsen, M., Phelps-Goodman, E.,
Lee, R., and Landay, J. A. Where do web sites come
from?: Capturing and interacting with design history. In
Proc. CHI 2002, ACM (2002), 1–8.

20. Kong, N., Grossman, T., Hartmann, B., Agrawala, M.,
and Fitzmaurice, G. Delta: a tool for representing and
comparing workflows. In Proc. CHI 2012, ACM (2012),
1027–1036.

21. Laadan, O., Baratto, R. A., Phung, D. B., Potter, S., and
Nieh, J. DejaView: a personal virtual computer recorder.
SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 279–292.

22. Ma, K.-L. Image graphs – a novel approach to visual
data exploration. In Proc. VIS 1999, IEEE Computer
Society Press (1999), 81–88.

23. Macko, P., and Seltzer, M. Provenance map orbiter:
Interactive exploration of large provenance graphs. In
Proc. USENIX TaPP 2011 (2011).

24. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y.,
Groth, P., Kwasnikowska, N., Miles, S., Missier, P.,
Myers, J., Plale, B., Simmhan, Y., Stephan, E., and den
Bussche, J. V. The open provenance model core
specification (v1.1). Future Generation Computer
Systems 27, 6 (June 2011), 743–756.

25. Nakamura, T., and Igarashi, T. An
application-independent system for visualizing user
operation history. In Proc. UIST 2008, ACM (2008),
23–32.

26. Oliver, N., Smith, G., Thakkar, C., and Surendran, A. C.
SWISH: semantic analysis of window titles and
switching history. In Proc. IUI 2006, ACM (2006),
194–201.

27. Perin, C., Vuillemot, R., and Fekete, J.-D. SoccerStories:
A kick-off for visual soccer analysis. IEEE Transactions
on Visualization and Computer Graphics 19, 12 (Dec.
2013), 2506–2515.

28. Pirolli, P., and Card, S. The sensemaking process and
leverage points for analyst technology as identified
through cognitive task analysis. In 2005 International
Conference on Intelligence Analysis (2005), 1–6.

29. Pretorius, A., and van Wijk, J. Visual analysis of
multivariate state transition graphs. IEEE Transactions
on Visualization and Computer Graphics 12, 5 (2006),
685–692.

30. Rattenbury, T., and Canny, J. CAAD: An automatic task
support system. In Proc. CHI 2007, ACM (2007),
687–696.

31. Schacter, D. L. The seven sins of memory: Insights from
psychology and cognitive neuroscience. American
Psychologist 54, 3 (1999), 182–203.

32. Schmidt, B., Doeweling, S., and Muehlhaeuser, M.
Interaction history visualization. In Proc. SIGDOC
2012, ACM (2012), 261–270.

33. Sugiyama, K., and Misue, K. Visualization of structural
information: automatic drawing of compound digraphs.
IEEE Transactions on Systems, Man and Cybernetics
21, 4 (1991), 876–892.

34. von Landesberger, T., Kuijper, A., Schreck, T.,
Kohlhammer, J., van Wijk, J., Fekete, J.-D., and Fellner,
D. Visual analysis of large graphs: State-of-the-art and
future research challenges. Computer Graphics Forum
30, 6 (2011), 1719–1749.

35. Wexelblat, A., and Maes, P. Footprints: history-rich
tools for information foraging. In Proc. CHI 1999, ACM
(1999), 270–277.

36. Yeung, M., Yeo, B.-L., and Liu, B. Extracting story units
from long programs for video browsing and navigation.
In Proc. ICMCS 1996, IEEE (1996), 296–305.

