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Figure 1: From a noisy input point set of 87K points (a) we hierarchically build a reduced Gaussian mixture representing its density (b).
On this mixture, &ontinuous Projectionperator is applied, which ef ciently produces &an reconstruction of 72K point positions (c) at

9 FPS. In contrast, aih » reconstruction (d) with small feature-preserving kernel exhibits heavily visible noise (top), while a larger kernel
biases and oversmoothes the result (bottom). Our method runs at up to 7 times the speed of a fast GPU implementation of standard WLOP
while providing comparable or even better quality, allowing for interactive robust reconstruction of unordered dynamic point sets.

Abstract 1 Introduction

With better and faster acquisition devices comes a demand for fastln recent years, many robust surface reconstruction techniques have
robust reconstruction algorithms, but ha-based technique has ~ been developed that can deal with a variety of acquisition errors
been fast enough for online use so far. In this paper, we present alike noise, outliers, missing data (holes) or registration artifacts.
novel continuous formulation of the weighted locally optimal pro- They are commonly based on a robust-optimization approach
jection (WLOP) operator based on a Gaussian mixture describing @and are able to produce high-quality output despite very dif cult
the input point density. Our method is up Totimes faster than ~ data. However, currerit; techniques are typically too expensive
an optimized GPU implementation of WLOP, and achieves inter- t0 achieve interactive reconstruction times for at least moderately
active frame rates for moderately sized point clouds. We give a Sized point sets, even for parallel implementations. Hence, due to
comprehensive quality analysis showing that our continuous oper- their nature, they are designed for quality rather than performance.
ator achieves a generally higher reconstruction quality than its dis- The availability of modern online acquisition devices has however
crete counterpart. Additionally, we show how to apply our continu- created new research challenges in performing instant surface re-
ous formulation to spherical mixtures of normal directions, to also construction of such dynamic point data. A variety of methods have
achieve a fast robust normal reconstruction. recently been proposed for onlihe reconstruction of static [Izadi
et al. 2011] as well as dynamic scenes [Zhou et al. 2008]. How-

. . . ever, a major challenge for a dynamic point-based reconstruction
CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-  echnique is its robust performance in the face of corrupt and noise-
ometry and Object Modeling—[Geometric algorithms, languages, contaminated data, as is commonly given in real-world scanning
and systems] scenarios due to sensor accuracy, occlusions, imperfect registration

and other issues.

Keywords: L1 reconstruction, point set, Gaussian mixture, Hier-

archical EM, dynamic reconstruction, upsampling In this paper, we introduce a highly ef cient variant of tlezally

optimal projection(LOP) operator [Lipman et al. 2007]. LOP ro-
PN = bustly ts a set of resamplingarticlesto a noisy point cloud by it-
Links:  ©DL PDF eratively applying a system of attractive forces de ned by the input
points. Characteristically, LOP requires high computational effort
e-mail:  f preiner|marikan|jwimmer g@cg.tuwien.ac.at for the iterative evaluation of all mutual forces between the parti-
Ye-mail: fmattauschlpajarola  g@ifi.uzh.ch cles and thaliscreteset of points. Our approach reformulates this
operator to be applicable to a much more compamttinuousep-
resentation of the point cloud's attractive potential eld. We use a
Gaussian mixture modéGMM) to describe the point cloud's den-
sity in a geometry-preserving manner and show how to compute an
ef cient analytic solutiorto the integral forces exerted on the parti-
cles by each of its continuous components. By operating on a small
set of Gaussians instead of the large input point cl@ahtinuous
LOP (CLOP) achieves speedups of up to a factor of 7 over a compa-
rable LOP implementation on the GPU. This makes a robust recon-
struction at interactive frame rates for moderately sized dynamic
point sets possible (see Figure 1). We also demonstrate that the
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same continuous formulation can be directly applied to the spher- by raycasting the implicit surface in the grid, but it only handles a
ical domain to ef ciently computédocally robust point normalas limited amount of dynamics in the scene. For dynamic point sets,
well. Furthermore, our continuous representation allows for robust Zhou et al. [2008] build a GPU kD-tree in each frame to perform
point-cloud upsampling. Our results show that despite its much range queries for a per-frame computation of the k-nearest neigh-
faster computation, our continuous algorithm achieves better point bors. Auto Splats [Preiner et al. 2012] accelerate the normal estima-
regularity and equal or even higher reconstruction accuracy than itstion process by executing the same range queries entirely in image
discrete counterpart and even high-quality variants Weighted space, discarding the necessity for a per-frame kD-tree construc-
LOP [Huang et al. 2009]. tion.

2 Related Work Gaussian Mixtures.  To describe complex data distributions us-
ing a simple model, Gaussian mixture models have been used in

Surface Reconstruction  from point clouds has been a major re-  Various scientic elds, like image segmentation [Garcia et al.
search topic for 20 years. Implicit surface reconstruction methods 20101, object recognition [Vasconcelos 1998] and rendering [Wal-
range from locally tting tangent planes [Hoppe et al. 1992], using ter etal. 2008; Jakob et al. 2011]. We employ this model to obtain a
Radial Basis Functions [Carr et al. 2001], or Poisson Reconstruc- Simple but expressive representation of the point distribution in an
tion [Kazhdan et al. 2006; Kazhdan and Hoppe 2013]. Point set Input point Set..We use a.hlelrarchlcal version [Vasconcelos 1998]
surfaces based on a moving least squares formulation (MLS) haveOf the Expectation-Maximization (EM) algorithm [Dempster et al.
been successfully used to resample and smooth point clouds [Alexal9771, which quickly computes a maximum likelihood estimate of
et al. 2003; Amenta and Kil 2004] in the presence of noise, but they the mixture component parameters.
have problems handling outliersL 1-based reconstruction tech-
niques have gained a lot of attention over the last years in many Robust Normal Estimation. ~ Normal estimation is a fundamen-
elds, as they are known to be less sensitive to the presence of tal problem in surface reconstruction and point rendering. Basic ap-
outliers. For surface reconstruction, methods have been proposechroaches use some form of local plane tting [Hoppe et al. 1992],
that use recent advances in robust statistics [Fleishman et al. 2005put noisy point sets with outliers and possible sharp features re-
Oztireli et al. 2009]. These methods are theoretically able to faith- quire more robust normal estimations. Approaches range from in-
fully reconstruct a surface as long as there are less3baercent scribing empty balls [Dey and Sun 2006], smoothing and outlier
outliers (the breakdown point). Other methods perform a global removal [Huang et al. 2009], globkl norm optimization [Avron
minimization on the orientation of the input normals, using ideas et al. 2010] to randomized Hough transforms [Boulch and Marlet
from compressed sensing and sparse signal recovery [Avron et al.2012]. Robust statistics-based methods have been shown to achieve
2010]. However, while these algorithms are of high quality, due to superior results in the presence of outliers [Kalogerakis et al. 2007;
their global nature they are often extremely slow, do not scale well |j et al. 2010; Zheng et al. 2010; Oztireli et al. 2009]. In this pa-
to large data or require special assumptions on the input data (€.9.per, we will show that our proposed continuous LOP operator can
data with a few planar elements). be directly adopted to not only perform a fast robust resampling of
a point cloud, but also an equally ef cient robust reconstruction of

LOP and Variants.  The Locally Optimal Projection (LOP) oper- point normals.

ator [Lipman et al. 2007] is particularly attractive for reconstruction

since it does not put many constraints on the nature of the inputdata,3 A Review of the LOP Operator

i.e., it does not require a well-de ned surface parametrization nor a

surface which can be locally well approximated with a plane. Asthe The Locally Optimal Projection(LOP) Operator [Lipman et al.
algorithm is related to the Weiszfeld-algorithm for nding the- 2007] ts a number of pointY = fqggi2i (denoted agparti-
median [Hartley et al. 2011], itis robust against outliers, but still rel- cleg into local medians of a point sé&t = fp;gj23, | andJ
atively cheap and highly parallelizable because of its local support. being the respective index sets. The algorithm performs a local-
However, the running times of the original algorithm are still infea- ized version of Weiszfeld's algorithm for nding the spatial median
sible for interactive applications. Weighted LOP (WLOP) [Huang q=argminf ;2;kx pjkgusing a steepest descent on the sum

et al. 2009] deals with unevenly sampled point clouds by taking into X . . .
account a local density measure which relaxes the attractive forcesolf Eu'c::dean d'slt".mlces frqrr all poirgs. To extend the V\;elszfeld
in denser regions and hence reaches more evenly distributed pointsfjl gorit m to.mu tiple particles, L?_Phlﬁezs an isotropic, fast Fiecay-
We will show that this concept is compatible with our continuous Ing localization kernel (r) = e ""~™*%" around each particle,
LOP formulation and can be adopted without any additional effort. Which concentrates its in uence onto its support radiusStarting
Kernel LOP (KLOP) [Liao et al. 2013] reduces the computation Wwith an arbitrary initial particle se® , LOP computes the target
cost of LOP bysubsamplinghe point cloud using &ernel density particle position® by performing a xed-point iteration
estimate(KDE). While this reduction achieves a decent accelera-

tion, reducing the number of discrete input samples also constrains  Q**? = argmin fE(X;P; Q™)+ E2(X;Q )g (1)
the number of usable resampling particles [Lipman et al. 2007], X=fXigiz1

thus the general reconstruction quality deteriorates quickly for a where
small number of kernels. As our approach describes the point set'sE %P0 )y = P P kx K (K K

whole KDE continuously, we are able to reconstruct at high particle 1(XPQTDE 2 p2J i pk (kg pk),

rates using only few Gaussian components. E20GQM )= 0y, 10 o0 iog (kxio  gk) (kgo gk).

Here,E; is an energy term attracting towards the local medians
GPU-based Online Reconstruction. With the introduction of of P, while E; de nes a repulsive energy between the particles that
real-time 3D acquisition devices, interactive reconstruction has be- strives for an equal distribution of thyg over the approximated sur-
come a highly important topic. The recently developed Kinect- face. denotes the localization kernel constraining both terms to a
Fusion algorithm [Izadi et al. 2011] builds a complete volumetric nite in uence radius,f ;gi2| are weights balancing the particles’
model of the environment by integrating range data over time in attractive and repulsive forces, ands a repulsion function deter-
a 3D grid. The data can then be used for tracking and rendering mining a distance-based repulsion strength (we s¢= r as



suggested by Huang et al. [2009]). Eq. (1) leads to the following

formulation for the updates of each partigf’ 2 Q™) in iteration
k. The rstiteration acts as ah; initializer for Q,
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whereQ? denotes the set of complementary parti€les ; g. The
repulsion parameter 2 [0; 0:5) controls the balancing between
the attractive forceB; of the pointsp; and the repulsive forcds,
from the neighboring particles. Both forces are de ned as convex
sums over their respective neighbors, with pairwise weights
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Huang et al. [2009] proposed an improvedeightedversion of
LOP, referred to as WLOP, that introduces additional balancing of
these weights, allowing for a more uniform distribution of the par-
ticles in regions of varying point density. We show in Section 7
that this additional balancing can be natively integrated into our an-
alytic approach, enabling us to actually perform analytic WLOP.
However, for the rest of this paper, we will refer to our method as
Continuous LORCLOP) for simplicity.

4 Motivation and Overview

The formulation of Eq. (1) can be interpreted as a particle simula-
tion of a set of repulsive particlé® on an attractive background
potential eld , which is represented by a discrete set of samples
P . The computational effort of LOP scales with the numijb&rof
points and the numbgQ)j of resampling particles to be processed
in order to evaluate all mutual forces in the system. As typically
iQj j Pj, the majority of the time will be spent on the evaluation
of the attractive forces from all poings, which can be seen as the
carriers of the energy potential of. We therefore propose to re-
duce toa more compact, yet still accurate representation, which
allows evaluating the attraction term much more ef ciently.

In this paper, we use a mixtuh® of anisotropic Gaussians to rep-
resent the density of the input points, whék§ | Pj (Sec-

tion 5). We then derive an analytic solution for the continuous
attraction forces exerted by each individual Gaussian (Section 6).
The mixture is ef ciently computed from the input poins by a
constrained hierarchical expectation-maximization procedure. This
one-time effort easily pays off, considering the reduced amount of
density-representing entities to process during the following LOP
iterations (typically 10-20). In Section 7, we show how to extend
our approach to WLOP without additional cost. In Section 8, we
exploit an inherent coherency in the repulsive moments of the par-
ticles to also accelerate the evaluation of the repulsion term over all
LOP iterations. Finally, we extend our continuous formulation to
the robust estimation of normals (Section 9).

5 Gaussian Mixture Density Computation

In this section, we efciently reduce the s& of unordered
input points to a much more compact mixture of Gaussians

M = fws; sg that re ects the density distribution of the points.
That is, M de nes a probability density function (pdf) as a
weighted sum ofMj Gaussian components

X
f (xjM ) =

S

Wsg(Xj s); (7)

where the s = ( s; ) are the Gaussian parametens, their
corresponding convex weights, agdienotes thal-variate Gaus-
sian pdf withg(xj; )= j2 )Tt ) We de-
mandM to be ef ciently computable in parallel, and to ideally
re ect the density o while minimizing the smoothing of the sig-
nal which LOP tries to reconstruct. We use a constrained variant of
hierarchical expectation maximizatiqWasconcelos 1998], which
aims at optimizingM in the maximum-likelihood sense while try-
ing not to destroy characteristic information about the underlying
geometry. Next, we will shortly review the EM and hierarchical EM
(HEM) algorithms, and then present a modi ed, constrained variant
of HEM to compute an accurate density estimate of the point cloud.

j e (X

5.1 Expectation Maximization in GMMs

An ideal density estimat®l of an input point sef Rod is de ned

in a way that it maximizes the likelihood(M ) = =, f (pijM )

of producing the seP underM . Starting with an initial guess

M © | Expectation Maximization [Dempster et al. 1977] computes
such amaximum likelihood estimattMLE) for mixture models

by iteratively optimizing an estimator of the parametershbf
until a local maximum of the objective log-likelihood function
Lig = logL(M ) is found. It thereby uses a discrete distribution
of posterior responsibility probabilitiess for a fuzzy assignment

of each point to each component, and optimizes them along with
the model parameters. This is done in an alternating two-step pro-
cedure, which eventually converges to a local maximumgf :

E-Step: Given the current model parametdis, compute the ex-
pected responsibilities

re = P L( sipi)ws .

oL sojpi)wso’ (8)

L( sipi) = 9(pij s)

M-Step: Based on the new responsibilities, update the model pa-
rametersM °. For Gaussian components, these are the points'
weighted mgans s and weighted covariancess pith convex
weightsris = ;o rjos, and mixture coef cientsvs = ; ris 5jPj.

5.2 Hierarchical EM

In contrast to classic EM, hierarchical EM performs only one ini-
tial EM iteration on the complete input data, and then successively
reduces the mixture by hierarchically applying EM on Gaussians
instead of points. HEM equips each input pomt with an ini-

tial low-variance Gaussian i(o), which results in an initial mix-

tureM @ = fwl; O gwith initially equal component weights
w® = 1=jPj. The component parameteré'”) of the next level
are then estimated based on the current le\®l an adapted EM
step. Since each Gaussian representsv; = w;jPj points, HEM
alters the likelihood functioh employed in the E-Step in Eq. (8)
to incorporatew; representative “virtual samples”:

feq {0 §")iW‘

h
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Given the responsibilitiess and the mixtureM () of the current
level, the model parameters of the next higher level are again max-
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Figure 2: Gaussian Mixture on a signal with an outlier (top) and

its LOP reconstruction (bottom). Ellipses denote Gaussians' one-
-isodistances. (a) Initial mixture. (b) Levél @ with uncon-

strained HEM. (c)M @ with constrained clustering radius. Stan-

dard HEM tends to smooth the signal, while regularized HEM is

more feature preserving, at the cost of less component reduction.

imized by convex sums
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with convex weightd is = riswi= ,orjosWjo. To initialize the
mixture M (D of each next higher level before the hierarchical
EM-step, we randomly subsample the ¥t (usually  33%).

5.3 Geometrically Regularized HEM

Since the maximum likelihood estimate of a Gaussian is a least-
squares solution, thus non-robust, an ordinary MLE of a Gaussian
Mixture is inherently prone to bias the input signal in a way that

obliterates any subsequent robust reconstruction. Thus, without any,

further consideration, a mesgatistically optimal t of M could
place a Gaussian component in a way that blurs the information of
outliers against which we want to robustly reconstruct (Figure 2(a)

(@jm @j=64K

(b) M @j=13K

(c) jM @ j = 8400

Figure 3: Unit- -isosurfaces of the mixture Gaussians at the camel
model's front hooves at different hierarchy levels for 2:1. Note

how with successive levels, the main signal components are merged
while the Gaussians modeling outlier information stay unchanged.

distancedy between their centers as well as the deviation of their
principal component directions. ThuBk. lets large anisotropic
Gaussians continue clustering in the direction of their largest vari-
ance, while smaller Gaussians, possibly representing outlier points,
are restricted to a small clustering radius.

Clustering Kernel Size  In contrast to previous authors [Jakob
et al. 2011; Walter et al. 2008], who choos¢o be then-th glob-
ally smallest occurring distance between Gaussians, we try to avoid
such a global computation, but rather choosebe a good compro-
mise between clustering ef ciency (large, relax@dand geometric
accuracy (small, restrictive). To provide an intuitive control over

, we suggest a free parameter so that 2=2, which has
a simple interpretation: If two Gaussians have equal covariances,
thus presumably representing similarly oriented geometry, Eq. (11)
reduces to a simple threshold of their centers' Mahalanobis dis-
tance. On the other hand, assuming the Gaussians have coinciding
centers, differently oriented covariances suggest a change in orien-
tation of the underlying surface, whichwill segregate even more.
In our experiments, 2 has proven to give a good balance be-
tween clustering ef ciency and accuracy.

and 2(b)). While there are alternative distributions that provide a ro- Mixture Initialization ~ The initial mixtureM © needs to be de-
bust MLE, like the Laplace distribution, these cannot be expressed ned in a way that allows to provide a similar regularization
in closed form and would thus require an expensive iterative ap- behavior throughout all levels of the hierarchy. Placing an initial
proximation. Instead, we improve the robustness of the GaussianGaussian at each poimi({’) = p;) creates a simple kernel density
mixture by adopting geometriaregularization to Hierarchical EM,  estimate ofPj, whose kernel bandwidth de nes the extent of the
which stems from the idea of agglomerative hierarchical clustering .\ o viancag © [Vasconcelos 1998]. A too small bandwidth re-

. X ; i .
to merge only those clusters which are closest under a given dis-g, ;5 4 Jarge to allow any clustering at all, but also diminishes
tance measure. Restrlct_lng the set O.f nelghborlng_compc_)nents tharthe regularization effect in subsequent levels. On the other hand, a
alrle considered tfﬁr merging todustfenlng k%rngbf nite radlut.?l loay. 100 large bandwidth smooths the signal in advance, thus again in-
allows merging thé énergy mass of close-by L>aussians, whiie ?av'creasing the reconstruction bias. To produce a suitable initial den-
ing more distant clusters untouched (Figure 2(c)). This results in a g etimate, we rst use a conservative kernel radiugisually
regula_rlze_d hlerarchlcal El\/procedu're, which strives for a maxi- 3 times a point's nearest neighbor distance) to compute for
mum likelihood estimate under a reinforced similarity constraint. each point an initial covariance matrix , whose shape already re-
ects the local distribution of then points within the kernel. In a
second step, ; is scaled down so that its unitellipsoid ts its
local nearest neighbor distances. This gives an initial covariance

Dissimilarity Measure ~ To measure the distance between two
Gaussians ; and s in R®, we use their Kullback-Leibler diver-
gence

0 — rgrei.;. cl; (12)
max n

In L

3 J s
(11)

Drc( tk s)= % du( ¢; )2+1tr( ¢ 0)

2
where max is the square root of the largest eigenvalue of | is

and de ne to be the maximum distan@x, ( (K s)max Within the identity matrix, and is a small trace bias giving® a mini-
which s might merge other components;. Although Dk, is mum extent. Figure 3 shows the feature-preserving reduction of the
a measure of relative entropy, it has an intuitive geometric inter- mixture from Figure 1 over different hierarchy levels with regular-

pretation, as it accounts for both the scale-invariant Mahalanobis ized HEM.
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Figure 5: (a) Comparison plot of the original function (dashed)
and its approximation by a sum of 3 Gaussians (solid) using the
coef cients listed in (b). Note the nite peak 6f

Figure 4(b) shows the form of the combined weight functigrfor
the generating Gaussians and kernel . Note that the integral in
Eqg. (15) is not nite due to a singularity at= 0 produced by its
factor 1. However, in the basic Weiszfeld's algorithm as well as
in LOP, a particle spatially coinciding with an input point (i.e5
0) represents a singularity anyway, which is typically accounted for
by removing the point in question, or biasing the denominatdr
Figure 4: Continuous attraction of a particlg from a Gaussian ~ to some( + ) * to clamp the point's energy at= 0 to a nite
s. (a) Density of s (blue) and kernel (yellow) centered i peak. Following the same reasoning, we circumvent the in nite
lead to (b) a product weight s (black) with in nite integral. (c)  integral by approximating the weight functionwith a sum ofk
Approximation of by a sum of 3 Gaussians (green) divides this Gaussians
integral into 3 product Gaussianssk (black). The sum of their

means, convexly weighted by their integrals, yields (d) the estimated X X A
mean of s, which is the destination point af intended by the ~Nx) = Me(x) = Wi & 9(Xja; k) (16)
attraction of s. Note the good approximation quality 6% (d) k=1 k=1

compared to s (b), with only3 Gaussian summands.
(Figure 4(c)), which provides an integrable nite peak at 0
while still exhibiting the characteristic weight falloff of. Eq. (16)

6 Continuous LOP in Gaussian Mixtures gives the general-dimensional formulation fory, where”™ =
~2h?| denotes its covariancey the (dimension-invariant) weight,

In this section we show how to apply the robust LOP operator to a andéy = j2 "kj% compensates for the dimension-dependent nor-

mixture of Gaussians. By reformulating and evaluating the attrac- malization factor of the pdf. Since the Gaussian kernel is nor-

tive forceF1, we obtain our accelerated CLOP algorithm. malized by the LOP support radilis the coef cientswy and
of the model function (16) can be tted by settilg= 1 and con-
6.1 Reformulation of the Attraction Force sidering only the normalized range2 [0; 1]. In our experiments,
we observed that a sum &f = 3 Gaussians provides a suf cient
Eq. (4) concentrates the attractive energies of the potential et approximation (see Figure 5(a)). The coef cients obtained using

singular point$®, and de nesF; as a convex weighted sum over all  Levenberg-Marquardt optimization are listed in Figure 5(b). Re-
pointsp; with corresponding weights; . AsM now continuously placing by ” gives an estimatof approximating the combined
distributes these energies according to its density function (7), we weight function (14) by
de ne a correspondingontinuoudorceF; by the convex sum over
the integral attraction of each single Gaussian, with convex weights % %
Ws accounting for theZGau53|ans relative point mass: Mo(x) = Wsg(X] s) Ae(x) = " (X): 17)

X i k=1 k=1

FagM)= we P RIN o) () _ dx
R s0Ws0 s O(XT s0) (X9 dx

S

This comes with a convenient property: Since the product of
H il Ea. (6 q h iohtx) = _ (1,3k3 two Gaussians is again a Gaussian, Eq. (17) reduces the complete
where similar to Eq. (6), we de ne the weigh(x) = ( )=, wit weight function” s to a sum ofk product GaussianSs , which

= kx gk. Additionally, each poink 2 R® is now weighted P : : - :
. - . we can again interpret as weighted Gaussian pdfs, with welights
by the Gaussian densigyof the corresponding component. As o' means . Therefore, Equation (15) can now be expressed in
before, the integral over all weighted contributions is normalized closed formby

by the integral over all weights. Figure 4(a) illustrates the spatial

weights induced on the domaR? by an anisotropic Gaussians P P R A P
and a radial kernel centered at a particg Multiplying all occur- o < ff X Tk (X)dx sk Psk sk
ring weights into a combined weight function Fi(@M)= —p° A B ] - (18)
s kK R3 sk (X) dx sk sk
s(X) = wsg(xj ) (x) (14) o _ _
which in the same way that Eq. (4) is a convex sum of 3D points
de nes the attraction step; as p; , now becomes a convex combination of the product Gaussians'
P R means g Wwith weights! sx. By applying the identities for the

integral and the expectation of a Gaussian product [Petersen and

os g X s(x)dx
) Pedersen 2012], we derive these quantities as follows.

Fa(giM) = S0 dx

(15)

s R3



Weight ! ¢« Using Eq. (17), we obtain s for the generald-
dimensional case as
Z V4
Psk = " (x)dx = ws\r & ag(xj s) g(XjAk)dX
Rd Rd
= wsWi & g( sja; k)

= Wswk/\ghdj Skj %e %( s 9 skl( s )

(19)

N

where we have introduced the covariance swm= s+ " «.

Mean < Evaluating the weighted mean in the numerator of
Eq. (18) gives
Z Z
lek sk = X Mo (X)X = s\ 6 X g(xj ) g(xj")dx
R R

A}
k

WsWik €& g( sjd; sk )( sl+ Akl) 1( sl st
P s 7+ D) st s+ Mt

k
Due to the expensive inversions in this formulation, we centralize
the coordinate frame iq to further simplify the mean

(

a)
(20)

Nl
k
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This way, the evaluation of both quantities requires only one matrix

inversion of ¢, which already produces the tejmyj * required

in ! g« as side product. The nal complete continuous attraction
step is thus given by

D+ (@ a)+q

sk

(1)

X
Fi(g;M) = g+
sik

! S|
nh? Qs R (22)

S0 0 I soo

6.2 Initial lteration

As shown in Eqg. (2), LOP initializes its particle positions with the
weighted mean of the input points using the weight kernelts
continuous variant

P Lo o
S S S
)
s* S
(23)
is similar to Eq. (13), except that it omits the term® and can

thus be evaluated only by the weightinstead ofK summands
. Expressing ( ) by a scaled Gaussian pdfg(xjq; ), with

= (h?=32)l andc = j2 ] %, gives the quantities for the
initial weight and mean as

P R )
Do g XWsg(xj s) ()dx _

FO M) = _
M) = PR ek o) ()dx

1O = wse g sja; s ); h2 (Y s g+a (24)

with covariance sumg =

7 Weighted CLOP

As the original LOP operator is very sensitive to regions of varying
point densities, Huang et al. [2009] proposed a weighted LOP oper-
ator (WLOP), which normalizes the attractive force (4) over differ-
ently dense regigns by adding for each pgina density-dependent

weightv; =1+ 1023nfjg (kpi  pyok), so that
X oy
Fi(@;P)=  pP————: (25)
jO—VjO

j23 j023

Figure 6: Point sampling of Lena with point density inverse propor-
tional to image intensity (74K points, left), its corresponding mix-
ture M @ (5K Gaussians, middle) and CLOP resampling (3700
particles, right). The top row shows the unweighted mixture, result-
ing in an unevenly distributed resampling resembling Lena's por-
trait, while the bottom mixture shows the desired, balanced particle
distribution built on the initially weighted Gaussians.

This additional weighting can be easily adopted in CLOP, without
even changing its integral formulations in Section 6. Since a Gaus-
sian's attractive potential is de ned by its weighit, we can encode
the balancing weightg; directly in the Gaussians representing the
p; in the initial mixtureM © | by altering their initial weights to

w = (vjPj) *: (26)
This way, the attraction-determining weights of Gaussians that
cluster points in dense regions (largg) will be relaxed more
strongly than weights in regions of lower density. Applying CLOP
to such aweightedmixture thus results in a continuous equivalent
of the weighted attraction in WLOP. As we can directly accumulate
the sum (25) along with the points' covariances in the initial kernel
pass (Section 5.3), this weighting can be achieved in CLOP with-
out any additional effort. Figure 6 recreates the Lena demo from
Huang et al. [2009], demonstrating the improved performance of
CLOP when using such weighted mixtures.

8 Accelerating Repulsion

The reformulation and continuous evaluationFaf shown in the
previous sections accelerates the major part of the computational
load in a LOP iteration (1). As a result, when using a larger num-
ber of particles, the discrete computation of the repulsion forces
becomes the bottleneck. In this section, we address this problem by
two approaches.

Kernel Cutoff. A simple way to accelerate repulsion is to skip the
evaluation ofF, (5) between particles where the relative repulsive
in uence is very low. For higher particle counts, this applies to all
particlesq with distance& h=2 to a repulsing particlg®, due to

the Gaussian kernel falloff weighting this repulsion exponentially
lower than those from particles closerqoWe have observed that
simply cutting off the repulsion kernel at about half its radius re-
duces the repulsion computation effort by75%, while having a
negligible effect on the regularity of the nal particle distribution.
Note, however, that such a cutoff is not applicable to the attraction
force, as there it is crucial for the kernel to bridge the gap between
an outlier and the surface it should be projected to.

Repulsion Coherence.  Another optimization exploits a coher-
ence in the particles' repulsive momefig(q; Q) in Eq. (5), which
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Figure 7: (a) Development of the distribution ofR-for the Face
model, from rst (black) to the last CLOP iteration (blue). (b) Con-
vergence of nearest-neighbor variancedor unoptimized (gray)

and interleaved repulsion (red). The closeup visually compares the

resulting particle distributions.

we will here denote aB. We have observed that although the mo-
ment R- of each individual particley is highly dynamic in both
direction and magnitude, the relative change in the overall sys-
tem is generally low. To measure a particle's coherenc tie-

tween two iterations, we examine its relative change of magnitude

(k) (k1)

R(K) = kR—kR(kRU . k
invariant error measure when usiij® Y to approximateR).
Figure 7(a) shows the distribution ofR-for the face data set as
it develops over different numbers of CLOP iterations. The graphs
show that the overall error R-is bounded and progressively re-
duces as CLOP converges. After the rst iteration, the repulsive
moment of most particles do not deviate more tham0%, and
with successive iterations, hardly more thH®%. This observa-

, Which can also be thought of as a scale-

tion suggests that, under acceptance of the discussed error, a giveH

R() can be used as an estimator RY¥*Y in the next iteration.

Therefore, we are able to reduce the computation effort by another
50% alone by reusing the repulsion vectors every second frame.

We propose to still perform an actual repulsion computation in the
nal iteration in case of an odd number of iterations. Figure 7(b)
plots the variance of nearest neighbor distances, measuring the
regularity of the point distribution [Huang et al. 2009], for both

unoptimized and interleaved repulsion and different amounts of re-
sampling particles. We observe that with a larger relative number of

particles 20%), an interleaved repulsion update hardly affects the
convergence behavior of. On the other hand, a lower number of
particles 6%) allows them to move more freely, leading to an oscil-
lation of when correcting the repulsive moment only each second
iteration. However, the band in which it oscillates generally ap-

pears to drop faster, which shows that in addition to a performance

improvement, interleaved repulsion actually leads to a potentially
faster convergence in point regularity.

9 Robust Normal Computation in Mixtures

Having derived a robust projection operator for spatial data to ac-
celerate thé_ 1 point reconstruction, we are interested in a similar

speedup for locally robust normal reconstruction methods [Oztireli
et al. 2009; Zheng et al. 2010]. In this section we show that our
derivation of the continuous attraction in Section 6 can be directly

applied to the domain of unit normals to quickly compiite-
aligned, unoriented normals for the particles obtained by CLOP.

9.1 Spherical Weiszfeld for Normal Axes

The basic idea of our locdl;-based normal alignment is to nd
the robust median within a set of unoriented nornfatemal axes)
m; 2 S of spatially neighboring pointg; , which can be roughly
estimated using standard PCA. Similar to how Weiszfeld's algo-
rithm iteratively approximates the spatial median of noisy points
in R®, we can use gospherical equivalent to ndspherical me-
diannept = argmsizn f 2, dg(mj;n)g of these noisy estimated
n2
point normal axes, which minimizes the sum of geodesic distances
dg(m;;n) = cos *hm; ;ni .. [Banerjee et al. 2005]. Her@;
represents the unit vector parallel to the (bipolar) axjsthat min-
imizes the geodesic distandg(m;; n). Based on the above def-
inition, we can de ne a spherical Weiszfeld iteration that moves
an initial estimator of a particle normal towards the median of
neighboring point normal axes; by

P
. oM ko k)
(k+1) _ 20Mi 5 _ (kg g
n = _p - = ———— 27
0T dy(maky @D

wheren®) denotes the normalized result from the previous itera-
tion, and localizes the median projection to point neighbors within

a compact range as before. Projecting the normal of each particle
into the median of a set of point normats; produces the same
computational effort as the LOP attraction term in Eq. (4). We will
therefore now introduce a fast continuous variant of the spherical
Weiszfeld algorithm, which corresponds to CLOP and operates on a
spherical mixture distribution of the unoriented point nornmals.

9.2 Spherical Mixture Distribution

Similar to how HEM reduces the input points to a mixture of contin-
uous spatial distributions, we reduce the set of estimated point nor-
malsm; to a set ofvrapped norma{WN) distributions, which can
be thought of as normal distributions endlessly wrapped around the
nit circle [Mardia and Jupp 2009]. They give an approximate de-
scription of the Mises-Fisher (vMF) distribution, which is a well es-
tablished and exact model for a random variat&oriNevertheless,
considering a hierarchical clustering and doing calculus to obtain
a continuous formulation of a spherical Weiszfeld iteration, vMFs
are hard to handle directly. However, we can suf ciently simulate
a VMF by rotating a one-dimensional wrapped normal distribution
= ( ; ) around its mean on the unit sphere (Figure 8(a)).
The concentration parameterde nes the dispersionof the distri-
bution and measures tieean resultant length = k' ; mjk=n
of a set ofn unit vectorsm;j, increasing in value as the dispersion
decreases. also relates to the variance of the standard normal dis-
tribution by 2 2log . (In the following, we will use both
and 2 in our derivations). The pdf of is given by

+2 k

)2.

gw(Xj) = (28)

For a reasonably concentrated distribution (variance bounded by
2 ), the sum representing the in nite wrapping of the distribution
can be suf ciently approximated by the terkn= 0 ([Mardia and
Jupp 2009] p. 50), which gives a standard normal distribution. Note
thatin Eq. (28), andx represent angles on a great circle.

An ordinary HEM-like maximum-likelihood estimate of the set of
s on the spherical domain [Banerjee et al. 2005] is not suf -
cient for our needs, as it neglects the association of normals



L ! : L geodesic s through the particle norma and the mean normalks

N . R B of thes-th mixture component (Figure 8(b)). This allows us to eval-
. n® uate ¢ and! g using an angular parametrization on This way,
2 . " oe v R the derived formulations for the mean and weight in Section 6 can
g N be directly applied to the 2-dimensional unit sphere setling? :
N .
1
@ (b) © Weight ! ¢« The covariance sum g de ned in Eq. (19) now
simpli es to an isotropic bivariate matrixsx = sk |2 with diago-
nal entries &« = 2+ 7 2h?2, and! ¢ becomes
Figure 8: (a) Univariate WN distribution on th&?, creating a
spherical normal distribution by rotation. (b) Since both and s 1dg( sim)2
are isotropic, their product s lies on their common geodesis. Lok = WsWAZh? Gle 27 s ¢ (32)

(c) Weiszfeld step farj de ned by the weighted mean of all .

Mean ¢ Similar to the Euclidean case (21), we centralize the
pointsp; required for the spatial localization kerneln Eq. (27). angular parametrization m t/t\e partlclg normalThen the relative
Therefore, instead of computing a spherical mixture independent mean of the product functionsx on s is de ned by
from the Gaussian point distributioid , we assign a distinct WN

s to each Gaussians 2 M , and cluster them along with the dg( sk;n)=7 Zh? Skldg( s;Nn): (33)
Gaussians during HEM in Section 5, i.e., the normals do not in u-
ence the computed responsibilities which determine the clustering. Here we can use the same coef cierts and”x as in CLOP (Fig-
This leads to a simple extension of the HEM clustering algorithm: ure 5(b)). Since it is not necessary to localize the median seeking
. o . © o of n on the unit sphere like LOP does in Euclidean sphcean be
1. Foreach poing; , extend the initial mixturé ™ by an initial safely relaxed to a conservative radius . The actual means
WN distribution ,-(0) =(mj; @), with @ =1 can now be obtained by interpolating betweenandn on , i.e.,

2. In the M-Step, update the MLE ofs using the same spatial s = st+n(l 1), where Eqg. (33) gives the interpolation factor

weightsris andws that cluster .

dg( sk;n) ngh?
1+1) t= = TR (34)
We de ne the MLE updates for a next level WN by dg( s;n) 247 2h2
P o W W Finally and analogously to the Euclidean case (18), the Weiszfeld
(1+1) _ P is Wi 29) N g . < 2 A
s ﬂgﬁ ( iteration step is given by th_e welghted sum of the resulting mean
Ko i ris Wi | normals s (Figure 8(c)), with weight$ ¢« de ned as above.
(1+1) i , s Wi P- O v w .
[ § =P 2log A ; (30)
i Tis Wi i Tis Wi Timings
rel. to 09
which is the spherically wrapped isotropic equivalent to the cluster- frame o+
ing of Gaussians in Eg. (10). Since tlog-argument in Eq. (30) is
the mean resultant lengthof WN means i(') , the complete second -
term gives the variance of thesé'). Thus, according to Eq. (10), e o
Eq. (30) de nes the MLE of the varian¢e§]('+1) by the weighted :Elgm 01
sum of levell variances and the variance of the lelaheans. B oy aor wior o wior cior waor ciorwior cior
9.3 Continuous Spherical Weiszfeld in Mixtures Model Lena Face Camel Garg. sm. | Gargoyle
iPj 74K (74K) | 84K (84K) | 87K (87K) | 77K (78K) | 175K (302K)
We will now show that the results for the continuous attractan iMj 5100 8100 7850 10K 32K
in Section 6 can be directly applied to formulate a continuous spher- | jQj 3700 84K 72K 38K 107K
ical Weiszfeld (CSW) step. CLOP de nes the target position of | iters 50 16 10 20 10
an iteration step by a convex combination of expectat®fiss ], ms WLOP CLOP| WLOP CLOP| WLOP CLOP| WLOP CLOP| WLOP CLOP
where” s are Gaussian weights de ned in Eq. (17). On the unit | Init 17 11 9 9 | 17 17| 10 10| 9 9
sphere, those weights are now accordingly de ned by HEM 10 18 20 18 11
F1 161 19| 837 77| 379 33| 423 54| 981 167
"o = Ws gw(X] ) Mk(X): (31) F2 11 7 | 677 110| 234 30 | 172 31 | 405 42
_ _ _ Total | 189 47 | 1523 214| 630 100| 605 113| 1395 229
wherews are the mixture coef cients oM as beforegy is the SUF, 555 8.81 715 5.88 551
(one-dimensional) pdf of the WN distribution, and(x) is de ned SUF, 157 6.15 7.80 5.55 0.64
as in Eq. (16). The sought quantitiesc and! ¢ for computing SU Tot, 2.02 712 6.30 5.35 6.09

E[" s ] can be obtained by wrapping the Euclidean arrangement of
the involved weights (Figure 4) onto the unit sphere (Figure 8). Al- . o . .
though we operate on the 2-dimensional don®init is suf cient Figure 9: Model statlstlc_s and individual tl_mlngs in ms. Speedups
to evaluate these expectations only along 1-dimensional geodesics(SU) are given for attraction; ) and repulsion ) separately, as

on which the wrapped normal distributions are de ned. Due well as for the whole CLOP operator compared to a correspond-
to the isotropic symmetry of the weighted Gaussian components N9 WLOP GPU implementation. The top graphs give individual
gs and Ay in Eq. (31), the sought means always lies on the timings of each phase normalized by WLOP total time.



10 Evaluation and Results

10.1 Performance

To achieve interactive reconstruction performance, we have used ag o1s
rasterization-based GPU implementation that allows for fast grid-
based neighbor queries [Preiner et al. 2012]. All local kernel op-
erations in the main stages of the algorithm are executed by quads |,

rasterization on the projected images of the input poinPsethe ; — 3. 1=6
Gaussian component locationsMf, and the particle s&, which (8) Input (303K Points) (b) WLOP (0 =3:7) (©) CLOP™S
are all stored in individual A-buffers. The Gaussian mixture com-
putation, CLOP iterations, optional consecutive CSW (normal esti-
mation) and nal rendering are performed in each individual frame
based on the input poinB projected into this A-buffer. Note that
since particle positions change over the CLOP iterations, possible
A-buffer over ows commonly slightly reduce the number of total
particles that nally remain for rendering. The particle couy@g
listed in Figure 9 therefore always denote the average amount over
all iterations. To be able to fully assess the performance of our . . -
system, we do not currently exploit any frame-trc))-frame coherence, (@ INPut (155K Points) (€) WLOP @ =4:2) () CLOP'™S; 4
However, common temporal-coherence approaches could acceler-
ate our system even further [Liao et al. 2013]. Note that for normal * g o g
estimation, we simply orient the normals towards the camera when — CLOP 1 — CLOP
rendering the reconstructed point cloud. Obtaining globally con-
sistent normals would require global computations like orientation
propagation [Huang et al. 2009], which are too expensive for an
interactive setting.

(% BB Di

Density

5

005 020 ' 005 020

All results were produced on a PC with an Intel i7 4470K 3.5 GHz Eror 0088 Dieg) _ Erer (0 83 Diea) _
CPU and NVIDIA GeForce GTX TITAN GPU. A framebuffer res- (9) Gargoyle error density () Daratech error density
olution of 1700 880was used in all our performance tests and the

results shown in the video. Fig. 9 summarizes statistics and perfor- Figure 11: Reconstruction error on two noisy registered scans
mance measures for the 5 tested models (Lena, Face, Camel, Garta),(d). Heatmaps compare the error between (b),(e) the WLOP
goyle and small Gargoyle) and plots the relative speedup of CLOP (#particles = #points, 20 iterations) and (c),(f) CLOP reconstruc-
over WLOP. The given point set cardinalitigsj denote the points tion. Kernel sized are given in% of the BB diagonal. For both
left to operate omafter A-buffer projection. Theoriginal number of cases, the detail lenses and the respective error distribution func-
input points is given in brackets. The performance numbers include tions (g),(h) demonstrate the superior accuracy of our method.
individual timings for creating the mixture model (HEM) and eval-
uating the continuous attraction compared to the discrete attraction
(F1), as well as the accelerated repulsion compared to the full repul-
sion computationK,). The Camel model as shown in Figure 1 was
generated with a virtual scanning framework [Berger et al. 2013],
using 18 individual scans. The parameters have been set to gener
ate a realistic but relatively high level of noise and outliers. Please
refer to the supplemental material for details. All results were pro-
duced with weighting enabled (WLOP vs. weighted CLOP) since it
doesn't incur additional costs on either side. We observe an overall
speedup of up to 7 times the WLOP performance, while produc-
ing a practically indistinguishable reconstruction. Fig. 10 gives a 10.2 Reconstruction Quality

visual comparison for the noisy face model, where CLOP outper-
forms WLOP by a factor of. The results show that even when re-
constructing the model with a large number of particles (about the
same as the input model), only a low number of Gaussiankd%)

are required to represent the input point cloud, leading to signi cant
speedups in the attraction evaluation (up to a fact®)oBee also
the accompanying video for further results and comparisons.

In this section, we analyze the reconstruction quality of our method

in depth and evaluate its accuracy against the original WLOP al-

gorithm. To allow for an accurate evaluation that is not biased due

to the A-buffer based particle loss described above, we use an ex-
act reference implementation for all accuracy measurements. We
will show that although our approach runs several times faster than
its discrete counterpart, its continuous nature is able to produce a
reconstruction of comparable or even better accuracy.

Accuracy. We study the reconstruction error of CLOP vs. WLOP
(a) Input (b) WLOP (1523ms)  (c) CLOP (214 ms) on two models exhibiting different characteristics (Fig. 11). To pro-
vide exact reference models for measurement, we used the virtual
. ) scanning framework by Berger et al. [2013]. Both models were
Figure 10: (a) Small-kernel splat reconstruction on the Face model resampled byL6 virtual scans exhibiting a moderate amount of ad-
showing heavy re.glstraotlon errors. (b) After WLOP (16 iterations). gitive Gaussian noise. These were registered using locally weighted
(c) After CLOP with 10% Gaussian components. ICP [Brown and Rusinkiewicz 2007] using a realistic amount of ro-



(@) Input {Pj = 500K ) (b) WLOP (c) CLOP = ,jMj=25K (d) CLOP =3 ,jMj=4700 (e) CLOP -4 ,jMj=1200

Figure 12: (a) Point sampling of a radially symmetric ripple function, containing sharp edges of various angles, and exhibiting Gaussian
noise increasing from to max Wwith the angle of rotation. We compare the reconstruction error of WLOP (b) and (c)-(e) CLOP at various

and mixture reductions. Heat map colors relate to error amplitudes. Note that with a suggest@d we are able to achieve an overall
lower approximation error than with WLOP.

tational misalignment, which is a common source of outliers. Note HEM levels). While for = 2 we have observed an improved
that we generated a smaller version of the Gargoyle for the perfor- accuracy over WLOP, the quality drops with successive levels of
mance tests in Section 10.1 using the same parameters with lowercompression. Figure 12(e) shows that choosing an extreme mix-
scanner resolution. The left column in Figure 11 shows the result- ture compression still achieves moderate reconstruction quality in
ing noisy input point clouds, the middle and right columns give the noise-free regions, but breaks down for stronger noise levels, lead-
WLOP and CLOP reconstructions. Splat colors indicate particle er- ing to a corrupt reconstruction with large errors and irregularities
rorse(q) = hg p; Npi, measuring the distance gto the tangent in the particle distribution (holes). The insets depict the Gaussian
plane in the nearest reference surface poimtith N, being its nor- mixture at a sharp edge (illustrated by lisoellipsoids), and show
mal. Interestingly, the error heat maps and detail lenses indicate athat a suf ciently strict HEM regularization (i.e., smal) produces
generally superior behavior of our method over WLOP, especially almost no signal blurring.

at regions of high curvature. Only in few isolated regions like at
the Gargoyle's ear, the clustering between very close-by misaligned
scans leads to a slightly higher error than using WLOP. Fig. 11(g)
and 11(h) plot the error density functions (particle error on abscissa
vs. density on ordinate) of CLOP against WLOP and the input data.
Both graphs show that CLOP produces more low-error particles and
less high-error particles than WLOP, thus providing an overall bet-
ter reconstruction quality.

The reduction of the Gaussian mixture is controlled by the regu-
larization and the number of clustering levels. Figure 13 plots
the actual compression rates (abscissa) for the Gargoyle and the
Ripple data set against the mean reconstruction error (ordinate, in
% of bounding box diagonal) for different values ofand HEM
levels. The plots show that in general, the mean error lies clearly
below the WLOP error level for reasonable compression rates, and

A detailed error analysis for various cases is given in Figure 12. only starts to increase for strong compressions, depending on the
Here we use a synthetic data set (Fig. 12(a)) designed to showcomplexity of the model: For the Gargoyle, this happen8Gi,
varying levels of noise as well as sharp and smooth features. Fig-While the ripple model, containing more smooth and at regions,
ure 12(b) shows the WLOP reconstruction after 20 iterations. As can be compressed up 4% without signi cantly increasing the
expected, the error is maximal at the sharp edges. The presence ofeconstruction error. We also see that for a given compression rate,
noise in the data leads to a more noisy particle alignment, although lower values for require more HEM clustering levels to achieve
only at a very subtle level. However, even in the region that has the same compression, butfor. 2:2, also bound the compression
no noise in the input, WLOP produces homogeneous regions of er-S0 that the region of rapidly increasing error is avoided. Lower

ror in the curved trenches of the function. This is because particles also produces a lower error at a given mixture size due to a stronger
are repulsed in tangential direction instead of along the curvature of regularization. For these reasons we recommend to use a@:0.

the surface, and thus is less visible as the surface gets more planar.

Figure 12(c) shows the corresponding CLOP result at reasonable

parameters. Compared to WLOP, we observe a clear reduction of

the error regions in both the at trenches and the sharp edges (espe- I e s 000 :

cially apparent at the conic apex) of the function. We suspect that 3" ! ocoe WLOP: 0.0052

CLOP's overall better quality can be attributed to the continuous Zoo . 718 (22 £2.6 ,3.0 i oo :

attractive energies, which provide a smoother and thus more robustgm ¢ Z:; ’

description of the geometry than the singular attractive points used 5 e o £

by WLOP. This might positively affect the stability of the attrac- £ ] oo

tive particle movements against the perturbing repulsion forces, and £ oo G ool e
o . i ¢ F [ 7 ¢ (5 l\ff

thus allow for a more controlled and overall better optimization. e S WL R —

mixture compression in % mixture compression in %
(a) Gargoyle (Fig. 11) (b) Ripple function (Fig. 12)

Effect of Clustering.  As our method relies on a reduced repre-

sentation of the input data, i.e., a Gaussian mixture, we are inter- _ o . .

ested in the effect of this reduction on reconstruction quality, espe- Figure 13: Mean error development with increasing mixture com-
cially in the presence of high frequencies. We thus investigate the Pression, given by various values ond1 9levels. For each ,
reconstruction error for different levels of compression. Figure 12 the marker lines indicate the level where the additional compres-
(c) to (e) show CLOP reconstructions (same kernel size and itera- Sion falls below2:5%. The dashed line gives the corresponding
tion count) for increasing mixture compression (increasingt 8 WLOP error (above plot range in (b)).
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Figure 14: (a) Sampling regularity of the Gargoyle model with
increasing levels of compression. (b) WLOP on a sub-sampled Gar-
goyle with same parameters and reduction rate as in Fig. 11(c).

(a) Input B9:5K ) (b) CLOP (L98K ) (c) WLOP (198K )

Figure 15: Sparse Gargoyle (a) upsampled 500% of the input
point count, (b) using CLOPh(= 2:6), (c) using WLOPI{ = 2:6

and 8:7). Lenses show splat distributions and surface details for
the input, CLOP upsampling, and large-kernel WLOP upsampling.
Kernel size$ are given in% of the bounding box diagonal.

Number of HEM Levels.  For a given , we want to use enough
HEM levels to achieve suf cient compression, but also not waste
performance on additional levels that do not substantially reduce
the mixture further. Figure 13 shows that different input models
show different compression potential. To take this into account,
we abort clustering when the additional compression afforded by
a level falls below a given threshold. The markers at the abscis-
sas indicate the nal mixture compression for a threshol@:6£6
additional compression.

Point Regularity.  In all our experiments, the continuous formu-
lation of the attractive energies has shown to provide an improved
sampling regularity of the resulting particles, which we measure by
the variance of nearest neighbor distances [Huang et al. 2009].
Figure 14(a) plots for different and1l 8 HEM levels for the
Gargoyle from Figure 11(c). In contrast to the regularity achieved
by WLOP (dashed line), the continuous attractive energies allow
for smoother particle movements, resulting in a notably lowap

to a critical point of compression (= 3), where the smooth en-
ergy distribution cannot be suf ciently described by the remaining
Gaussians anymore. Note that this regularity improvement is inde-

pendent of the one achieved by interleaved repulsion (Section 8),

which we have activated for both the CLOP and WLOP evaluation.

Usable Amount of Particles. As shown by Lipman et al. [2007],

the original LOP operator is problematic when using more parti-
cles than there are points in the model. If a given kernel contains
too few attractive points to suf ciently describe a smooth energy
density, particles tend to collapse into irregular clusters. A larger

(a) PCA normals (b) CSWhHh =1:1) (c) CSWh=2:2)

56% 82% 92% 56% 82% 92%
(d) Quality of normals with increasing mixture compressibn=(1 :1)

Figure 16: CSW on the Daratech model. (a) Splat normals using
local PCA, (b) and (c) CSW normals with different kernel sizes. (d)
Shows the quality reduction of the normals with increasing com-
pression of the spherical mixture (given in % of input model size).

kernel dampens this effect, but also comes with stronger smooth-
ing. Therefore, the idea of accelerating WLOP by subsampling
the input point set also reduces the usable amount of particles.
Fig. 11(c) shows the CLOP reconstruction of the Gargo$GsK

input points,303K particles) using35K Gaussians Fig. 14(b)
gives the WLOP result on the model after subsamplin@@%&
points Using the same particle count and kernel size as CLOP,
WLOP fails to obtain a suf cient sampling regularity for a faithful
reconstruction. In contrast, CLOP allows using much more parti-
cles than input points, and can therefore even be usagdample

a point cloud. E.g., based on a sparse sampling of the Gargoyle
model with39:5K points (Fig. 15(a)), we used CLOP to project
198K particles 00%) into its Gaussian mixture wit@2K com-
ponents, using a suf ciently small kernel bandwidth (Fig. 15(b)).
A similar low-bandwidth upsampling using WLOP leads to parti-
cle collapses, while a suf ciently larger bandwidth destroys ne
features (Fig. 15(c)).

Robust Normals.  Finally, we investigate the effect of different
CSW kernel sizes on the resulting alignment of the splat normals
(Section 9.3). A common normal computation method is local tan-
gent plane tting using PCA [Hoppe et al. 1992], which is quick
enough to be suitable for online reconstruction [Preiner et al. 2012],
but suffers from typical smoothing artifacts. Figure 16(a) shows
the CLOP result of the Daratech data set from Figure 11(f) with
PCA normals (surface colors correspond to splat normals). Note
the rounding of the model's sharp edges. Figure 16(b) illustrates
the result after applyind.3 iterations of the continuous spheri-
cal Weiszfeld steps on the CLOP result, wh@ik = 17:8%

of the input point cloud. We used a manually tuned kernel of
1:1% of the BB diagonal, which optimally reconstructs the ne
bracings at the model's front and backside. In contrast, a kernel
of twice this size attens subtle features, but also robustly aligns
splats on more signi cant edges more faithfully (Figure 16(c)). Fig-
ure 16(d) shows details of the model for various levels of compres-
sion (= 1:5;2:0;2:5, 5 levels). As in spatial Continuous LOP,
an increasing mixture compression leads to a successive reduction
in quality. An optimal screen-space reconstruction of the Darat-
ech model withl55K points (L35K after screen-space projection)
requires124 ms for CLOP +56 ms for CSW (with kernel size

h = 1:1% for both passes). Figure 17 shows a robust online nor-
mal alignment of a Kinect stream using CSW.
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