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Abstract

We present a novel technique to minimize the number of light
sources in a virtual 3D scene without introducing any perceptible
changes to it. The theoretical part of the thesis gives an overview
on previous research in the field of automated lighting design, fol-
lowed by an introduction to the theory of rendering and genetic al-
gorithms. The implementation is done as extension called ”Light
Source Cleaner” to LuxRender, a physically based, open-source
renderer. The algorithm adjusts the intensities of the light sources
in a way that certain light sources can be canceled out, thus en-
abling to render a similar image with significantly less number of
light sources, introducing a remarkable reduction to the execution
time of scenes where many light sources are used.
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1 Introduction

With the advance of technology, the use of computer graphics has
become an everyday routine in motion picture production. Since
the making of ”Toy Story”, the first feature-length film that was en-
tirely computer-animated, there have been a lot of improvements
in technology. Nowadays, it is possible to create images by means
of computer graphics that are almost indistinguishable from real-
ity. One of the key elements in order to make a film look ”real”
is to simulate physically correct light transport when computing an
image.

One of first attempts for such a simulation was made by Ap-
pel [1968], who introduced the ray tracing algorithm. Although
the images rendered with that method were far from photorealistic,
the fundamental concept has become the basis of state-of-the-art
algorithms. A major problem of photorealistic rendering is the time
needed to gain high-quality images, because rigorous mathematical
and statistical methods are used to simulate realistic effects. We
provide a brief overview of the theory behind simulation of light
propagation and the rendering process is given in more detail in
chapter 3.

Until today, many improvements have been made in order to
enhance image quality on one side and to increase rendering speed
on the other side. Industry giants like PIXAR use physically based
ray-tracing systems in their daily work [Hery and Villemin 2013].
In order to achieve not only a physically realistic looking image,
but also a certain look and feel desired by the artist, many light
sources are placed in a scene - sometimes up to hundreds of them
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Figure 1: An example of a physically correct rendered scene.
Source: http://www.luxrender.net

[Christensen et al. 2003]. It is not only hard to keep track of such
a vast amount of lights, but also cumbersome to do the fine-tuning
of each light source. Also, the task of positioning light sources
and setting their properties is not necessarily an intuitive one.
The idea to support the user in this process with computational
means has been topic to a great deal of previous research work.
An extended overview on related work in the research field of
automated lighting design is provided in chapter 2.

Another issue is that render time is also affected by the amount
of lights used in a scene. The more light sources exist, the more
of them have to be sampled in order to get a smooth and correct
output. But what if the overall amount of lights could be reduced?
When having so many light sources in a scene, would it be possible
to render an (almost) identical image with a lesser number of light
sources? For a large number of sources, the answer to this question
can hardly be given in finite time when letting a user try out all
different settings. Instead, the idea came up to let an algorithm
perform the adjustment of the light intensities in order to find a
similar result image which uses less lights than the initial setup.
The overall concept how such an algorithm could be designed is
explained in more detail in chapter 4. In addition, in chapter 5,
details on our implementation are presented.

Speeding up the rendering process has been a topic in sci-
ence and industry for years, and was usually involving the creation
of more efficient sampling strategies or better algorithms. This
motivation comes from the prohibitively long render times (up
to hours or days) in physically based rendering [Pharr and
Humphreys 2010]. This thesis is founded on the assumption that
using less lights will result in faster execution times. In order to
prove this assumption, an empirical evaluation on several scenes
was done. Those measurements were made by means of testing
on five carefully chosen scenes with a varying number of light
sources and a comparison to the ground truth image. The results
are presented in chapter 6.



2 Previous and related work

Although little prior work has been done to automatically reduce
the number of light sources in a scene, the more general field of
automated lighting design has been a popular topic. This field fo-
cuses on computationally adjusting the parameters of light sources
in a virtual scene instead of letting the user handle the cumbersome
fine-tuning of those parameters. Examples for such parameters are
light intensities and emission colors, but also the position of light
sources and the direction in which they are pointing. The process
of finding appropriate values is often formalized as an optimization
problem. All possible light settings for a virtual scene form a multi-
dimensional solution space in which the optimal solution has to be
found according to some constraints. Those constraints depend on
the target of the application.

Even when performing the parameter tweaking by the assistance of
a computer, some user input is still necessary. There are different
approaches on how to involve the user in the process. The user has
to somehow define what kind of results he desires, or at least to ac-
cept or discard a proposed solution.
The majority of methods treats the light design problem as an in-
verse problem: the user has to provide a ”desired” image as in-
put, and the computer tries to calculate the according parameters
to achieve this effect. Schoeneman et al. [1993] for example as-
sume that the designers of a virtual scene know where to place light
sources, but fail in choosing the right intensities or colors to achieve
the desired lighting effect. After having the designer ”paint” these
effects such as shadows and spots of light on a target image, an op-
timization process is started in order to determine the settings that
match the painted image best. In the optimization process, only
light intensities and colors are changed, but not the light positions.
The matching is done by means of constrained least squares fitting.
The light-painting process is interactive, and is able to provide the
user direct feedback, but only with approximate preview-images
which are not physically correct. For the preview images, only di-
rect illumination is taken into account, and surfaces are assumed to
be ideal diffuse reflectors. After the best settings have been evalu-
ated, an optional ray tracing step can be done to compute the final
solution, which is expected to be drastically different from the pre-
view image.

Anrys and Dutré [2004] use prerecorded photographs to virtually
design lighting for real-life objects. The goal is to find light settings
that can be reproduced in reality for those objects. This approach
requires a set of light sources with fixed positions, which will not be
changed, only the intensities are adjusted by this method. For each
light source, a photograph of the real-life object getting illuminated
only by this source has to be made. The user then paints the chosen
effects (like shadows, light regions) on a neutrally lit photograph
of the object with the help of any common image processing soft-
ware. An optimization routine adjusts the intensities of each light
source by using the previously made photographs and combining
them in order to achieve the desired result. The downside of this
technique is that the objects have to exist in reality, which makes
this technique inapplicable for virtual environments. Additionally,
the designer has to choose the light and camera positions before
making the photographs. This means that the designer should al-
ready have at least some experience with lighting design, because a
re-arrangement of the positions is a time-consuming process.

Costa et al. [1999] facilitate lighting design for real-life environ-
ments by an inverse approach. They assume a virtual 3D scene
with geometry and material properties as given. The designer has to
place ”fictitious luminaires” (virtual light sources) in the scene and
define constraints for the lighting effects he wants to achieve. An
optimization routine then finds suitable parameter settings with re-

spect to the given constraints. This method makes use of a lighting
simulation toolkit called Radiance and the optimization software
ASA, which uses simulated annealing for constrained optimization
problems. If a solution is found, an image rendered with global
illumination is presented to the user. To define lighting goals or
constraints, Costa’s method introduces different types of fictitious
luminaries and a custom script-language, which allows the user to
define a cost function to the optimizer. This also means that an
additional learning effort has to be made before the system can be
used efficiently.
Costa also mentions that calculation times are rather long and even
then it is not guaranteed to find a optimal solution because of the
size and high-dimensional property of the search space. It is worth
pointing out that genetic algorithms are mentioned as a possible
option to conquer this problem.

Another effort to facilitate lighting design by solving an inverse
problem has been made by Kawai et al. [1993]. Here, parameters
for light emission, direction and material reflectance are being ma-
nipulated so that user-set constraints like ”minimizing overall en-
ergy” or ”subjective pleasantness of lighting” are fulfilled.

The premise that the user already has to have an idea about what
he actually wants may be seen as downside of the inverse de-
sign methodology. A contrary approach is ”interactive evolution”,
which lets the user explore and experiment with a set of possible
solutions that the computer creates. Sims [1991] used evolutionary
algorithms in combination with user input to generate different sets
of plant structures, procedural textures and animations. The qual-
ity for each solution is determined by the subjective judgment of
the user, before the next evolution step is applied. This approach
differs from the common practice in genetic algorithms, where a
pre-defined fitness function automatically calculates the fitness. By
interactively participating in the process, the user can ”guide” the
results in a specific direction without having to know about the un-
derlying mechanisms for calculating the parameters.

The design galleries approach from Marks et al. [1997] pushes the
concept of interactive evolution even further. The idea is to have
the computer set up as many different light settings as possible and
present them to the user, so that he can choose a setup that seems
most appealing to him. Contrary to the above mentioned methods,
this one is focused on varying the placement, type and direction
of the lights instead of their intensities. In a 3D scene, the user
has to define surfaces on which the lights can be positioned (”light
hooks”), and surfaces toward which directional lights should point
(”light targets”). Then a dispersion phase tries to compute as many
different results as possible using the Manhattan distance between
the luminance of two images. The resulting images are then ordered
by similarity and presented to the user in the form of a gallery which
he can browse. An advantage of this approach is that the user does
not have to know a priori what lighting effects he is looking for,
and that he may discover settings that he would have never tried out
when manually tuning the lighting parameters.

More recent work has been done by Shacked and Lischinski [2001]
who use an automatic approach to calculate light settings that result
in ”comprehensible” images. This means that light parameters are
chosen in a way that they enhance those features of a 3D model
which convey important information for human viewers. The fea-
tures deemed as important are, for example edges, shapes and sur-
face properties. An image quality function consisting of several
weighted terms for each of those features then calculates a sug-
gestion for an optimal lighting setup with respect to this objective.
Bousseau et al. [2011] propose a technique to maximize the amount
of information shown in an image, while the focus is set on enhanc-
ing physically correct appearance of materials in a scene. The ob-
servation that specific materials show their characteristic features



best under certain light settings is the basis for the optimization of
lighting in a scene. The most realistic appearance of an object is
thus achieved by calculating an environment map that emphasizes
the object’s material properties.

What distinguishes the previous done research from the method
presented in this paper is the goal of the optimization process.
While all of the above presented work focuses on tweaking the pa-
rameter vector so that an aesthetically pleasing result is produced,
or certain image features are enhanced, the goal of this work is to
reduce the number of light sources used in a scene by modifying the
parameters that control light intensities. Unlike in real-life applica-
tions (for example lighting design for a real room), the use of up
to hundreds of light sources is common in modern motion picture
production. With the exception of the ”Design Galleries” approach
from Marks et al., the above mentioned work is not dealing with
scenes were such a high amount of lights are in use. Another differ-
ence is that the majority of approaches described above use linear
optimization for simplicity, where the full extent of many of these
optimization problems may require non-linear techniques.

3 Theoretical Background

The following section gives an overview on the theoretical back-
ground of this thesis. First, an introduction to the creation of images
from a virtual 3D scene is given. Apart from the papers quoted,
this introduction is mostly based on the book PBRT [Pharr and
Humphreys 2010], which will not be explicitly quoted in the text
for better readability. Furthermore, an overview of the open source
renderer LuxRender is presented. The theoretical background of
genetic algorithms is then also briefly explained, because it is a cru-
cial element in understanding the design of the algorithm described
in the next chapter.

3.1 Rendering

In general, the term rendering refers to the process of calculating
a 2D image from the description of a virtual 3D scene. The scene
usually consists of objects with certain material properties, one or
more light sources and a point and direction from which the scene
is being viewed. The software that calculates the images from the
description of the scene is called ”renderer”. The variety of appli-
cations is broad: rendering is used in interactive applications like
video games, but also in visualization of medical data or in movies,
to name just a few examples.
Roughly, one can distinguish between applications where rendering
has to happen in real time and applications where physical accuracy
is the primary goal instead of high performance. In both cases, to
gain a 2D image, the parts of the scene which are visible from the
given viewpoint and how they get illuminated by the light sources
in the scene have to be determined. While in real time-rendering,
simplifying assumptions are made about light transport, the goal
of physically based rendering is to simulate light transport as it
happens in nature, so that the resulting image is not distinguish-
able from reality. Achieving a physically correct simulation of light
transport is a complex task and state-of-the-art algorithms are often
based on the ray-tracing algorithm, which will be explained further
in the next paragraph.
It should also be mentioned that in recent years, it was tried to com-
bine physically based rendering and real-time rendering with the
goal to provide ray tracing as an alternative to the current tech-
niques used in real time rendering. Although significant improve-
ments have been made to speed up the ray tracing process, the re-

sults are still too slow to be used in applications where a high frame
rate is required.

Ray tracing The ray tracing algorithm was first formalized by Ap-
pel [1968]. The basic idea is to imitate how a photographic camera
works. What a real camera does is to ’collect’ incoming rays of
light that pass trough its lens on a film. An even simpler model is
the pinhole camera, which has only a small hole instead of a lens
through which the light has to pass. To simulate this mechanism
with a renderer, the following components are needed: a camera, a
film (or image), rays (represented as vectors), and a scene (as de-
scribed before).
The virtual camera in a renderer is positioned at the viewing point
described in the scene. One can also imagine the camera position
to represent the eye of a virtual viewer. The film can be modeled
as a virtual image plane, for example as an array of image pixels.
The task of the camera is to construct rays that have their origin
at the camera’s position and point in direction of each pixel on the
image plane. One can imagine that those rays now get followed or
”traced” when they make their way into the scene. The color of
each pixel the viewer is going to see depends on how much light
arrives from the scene along the corresponding ray. For each ray,
an intersection test with all the objects in the scene has to be done.
If a ray intersects an object, this point should be visible. If a ray
intersects more than one object, the intersection point that is the
nearest one to the viewer should be visible on the image plane. To
form an image, a color has to be assigned to each pixel. The color
of a pixel is thus dependent from the object with which the nearest
intersection was made.
A naive approach would be to simply set the color of that pixel to
the color that was defined for the object when creating the scene.
This would result in a flat looking image, where every pixel an ob-
ject is covering has the same color and brightness. (See figure 2
for an example.) In order to get a three dimensional impression,

Figure 2: Result when assigning the object’s color to a pixel instead
of performing correct shading.
Source: http://www.wikipedia.com

the correct shading and coloring of each point has to be evaluated.
To do so, the lights distribution in the scene has to be simulated
and additional information about the geometry (for example sur-
face normals) is also necessary. The actual calculation is done by
local or global illumination models.
To summarize the ray tracing algorithm: Rays are cast into a scene,
intersection tests are made with the objects and pixel colors are de-
termined depending on the nearest intersection point between a ray
and the objects. It is noticeable that although this technique is rel-
atively simple, it is already possible to calculate (hard) shadows
for an image. This is done by constructing a shadow ray from the
intersection point towards the light source. If it hits another object



before reaching the light, this means that this object is occluding the
light source. So the corresponding intersection point lies in shadow
and the pixel on the image plane gets rendered in black. Figure 3
shows a visualization of the ray tracing algorithm, which should
make the procedure easily understandable.

Figure 3: Illustration of the ray tracing algorithm
Source: http://www.wikipedia.com

Local illumination In real life, if we see an object, the appearance
of a each single point of that object is depends on two factors: the
amount of light that arrives at that point, and the that light gets scat-
tered in that point - more concretely from the amount of light that
gets scattered into our eye.
Transferred to rendering, this process sums up to the question:
”How much light arriving at an intersection point is reflected back
to the camera along the corresponding ray?” The direction and dis-
tance from which the light is arriving can be determined easily from
the position of the intersection point and the position of the light
source (which is already provided in the scene description). How
light is scattered is more complex: it depends on the incident angle
of the light and the object’s material.

Different materials scatter light in different ways. For example,
diffuse materials scatter light almost equally in all directions while
glossy materials reflect light in a certain direction, depending on the
incident angle. That is the reason why a material like unlacquered
wood appears to be matte from all viewing directions while materi-
als like plastic have strong highlights which let them appear shiny.
Firgure 4 illustrates reflection behavior of different materials.

Figure 4: Light reflection depending on material properties. Per-
fect mirrors reflect the incoming ray into perfect reflection direc-
tion only. Diffuse materials scatter light into all directions equally.
Specular surfaces scatter the light in one direction.
Source: http://library.thinkquest.org/26162/howbehav.htm

To model this interaction between light and materials, so called lo-
cal illumination models have been established. The simplest one
(because it uses the minimum information necessary) is the Lam-
bertian model for rendering perfectly diffuse surfaces. The idea is
that the more orthogonal light arrives on a surface, the more effi-
ciently those rays will illuminate the surface. The relation between

the incident angle of a single light ray and the normal in the point
on the surface to be shaded is expressed by (cos(θ)), which can be
calculated by taking the dot product of the normal and the direc-
tion to the light source. By multiplying with the objects color and
the lights intensity, the final color can be determined. If more than
one light is present in a scene, the contribution of each source is
evaluated and summed up.

Figure 5: Lambertian reflection model

There are a lot of different illumination models which are able to
simulate a greater variety of materials, like the Blinn-Phong model,
which is able to simulate shiny surfaces [Phong 1975]. This model
takes the Lambertian model as basis but adds a term for specular
highlights by considering the light reflected back to the viewer as if
a perfect mirror would do. A shininess factor then allows to make
materials appear more or less shiny. More sophisticated models are
able to simulate rough surfaces or surfaces with anisotropic high-
lights, but the description above should give a sufficient overview
of how illumination models generally work [Torrance and Sparrow
1992] [Ward 1992].

Figure 6: Phong model. Incoming light is reflected along the nor-
mal as it would happen with a perfect mirror. The incident angle
and the exitance angle are of the same size. The appearance of a
highlight depends on the angle between the direction of the reflected
light and the viewing direction.

Recursive ray tracing Computing the illumination at an intersec-
tion point by considering local illumination only does not yet lead
to a physical correct simulation of light. Local models are only a
simplification of what happens in real life. The benefit of simplify-
ing is that computation time can be saved, thus local illumination
models are widely used where graphics should run in real time, e.g.
video games. To establish a more accurate model, one crucial ob-
servation is that in nature, light rays do not only illuminate an object
if they hit it. Instead, they interact with that object: they can get ab-
sorbed, reflected or refracted. The kind and degree of interaction
depends on different factors, like the material properties, and also
on properties of the light ray (for example its wavelength).
After the first hit, the light ray continues traveling according to the
physical laws of reflection and refraction. The light propagates until
it hits the next object, where it gets refracted, reflected or absorbed
again, and so on. Whitted [1980] improved the simple Ray Tracing
algorithm by taking this recursive nature of light propagation into
account. This modification added more realism to the rendered 3D
scenes: for the first time, perfect mirror and glass surfaces could be



easily computed. At an intersection point with a specular or trans-
parent object, new rays in the direction of perfect reflection and
refraction are created and traced recursively. The recursion itself
can be stopped after a predefined amount of bounces.

Figure 7: Effect of dispersion demonstrated with a prism.
Source: http://feigel.files.wordpress.com

The direction of reflection is easy to determine when handling spec-
ular surfaces: The ray gets reflected along the normal, the exitance
angle is as big as the incident angle. The calculation of refraction
is bit more complicated and requires the application of Snell’s law.
When light enters a medium (for example, when it travels from
vacuum into glass), it changes the direction it travels depending on
the density of the new medium. This happens because the light
gets ”slowed down” when entering a denser medium. The index
of refraction (IOR) is a numerical value that describes how much
slower light travels in that medium in relation to its speed in vac-
uum. When the materials in a scene description provide the mate-
rial’s IOR, physically correct refraction can be simulated. As men-
tioned above, the refraction direction also depends on frequency
of light. Different frequencies are refracted more or less strongly,
causing an effect called dispersion - white light gets ”split up” and
the different wavelengths are visible as colored spectrum (as pic-
tured in figure 7). For simulating this effect, the wavelengths have
also to be taken into account when programming a renderer.
When hitting a transparent object, both reflection and refraction of
the light ray occurs. The amount of each effect is dependent from
the incident angle and can be be calculated by the Fresnel equations.

(a) Ray Tracing (b) Recursive Ray Tracing

Figure 8: Comparison between different algorithms. Rendering the
mirror and glass balls as seen in figure (b) is only possible with
recursive ray tracing.
Source: http://www.wikipedia.com

Global illumination Whitted’s model still uses simplifying as-
sumptions to save computation time. For example, only rays in

the direction of perfect reflection or refraction are traced. Also,
although the light rays get traced recursively, still only direct illu-
mination from a light source is taken into account when computing
a color for an intersection point. In real life, objects get not only di-
rectly illuminated by a light source, but also indirectly illuminated
by other objects. When for example a blue object is positioned
near a white wall, light rays that get reflected cause a subtle blue
hue on the wall. This effect is called color bleeding and may be
very subtle, but adds a lot of realism to a rendered scene. Various
other effects like caustics or shadows with soft edges can only be
achieved when considering indirect illumination. To do that, Whit-
ted’s concept has to be generalized: For every intersection point,
light from all incoming directions (not only from direction of the
light sources) would have to be taken into account when calculat-
ing its color. This would lead to the following equation that would
have to be solved for every intersection point:

Lo(p,ωo) = Le(p,ωo)+
∫

S2
f(p,ωo,ωi)Li(p,ωi) |cosθi|dωi (1)

Rendering equation Equation (1) is also known as the rendering
equation and was first formalized by Kajiya [Kajiya 1986]. The
equation basically means that for every intersection point, the light
a viewer observes is the sum of light that gets emitted in the cameras
direction from that point plus the light that arrives at that point from
every direction and gets reflected in the cameras direction.

The first term, Le(p,ωo) is the light emitted in the viewers direction
from the point p. This term is nonzero if the point is a light source.

The next term, f (p,ωo,ωi), is the Bidirectional reflectance distri-
bution function (BRDF). It evaluates the amount of light that gets
reflected in point p to the viewers direction depending on the direc-
tion of an incoming light ray. The BRDF can be seen as a more
general model of local illumination models. Or, vice versa, illumi-
nation models like the Phong model are special-cases of a BRDF.
The BRDF takes three input parameters: the incoming direction
of the light, ωi, the point p on a surface, and the outgoing direc-
tion to the camera, ωo. Physically based BRDF’s are reciprocal
(that means, incoming and outgoing direction can be permuted, but
the result of the BRDF stays the same) and energy conserving (no
more energy can leave a surface than has entered). BRDF’s can be
derived in different ways, for example by using measured data, phe-
nomenological models, simulation, physical optics or geometrical
optics.
For the transmittance of light, a Bidirectional transmittance distri-
bution function (BTDF), can be modeled analogically. With the
help of BRDF’s and BTDF’s (sometimes also referred as BSDF
when both of them are meant, the ”S” stands for ”scattering”) it is
possible to simulate a great variety of different materials.

Li(p,ωi) is the amount of incoming light from a certain direction in
point p.

|cosθi| accounts for the incident angle of light in relation to the
object’s normal in point p. Light arriving at a high angle, for exam-
ple 90 degrees to the surface normal, illuminates this surface more
than light arriving at a steep angle. The cosine term takes this into
account by providing a weighting dependent on the angle: for 90
degrees, the cosine function returns 1. The steeper the angle, the
smaller the value of the cosine function becomes.

The integral means that all incoming light directions over the hemi-
sphere S2 are taken into account to evaluate the net illumination for
the point p.

Monte Carlo integration When looking at the rendering equation,
the term we want to evaluate - Lo(p,ωi) - itself is part of the in-



Figure 9: Rendering equation visualized for one point. The incom-
ing light ωi arrives at point x. The BRDF for the material of the
surface on which x lies, determines which amount of light is scat-
tered into direction of the viewer, ωo. This process has to be evalu-
ated for all incoming directions over the hemisphere Ω.
Source:http://www.wikipedia.com

Figure 10: Image rendered with global illumination. Soft shadows
and soft orange and blue hues on the ceiling resulting from indirect
illumination are noticeable.
Source: http://www.wikipedia.com

tegrand. This means that the calculation for every point p requires
information from all the other points in the scene which in turn also
still have to be evaluated. Thus, solving this integral analytically is
not an option.
In practice, the solution has to be calculated by using numerical
integration techniques like Monte Carlo Integration. In general,
Monte Carlo algorithms are a class of algorithms that make use
of random numbers. A characteristic of Monte Carlo Algorithms
is that if they are run several times with the same input data, they
give different results depending on the random numbers used in a
run - however, on average, they give the correct result. When us-
ing Monte Carlo techniques for numerical integration, the integral
gets estimated by sampling the integrand at random positions and
averaging the sum of samples taken. The benefit of Monte Carlo
integration in comparison to other numerical methods is that the
convergence rate with a carefully designed sampling technique is
independent of the dimensionality of the integral, thus making it
applicable for the high-dimensional integrals occurring in render-
ing.
Applied to rendering, the integral that has to be evaluated is the
amount of light from all incoming directions in point p. Instead
of considering all directions, random samples over the hemisphere
around p are made, the light contribution from those directions is
evaluated and then averaged and multiplied with the BRDF/BTDF
and a cosine term to get the final result. A downside of Monte
Carlo integration are artifacts that appear in form of noise, because

some pixels are estimated either too dark or too bright. Taking more
samples would increase image quality, but the overall convergence
would be slower - to reduce the error by a half, four times as many
samples have to be made.

Increasing performance One strategy to achieve a better image
quality without increasing the number of samples taken is impor-
tance sampling. Instead of sampling the integrand at completely
arbitrary positions, it is more efficient to use a distribution for the
samples that is similar to the integrand. In this way, it is more likely
to sample the integrand at positions where the function has high val-
ues. When considering the half sphere around point p, it would be
more efficient to take samples in directions that are not almost par-
allel to the equator. The angle between the surface’s normal and
those directions would be almost 90 degrees and cause the cosine
term to be almost 0, thus making the contribution of those samples
very low. Other factors that could be considered when choosing
a distribution for sampling could be the BRDF and BTDF. On the
other side, when choosing a poor probability density function for
the sampling, the noise in the result picture could get even worse.
Another strategy to increase convergence speed is Russian roulette
path termination. The longer a path is traced, the smaller the con-
tribution to the final color after each bounce gets. Russian roulette
tries to randomly terminate paths when their contribution gets too
small. A simple termination would of course introduce bias because
the integrand gets underestimated every time, so Russian roulette
works with a termination probability. If a path gets not terminated,
it is weighted by a term that accounts for all the samples skipped
before, guaranteeing that a correct result image is achieved.

Rendering algorithms By the means of Monte Carlo Integration, a
scene can be rendered with global illumination which is capable of
simulating indirect lighting and thus allows the rendering of effects
like the previously mentioned color bleeding or caustics. When the
materials used for objects in a scene are also modeled with physical
accuracy (i.e by considering their Index of Refraction), wavelengths
of light rays and other properties that occur in nature are also con-
sidered, a physically based renderer can be designed. Rendered
images will look indistinguishable from reality, but computational
cost is high and results in render times that can last from hours to
days.
Several approaches to enhance image quality and to minimize ren-
der time were made in the recent years, leading to the development
of different algorithms for rendering. They will be presented in the
next paragraphs, and an outlook on the newest developments is also
be given.

Before going into further detail, it should be mentioned that global
illumination algorithms can roughly be distinguished by the prop-
erty of being biased or not. An unbiased algorithm gives a correct
result after an infinite amount of samples. No estimation errors are
made while rendering (for example, a systematical over- or under-
estimation of the amount of incoming light). This means, after an
(infinite) amount of samples, the procedure surely converges to the
correct image. Because of that, a scene can be rendered on differ-
ent computers at the same time and later the resulting images can be
merged into a better, final picture. This is not the case when using
a biased algorithm.
Another property of an algorithm is consistency. When using a con-
sistent algorithm for rendering, it is guaranteed that a longer render
time leads to a better result. This is not the case with inconsistent
algorithms, where a longer render time can lead to a worse result.
The choice for the rendered images provided in this paper fell on
two unbiased algorithms, (Bidirectional) path tracing and Metropo-
lis light transport.

Light Path notations To specify what interactions a light ray made
before finally reaching the eye or camera, Heckbert introduced the



light path notation in 1990 [Heckbert 1990]. It uses four symbols:
L (Light source), S (Specular), D (Diffuse) and E (Eye). The no-
tation for a path that comes from the light source and is reflected
by a specular surface directly into the eye would be: LSE. Multiple
bounces of the same type can be marked by a ”*”, either one type or
the other can be marked with a ”|”. Not every algorithm is capable
of rendering every light path that could occur in a scene. For ex-
ample, a non-recursive ray tracer is only capable of rendering LDE
paths. Examples for possible paths and their notations are depicted
in figure 11.

Figure 11: Examples for the Heckbert path notation. 1)LDSE, 2)
LSSDE, 3) LDDE.
Source: http://www.wikipedia.com

Path Tracing Path tracing was first introduced by Kajiya in
the same paper he presented the rendering equation. Basically,
it is an extension of recursive ray tracing that tries solving the
rendering equation by making use of Monte Carlo integration
as described above. Instead of sampling only perfect reflection
and refraction directions when a ray intersects an object, random
directions are sampled for further tracing and their contributions
are then weighted by a BSDF. Each time a light source is hit, its
contribution is added to gain the estimated color for corresponding
pixel on the image plane.
The major drawback of a path tracer is that a path has to hit
at least one light source in order to collect light contribution to
the scene - otherwise no contribution is made at all. This leads
to slow convergence time in scenes with small light sources,
because the probability to randomly hit them is small. Many paths
constructed will return no energy of light, resulting in a black
pixel on the image. Scenes which make use of point lights only
remain totally black, because the probability to hit an infinitely
small, zero-dimensional point by randomly selecting directions is
zero. The same is the case for highly specular BSDF’s - randomly
sampling the perfect reflection direction is very unlikely.
”Next event estimation” tries to overcome this problem by evaluat-
ing the local illumination at every diffuse intersection point along
a path and then adding this contribution to the radiance estimated
with Monte Carlo sampling. If a light source is hit directly by a
random diffuse bounce, it is not considered - because the next event
estimation has already included that light’s contribution. Using
next event estimation makes it possible to treat direct an indirect
illumination separately.
Like importance sampling and Russian roulette termination, this is
another way to increase performance. It can be used additionally to
those two methods.

Bidirectional path tracing Although many improvements can be
made, there are still some difficulties with conventional path trac-

ing can not overcome easily. For example, if a room is illuminated
only indirectly by a light source which is partially occluded, it is
very hard for any randomly cast ray to reach the light source. Even
with next event estimation it is unlikely to cast a ray for considering
direct illumination from that light source. To handle such scenes,
Bidirectional path tracing has been developed. Instead of sending
out rays from the camera only, rays are also cast into the scene
from the light sources positions. The endpoints of those paths are
then connected if they are mutually visible. (Mutual visibility can
easily be tested by casting a shadow ray between the endpoints and
checking if no object lies between them.) For difficult light settings,
bidirectional path tracing can give better results than conventional
path tracing in the same computation time.
Both Path tracing and its bidirectional variant are unbiased and con-
sistent algorithms which converge to the ”correct” image after an
infinite amount of samples. Thus, these two techniques are often
used to render ground truth images to which the output and perfor-
mance of other algorithms is compared to.

Metropolis light transport The name of Metropolis light transport
comes from the utilization of a certain type of Monte Carlo sam-
pling, the Metropolis-Hastings algorithm. As with ”conventional”
Monte Carlo sampling, an integral is evaluated by drawing random
samples from the integrand. Instead of drawing them at arbitrary
positions, the distribution of the random samples is made so that
the probability density of a sample is proportional to its magni-
tude. This is remarkable, because this means when computing an
integral, optimal importance sampling can be made without know-
ing the concrete form of the integral. The algorithm is based on a
Markov Chain, and therefore chooses the sample of the next iter-
ation depending solely on last sample. A sample near to the last
one is made and accepted with a certain probability - the bigger the
value of the sample is in relation to the last sample made, the higher
is the acceptance rate. In this way, regions of the integral with large
magnitudes get ”explored”. To avoid that the algorithm gets stuck
at local maxima, mutations are made so that all non-zero regions of
the integrand have an positive chance to be sampled.
This algorithm can be applied to a path tracer: Once a path to a
light source is found in a scene, it would be a waste of informa-
tion to discard it. Instead, it could be used as basis to construct
other rays that surely add light contribution to the final image. By
making small modifications to a once found path, it is possible to
explore the space of nearby paths more thoroughly with less sam-
ples then with (bidirectional)path tracing.
Metropolis light transport can be thought of as a improvement of
path tracing by equipping it with an effective sampling method. It
is especially useful for difficult light transport situations, for exam-
ple when light enters into a room only through a small opening. It
should be mentioned that depending on the scene, metropolis light
transport does not always perform better than path tracing. For sim-
ple scenes, path tracing is able to process more samples per pixel
which results in a better image. The original Metropolis light trans-
port algorithm was introduced by Veach and Guibas [1997] and was
later simplified by Kelemen et al. [2002].

Photon Mapping An example for a biased algorithm is pho-
ton mapping which was first introduced by Henrik Wann Jensen
[1996]. Other then the previous methods, the key idea is not to fol-
low light paths but light ”particles”, also known as photons. The
rendering process is split up into two steps. First, photons are shot
out of the light sources into the scene. Those photons get reflected
or refracted like the light rays in the previous methods, but when
they finally hit a diffuse surface, they get recorded into a photon
map. In the second step, the final image gets rendered by interpo-
lating the recorded values. Photon mapping is an efficient technique
when rendering caustics, but storing photon maps is very memory
intensive (the storage needed grows with the number of photons



used) and the result images are not ”correct” because the final val-
ues are achieved by averaging blurred, interpolated photon maps.
The algorithm would only be consistent if an infinite amount of
photons would be used - which is physically not possible because
of the limitations in memory.
(Stochastic) Progressive Photon Mapping [Hachisuka and Jensen
2009] tries to overcome this problem by regularly calculating a new
photon map during the rendering process. This makes details in re-
sult images look less blurred than with conventional photon map-
ping.

Recent developments The above described techniques may be able
to render a variety of effects, but some problems remain unsolved.
One is the rendering of SDS-type light paths (see figure 12 for an
example), where a ray of light gets transmitted or reflected by a
transparent or specular surface, bounces off from a diffuse surface,
arrives at a specular surface again and hits the eye. Randomly sam-
pling such a path is very unlikely with the previous methods be-
cause of the diffuse surface. It is very unlikely to sample an out-
going direction which creates a ray hitting the transmissive surface
exactly in that point where it gets refracted into the light source
(this probability can be even exactly 0 depending on the material
models used). The same applies for sampling a random direction
that hits the specular surface in exactly that spot that reflects the
ray into the camera. A normal path tracer has virtually no chance
to sample such a light path, and bidirectional path tracing also fails
to capture this phenomenon, because merging paths which hardly
can be found does not increase the change of sampling such a light
path. New ideas to develop algorithms that work regardless of the
properties of the scene to be rendered were made, such as Vertex
Connection and merging [Georgiev et al. 2012] and path space reg-
ularization[Kaplanyan and Dachsbacher 2013]. The first method
combines bidirectional path tracing and photon mapping, and tries
to exploit the benefits of both algorithms depending on the type of
light path to be sampled. The second method is based on MLT,
but treats the difficult paths with relaxing criteria. For example,
a specular BRDF can be treated as diffuse to be able to sample a
SDS path. This introduces bias, but only for those specific paths -
the algorithm is also equipped with a contraction technique which
ensures that the bias vanishes in the limit.

Figure 12: An example for an SDS path.
Source: http://www.reedbeta.com/

3.2 LuxRender

LuxRender is an open-source software renderer based on Pharr’s
and Humphrey’s physically based renderer PBRT [2010], which
was developed for educational and academic use. Figure 13 shows
the basic architecture of PBRT. The Sampler provides the Sampler-
RendererTask with random samples for BRDF sampling. With that
sample, the camera then constructs a ray towards the image plane
for the next pixel position and passes it to the Integrator. The inte-

grator calculates the radiance carried along that ray. The collected
radiance then gets saved on the film.

LuxRender is a stand-alone renderer and not a modeling software.
Thus the creation of scenes and models has to be done in other
software, and then they have to be exported for rendering.

Figure 13: Basic architecture of PBRT.
Source: Pharr and Humphreys, 2010

In 2007, programmers adapted the original source code to make
it available for artistic use. [LuxRenderProject ] LuxRender imple-
ments a lot of different rendering algorithms and provides a long
list of features such as different material types for objects, post-
processing effects, HDR rendering, etc. The implementation pre-
sented in this paper works on level of the ”Film” stage depicted in
figure 13 and makes use of a feature called Light Groups.

When modeling a scene with several lights, those lights can be as-
sociated with a light group. An arbitrary number of lights - also
only a single one - can belong to such a light group. During the
rendering process, the light contribution of each group is saved in
a separate buffer. Every group also has a intensity and a color tem-
perature, which can be controlled by two parameters. This enables
to change the initial light settings in a scene while the rendering is
still in process or after it is finished. The user can modify those
parameters in the GUI.

3.3 Genetic algorithms

Genetic algorithms belong to the greater class of evolutionary algo-
rithms, which in general work as meta heuristics for optimization
problems. The basic idea is inspired by the process of natural evo-
lution and tries to imitate its processes in order to find solutions for
search and optimization problems. The theoretical groundwork for
genetic algorithms was laid by Holland [1992].

A minimal genetic algorithm consists of a set of possible solutions
(called ”population”) and a fitness function which evaluates the
quality of a single solution. Those initial solutions are altered by
applying genetic operators, and their fitness is evaluated again. The
goal is to find better and better solutions by continuously apply-
ing the genetic operators. A single solution in a genetic algorithm
is also called ”chromosome”. Each chromosome of the population
can be modified by the genetic operators ”crossover” or ”mutation”.
In this way, new ”offspring” solutions are generated, which may be
better solutions for the problem the algorithm is trying to solve or
optimize. In order to apply modifications by genetic operators, the
solutions have to be encoded in a way that they can be processed
computationally. This is often done by encoding values as a string
or storing them in a vector. The type of encoding depends on the
application - for binary problems integer encoding in form of zeros
and ones may be sufficient, while more sophisticated problems may
use float values or other types.



Crossover The crossover operator mimics the exchange of ge-
netic information between two chromosomes. It works by split-
ting up two chromosomes at an arbitrary index and recombining
their sub-parts to form a new solution (also called offspring). For
example, making a crossover operation on ~c1 = [0,0,0,0,0] and
~c2 = [1,1,1,1,1] at the third index would result in ~c3 = [0,0,0,1,1].
Choosing only one index to split up the chromosomes is not manda-
tory, it is also possible to choose more indices. Another variant
would be ”parametrized uniform crossover”, by which a crossover
happens at every index with a certain probability. Crossover op-
erations help to explore a big part of the search space instead of
getting stuck to local optima, because in comparison to mutation
they allow a bigger change in a chromosome’s values. The im-
plementation of the crossover operator can turn out to be tricky
if certain constraints have to be fulfilled to generate a valid solu-
tion. For example, when trying to solve a permutation problem
(a famous example would be the traveling salesman problem), a
random crossover operation could lead to an invalid solution be-
cause one of the numbers is missing. Consider a crossover between
~c1 = [1,2,3,4,5] and ~c2 = [3,5,4,1,2] at the third index. The re-
sult would be ~c3 = [1,2,3,1,2], where the numbers 1 and 2 appear
twice, but 4 and 5 are missing. One solution would be to forbid
such crossovers or to design the process so that the first chromo-
some gets filled up by the missing values in the order they occur in
the second chromosome.

Mutation The mutation operator randomly chooses a single value
in a chromosome and changes it. This change could be for example
a bit flip, or the addition of a random value. For example, the chro-
mosome ~c1 = [1,0,1,0,0] could be mutated by a bit flip at index 2,
resulting in ~c2 = [1,1,1,0,0]. Mutation also avoids that the popula-
tion gets stuck to a local optimum, but does this in a less ”radical”
way than crossover does, because only one index is affected in each
iteration step.

Fitness After the genetic operators have been applied, a fitness
function has to evaluate the ”quality” of the newly created solu-
tions. Finding a suitable fitness function is an important step when
programming a genetic algorithm, and its design is very problem-
specific. Thus, a general ”recipe” for a fitness function does not
exist. An important property is that its result should be a repre-
sentation of the quality of a solution which allows the comparison
of the chromosomes against each other. This makes it possible to
clearly determine which solutions are (currently) the best.
A simple problem with an example for a fitness function would be
the following: When the overall goal is to minimize the number of
1’s in a binary vector, a suitable fitness function could be the sum
of all of its values. The best solution would be the one with the
smallest fitness value among all vectors.

Selection When all the chromosomes of the population have been
processed, or the maximum number of offspring has been cre-
ated, a selection process chooses the best solutions, from which
new ”offspring” is created. Different selection strategies have been
developed. For example, an approach would be to rank the solu-
tions by their fitness, and only the fittest chromosomes are selected.
This could lead to ”premature convergence”, which means that the
search space gets not explored thoroughly because of a fixation
to chromosomes with a good fitness value from the begin of the
search. More sophisticated methods try to overcome this problem
by statistically choosing the chromosomes by mapping their fitness
values to probabilities.

After selecting the ”parents”, another step of evolution by the ge-
netic operators is applied to form the next generation. This cycle is
repeated until a satisfying solution is found or a certain number of
processing steps (also called ”generations”) has been reached.

The above description depicts how a very basic genetic algorithm
works. Several refinements and variations can be made. One of
them is the principle of elitism, which keeps the best solutions
of a generation unaltered when applying the next mutation and
crossover steps. This prevents that the best solution(s) of a gen-
eration do not accidentally get lost by further applying genetic op-
erators. Elitism was first introduced by De Jong [1975], who found
out that guaranteeing the ”survival” of temporary best matches im-
proves the performance of a genetic algorithm.

The strength of genetic algorithms is that they are able to explore
huge search spaces. Another property of genetic algorithms is that
they can be applied to a broad field of problems apart from opti-
mization, for example automatic programming, machine learning,
modeling of economic processes or procedural production of im-
ages and textures. [Mitchell 1998] [Goldberg 1989]

With those strengths come also the downsides of genetic algo-
rithms. Because they are applicable to a variety of problems, there
are cases in which they perform good, but also cases in which they
perform worse then other algorithm classes. A general answer to
the question if a genetic algorithm should be applied to a problem
can not be given. Also, the concrete implementation is highly de-
pendent from the problem the algorithm is intended for. This af-
fects not only the type of encoding of chromosomes, but also the
fitness-, mutation-and crossover strategies. Finding reasonable pa-
rameters for the population size, generation count and the proba-
bility of crossover and mutation is also a problem-depended task.
In research, various settings have been used, but no ”general ten-
dency” of what settings work well under which conditions has been
reported. A common practice is to use settings that performed well
in other work or to simply find values that work well by trial and
error.
Another problem caused by the heuristic nature of genetic algo-
rithms is that even after a lot of iterations it is not guaranteed that the
real the global optimum for a given problem is going to be found.
It is possible that it never appears in a run of the algorithm. Also,
two runs with the same initial settings are not likely to produce the
same results.

4 Concept

As already explained, rendering images with high physical accu-
racy is a time consuming process and many efforts have been made
to accelerate it. A new approach to achieve a speed up would be
to reduce the overall amount of light sources used in a scene. Es-
pecially when having many light sources in a scene, eventually the
same lighting could be achieved by using less of them when turn-
ing some of them off or changing their intensities. Trying out all
variations manually is not an option, as it is almost impossible to
do in finite time. On the other hand, automatizing this process is
relatively simple. An algorithm for this task would have to try out
different light settings for a scene and compare the resulting im-
ages to an initial image the user wants to achieve. The more similar
a new image is to the desired one, and the less light sources are
used, the better the solution is.

To determine what a good or similar solution is, some kind of ob-
jective quality metric has to be found. The simplest way to evaluate
the difference between two digital images would be to subtract them
from each other and add up the absolute differences. When adding
the amount of lights used for rendering, the resulting number rep-
resents the ”quality” of a given light setting. A smaller number
means a better solution. The algorithm would have to find the set-
tings which result in the smallest number representing the quality
of a solution.



Despite the idea itself is very simple, it is crucial to understand that
on the other side, the solution space is rather complex. The whole
problem can be seen as an optimization problem, where a global
minimum has to be found among the quality values of all possible
solutions. When trying to reduce the number of lights by simply
turning them on and off, a binary problem has to be solved. Al-
though the number of solutions increases with the number of lights
used, the total amount of solutions is finite (up to 2amount o f lights).
This method would be sufficient for simple scenarios, where for
example a light source definitely has no contribution to the scene.
(This could be the case if an artist has created a light source with al-
most no intensity in the scene, or when a light source gets occluded
by some object and suddenly has no contribution to the image at all,
etc.) To decide if a proposed solution is close enough to the original
image, a user-defined threshold could be set. The algorithm could
then calculate the fitness.

In practical applications, such easy scenarios where some lights
have no contribution at all will be the minority of cases. To re-
duce the overall amount of lights, changing the intensity of some of
them before turning others of will be necessary. When considering
also the light’s intensities, each light’s parameter could be changed
a little to find a new setting which results in similar illumination
as the initial one. The solution space in this case varies drastically
from the first one: An infinite amount of solutions exists, and each
one is a valid image gained with certain light settings. For an arbi-
trary scene, it is also not clear which light’s intensities have to be
changed in what way. Exploring this search space without making
more constrained assumptions (because the algorithm should work
for any scene, not just for those matching some special criteria) is a
tricky task. Conquering this problem could be done by using a ge-
netic algorithm, because of its strength to explore such huge search
spaces.

When designing a genetic algorithm for this problem, a chromo-
some would have to store two information: the values for the light
sources and the fitness-value of the solution it represents. Storing
the values can be done by using a vector. To determine the fitness
of a solution, the amount of lights used would have to be calculated
first. This is done by summing up all non-zero components of a
vector ~Xn (also known as calculating the weight of a vector).

The weight of a vector ~Xn = [a1,a2,a3, ...,an] can be calculated in
two ways:

w(~Xn) =
n

∑
i=1

ai ∀ai 6= 0,ai ∈ {0,1} (2)

w(~Xn) =
n

∑
i=1

ai ∀a > 0,ai ∈ R (3)

The first case would be the binary optimization where lights only
get turned off or on, the second one is the way to calculate the
weight when adapting the lights intensities.

Using only the weight of a vector to determine the fitness of a solu-
tion would be not sufficient, because the image quality is not being
evaluated at all. A method to determine if a solution is good enough
would be to define a threshold, which determines the maximum al-
lowed difference between the initial image and a possible solution
image. The solution is only considered as valid if the difference lies
below this threshold, otherwise it is discarded. For valid solutions,
the fitness gets calculated as the weight of a vector.
This approach basically works, but leaves two problems unresolved.
The first problem is that when creating an invalid solution, the algo-
rithm never gets any kind of feedback on how close it was to a valid

one. Not having this knowledge of how ”close” a solution is makes
optimization very hard if not impossible. The algorithm needs a
more sophisticated feedback in order to know if the optimization is
heading in a good direction. The second problem can be depicted
by the following scenario: two valid solutions are available, both
of them use three lights out of many. The three lights used in the
first solution are different from the ones in the second - which of the
two solutions is the better one, when both of them have the same
fitness?

To solve both problems at once, the difference between the two im-
ages also gets considered when calculating the fitness. First the
difference between the initial image and the current solution gets
evaluated. This is done by subtracting the images pixel-wise from
each other and summing up the absolute differences. This differ-
ence gives direct feedback on how close a solution is, and can sim-
ply be added to the weight of a solution vector of a chromosome.
The overall fitness f () of a solution vector ~Xn gets calculated as de-
picted in equation 4, where T stands for ”target image” (the initial
image) and C for ”current solution image”. The weight w() gets
calculated as explained above in equations 2 and 3.

f (~Xn) = pL ∗w(~Xn)+ pD ∗ |T −C| (4)

Adding the second term to the overall fitness is also done in integer
optimization mode. Two different solutions, that are both below
the threshold, could have the same amount of lights turned on, but
one of them could still be more similar to the initial image than the
other one. By adding the absolute difference, it is guaranteed that
the ”better” solution gets a better fitness value.

In the equation 4, there are also two additional parameters for
weighting the lights (pL) and the difference (pD). They act as a
kind of quality switch and allow more control on the optimization
routine. The contribution to the weight of the vector of each light
is multiplied by the factor pL, so better fitness values are achieved
if the algorithm tries to turn off lights instead of finding a solution
which has little difference to the initial image. If on the other hand,
a result image that’s very close to the original is desired, the weight
for the difference would have to be set to an appropriate value.

After having defined the fitness function, the general procedure of
the algorithm follows the schema of a typical genetic algorithm. In
each generation, new solutions are processed and ranked according
to their fitness values. The best solutions are kept by the princi-
ple of elitism, while the others are modified in order to gain better
solutions from generation to generation. Mathematically speaking,
the algorithm is searching for a global minimum among the fitness
values of possible solutions.

5 Implementation

The next section will bring a description of how the algorithm for
the Light Source Cleaner (from now on referred to as LSC) was
implemented in LuxRender.

The LSC can be accessed by the user via an extra tab that was
added to the LuxRender GUI. Before starting the algorithm, the user
can choose the number of chromosomes and iterations by entering
the desired values in the fields ”population size” and ”generation
count”. A big number of chromosomes is of course possible, but
when using big numbers for both, computation time can take very
long. For this problem, good values seemed to be a relatively small



number of chromosomes and a big generation count, resulting in
acceptable computation time and results.

The pseudo-code for the algorithm is summarized in algorithm 1.

Algorithm 1 Pseudo-code for the Light Source Cleaner
T ← {currentFramebu f f er}

// Assign initial light values to each chromosome,
// calculate initial fitness
for i = 1→ populationSize do

population[i]← initial LightGroup values;
chromosome. f itness = WEIGHT(population[i]);

end for

for i = 1→ generationCount do
for j = 1→ populationSize do

if RANDOM() == 0 then
MUTATE( j);

else
CROSSOVER( j);

end if
// Calculate fitness
FITNESS( j);

end for
// Sort chromosomes by fitness, ascending
SORT(population);

end for
// First chromosome has best fitness
DISPLAYBESTSOLUTION(population[0]);

function FITNESS(chromosome)
set light settings to chromosome’s values;
updateFramebuffer;
C← {currentFramebu f f er}
chromosome. f itness =
pL∗ WEIGHT(chromosome) +pD ∗ |T −C|;

end function

function WEIGHT(chromosome)
weight = 0;
for i = 1→ chromosomeSize do

if chromosome[i]> 0 then
weight← weight +1;

end if
end for

return weight;
end function

The algorithm starts by copying the image gained with the initial
light setting to the array T. Then the population is created by using
the initial light scales as values for each chromosome. A chromo-
some is thus represented in form of a vector of the size of the total
amount of light groups used in a scene. Additionally, each chromo-
some also has a fitness value that indicates how ”good” its values
are. The initial fitness values are calculated only by taking a chro-
mosome’s weight into account (because there is no difference to
the target image yet). After randomly applying either mutation or
crossover operations on a chromosome, its fitness has to be recal-
culated.
For evaluating the fitness, the weight of the chromosome and the
difference to the target image are weighted by user-set parameters
and then added. To gain the difference between the two images, the
parameters of the light groups are set to the values of the current
chromosome. Then the framebuffer gets updated in order to gain
the current solution image, C. This image gets compared to the ini-

tial image. In both modes, the luminance of the pixels in both the
initial and the target image is calculated by weighting their R,G,B
values according to the human visual system. In order to avoid un-
necessary calculations, the original image already gets converted to
an image of luminance values at the beginning of the optimization.
So when comparing the pixel values, only the luminance values of
the new image have to be calculated again. There are two com-
parison modes: ”Simple Difference” and ”Mean Squared Error”.
When using ”Simple Difference” mode, the absolute difference of
the two images is calculated pixel-wise. Those absolute values get
summed up and averaged by the total pixel count. ”Mean squared
error” squares the differences after doing the subtraction instead of
taking absolute difference values. This should avoid loosing small
features of an image like specular highlights.
After reaching the maximum number of generations, the best solu-
tion is displayed to the user (the others are also accessible, ranked
by their fitness).

Figure 14: Screenshot of the LuxRender Graphical User Interface
with the LSC tab open.

The LSC can be used in two modes, which can be controlled by
the selection of the check box labeled ”Include LG scales”. When
unchecked, the algorithm is doing binary integer optimization and
tries to turn light groups off and on. The chromosomes in this mode
are sequences of binary values. The mutation strategy works by
choosing a random index of the current chromosome and inverting
its value, which means 1 becomes 0 and vice versa. The goal is
to completely turn off light sources which have (almost) no contri-
bution to the scene. The fitness function evaluates the fitness of a
solution considering a threshold given by the user. If the average er-
ror per pixel is smaller then the threshold, the fitness of the solution
is determined by summing up the nonzero values in the chromo-
some and adding the difference between initial and current image.
Else, the solution’s fitness is set to the maximum integer possible.

The other mode takes the parameter values for each Light Group
into account by changing their values slightly in every mutation
step. This is done by addition or subtraction of a randomly gener-
ated small value. How big the mutation steps maximally are can be
controlled by the value of the spin box ”Maximum mutation step”.
If for example this value is set to 5, a random value between 0 and 5
will be added or subtracted. Additionally, if a light group is already
set to a small value (< 0.8), only a value between 0 and 1 is added
and subtracted, to allow only ”small” mutations when a value ap-
proaches 0.
If a light group gets assigned a value that’s almost 0 after a mutation



step, it is set to 0 and thus turned off. The assumption here is that
light groups with a low intensity value contribute only marginally
to the scene lighting. Thus the probability is high that they can
be turned off completely. Without this assumption, it could hap-
pen that many light sources get turned down to a very low level
but never get turned off completely, which would never reduce the
overall amount of lights used in the scene.

In both modes, the crossover strategy chooses chromosomes of
the last generation and generates offspring by randomly combining
parts of them. The algorithm also works with the elitism method,
described in chapter 3.3. The best solutions are kept untouched in
each generation and up to 80 % of the ”useless” chromosomes get
altered by mutation and crossover.
Depending on the mode used, the chromosomes of the initial popu-
lation are either filled only with 1’s when doing integer optimization
(assuming that the artist intended to have all light sources turned on
in the beginning) or with the parameter settings the artist chose for
the light groups when doing float optimization. This guarantees that
the best solution is at least a valid one even if no optimization could
be found.
When programming a genetic algorithm, it is common to use ran-
dom values for the chromosomes of the initial population. This was
also tried for the LSC. When checking the box ”use RND values”,
every 5th chromosome gets filled up with some random values. In
practice, using random values often generates invalid solutions in
binary mode, and ends up with solutions that were almost never
converging. When using the mode that adapts the light group’s
scales, replacing some values of a chromosome with random ones
instead of the initial ones sometimes led to a good result after a run
for only few iterations.

The GUI also provides the two weighting factors (”weightLight-
count” and ”weightDifference”) which allow additional control of
the two components of the fitness function. A high value for
weightLightcount would prefer to turn off lights rather than con-
sidering image quality. The higher the value used for weightDiffer-
ence is, the better the image quality will be in the end, but lights are
less likely to get reduced.

6 Results

The following section consists of two parts, the first one are the
results for the empirical test study to verify the assumption that
rendering with less light sources increases overall rendering speed.
The second part presents the results achieved when using the light
source cleaner (further referred to as LSC) on two specially de-
signed test scenes. The scenes were all rendered on a computer
with an Intel Core i7-2600K CPU @ 3.40GHz (8 (logical) CPUs),
16 GB DDR3 RAM, and an NVIDIA GeForce GTX 560 Ti, 1 GB.

6.1 Test scenes with many/less lights

In order to verify the assumption that render time can be saved when
using less lights in a scene, test renderings of five scenes of varying
complexity were done. The test scenes where designed to make use
of up to 47 light sources. In the scene ”LuxBalls”, three spheres
with the LuxRender logo embedded were placed on a gray surface.
Each sphere was assigned either a glass, metal or glossy material
to have various effects visible in the rendered scene. The scene
”Dragon” is featuring a green dragon made out of a diffuse, matte
material which stands on a matte, gray surface. This scene is rel-
atively easy to render, because no complex light interactions (like
caustics, etc.) occur. The ”Corridor” scene is the most complex

one where light from outside enters through a glass window into a
school corridor with a glossy floor. The ”Cherry” Scene pictures
a cherry that gets thrown into water and produces splashes. The
”Watch” scene shows a wristwatch on a wooden table. Each scene
was rendered with different rendering algorithms and the ”all” light
strategy, and twice for every rendering algorithm: Once only with
a set of light sources that have a contribution to the lighting of the
scene, and once with additional light sources that have almost no
contribution to the scene. A ground truth image of each scene was
also rendered for one hour.
The resulting images were then compared with the open-source
software imagemagik using the RMSE-metric. RMSE stands for
’root mean squared error’. It calculates the average error per pixel
by pixel-wise subtracting the images from each other, squaring the
values, and summing them up before dividing by the total amount
of pixels. Table 1 shows that when comparing the RMSE-values
for each of the scenes, the scenes where less lights are used always
have a smaller difference to the ground truth image than the ones
with many lights. With exception of the School Corridor scene,
which was rendered for half an hour due to its complexity, the test
scenes were rendered for 10 minutes each. The differences may not
seem big, but rendering for 10 minutes is not a long time either.
When rendering the test scenes longer, the difference between us-
ing less or many lights gets clearly visible for the human observer,
without using a comparison software.

(a) LuxBalls Scene

(b) Dragon Scene (c) Fish Scene

Figure 15: Scenes used for testing the algorithm.

6.2 Results of the LSC

For testing if the algorithm works, three scenes were designed. In
every scene, each light used was assigned to a separate light group
- otherwise the light sources can not be manipulated individually.

First, the integer optimization mode was tested with the scenes that
were already used in the empirical study. In those scenes, there
were lights which had surely no contribution to the lighting of the
particular scene. The assumption was that the ”unnecessary” lights
should be easy to determine, so when running for enough genera-
tions, the algorithm should be able to detect all of them and turn
them off. This worked fine for the tested scenes and should also
work for any arbitrary other scene where lights are used which have
(almost) no contribution.

For the testing the float optimization mode, three scenes were mod-
eled and tested. Two rather simple cases were constructed to show



Scene Balls Dragon Corridor Cherry Watch
Lights 30 30+17UL 20 20 + 17UL 10 10 + 17UL 31 31 + 17UL 11 11+17UL
Pathtracing 1040.44 1148.54 224.41 250.42 4918.52 5250.92 2012.82 2238.13 1246.18 1489.03
Bidirectional 1218.10 1333.16 257.46 275.04 2957.23 3827.03 2567.93 3115.10 1220.64 1887.13
Metropolis 1209.58 1347.72 283.97 304.10 3103.88 4082.38 2541.94 3031.82 1408.88 2342.89

Table 1: RMSE Difference of test scenes compared to ground truth image. ”UL” stands for ”Unnecessary Lights”, and indicates how many
lights with almost no contribution were placed in the scene. Each scene was rendered for 10 minutes each except the Corridor scene, which
was rendered for half an hour due to its complexity. The ground truth images were rendered for one hour. It is clearly visible that the scenes
using more light sources have a bigger difference to the GT image.

that the algorithm generally works. The first one consists of two
LuxBalls in front of a wall. Three area lights - two small lights and
one big light - were then arranged in the following way: Each one
of the small lights is half the size and half the power of the big light,
and the lights were positioned so that the two small lights together
are covering the big light exactly. Also, the lights are placed exactly
at the same height. Figure 16 shows a screen shot of the 3D-view
of the scene for better understanding. The assumption was that if
the algorithm worked correctly, it should be possible to achieve the
same lighting for a scene when turning off the small light sources
completely and increasing the intensity of the big lights a bit.
To make the whole scenario not too simple, this basic setup of three
lights was copied and pasted into the scene several times, so that 12
of those arrangements (which makes 33 lights in total) are present
in the scene.

The second scene features the dragon model again, but this time it
gets illuminated by 50 area lights. The area lights are positioned
pair-wise on the same position and height with the same light in-
tensity. So in this scene, it should be possible to turn off at least
half of the lights when increasing the intensity of the other half.
A 6x3 array of those lights illuminates the dragon from top, and 7
lights from the front. The light setup is also rather simple here, but
the amount of lights is already high. Figure 17 shows a screenshot
again for better understanding.

The third scene which shows an angler fish is the most complex one
because it features 100 light sources. The majority are blueish area
lights, and there are also point lights hidden behind the big stone
wall which have almost no contribution at all. The algorithm should
be able to turn off many of the point lights and reduce the amount
of area lights also significantly. Contrary to the previous scenes,
the area lights are positioned arbitrary instead of being arranged in
a special way. This was done to simulate a scene with completely
arbitrary lighting as it could occur in film production.

The initial images were rendered with bidirectional path tracing,
and the algorithm was run on each of them several times for 100,
500 and 1.000 generations with 15 chromosomes each and differ-
ent weighting parameters. At the beginning, some runs which last
only 100 generations were made several times to ensure that the
algorithm works ”right” and gives somewhat similar results. The
problem is that because of the nature of genetic algorithms, each
run can give a different result even when using the same input and
the same parameter settings. So a direct comparison of two runs
with the same settings is difficult, because the results are likely to
be different, but they can’t be classified as being ”wrong” or ”right”.
Figures 18, 19 and 20 show some of the result images.

7 Conclusion and discussion

We presented a light source minimization technique to provide a
solution for reducing the overall amount of light sources used in a
scene by applying a genetic algorithm to a multivariate optimization

Figure 16: Example for the light setup in the Luxballs scene. The
cyan colored rectangle marks the big area light, while the two red
ones mark where the two small area lights are located. The small
lights together cover the same area as the big one and are placed
exactly at the same height.

problem. A definitive strength is the simplicity of the concept and
it general applicability. Although for this paper the implementation
was done in LuxRender, this technique can be implemented in any
photorealistic rendering engine as long as there is a mechanism that
stores the contributions of light sources at different locations. We
demonstrated that our technique works well our test scenes. We
note that as we are using unbiased and consistent techniques, it is
possible to reduce the number of light sources while the rendering
is still in progress, and not after rendering of an image is finished.

The binary optimization mode could be sped up by evaluating be-
forehand which light groups have an average contribution per pixel
that is above the threshold. Those light groups for sure can not
be turned off, because of the additive nature of light transport, and
turning them off would for sure result in the generation of an in-
valid solution. Those light groups could be flagged in the initial
population, so that the algorithm does not make an invalid mutation
or crossover operation on them. At the moment, there is no method
in the LuxRender API which allows accessing the single light group
buffers. This extension to LuxRender itself would have to be made,
too.

At the moment, the metric used for deciding if an image is below
the threshold is a global. Thus, images with local extrema may
impose problems due to the omittance of small local features. Using
mean squared error metric instead of the simple difference between
the pictures could help, but one improvement would be to let the
user interactively pre-define which local effects are important and
should be kept after optimization.

Our technique is simple to implement, and is capable of yielding
a significant speedup in the execution time of the rendering step in
difficult lighting scenarios with a vast amount of light sources.



Figure 17: Example for the light setup in the Dragon scene. The
cyan and red rectangles exemplary mark two area lights, which are
placed exactly at the same position and have the same intensity.
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(a) Initial Image. Amount of lights used: 33 (b) Solution after 100 generations. Amount of lights used: 29

(c) Solution after 500 generations. Amount of lights used: 11 (d) Solution after 1000 generations. Amount of lights used: 12

Figure 18: Luxballs Scene. 33 Lights in total.

(a) Initial Image. Amount of lights used: 50 (b) Solution after 100 generations. Amount of lights
used: 41

(c) Solution after 500 generations. Amount of lights
used:26

(d) Solution after 1000 generations. Amount of lights
used: 24

Figure 19: Dragon Scene. 50 lights in total.



(a) Initial Image. Amount of lights used: 100 (b) Solution after 100 generations. Amount of lights used: 95

(c) Solution after 500 generations. Amount of lights used: 70 (d) Solution after 1000 generations. Amount of lights used: 58

Figure 20: Fish scene


