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Abstract
Efficacy of radiotherapy treatment depends on the specific characteristics of tumorous tissues. For the determi-
nation of these characteristics, clinical practice uses Dynamic Contrast Enhanced (DCE) Magnetic Resonance
Imaging (MRI). DCE-MRI data is acquired and modeled using pharmacokinetic modeling, to derive per voxel
a set of parameters, indicative of tissue properties. Different pharmacokinetic modeling approaches make differ-
ent assumptions, resulting in parameters with different distributions. A priori, it is not known whether there are
significant differences between modeling assumptions and which assumption is best to apply. Therefore, clinical
researchers need to know at least how different choices in modeling affect the resulting pharmacokinetic parame-
ters and also where parameter variations appear. In this paper, we introduce iCoCooN: a visualization application
for the exploration and analysis of model-induced variations in pharmacokinetic parameters. We designed a visual
representation, the Cocoon, by integrating perpendicularly Parallel Coordinate Plots (PCPs) with Cobweb Charts
(CCs). PCPs display the variations in each parameter between modeling choices, while CCs present the relations
in a whole parameter set for each modeling choice. The Cocoon is equipped with interactive features to support
the exploration of all data aspects in a single combined view. Additionally, interactive brushing allows to link the
observations from the Cocoon to the anatomy. We conducted evaluations with experts and also general users. The
clinical experts judged that the Cocoon in combination with its features facilitates the exploration of all significant
information and, especially, enables them to find anatomical correspondences. The results of the evaluation with
general users indicate that the Cocoon produces more accurate results compared to independent multiples.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—
Applications; J.3 [Computer Applications]: Life and Medical Sciences—Life and Medical Sciences

1. Introduction

In cancer treatment, the efficacy of radiotherapy is hypothe-
sized to depend on the specific characteristics of tumorous
tissues. Tumor characterization requires the use of differ-
ent imaging modalities, among which Dynamic Contrast En-
hanced (DCE) Magnetic Resonance Imaging (MRI). These
are time series of three-dimensional image volumes, i.e. 4D
data, which reflect the absorption of a contrast agent by tis-
sues. After DCE-MRI data acquisition, clinical practice uses
one of the established models to derive per voxel a set of
output parameters, which are indicative of tissue character-
istics. However, different modeling approaches require dif-

ferent assumptions or choices. Depending on these choices,
the resulting parameters might present different values.

It is difficult to decide beforehand whether different as-
sumptions or choices lead to significant parameter differ-
ences and which assumption leads to better results. There-
fore, it is valuable for clinical researchers to explore the
variability in the parameter values, as given by the different
alternatives. In this way, they can identify which anatomi-
cal regions are affected more by the modeling choices and
whether this has an impact on the final clinical decision and
treatment. Apart from exploring variations in the parameters
independently, it is also important to know how the relation-
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ships between parameters change. Still, these relationships
are complex and the effect of different choices on DCE-MRI
modeling is difficult to predict. To the best of our knowledge,
there is no tool that allows this kind of inspection.

In this paper, we introduce a new application: the iCo-
CooN (Integrated Cobweb Charts and Parallel Coordinate
Plots for Visual ANalysis of DCE-MRI Modeling Varia-
tions). It is a visualization tool for the exploration and anal-
ysis of variability in the parameter values that result from
different choices during DCE-MRI modeling. Within iCo-
CooN, we designed a representation, called Cocoon. For
this, we integrated Parallel Coordinate Plots (PCPs) with
Cobweb Charts (CCs - also called Star or Spider Plots, Radar
Charts or Kiviats in literature), to simultaneously show dif-
ferent significant aspects of the data and to provide a more
effective exploration. The interactive features of iCoCooN
facilitate data exploration and improve anatomical interpre-
tation.After the design, we conducted an evaluation of iCo-
CooN with clinical experts, where we performed two real-
patient case studies. Due to the limited amount of field ex-
perts, we conducted an additional usability study with non-
experts, to increase the statistical power of our evaluation.

Our work presents the following contributions:

• The iCoCooN is a new interactive application that en-
ables the visual analysis of DCE-MRI modeling variations
and, especially, the association of the observations from the
parameter space to the patient anatomy.
• The Cocoon is a visual representation within the iCo-
CooN, which results from the integration of PCPs with CCs.
It enables the exploration and analysis of the DCE-MRI
modeling information in a single combined view.
• The evaluations demonstrate the potential of the iCo-
CooN for the analysis of DCE-MRI modeling variations.

2. Clinical Background

Dynamic-Contrast Enhanced (DCE) Imaging is a commonly
used MRI technique in cancer diagnosis. DCE-MRI data are
4D data, i.e. 3D volume+time data, which depict the absorp-
tion and washout of a contrast agent (CA) in tissue over
time. This technique is based on the idea that tumorous and
healthy tissues have different CA uptake properties. Tumors
tend to develop new, disorganized and permeable vessels,
which have thinner and weaker walls [TTP∗10]. Thus, they
absorb and wash out CAs faster than healthy tissue.

A quantitative way of measuring tissue properties from
DCE-MRI data is to use one of the established pharma-
cokinetic (PK) models [TBB∗99, KVBH12, SB13]. These
models are employed to derive per voxel an output set of
PK parameters, which describe the distribution of the con-
trast agent inside the tissue and are indicative of tissue char-
acteristics [SB13]. Each PK model considers a number
of assumptions or crisp choices [PB05, TTP∗10, CFY∗11,
KBO∗11], depending on which, the values of the obtained
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Figure 1: DCE-MRI data (orange) undergo pharmacoki-
netic (PK) modeling (blue: the extended Tofts model [PB05,
Tof10]) using a number of input assumptions to derive per
voxel the PK parameter sets (purple; also bold in model). 

 

 
K

trans
/Fp ve vp PS AICc 

 
 

T
M

 
     

E
T

M
      

2C
X

M
      

 

 

0               0.5 0                 1 0               3.5 0                  1 min        max     

Figure 2: Standard layout for the inspection of PK parame-
ter maps (columns) of a tumor, modeled using three different
PK models (rows). Some parameters of the 2CXM are not
involved in the TM and ETM models [SB13].

parameters may differ (Figure 1). Clinical researchers do
not know a-priori whether there are significant differences
among models or their modeling assumptions and which
choice is the optimal to apply. Therefore, it is valuable for
them to investigate how the derived PK parameters behave
with different modeling choices. In this way, they can ex-
plore the impact of these choices on the precision of the
treatment outcome.

Currently, clinical practice uses a slice-based technique,
where the values of each PK parameter from the different
assumptions are mapped to a colormap (Figure 2). Analysis
using these so-called PK parameter maps is time consuming
and does not provide the necessary insight, as clinical users
need to manually inspect all slices of the different maps and
to mentally perform the relationships, i.e. spatially and be-
tween assumptions. More specifically, in a real-world anal-
ysis, clinical researchers are required to explore at a voxel
level the following data aspects:

1. Identification of Variability - The variations in each one
of the PK parameters for different choices in modeling.
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2. Identification of Relations - The relations inside each
one of the PK parameter sets as a whole.

3. Comparison of Behaviors - The variations in the PK
parameter set relations for different choices in modeling.

4. Detection of Patterns - The effect of different choices in
modeling on patterns in the data.

5. Exploration and Anatomical Reference - The anatom-
ical location of specific interesting behaviors or features.

To the best of our knowledge, there is no integrated tool
with this complete functionality. For this reason, we de-
signed the iCoCooN, with respect to the previously men-
tioned requirements, as defined by the users.

3. Related Work

There are numerous ways of visualizing multivariate data
[Kei02]. In this section, we present the most relevant work
related to the iCoCooN. Preim et al. [POM∗09] presented
a survey on applications for the exploration and analysis of
perfusion parameters that characterize the shape of the DCE-
derived enhancement curves and their correlation with the
data. Yet, model-induced variability of PK parameters has
not been addressed by any of these applications. The visu-
alization of Nguyen et al. [NBYR12] focuses on the mini-
mization of uncertainty in kinetic PET modeling parameters.
This application allows the exploration of variabilities in the
parameters, but the capabilities to show relations between
parameters and the effect of variability on these are limited.

Although our tool was designed specifically for deal-
ing with DCE-MRI modeling variations, the general idea
of combining PCPs with CCs is not new. In Temporal
Stars [NF02], discrete multiples of radial graphs, with each
axis representing a variable, are set along a central time axis
to describe variation with time. This representation is useful
for comparing different star glyphs or for monitoring time
evolution of the variables. As an extension, the 3D Kiviat
[TAS05] combines variable axes circularly arranged to a
central time axis and a surface rendering around the 2D Kivi-
ats for each time step to show time evolution of the variables,
i.e., the evolution of the 2D Kiviats in time. In this way, 3D
Kiviats show correlations between attributes, while preserv-
ing the focus on time evolution. The visualization proposed
by Fanea et al. [FCI05] employs a combination of PCPs and
Star Glyphs in a single configuration, to address clutter in
the former. Each Star results from PCP polylines unfolding
around the central axis and depicts a data item or a data di-
mension, thus, maintaining the total number of dimensions.
The PCPs of this visualization do not provide additional di-
mensions with additional information or insight in data rela-
tions or patterns. Finally, in VisLink [CC07], interrelation-
ships between multiple visualizations can be interactively
explored, with the form of multiple 2D layouts positioned
in space and linked together to show data associations.

Our approach combines specific attributes of the previous

work with new ones, to accommodate all the requirements
of our application, as mentioned in Section 2. We keep the
Star Glyphs for the exploration of relations and behaviors
in each parameter set [NF02, FCI05, TAS05], but we pro-
vide additional dimensions with PCPs for the exploration
of trends and relations in each one of the parameters across
these different choices. In this way, the PCPs provide addi-
tional information and are not restricted to time representa-
tion [NF02, TAS05] or to linking multiple representations
[CC07]. Finally, we incorporate functionality to link obser-
vations from the parameter space to the anatomical space,
which is not provided in any previously mentioned work.

4. The design of iCoCooN

After DCE-MRI acquisition, different output parameters are
derived per voxel during PK modeling, using one or more of
the established models and/or a number of assumption alter-
natives. In order to visualize all data aspects, as described in
Section 2, we employ the workflow proposed in Figure 3.

For the visualization of each one of the PK parameters
across the different choices, we decided to employ PCPs
[Ins85] (Figures 3 and 4). This representation allows the user
to visualize multiple data dimensions in limited space and to
detect trends and patterns. In our case, each line in the PCPs
corresponds to a location in the medical volume and each di-
mension to a PK parameter value for the different modeling
choices. It is a suitable choice for the identification of model-
induced variability in each of the PK parameters. For the vi-
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Figure 3: Workflow considered for designing iCoCooN.
With dark green, we denote the five requirements discussed
in Section 2, for the visualization and exploration of the re-
quired data aspects.
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Figure 4: Configuration of Cocoon from perpendicular in-
tegration of PCPs (cyan) and CCs (magenta). Here, we con-
sider four PK parameters for three assumptions (choices).
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Figure 5: An implementation of the Cocoon for four PK parameters (Ktrans, ve, vplasma and kep) and three assumptions (IndAIF,
PopAIF and ParAIF). Zoomed view: using the density colormap for better line visibility (red: very low density or outliers;
yellow: low density; white: high density).

sualization of each modeling choice, we decided to employ
CCs [CCKT83] (Figures 3 and 4). This compact iconogra-
phy representation combines the advantages of PCPs with
glyphs for the easy detection of patterns among different
plots [Kei02], based on the human perceptual ability to eas-
ily discern shape differences. In our case, each line in the
CCs corresponds to a location in the medical volume and
each dimension to a PK parameter value derived from one
modeling choice. It is a proper choice for comparing quali-
tatively a whole PK parameter set against another, or for lo-
cating relations, similar and dissimilar behaviors or outliers
in a parameter set.

Using a single PCP with each axis reflecting the PK pa-
rameter values and an additional discrete axis reflecting the
different modeling choices is not an appropriate option. This
solution adds clutter in the PCP due to an increasing num-
ber of overlapping lines from the different modeling choices.
Furthermore, it can only provide an overview on global shifts
in the parameters, while it disregards spatial relationships
between parameter sets and does not satisfy all the require-
ments of Section 2. Therefore, for visualizing and linking
both intra- and inter-model information, both PCPs and CCs
are needed. However, if many variables are involved in the
exploration, independent multiple PCPs and CCs might be
visually cumbersome, due to the amount of windows.

For these reasons, we decided to create a new represen-
tation, the Cocoon, from the perpendicular integration of
PCPs and CCs in a single 3D view with orthographic projec-
tion [Mun09]. With the 3D Cocoon, we improve exploration
by conveying different views of the data in an equal context.
This is also one of our main differences with respect to previ-
ous work [NF02,FCI05,TAS05,CC07,POM∗09,NBYR12]:
the PCPs of the Cocoon are not linking multiple CC repre-
sentations, but they show additional dimensions of the data.

In this way, we facilitate linking between parameters and
modeling choices in a compact view, without forcing the
user to use his memory during tasks, as in the case of the
independent multiples. Figure 4 depicts the concept behind
the configuration of the Cocoon, when we have four param-
eters to compare across three assumptions. For our applica-
tion, we need to show a limited number of different model-
ing choices and a maximum of six independent parameters
[SB13]. The optimal number of parameters is four, but for
more than four parameters in the CCs, the user can selec-
tively switch on and off axes in the representation. There-
fore, the scalability of the Cocoon is adequate for this con-
crete application and we consider out of the scope of this
paper to study higher dimensionality. Figure 5 shows an im-
plementation of the Cocoon for the concept of Figure 4.

We needed to address three main issues concerning the
Cocoon: (1) complexity of interaction, (2) perception con-
straints due to limited short term memory [PW06] and (3)
clutter [Mun09,DCK12,HW12]. For the first issue, we facil-
itate interaction by reducing the degrees of freedom. Not
all orientations of the Cocoon are sensible, so the user can
rotate the Cocoon only around two axes (longitudinal and
latitudinal) to adapt the view. For the second issue, the spe-
cific tasks in our application field do not require to rely on
short term memory. In an opposite case, the user can still
selectively show the independent multiple PCPs and CCs to
clarify information from the Cocoon, since all components
are linked [War01, Mun09]. For the last issue, we increase
the visibility of the polylines of the Cocoon using low alpha
values, but also a colormap based on the lines density (Fig-
ure 5). The density colormap enables better discernibility of
overlapping bundles, giving an impression of texture and an
idea of the variability of the data; for example, high density
lines that highly vary throughout the assumptions may in-
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Figure 6: Two features: (a) - Band coloring on the axis with the red arrow for the identification of trends in the data. The zero
values of Vplasma for the first AIF (brown lines), correspond to the values of Ktrans in the red box. The legend shows the employed
colormap. (b) - Brushing the Cocoon. (1) - Cyan brush in PCPs and magenta in CCs to reduce occlusion due to overlapping
polylines and glyphs. (2) - Visualization of the brushed bundles only. (3) - Linking to 2D anatomy and (4) - to 3D model.

dicate that the assumptions have a strong impact on parame-
ters, while very low density lines that highly vary throughout
the assumptions may indicate outliers.

Clinical researchers usually look at specific combinations
of PK parameters, which we offer as the default view in the
axes configuration. To improve the view and to increase visi-
bility further, we use a number of interaction features. Axes
reordering often affects positively the view and the ability
to see relations and trends in the data [WPWR03], while
scaling allows to pull apart dense parts of the representation
for better discernibility. Although automatic algorithms for
axes reordering can be helpful, given the dimensionality of
our application, they were not considered further. Band col-
oring allows the user to extend a primitive clustering from
the values of one dimension of the Cocoon to all. We employ
a divergent colorblind safe colormap from ColorBrewer, in
order to differentiate between low, medium and high param-
eter values. Figure 6-a shows how band coloring aids rough
detection of trends in the data, visualized as color bands.
Brushing allows the users to explore, analyze and detect in-
teresting trends and relations by selecting areas or values of
specific interest in the Cocoon [War94, Kei02] (Figure 6-
b:1,2). Finally, linking the brushed observations to the med-
ical data, by highlighting the corresponding regions in a 2D
slice viewer and a 3D model (Figure 6-b:3,4), establishes
correspondence to the patient anatomy. We implemented iC-
oCooN in Python as a DeVIDE module [BP08], employing
the Visualization Toolkit (VTK).

5. Evaluation Results

In order to assess the value of the iCoCooN, we conducted an
evaluation, inspired by the article of Lam et al. [LBI∗12]. It
consists of two parts: (1) an evaluation of the iCoCooN with
clinical researchers and (2) a general evaluation to test the
usability and effectiveness of the Cocoon and to increase the
statistical power of the evaluation, given the limited avail-
ability of field experts. For the second part, we abstracted
the tasks from the clinical field to a more general domain, so
that they could also be performed by non-experts.

5.1. Evaluation with Clinical Researchers

In order to evaluate whether the designed visualization meets
its requirements, we conducted individual evaluations with
intended users: four field experts from different institutions,
representing two types of clinical researchers, i.e. two clin-
ical physicists and two biomedical engineers. As a proof
of concept, we used two cases: (1) a prostate tumor case,
where clinical researchers want to explore and analyze the
effect of different clinically established choices of arterial
input function (AIF) [PRM∗06, CFY∗11, KBO∗11] within
the same model on the PK parameters and their in-between
relationships; and (2) a cervical tumor case, where clinical
researchers want to explore and analyze how the parame-
ters and their in-between relationships vary when derived us-
ing three different established models [TBB∗99, KVBH12,
SB13]. These datasets were provided by the clinical re-
searchers themselves and are described in Table 1.

The evaluation consisted of four phases. One of the
phases, i.e. the third, was task-specific, while the others were
general and aimed at clarifying three broader aspects:

• Does the proposed Cocoon offer new understanding in
the data, in comparison to current practice and also the in-
dependent multiple PCPs and CCs? If yes, how? If no, why?

• Do the features of the Cocoon contribute to the visual-
ization and facilitate cognition? If yes, how? If no, why?

• Does brushing and linking contribute to the exploration
and interpretation of the data? If yes, how? If no, why?

In the first phase of the evaluation, we simulated the vi-
sual environment for the exploration of the PK parameter
space in prostate and cervical data. In this phase, we were
interested in a first opinion on the individual features of iC-
oCooN. This part was also used as training, so the tool was
initially operated by the first author, while the test subject
first observed a demonstration and then explored the func-
tionality. We asked the test subjects with a questionnaire
to comment on the clarity and potential usefulness of each
one of these features, but also to quantify their value using
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Table 1: Description of the datasets used in the evaluation with clinical researchers. We work on the whole prostate region, but
only on the specific tumor region in the cervix, due to the high anatomical variability of the organ between individuals.

DCE-MRI data (4D) Modeled data (3D)
Resolution Voxel size Time resolution ROI size Modeling choices PK maps PK maps resolution PK voxel size
(voxels) (mm3) (s) (voxels) (voxels) (mm3)

Prostate dataset 256 × 256 × 20 for
120 timepoints

1×1×3 2.5 80× 80× 20 (usual
prostate size)

3 AIF alternatives 4 3D maps per
choice

256 × 256 × 20 (as
in DCE-MRI)

1 × 1 × 3 (as in
DCE-MRI)

Cervix dataset 176 × 176 × 20 for
120 timepoints

2.273×2.273×3 2.5 33 × 33 × 18 (spe-
cific tumor size)

3 different models 3, 4 and 6 3D maps
per choice

176 × 176 × 20 (as
in DCE-MRI)

2.273 × 2.273 × 3
(as in DCE-MRI)

a grading scale (1-5). The second phase required from the
test subjects to grade (1-5) the ability to identify variations
and relationships in the data, but also to relate them to the
anatomy and pathology of the patient. The third phase re-
quired a more detailed hands-on exploration of the data, aim-
ing at evaluating the insight provided by iCoCooN. In this
phase, the test subjects operated the tool exclusively them-
selves and they were asked to explore the data in iCoCooN
and to analyze their observations, as they would do in a real
case, performing the tasks of Section 2. In the last phase,
they evaluated the tool as a whole, based on their experience,
commenting also on the strengths, limitations and missing
features of iCoCooN.

5.1.1. First Phase: the iCoCooN Features

In the first phase, the test subjects evaluated the features of
iCoCooN individually, following a questionnaire. The quan-
titative results from this evaluation are summarized in Ta-
ble 2, with a convention of 1 for negative to 5 for positive.
All features of iCoCooN received scores above 4, apart from
two cases with a neutral grade (3), where the subjects com-
mented that they needed to form a more concrete opinion by
performing an actual task.

Using a questionnaire, we also asked for general com-
ments on each one of the features. First of all, the Cocoon
was considered understandable and relatively easy to use.
The test subjects confirmed that it enables the identifica-
tion of variations, relations and trends in the multidimen-
sional data in a combined view, even for parameters that do
not seem to have an obvious association in the independent
multiple views. The restricted manipulation of the Co-
coon in space is according to the test subjects appropriate.
Yet, the Cocoon requires training for learning how to ob-
tain the most adequate view and to interpret the conveyed
information. They were inclined, though, to say that there is
no need to additionally inspect the independent multiples.

Table 2: Evaluation of the features of iCoCooN by clinical
researchers, using a grading scale (1=negative, 5=positive).

#1 #2 #3 #4
Cocoon 3 4 4 4
Cocoon Manipulation 5 4 5 4
Cocoon inst.of Ind.Mult. 5 3 4 4
Scaling/Reordering 4 5 5 4
Band/Density Coloring 4 4 5 4
Brushing/Linking 4 5 5 5

The independent multiples might be used selectively, only
for details-on-demand or for easier tasks that involve single
parameters. However, they stated that they needed to confirm
this impression with a more exploratory task. The advan-
tages of reordering and scaling the Cocoon axes are also
straightforward for data interpretation, while band coloring
provides a visual context of how the values of one parameter
behave in respect to the rest of the parameters and aids the
detection of basic patterns in the data. The application of the
density colormap was considered useful for distinguishing
overlapping lines and for deciding on the importance of the
variations, relations or trends. This feature requires training,
but was regarded as easy to learn. Finally, according to the
test subjects, there is no currently used tool with brushing
and linking functionality for their purposes. They described
it as potentially easy to learn and use; an appropriate and ap-
pealing feature for data exploration, especially for relating
observations from the Cocoon to the patient anatomy.

5.1.2. Second Phase: Information Identifiability

In the second phase, the test subjects had to grade (1-5) the
ability to identify specific information using the iCoCooN,
i.e. variability and relations or trends, and the ability to relate
findings from the iCoCooN to anatomy. The quantitative re-
sults from this evaluation are summarized in Table 3, with a
grading convention of 1 for easy to identify to 5 for difficult.
All but one gradings were below 2, indicating that the test
subjects considered the three tasks easy. In only one case,
the relation to the anatomy received a neutral grade (3), as
the test subject explained that he would need to interact with
the Cocoon more, to form a more concrete opinion.

Table 3: Evaluation of the identifiability of information
in iCoCooN by clinical researchers, using a grading scale
(1=easy, 5=difficult).

#1 #2 #3 #4
Variability identifiability 2 2 1 2
Relations identifiability 2 1 2 2
Relation to anatomy 2 1 2 3

5.1.3. Third Phase: Case Studies

In this phase, the test subjects used iCoCooN for the ex-
ploration and analysis of a prostate dataset and a cervical
dataset, as they would do in a real case, executing the tasks
of Section 2. The patient-specific findings presented below
are observations of the clinical researchers.
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Figure 7: Exploration and visual analysis of a prostate tu-
mor case with iCoCooN during the third phase of the evalu-
ation with clinical researchers.

Case study: Prostate The test subjects were interested in
exploring how the four PK parameters of the extended Tofts
model (Ktrans, ve, vplasma and kep) [TBB∗99], vary across
three different AIF choices (Individual, Population-based
and Parker-based AIF) [PRM∗06, CFY∗11, KBO∗11]. The
AIF is used as an input assumption to the model and there
are different options for its precise shape [KBO∗11]. The be-
havior of the parameters for the different AIF choices, pre-
sented these major patient-specific findings:

1. Identification of Variability - The Ktrans parameter,
which relates to the tissue permeability, remains highly un-
altered throughout the different AIF choices (Figure 7-a:1).
Minor changes in the distributions are reflected by changes
in the density colors. Also, the vplasma, which relates to
the blood plasma volume, presents significant variations
throughout the AIF choices (Figure 7-a:2).
2. Identification of Relations - Lower and slightly decreas-
ing ve, which relates to the volume of the extracellular ex-
travascular space, is associated to slightly increasing kep and
lower values of Ktrans(Figure 7-a:3).
3. Comparison of Behaviors - Although the general behav-
ior of the parameter sets seems stable across the AIF choices,
the differences in the density colors of the CCs reflect slight
changes in Ktrans, vplasma and kep(Figure 7-a).
4. Detection of Patterns - The highest values of Ktrans are
related to high values of kep and ve in all three AIF choices
(Figure 7-b:1); and to values of vplasma that are highly vari-
able between the AIF choices (Figure 7-b:2).
5. Exploration and Anatomical Reference - Low ve and
low Ktrans regions reflect the necrotic core of the tumor and
some outliers at the border of the prostate (Figure 7-a:3,4).
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Figure 8: Exploration and visual analysis of a cervical tu-
mor case with iCoCooN during the third phase of the evalu-
ation with clinical researchers.

Case study: Cervix The test subjects explored how the
application of different models (Tofts model: TM, Ex-
tended Tofts model: ETM and Two-Compartmental Ex-
change model: 2CXM) [SB13] affects the behavior of the
respectively derived PK parameters in the tumor. The first
model results in two parameters (Ktrans and ve); the second,
in three (Ktrans, ve and vp); and the third in five (Ktrans, ve,
vp, Fp and PS) [SB13]. An opposite Akaike information cri-
terion (AICc) that relates to the relative quality of fit of each
model, i.e. high values of AICc mean high relative quality, is
additionally included to each PK set. The test subjects iden-
tified the following major patient-specific findings:

1. Identification of Variability - The Ktrans parameter does
not present significant changes despite the application of dif-
ferent models, apart from slight decreases between the ETM
and the 2CXM (Figure 8-a:1). This, together with high and
stable AICc in the TM and ETM models (Figure 8-a:2), is an
indication that these models had a reasonable fit.
2. Identification of Relations - In the 2CXM, high AICc is
highly correlated with high flow Fp and permeability-surface
area product PS (Figure 8-b:1).
3. Comparison of Behaviors - Regions with lower Ktrans

and lower ve present lower vp (Figure 8-a:3, brushed) in
the ETM and 2CXM. In the ETM model, vp presents a big
spread; bigger than in the 2CXM (Figure 8-a:4). This vari-
ability in the vp values of the 2CXM is related to the slight
variability in Ktrans values (Figure 8-a:5).
4. Detection of Patterns - In regions, where the Ktrans and
the ve values are low, the AICc values do not present sig-
nificant changes across the three models (Figure 8-a:2&3,
brushed), meaning that clinical researchers expect that they
will all give similar classifications.
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Table 4: Translation of clinical tasks to tasks with the synthetic datasets, for the controlled study.

Clinical Study (with experts) Controlled Study (with general users)
Data Dimensions A number of PK parameters for different modeling as-

sumptions.
A number of parameters from different measurements.

Identification of Variability Identify which of the PK parameters remains un-
altered/presents variability throughout the different
modeling assumptions.

Identify which of the parameters remains unal-
tered/presents variability throughout the different
measurements.

Identification of Relations Find a relationship or trend between two or more pa-
rameters throughout the different modeling assump-
tions.

Find a relationship between two or more specific pa-
rameters throughout the measurements.

Comparison of Behaviors In which of the assumptions do we encounter a spe-
cific behavior of two or more parameters?

In which of the measurements do we encounter a spe-
cific behavior of two or more parameters?

Detection of Patterns Find a specific pattern in the parameter behaviors.
How does it change throughout the assumptions?

Find a given pattern in the parameter behaviors. How
does it change throughout the measurements?

Exploration e.g. Which assumption do you trust more for each
zone of the tumor based on all the parameters?

e.g. Which measurement do you choose if you de-
mand specific characteristics?

5. Exploration and Anatomical Reference - A usual indi-
cation of malignancy is the combination of low ve and low
Ktrans. This is the necrotic core of the tumor (Figure 8-a:6)
and has the worst responses to treatment. In these parts, the
model that fits better is TM, which is confirmed by slightly
higher AICc values in the Cocoon (Figure 8-a:7).

With this data, we confirmed that iCoCooN fulfills all the
requirements of the intended users, as described in Section 2.

5.1.4. Fourth phase: the iCoCooN Overall

In the last phase of the evaluation, the test subjects com-
mented on iCoCooN overall and, mainly, on its strengths,
limitations and missing features. According to their expe-
rience, they positively judged the application as useful: the
Cocoon in combination with its features provides the nec-
essary information and the user requirements are met. They
were also asked to compare the tool to current clinical prac-
tice, i.e. the slice-based inspection of all alternative param-
eter maps. To that, they commented that current practice is
mainly manual and mental work, which makes hard the iden-
tification of variabilities and relations in the data, since it re-
quires from them to go through the multiple slices of all the
parameter maps. Instead, the Cocoon is versatile in showing
all the multiple dimensions in one view and in aiding their
investigation. Thus, it enables them to see the consequences
of each modeling choice, to perform and analyze selections
and see their exact relation to the anatomy.

Although the first results of the evaluation are promising,
they also exposed some limitations. The iCoCooN is a tool
that needs training and time to learn. This is also supported
by the statements of the test subjects in the previous phases
of the evaluation. They agreed that once the user becomes
familiar with the visual mapping of the dimensions, the ex-
ploration and analysis is faster and easier than with current
practice. In order to improve this further, semi-automation of
the data exploration and analysis would be required. More-
over, iCoCooN misses the functionality for the inspection
of the related enhancement curves, in order to quantitatively
see the absorption of the contrast agent in the tissue. This
would give additional information on the physical meaning
of the visualized data and their patterns.

5.2. Usability and Effectiveness Evaluation

Our application is built for a specific target group and we
are just able to conduct user studies with a limited amount
of experts. In order to strengthen our evaluation, we decided
to perform a controlled study with non-experts, specifically
for the usability and effectiveness of the Cocoon, compared
to independent multiples. For this, we translated the clinical
tasks of Section 2 to two domains more accessible to general
users, i.e. airlines and climate measurements. The tasks are
described in Table 4. As we are outside the clinical domain,
linking to the anatomy, which was already positively judged
by clinical researchers, is not tested here. For the other tasks,
we created two synthetic, but realistically sized datasets us-
ing the PCDC tool [BHvLF12]. Since we focus on evaluat-
ing the Cocoon for our concrete application, we use similar
dimensions to the ones of our case. Exploring the limits of
scalability of the representation is not expected to be of in-
terest in our application. Therefore, it was considered out of
the scope of this paper and was not tested further.

We had 15 test subjects: 8 females and 7 males, between
23 and 44 years old. All of them had normal vision, with
or without glasses and none of them was colorblind. Their
background included electrical engineering (4), computer
sciences (3), biomedical engineering (2), mechanical engi-
neering (2), chemistry (2), hydraulics engineering (1), and
mathematics (1). They described their computer expertise
as medium (9) to high (6). Only two test subjects had ex-
perience with PCPs and CCs. First, we gave them a small
introduction to explain the reasoning behind the study and
to present notions such as PCPs, CCs and the Cocoon. Sec-
ondly, we demonstrated basic functionality. Thirdly, we did
some first exercises, until the test subjects were confident
with the visualizations. Fourthly, we conducted two exper-
iments with the synthetic datasets. For each one of the ex-
periments, the test subjects needed to perform the five tasks
given in Table 4 as fast and accurate as possible, once using
only the independent multiples and once only the Cocoon.
We exchanged the order of the two representations both be-
tween the experiments and across users, to avoid bias. For
all tasks, we measured completion times and correctness of
answers, which were known to us. Finally, we asked the test
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Table 5: Evaluation results: (Left) Mean and standard deviation of completion times (s) and task correctness (0=wrong to
1=correct) for the two experiments. (Right) Mean and standard deviation of gradings (1-5) and the overall rankings (1-10)
for the two representations. Bold indicates lower time and higher correctness, while color relates to statistically significant
difference ( p<0.01 , p<0.05 , p>0.05 ).

Cocoon Independent Multiples
Airlines µ t σ t µcor σ cor µ t σ t µcor σ cor

Variability 55.67 31.35 1.00 0.00 31.47 26.26 0.97 0.13
Relations 46.80 30.9 1.00 0.00 46.87 30.01 1.00 0.00
Behaviors 61.60 25.04 0.87 0.35 56.00 35.99 0.40 0.51
Patterns 93.67 39.52 0.73 0.46 82.73 45.14 0.33 0.49
Exploration 66.47 26.95 0.97 0.13 79.27 36.59 0.73 0.32

Climates µ t σ t µcor σ cor µ t σ t µcor σ cor

Variability 24.60 9.92 1.00 0.00 23.60 9.68 0.80 0.17
Relations 46.87 27.22 0.93 0.26 38.60 30.67 0.93 0.26
Behaviors 41.60 14.21 1.00 0.00 45.20 25.51 0.73 0.46
Patterns 77.73 34.29 0.93 0.27 77.00 33.47 0.67 0.49
Exploration 38.53 17.18 1.00 0.00 44.40 27.49 0.87 0.23

Gradings Cocoon Indep. Multiples
Characteristics µgC σgC µgIM σgIM

Easy to Use 3.87 0.74 4.33 0.62
Easy to Understand 3.73 0.80 4.13 0.74
Useful 4.13 0.74 3.87 0.74
Suit. for Variability 4.13 0.83 4.20 0.68
Suit. for Relations 4.20 0.68 3.73 0.70
Suit. for Behaviors 4.47 0.74 3.87 0.99
Suit. for Patterns 4.27 0.70 3.53 0.83
Suit. for Explor. 4.73 0.59 2.73 1.03
Not Overloading 4.27 0.70 2.27 1.03
Overall Ranking 8.13 1.36 6.47 0.99

subjects to complete a small survey, consisting of a grading
scale (1-5), an overall ranking (1-10) and open questions.

5.2.1. Evaluation Results

The completion times and correctness for the five tasks of the
two experiments, as well as the gradings of the test subjects
are summarized in Table 5, together with their color-encoded
statistically significant difference, as it resulted from t-tests
analysis. For the more demanding tasks, i.e. comparison of
behaviors, detection of patterns and exploration, the obser-
vations from the Cocoon were more correct than the inde-
pendent multiples in both experiments (p<0.05). The time
difference was in favor of the independent multiples, but
not statistically significant between the two representations
(p>0.05), except for the variability task in the airlines ex-
periment. Additionally, there is a statistically significant dif-
ference between the gradings in the two representations in
favor of the Cocoon, which was judged more suitable for the
more demanding tasks and for the identification of relations
task (p<0.05). Also, it was considered less overloading than
the independent multiples (p�0.01). Both representations,
were considered comparably useful, easy to use and under-
stand (p>0.05). In the overall ranking, the Cocoon comes
first with a difference of 1.67 points (p=0.0012), while only
two test subjects ranked the independent multiples higher.
Nine test subjects commented that they would not need the
independent multiples at all, on top or instead of the Cocoon.
The rest commented that the independent multiples could be
useful and faster in certain instances; i.e. for simple tasks,
for comparison of few parameters or for beginners.

In their general comments, the test subjects stated that
when higher dimensionality is involved in the tasks, they
preferred the Cocoon, because they could check everything
in a single, compact view ("The Cocoon offers compact in-
formation giving a more intuitive understanding of complex
relations. With the independent multiples, I had to compile
all the information from multiple windows in my mind first").
They also stated that Cocoon made them more attentive, ef-
ficient and eventually more accurate ("I felt that I could be
faster with PCPs. However, I realized that I was jumping

easily to conclusions and making more mistakes, because I
was not paying attention to the multiple relations that af-
fected my observations"). Yet, choosing the most effective
view is time demanding and requires training ("I needed to
think and learn which was the most effective view. Getting
the correct view of the Cocoon takes time", "The Cocoon has
a higher learning curve, but can provide more information
at a glance with adequate training").

6. Conclusions and Future Work

In this paper, we presented iCoCooN: a visualization tool
that aids clinical researchers to explore and analyze how dif-
ferent choices in modeling affect the parameter space de-
rived from modeling DCE-MRI data. The contribution of our
work lies within the design of the Cocoon that allows users
to explore the required DCE-MRI data aspects in a single
combined view, while its interactive features facilitate the
exploration and interpretation of the data and, especially, the
correspondence to anatomy. The value of iCoCooN for our
application was confirmed by an evaluation with clinical ex-
perts. An additional evaluation with general users indicated
that the Cocoon produces more accurate results compared to
the independent PCPs and CCs, especially for more complex
tasks. At any case, adequate training of the users is essential.
The evaluations also provided feedback towards future work.
The tool can still improve by reducing interaction workload
and time for adjusting the view; also, by reducing clutter in
the Cocoon with lines illumination or bundling [HVW10].
Finally, although the tool can be extended to other similar
applications, scalability needs to be examined by additional
evaluations. First indications show that iCoCooN has good
potential of use for the easier exploration and analysis of
model-induced variations in DCE-MRI data.
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