
Visualization in the cloud

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik

eingereicht von

Lukas Köll
Matrikelnummer 1025785

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Priv.-Doz. Dipl.-Ing. Dr.techn. Stefan Bruckner, Dipl. Ing. Johanna Schmidt

Wien, TT.MM.JJJJ
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

i

Abstract

As currently many new visualization techniques are developed, the need for rapid pro-
totyping systems has arisen. Current visualization prototyping software provides extensive
features, however it often lacks the possibility to easily start new visualization prototypes
as well as the possibility to share and collaboratively work on those prototypes. Also, exist-
ing solutions involve a cumbersome and slow development process, because hardware-near
solutions often require recompilation after every development step. The availability of hard-
ware resources (e.g. GPU) is limited, hence a remote solution is required to take advantage
of them, which also solves the problem of having to transfer large volume datasets. In
this thesis, a system named VolumeShop Playground is introduced that compensates for the
above stated disadvantages while still allowing for hardware-near development of realtime
visualizations. VolumeShop Playground is based on the existing VolumeShop framework,
enhances it by a scripting API and provides a web frontend for simple setup and collabo-
ration. The fact that we use a modern scripting language instead of recompiling the source
code every time will supply a tremendous increase in development speed.

Kurzfassung

Da zur Zeit laufend neue Visualisierungstechniken entwickelt werden, steigt der Be-
darf an Rapid Prototyping Systemen. Aktuelle Software zum Prototyping von Visual-
isierungstechniken stellt umfangreiche Featuresets zur Verfügung, weist jedoch häufig ho-
hen Aufwand beim Erstellen neuer Projekte auf und stellt keine Mechanismen bereit, um
diese Prototypen zu teilen und kollaborativ daran zu arbeiten. Außerdem weisen aktuelle
Lösungen einen langsamen Entwicklungsprozess auf, da hardwarenahe Programmierung
nach jedem Entwicklungsschritt eine Rekompilierung des Quellcodes mit sich bringt. Die
Verfügbarkeit von Hardware-Ressourcen (z.B. GPU) ist limitert, daher wird eine Remote-
Lösung benötigt um diese Ressourcen auszunutzen, was auch das Problem löst, dass oft
große Volumsdatensätze transferiert werden müssen. In dieser Arbeit wird ein System
namens VolumeShop Playground vorgestellt, das Lösungen für die oben genannten Prob-
leme anbietet und trotzdem hardwarenahe Programmierung Echtzeitvisualisierungen er-
laubt. VolumeShop Playground basiert auf dem VolumeShop Framework, erweitert dieses
um ein eine Scripting API und bietet ein Web-Frontend an, das Kollaboration und einfaches
Bootstrapping erlaubt. Die Tatsache, dass dabei eine moderne Scriptsprache benutzt wird
sorgt für eine merkbare Beschleunigung während der Entwickung.

Contents

Abstract i

Kurzfassung i

Contents iii

1 Introduction - Problem Statement 1

2 Related work - State of the art 3
2.1 Visualization Engines and Toolkits . 3
2.2 Remote Rendering . 3
2.3 WebGL Playground . 4
2.4 Bkcore Shader Editor . 4
2.5 SculptGL . 5

3 Methodology 7
3.1 User interface development . 7
3.2 Architecture . 7

4 Implementation 11
4.1 Script Binding . 11
4.2 Creation of a scriptable rendering plugin . 13
4.3 HTML Frontend development . 15
4.4 Javascript Remote Layer Development . 18
4.5 How to expose more functionality to Squirrel 21

5 Conclusion 25

A Appendix 29
A.1 Prototype Frontend Designs . 29
A.2 Squirrel Available OpenGL Constants . 29
A.3 Squirrel Available OpenGL Methods . 30
A.4 Squirrel Available Volumeshop Core Objects and methods 30

iii

iv CONTENTS

Bibliography 35

List of Figures 36

CHAPTER 1
Introduction - Problem Statement

Research in volume rendering currently develops numerous new techniques and methods. It
therefore makes sense to make use of a prototyping framework to speed up the development
process for those methods. There are already programs that allow quick development of volume
rendering (compare [VWE05] and [SBP+08]) with a dynamic rendering pipeline as well as
deferred rendering (compare [vir].

Existing frameworks usually make use of some kind of plugin system, where the rendering
technique is being developed as a new component. Methods of this component are then called
at defined times during execution of the program to execute certain steps or calculations for
the rendering pipeline. Since these systems typically take advantage of advanced Graphics Pro-
cessing Unit (GPU) features, they require special hardware. Hence, development is limited to
computers which are equipped with expensive graphics cards. Also, programmers are required
to being familiar with a specific programming language, mostly C++. The workflow during de-
velopment is rather inefficient, because the whole plugin has to be recompiled for every change
to see the resulting rendering output. There is often a high hurdle before a developer is able
to start a new plugin because initial setup of the development environment is very specific and
often badly documented. Sharing intermediate or final results is made hard, due to the fact that
setting up the development environment is bound to high effort. While sending out video demos
might be a possibility sometimes, many times it will not be viable, because modern volume visu-
alization often offers interactive components which cannot be tested properly when only shown
in a video.

These drawbacks motivate the extension of existing frameworks with a server based, cross
platform usable, hardware independent rendering and development component which will pre-
sented in this thesis.

1

CHAPTER 2
Related work - State of the art

There is a wide variety of software tools and libraries for visualization and computer graphics
and a comprehensive review would be beyond the scope of this thesis. Therefore this thesis will
restrict itself to a discussion of current approaches which share some of the goals of this work.
Specifically, some web based visualization applications will be reviewed and their functionality
will be compared to the requirements stated in the introduction 1.

2.1 Visualization Engines and Toolkits

The Visualization Toolkit [SML07] is an open source collection of libraries for visualization,
image processing and computer graphics. At it’s core it is a C++ class library exposing script-
ing layers to languages like Java and Python. Voreen [MSRMH09] offers visual modelling of
data flows through the visualization pipeline. Also, developers can specifically implement their
own steps in the pipeline with modern techniques like OpenGL and GLSL to make full use of
GPU based rendering. MeVisLab [mev] is a framework for image processing and visualization
modules. It has a focus on medical applications. It is written in C++, scriptable via Python and
Javascript and offers a generic integration of the Visualization Toolkit mentioned above. Amira
[SW05] is a desktop application that offers a full featured image processing, 3D visualization
and manipulation library. Amira has a focus on biomedical and industrial data processing and
does also support virtual reality features. Finally, Volumeshop [Bru13] is the codebase this
work will be based on. Volumeshop offers a prototyping platform for visualization research. It
therefore does not provide as much ease for creation of concrete visualizations, instead it aims
to provide maximum flexibility for researchers due to it’s modular code architecture. Further
discussion of the VolumeShop architecture will be done in the Implementation Chapter.

2.2 Remote Rendering

According to [SL07] there are three different classes of remote rendering.

3

4 CHAPTER 2. RELATED WORK - STATE OF THE ART

When using Client-Side Rendering, the remote application just sends graphics data like
meshes and textures to the client, where it is then rendered. This approach works well when
no special hardware is required for the rendering. A popular example for this approach is the
X-Server.

Server Side Rendering for 2D and Administration is mainly used for administration and
remote control. The image representation of the desktop of the server is compressed and sent to
the client where it can be viewed. This class has several drawbacks for 3D applications, such
as insuffucient framerates and high latency for interaction. A popular example is The Virtual
Network Computing Framework (VNC) [RSFWH98].

Server-Side Rendering for 3D Application has specialized abilities regarding latency and
high framerates. The GPU of a server is utilized to render the image which is then compressed
and sent to the client. Du to the previously stated requirements, this is the class where the
proposed VolumeShop Playground sytem will be located.

There are also mixed approaches where the rendering is done partly on the server and partly
on the client. For example [SNC12], where network latency for games is compensated by putting
some of the rendering to the client, using 3D image warping in combination with the change of
the point of view. Another mixed approach was presented in [DGE04]. In order to save network
traffic, this approach renders lines on the client, based on features that are derived from the server
component.

2.3 WebGL Playground

WebGL Playground [web] is a website that lets programmers write rendering programs in Javascript.
The architecture is a thick-client and a thin server, as the programmers browser is executing all of
the rendering code. A screenshot is given at Figure 2.1. Available methods are the OPENGL-ES
specification, as well as the OpenGL ES Shader language (as far as supported by the program-
mers browser). The rendering code is executed in and by the programmers web browser. WebGL
Playground offers the possibility to save and share projects as well as a reasonable documenta-
tion for starters.

WebGL Playground has no specific support for volume rendering, altough it should be pos-
sible because WebGL playground allows loading of custom resources. What is clearly missing
for our purpose here is the explicit handling of volumetric data sets. WebGL Playground also
does not provide any classes or data types specific to rendering like vectors, quaternions or
matrices. Viewers can only influence the rendering with the mouse cursor but not set any pa-
rameters specific to a project. The browser-centered design has several advantages like easy
sharing and collaboration, but the lack of libraries that can be used in the project code makes
quick prototyping of volume visualizations a cumbersome task.

2.4 Bkcore Shader Editor

As the name suggests, the Bkcore Shader Editor [Des] project is a shader editor only (see Fig-
ure 2.2). It follows an approach similar to WebGL Playground with the additional limitation that
the only programmer editable parts are one vertex- and one fragment shader. It allows saving

2.5. SCULPTGL 5

the created shaders to a file as well as creating an HTML link that contains the shader code as a
base64 encoded link variable. Volume rendering plugins require usually more than just one ren-
dering stage and also want to make optimal use of graphics hardware, because of which it would
be desirable to be able to create a custom pipeline with more advanced shaders like tesselation
or geometry.

2.5 SculptGL

SculptGL’s [Gin] main purpose is not to create prototype visualizations, but to sculpt 3D meshes.
It also has a rendering component, which is realized via WebGL and the HTML canvas element.
I chose to review this project in the thesis because it has some interesting features regarding shar-
ing. It is for example possible to import and export to various standard formats like Wavefront
and STereoLithography. Further SculptGL allows direct upload of modeled meshes to Sketchfab
and Verold via an API key. Sketchfab [Inca] and Verold [Incb] are Web Services that provide
simple publishing of interactive 3D content, see Figure 2.3

6 CHAPTER 2. RELATED WORK - STATE OF THE ART

Figure 2.1: Screenshot of the WebGL Playground Website

Figure 2.2: Screenshot of the bkcore Shader editor Website

Figure 2.3: Screenshot of the bkcore Shader editor Website

CHAPTER 3
Methodology

The goal of this work was to provide an easy to setup and use development environment for vol-
ume visualization researchers with possibilities to easily share progress with other professionals.
This environment should also shorten the duration of development cycles. Further, the system
should operate on a centralized server to make optimal use of hardware resources and reduce
the need to transfer large volume datasets. These constraints motivated a client-server based ap-
proach with the client being a modern web browser to keep constraints to a developers machine
as small as possible. By providing bindings to a modern scripting language named Squirrel
and processing of the scripts during runtime, it is possible to shorten development cycles. The
proposed system fits well into a layered architecture, which are described in the Architecture
section 3.2.

3.1 User interface development

To guarantee a high usefulness for developers of rendering techniques, the design of the user
interface was created in multiple feedback loops. Screenshots of the development stages can be
viewed in the Appendix.

3.2 Architecture

The architecture of the proposed extension consists of five layers, of which two (VolumeShop
Service and Server) where already implemented at the start of this work. The layers left to plan
and implement were the Frontend, the Javascript Remote Layer and the scriptable rendering
plugin.

Frontend

On the top level the system consists of an HTML website showing the actual user interface. It
is responsible for loading CSS and Javascript required for operation as well as a user friendly

7

8 CHAPTER 3. METHODOLOGY

Figure 3.1: VolumeShop Playground Architecture

display.

Javascript Plugins

There are several JavaScript widgets that act as an abstraction layer for calling the VolumeShop
service via asynchronous XMLHttpRequests. Most of them are wrappers around service calls to
allow future changes in the service implementation without having to rewrite the entire Javascript
client code. There are also wrapper methods for a modern responsive user interface.

VolumeShop service

VolumeShop Service is an HTTP RPC Interface to Volumeshop Server. It exposes project load-
ing and saving as well as some public methods of plugins. On the first request, the service
component creates a user session and token for subsequent requests to simulate a persistent
connection.

VolumeShop server

The VolumeShop Server component is an object server which allows loading of VolumeShop
projects and subsequent access to plugins and properties on a session base. This layer is called

3.2. ARCHITECTURE 9

by the VolumeShop Service and handles the actual coordination of objects in a project. In
particular, it exposes access to the scriptable rendering plugin and its properties.

Scriptable rendering Plugin

The scriptable rendering plugin is a VolumeShop rendering plugin which executes a script for
every rendering method, such as display(), idle() and update(). Whenever the script is saved,
it will be recompiled and the updated script methods will be called from the plugin. This allows
for an interactive development process, where a recompilation will only take the fraction of a
second, whereas recompiling a normal plugin in C++ would take much longer.

CHAPTER 4
Implementation

4.1 Script Binding

To avoid long compilation times during the development process, bindings to a scripting lan-
guage named Squirrel were implemented.

Squirrel is a high level imperative, object-oriented programming language, designed
to be a light-weight scripting language that fits in the size, memory bandwidth, and
real-time requirements of applications like video games. [Dem]

To allow calling of VolumeShop methods and usage of VolumeShop objects, it was required
to bind them correctly to the Squirrel virtual machine. Although this could be done directly via
the Squirrel API, a template based framework for Squirrel binding named Sqrat was used.

Sqrat is a C++ library for Squirrel that facilitates exposing classes and other native
functionality to Squirrel scripts. It is similar to SqPlus, both in functionality and
syntax, but seeks to address several issues present in other binding libraries. [Haf]

This choice was mainly motivated by better readable and shorter binding code. Also, usage
of Sqrat does not forbid usage of native binding code next to Sqrat bindings. So no negative
implications for development are to be expected even if a future developer should decide not to
use Sqrat anymore.

VolumeShop Binding

Most VolumeShop classes are bound to Squirrel in a way that VolumeShop programmers could
use them inside a Squirrel script just as they would in C++. Due to the differences of C++ and
Squirrel (for example, C++ is typesafe while Squirrel is not), there are some specifics when
using the scripting interface which will be explained here.

11

12 CHAPTER 4. IMPLEMENTATION

Arrays Methods returning C++ arrays will be copied and returned as native Squirrel arrays
instead. Conversely, methods expecting C++ arrays as an argument expect a Squirrel array in
the script. The conversion from Squirrel to C++ and vice versa is done automatically in the
binding code.

Listing 4.1: native C++ array

1 Matrix myMatrix;
2 float[] arr = myMatrix.Get();

Listing 4.2: Squirrel array

1 local myMatrix;
2 local arr = myMatrix.Get(); // arr is a native Squirrel

array!

Property Variants VolumeShop saves its properties as Variants which can have various types
ranging from float over Matrix to Quaternion. When requesting property values via Get-
Property() or setting property values via SetProperty(), the binding will automatically convert
value objects to variants and backwards. Also, all Variant Types that exist as of the writing of
this thesis are bound to Squirrel. So inside the script, no further conversion is required.

OpenGL Binding

A big part of the work was setting up Squirrel bindings to the OpenGL API. Binding the whole
specification would not have brought any serious advantages, so only the OpenGL ES specifica-
tion Version 2.0 [Gro] was bound. A full list of the methods available in Squirrel is available in
the Appendix. The native OpenGL API consists of methods and constants. The code for binding
constants via Sqrat looks like in Listing 4.3

Listing 4.3: Binding of OpenGL constants to the Squirrel VM via Sqrat

1 Sqrat::ConstTable().Const("GL_SRC_ALPHA", GL_SRC_ALPHA);
2 Sqrat::ConstTable().Const("GL_STATIC_DRAW", GL_STATIC_DRAW);
3 Sqrat::ConstTable().Const("GL_STENCIL_ATTACHMENT_EXT",

GL_STENCIL_ATTACHMENT_EXT);

Binding methods to Squirrel was a bit more elaborate, because data types between C++ and
Squirrel do not always match. A showcase implementation for binding the method glUniform-
Matrix4fv can be seen in Listing 4.4. The method expects to be called with a Squirrel array as
the third parameter, but the native method expects a native float pointer, so inside the binding
code a conversion has to be made.

4.2. CREATION OF A SCRIPTABLE RENDERING PLUGIN 13

Listing 4.4: Binding of the OpenGL glUniformMatrix4fv method via Sqrat, converting the Ma-
trix to a float pointer

1 SQInteger sq_glUniformMatrix4fv(HSQUIRRELVM v){
2 if(sq_gettop(v) == 5){
3 Sqrat::Var<GLint> location(v, 2);
4 Sqrat::Var<GLsizei> count(v,3);
5 Sqrat::Var<GLboolean> transpose(v, 4);
6

7 float arr[16];
8 Sqrat::Var<Sqrat::Array> data(v, 5);
9 for(int i = 0; i < 16; i++){

10 data.value.GetElement(i, arr[i]);
11 }
12 glUniformMatrix4fv(location.value, count.value,

transpose.value, &arr);
13 }
14 return 0;
15 }

As Squirrel does not provide object references or pointers, some OpenGL functions are not
possible to bind in the same way as in the native C++ API. They will be discussed in this section.

glGenBuffers and similar functions expect an output variable pointer to be passed which will
then receive the generated buffers. As it is not possible in Squirrel to create a reference to an
object, the binding code instead creates a temporary variable and returns that, see Listing 4.5.

Listing 4.5: Example for usage of glGenBuffers

1 local m_uVertexBuffer = glGenBuffers(1); //
m_uVertexBuffer is either an int or an array of ints

glUniformMatrix4fv and similar functions. When passing value pointers to openGL func-
tions, one instead has to pass a Squirrel array which will internally be converted to a native C++
array and then passed to the OpenGL API by pointer.

Similar Bindings exist already for other languages, such as the Java OpenGL Bindings
[Pro14]. An extensive list of available objects and their methods can be found in the Appendix.

4.2 Creation of a scriptable rendering plugin

The scriptable rendering plugin is a VolumeShop plugin as described in [Bru13]. Such a plugin
has at least three methods, namely idle() which is called continuously during the main loop,
display(Canvas& canvas) which is only called when anything in the rendering pipeline changes

14 CHAPTER 4. IMPLEMENTATION

and reshape(unsigned int newWidth, unsigned int newHeight) which is called on every change
of the viewport size.

These methods only contain calls to the Squirrel functions that are defined in the script. See
Listing 4.6 and 4.14 for an example.

Listing 4.6: Implementation of the reshape() method in the C++ VolumeShop rendering plugin

1 void RendererTestPlugin::reshape(const unsigned int uWidth,
const unsigned int uHeight)

2 {
3 sqBinding−>reshapeFunc(uWidth, uHeight);
4 }

Listing 4.7: The corresponding reshape() method in the Squirrel script

1 function reshape(uWidth, uHeight){
2 if (uWidth != properties.viewportWidth || uHeight !=

properties.viewportHeight)
3 {
4 properties.viewportWidth = uWidth;
5 properties.viewportHeight = uHeight;
6 properties.m_bReshape = true;
7 updatePlugin();
8 }
9 }

The scriptable renderer also has a member variable which contains an HSQUIRRELVM ob-
ject that contains all the bindings to VolumeShop and OpenGL required for development. Upon
a script change, the Squirrel VM is being replaced by a new one so that calls to script methods
will be executed with the new code.

For VolumeShop Playground, two methods named setup() and teardown() have been intro-
duced. setup() is called after compilation of a new script, while teardown() is called before
destruction of the old Squirrel VM. These methods are meant to allow a script programmer to
properly initialize and clean up his resources.

The scriptable renderer is controlled by exposing properties to the VolumeShop Service.
Apart from metadata like the project name and description, which are shown directly in the
frontend (see Section 4.3), this plugin exposes the following 3 properties:

Script Code, which is of type string, contains a base64 encoded version of the script code
that the programmer wrote in the browser. It is set by the JavaScript layer whenever the pro-
grammer saves his code.

Script Compilation Errors, which is of type string, contains errors in human readable form
that occured during the compilation of the Script Code. This property is read by the JavaScript
layer after it received a notification that saving of the Script code was successful. Then a graph-

4.3. HTML FRONTEND DEVELOPMENT 15

Figure 4.1: Compiling an erronous script will result in an error message showing the line, col-
umn and a hint regarding the compilation error

ical notification is created to that the programmer knows if his source compiled successfully or,
if not, where to look for the error (see Figure 4.1).

Reload Script, which is of type boolean, is an indicator for the scriptable plugin to recompile
its script. It is set via the Javascript layer whenever the code editor receives a save() event. In
the plugins native display() method, it always checks for this property to be true, in which case
the recompilation process is triggered. The recompilation involves calling the teardown-method
of the old script, compiling the new script, binding script methods and calling the setup-method
of the new script. In case of compilation failure, the state of the old Squirrel-VM is restored and
the according error message set to the Script Compilation Errors property.

4.3 HTML Frontend development

The frontend has been developed utilizing the Bootstrap framework [OT]. Bootstrap offers a
basic responsive, fluid, mobile ready and cross browser compatible template for websites which
made it an ideal candidate for quick prototyping and further use for VolumeShop Playground.
Bootstrap also comes with a variety of predefined CSS components for user interface elements,
such as buttons, tables and dropdowns. Please see the web page for a comprehensive list of its
features. The frontend is partitioned into multiple views, a structural overview of these views is
given in Figure 4.2.

16 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Structural Overview of the Frontend views

The gallery browser is meant to give a brief overview of existing volume rendering projects.
The Javascript remote layer is calling a remote method on the VolumeShop server which returns
a list of all currently existing projects. Then, for each of the projects, a new HTML element
is created and inserted into the page. Clicking a project name leads to the show project view
(Figure 4.3).

Figure 4.3: Screenshot of the Gallery Browser

The show project view is for demonstration purposes. It shows some project metadata like
the author and a description as well as an interactive rendering window. It allows a visitor to
interactively explore the impact of the interactive properties that where configured by the author
in the project edit view (Figure 4.4).

The edit project view is split vertically where the right part always shows the current render-
ing output(referenced to as the rendering panel), while the left part is navigatable via a submenu
and contains one of the following elements:

Edit project settings allows the user to change project metadata such as the author and
description. It makes use of the JavaScript widget described in 4.4 to save changes of the data
to the VolumeShop project.

4.3. HTML FRONTEND DEVELOPMENT 17

Figure 4.4: Screenshot of the Show Project View

18 CHAPTER 4. IMPLEMENTATION

Figure 4.5: Architecture of the Javascript Layer

Plugin code provides the interface for developing the plugins Squirrel script code. To pro-
vide a convenient code editor, it embeds the ACE-Editor jQuery plugin [B.V]. On saving the
script the updated rendering output will be instantly visible in the rendering panel.

Property Manager allows editing of a plugins interactive properties. Here a plugin author
can expose certain properties used in the script code to a viewer, control how those properties
should be rendered and impose client side constraints to valid property values. Changes to
interactive properties will be visible instantly in the rendering panel so it is easy to see the
consequences of a change.

4.4 Javascript Remote Layer Development

Most of the JavaScript remote layer has been implemented as jQuery stateful plugins [jF]. The
Steam- and Remote-Plugin from VolumeShop Service have been reused. The architecture of the
JavaScript layer can be seen in Figure 4.5

Project Widget

The project widget contains references to relevant html DOM nodes like the rendering canvas,
property widgets, the property editor and the code editor. It provides methods for loading and
saving projects, rerendering the view and saving the script code as well as the interactive property
configuration. The code editor (see Figure 4.6) is shown via the ACE Editor jQuery plugin. The
project widget then registers to be notified when the editor content is to be saved (in this case
when Control-S is pressed on the keyboard) and saves the new code to the renderer plugins
Script Code property.

Property Widgets

To make project properties interactively editable it was required to create user interface elements
for these properties. Currently four types of property widgets are implemented: Boolean is rep-

4.4. JAVASCRIPT REMOTE LAYER DEVELOPMENT 19

Figure 4.6: The code editor realized via ACE Editor

resented by a checkbox that can be enabled or disabled by users to point to a 1 or 0 value. float is
represented by a jQuery UI slider. Programmers can limit the value range in form of a minimum
and maximum value. Options is represented by a selectbox from which a user can select one sin-
gle option. Possible values are entered by programmers as a newline separated string. Resource
is a special form of an option. It contains as possible values all volume resources connected to
a project. This allows the user to quickly change between different volumes without leaving the
visualization session. An example of possible influence on the rendering can be seen in Figures
4.7 and 4.8. The programmer is however able to use properties to influence his rendering script
in whichever way desired.

Property Editor Widget

Another component is the property editor (see Figure 4.9) . It allows programmers to setup and
configure property widgets. These properties can later be used inside the plugin script to give
viewers the possibility to interactively change rendering parameters.

20 CHAPTER 4. IMPLEMENTATION

Figure 4.7: Rendering when the Technique property is set to Direct Volume Rendering

Figure 4.8: Rendering when the Technique property is set to Maximum Intensity Projection

Figure 4.9: The property editor widget

4.5. HOW TO EXPOSE MORE FUNCTIONALITY TO SQUIRREL 21

4.5 How to expose more functionality to Squirrel

Exposing classes

When extending scripting functionality of the scriptable renderer plugin, the first location to
look out for is the bindSquirrel-method in the file src/SqBindings.h. SqBindings.h includes the
header files that contain the actual binding code for a specific class.

An example for Squirrel Bindings: The Timer-Class:

Listing 4.8: Content of vsbindings/TimerBindings.h
1 void bindTimer(){
2 Sqrat::Class<Timer> timer;
3 timer.Func("getFloat", &Timer::operator float);
4 /∗ myTimer.getFloat() in Squirrel translates to
5 the (float)−Operator in C++
6 ∗/
7 timer.Func("start", &Timer::start);
8 /∗ myTimer.start() in Squirrel translates to
9 myTimer.start() in C++

10 ∗/
11 Sqrat::RootTable().Bind("Timer", timer);
12 // in Squirrel, this Class is named "Timer"
13 }

In SqBindings.h, it looks like this:

Listing 4.9: calling the bindTimer()-Method
1 void bindSquirrel(HSQUIRRELVM vm, RendererTestPlugin∗ plugin)
2 {
3 ...
4 bindTimer();
5 ...
6 }

Exposing OpenGL Methods and Constants

OpenGL Bindings are stored in the src/vsbindings/OGLBindings.h file.
Methods are bound like this:

Listing 4.10: Binding OpenGL Methods
1 void bindOglMethods(){
2 ...

22 CHAPTER 4. IMPLEMENTATION

3 Sqrat::RootTable().SquirrelFunc("glTexCoord2f",
&sq_glTexCoord2f);

4 // I use SquirrelFunc to apply some parameter conversion
where needed

5 ...
6 }

When using SquirrelFunc, a separate method is required like this:

Listing 4.11: Custom

1 SQInteger sq_glTexCoord2f(HSQUIRRELVM v){
2 if(sq_gettop(v) == 3){ // require 2 parameters
3 Sqrat::Var<GLfloat> s(v,2); // load param 1 as float
4 Sqrat::Var<GLfloat> t(v,3); // load param 2 as float
5 glTexCoord2f(s.value, t.value); // call the actual OpenGL

method
6 }
7 return 0; // no return values
8 }

Constants can be bound like this:

Listing 4.12: Binding OpenGL Constants

1 void bindConstants(){
2 ...
3 Sqrat::ConstTable().Const("GL_TEXTURE4", GL_TEXTURE4);
4 ...
5 }

Dynamic behavior of Squirrel methods

When using SquirrelFunc for binding, Sqrat allows a method to behave differently, depending
on the number and type of arguments that are supplied to the Squirrel function. Such distinctions
have to be made at runtime of the Squirrel VM, which makes them comparatively slow.

Lets see an example on how to make a dynamic matrix multiplication, depending on wether
a matrix, float or vector is the multiplicator. First, we bind the multiplication operator to our
custom function sq_Matrix_operatorMul:

Listing 4.13: Matrix Multiplication Bindings

1 void bindMatrix(){
2 ...

4.5. HOW TO EXPOSE MORE FUNCTIONALITY TO SQUIRREL 23

3 // default implementation of the C++ Matrix class for
transpose

4 matrix.Func("transpose", &Matrix::transpose);
5

6 // _mul is the multiplication operator, we handle that
ourselves

7 matrix.SquirrelFunc("_mul", &sq_Matrix_operatorMul);
8 ...
9 }

Then, we define that custom multiplication function:

Listing 4.14: Matrix Multiplication Bindings

1 SQInteger sq_Matrix_operatorMul(HSQUIRRELVM v){
2 if (sq_gettop(v) == 2) { // one argument, (v,1) is class or

environment
3

4 // so now... matrix ∗ matrix
5 Sqrat::Var<const Matrix&> me(v, 1);
6 Sqrat::Var<const Matrix&> multiplicator(v, 2); // multiply

with another matrix
7 if (!Sqrat::Error::Instance().Occurred(v)) {
8 Matrix result = me.value ∗ multiplicator.value;
9 Sqrat::PushVar(v, result);

10 return 1;
11 }
12 Sqrat::Error::Instance().Clear(v);
13

14 // now matrix ∗ float
15 Sqrat::Var<float> multiplicatorF(v, 2);
16 if (!Sqrat::Error::Instance().Occurred(v)) {
17 Matrix result = me.value ∗ multiplicatorF.value;
18 Sqrat::PushVar(v, result);
19 return 1;
20 }
21 Sqrat::Error::Instance().Clear(v);
22

23 // now matrix ∗ vector
24 Sqrat::Var<const Vector&> multiplicatorV(v, 2);
25 if (!Sqrat::Error::Instance().Occurred(v)) {
26 Vector result = me.value ∗ multiplicatorV.value;
27 Sqrat::PushVar(v, result);
28 return 1;

24 CHAPTER 4. IMPLEMENTATION

29 }
30

31 Sqrat::Error::Instance().Clear(v);
32 Sqrat::PushVar(v, "oh_noooes you cannot do that to a

matrix!");
33 return 1;
34 }else{
35 // no arguments is invalid
36 return 0;
37 }
38 }

So we try loading the second argument as matrix, if an error occurs on that (i.e. loading
as a matrix was not successful), we proceed to the next try - matrix * float, and if that doesn’t
succeed, we finally try matrix * vector. The returned value of the Squirrel function is each
pushed on the stack and the number of return values (1) returned.

A full documentation of the Sqrat Binding Library [Haf] and the Squirrel Scripting language
[Dem] can be found on the web.

CHAPTER 5
Conclusion

An extension to the existing VolumeShop framework was presented that allows for rapid visu-
alization prototyping using only a modern Web Browser. A scripting API to OpenGL calls as
well as VolumeShop internal classes and objects reduces the duration of development iterations
by avoiding recompilation of the whole renderer plugin. Instead the plugin methods relevant to
rendering can be implemented in a script which is then recompiled dynamically during runtime,
thus not bringing the long compilation times of C++.

As of now, no security measures have been taken at all to ensure integrity of user input or
enforce any type of access control. Also, not the whole OpenGL specification has been bound
for Squirrel scripting, so that would be a point to be further elaborated. Further work could
also include interactive debugging of Squirrel scripts. Breakpoints in the Squirrel scripts and
live variable inspection would require a full binding of all Volumeshop classes as well as some
deeper thought about senseful representation of objects like volumes, big arrays etc.

25

APPENDIX A
27

28 APPENDIX A. APPENDIX

Figure A.1: First Version of the Frontend Design

Figure A.2: 2nd Version of the Frontend Design

Figure A.3: Final Version of Frontend Design

A.1. PROTOTYPE FRONTEND DESIGNS 29

Appendix

A.1 Prototype Frontend Designs

A.2 Squirrel Available OpenGL Constants

GLEW_ARB_fragment_shader GLEW_ARB_vertex_shader
GLEW_EXT_framebuffer_object GL_ARRAY_BUFFER
GL_ALL_ATTRIB_BITS GL_ALWAYSG
GL_BACK GL_BLEND
GL_CLAMP GL_CLAMP_TO_EDGE
GL_COLOR_ATTACHMENT0_EXT GL_COLOR_ATTACHMENT1_EXT
GL_COLOR_ATTACHMENT2_EXT GL_COLOR_ATTACHMENT3_EXT
GL_COLOR_BUFFER_BIT GL_CULL_FACE
GL_DEPTH_ATTACHMENT_EXT GL_DEPTH_BUFFER_BIT
GL_DEPTH_STENCIL_EXT GL_DEPTH_TEST
GL_ELEMENT_ARRAY_BUFFER GL_EQUAL
GL_FALSE GL_FLOAT
GL_FRAMEBUFFER_COMPLETE_EXT GL_FRAMEBUFFER_EXT
GL_FRONT GL_GREATER
GL_INDEX_ARRAY GL_INVERT
GL_INT GL_KEEP
GL_LESS GL_LINEAR
GL_MODELVIEW GL_NEAREST
GL_ONE GL_ONE_MINUS_SRC_ALPHA
GL_ONE_MINUS_DST_ALPHA GL_PROJECTION
GL_QUAD_STRIP GL_QUADS
GL_RENDERBUFFER_EXT GL_RGBA
GL_RGBA32F_ARB GL_SRC_ALPHA
GL_STATIC_DRAW GL_STENCIL_ATTACHMENT_EXT
GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST
GL_TEXTURE0 GL_TEXTURE1
GL_TEXTURE2 GL_TEXTURE3
GL_TEXTURE4 GL_TEXTURE5
GL_TEXTURE6 GL_TEXTURE7
GL_TEXTURE_2D GL_TEXTURE_3D
GL_TEXTURE_MAG_FILTER GL_TEXTURE_MIN_FILTER
GL_TEXTURE_WRAP_S GL_TEXTURE_WRAP_T
GL_TRIANGLES GL_TRUE
GL_UNIFORM_BUFFER GL_UNSIGNED_INT
GL_UNSIGNED_SHORT GL_VERTEX_ARRAY

30 APPENDIX A. APPENDIX

A.3 Squirrel Available OpenGL Methods

glActiveTexture glBegin
glBindFramebufferEXT glBindBuffer
glBindRenderbufferEXT glBindTexture
glBlendFuncSeparate glBufferData
glCheckFramebufferStatusEXT glClear
glClearColor glClearDepth
glClearStencil glColorMask
glCopyTexSubImage2D glCullFace
glDepthFunc glDepthMask
glDisable glDisableClientState
glDrawBuffer glDrawBuffers
glDrawElements glEnable
glEnableClientState glEnd
glFramebufferRenderbufferEXT glFramebufferTexture2DEXT
glFinish glGenBuffers
glGenTextures glGenFramebuffersEXT
glGenRenderbuffersEXT glIndexPointer
glLoadMatrixf glLoadIdentity
glMatrixMode glMultiTexCoord2f
glMultMatrixf glPopAttrib
glPushAttrib glRenderbufferStorageEXT
glStencilFunc glStencilOp
glTexCoord2f glTexParameteri
glTexImage2D glUniform1i
glUniform1iARB glUniform1f
glUniform2fvARB glUniform3fvARB
glUniform3fv glUniform4fv
glUniformMatrix4fv glVertex2f
glVertex3fv glVertexPointer
glViewport

A.4 Squirrel Available Volumeshop Core Objects and methods

Class methods native binding
Box GetCenter yes

GetTranslated yes
GetTransformed yes
GetExtent yes
GetMinimum no
GetMaximum no

Canvas bind yes

A.4. SQUIRREL AVAILABLE VOLUMESHOP CORE OBJECTS AND METHODS 31

release yes
Container -
Image<uchar,4> GetWidth no

GetHeight no
GetIntegral no

ImageResource -
ImageTexture2D bind yes

release yes
GetOffset yes
GetScale yes
GetSize yes

Matrix GetInverse yes
GetRotation yes
GetRotationMatrix yes
GetScale yes
GetScaleMatrix yes
GetTranslation yes
scale yes
translate yes
transpose yes
mul no
Get no
print no

Object GetObjectTypeName yes
GetObjectName yes
SetObjectName yes
HasAttribute yes

Observer -
ModifiedObserver -
Observable addObserver yes
Plane GetTransformed yes

unm yes
GetClosestPoint yes
IsInside yes
GetCenter yes
GetNormal no
GetDistance no
constructor no
transform no
transform no

PluginContainer -
PropertyContainer GetProperty no
Resource -

32 APPENDIX A. APPENDIX

ResourceTexture -
Shader GetOption yes

GetUniformLocation yes
bind yes
release yes
load no
loadByName no
SetOption no

StructuredGridResource GetElementComponents yes
GetBounds yes

Timer getFloat yes
getDouble yes
start yes
isRunning yes

Variant require yes
TypeString yes
TypeArray yes
TypeMap yes
TypeOption yes
TypeBoolean yes
TypeInteger yes
TypeFloat yes
TypeVector yes
TypeQuaternion yes
TypeBox yes
TypeMatrix yes
TypeColor yes
TypeHandle yes
TypeFileName yes

Vector GetX yes
GetY yes
GetZ yes
GetX yes
GetY yes
GetZ yes
GetCross yes
GetDot yes
GetInverse yes
GetNormalized yes
GetMinimum yes
GetMaximum yes
add no
sub no

A.4. SQUIRREL AVAILABLE VOLUMESHOP CORE OBJECTS AND METHODS 33

unm no
div no
mul no
constructor no
Get no

Volume<[uchar|float], [1|2|3|4]> GetWidth yes
GetHeight yes
GetDepth yes

VolumeHierarchicalIterator<[uchar|float], [1|2|3|4]> GetPositionX yes
GetPositionY yes
GetPositionZ yes
GetWidth yes
GetHeight yes
GetDepth yes
IsLeaf yes
GetMinimum no
GetMaximum no

VolumeResource -
VolumeTexture3D GetSize yes

GetTransformation yes
bind yes
release yes

Voxel<float, [1,2,3,4]> Get no

Native binding indicates that the method is bound directly to the original classes method without
any modifications. Classes with a - sign in the 3rd column do not have any methods bound
specifically. They might, however have inherited methods from bound parent classes.

There are also some helper methods available in squirrel:

method description
GetResourceVolumeTexture3D gets a 3D volume texture from a resource
GetResourceImageTexture2D gets a 2D image texture from a resource
sqrtf the standard square root function
rand the standard random function
updatePlugin calls the updatePlugin method on the scriptable renderer plugin
updatePlugin calls the renderBounds method on the scriptable renderer plugin
RequirePropertyType requires the variant type of a property
GetPropertyVariant proxy to GetPlugin().GetProperty()
SetPropertyDescription proxy to GetPlugin().SetPropertyDescription()
AddPropertyObserver Proxy to GetPlugin().GetProperty().addObserver

Bibliography

[Bru13] Stefan Bruckner. Volumeshop: An interactive system for direct volume illustra-
tion. In In Proceedings of the IEEE Conference on Visualization (Minneapolis,
USA, Oct 2005), VIS ’05, IEEE Computer Society, pages 671–678, 11 2013.

[B.V] Ajax.org B.V. Ace editor - http://ace.c9.io/, last visited 11-2013.

[Dem] Alberto Demichelis. The squirrel programming language - http://www.squirrel-
lang.org/, last visited 11-2013.

[Des] Thibaut Despoulain. Bkcore shader editor. http://shdr.bkcore.com/.

[DGE04] J. Diepstraten, M. Görke, and T. Ertl. Remote line rendering for mobile devices.
In Proceedings of Computer Graphics International (Crete, Greece), pages 454–
461, June 2004.

[Gin] Stéphane Ginier. Sculptgl - http://stephaneginier.com/sculptgl/, last visited 02-
2014.

[Gro] The Khronos Group. Opengl es - http://www.khronos.org/opengles/, last visited
11-2013.

[Haf] Brandon Haffen. The sqrat binding library - http://scrat.sourceforge.net/, last vis-
ited 11-2013.

[Inca] SketchFab Inc. Sketchfab - https://sketchfab.com/, last visited 02-07-2014.

[Incb] Verold Inc. http://verold.com, last visited 11-2013.

[jF] The jQuery Foundation. jquery stateful plugins.
http://learn.jquery.com/plugins/stateful-plugins-with-widget-factory/, last
visited 02-07-2014.

[mev] Mevislab - http://www.mevislab.de/, last visited 02-07-2014.

[MSRMH09] J Meyer-Spradow, T Ropinski, J Mensmann, and K Hinrichs. Voreen: A rapid-
prototyping environment for ray-casting-based volume visualizations. IEEE
Computer Graphics and Applications, 29(6):6–13, 2009.

35

[OT] Mark Otto and Jacob Thornton. Bootstrap frontend development framework -
http://getbootstrap.com/2.3.2/index.html, last visited 11-2013.

[Pro14] The JOGL Project. Jogl opengl bindings for java. http://jogamp.org/jogl/www/,
last visited 02-07-2014.

[RSFWH98] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper. Virtual network
computing. IEEE Internet Computing, 2(1):33–38, 1998.

[SBP+08] K. Sihan, Charl P. Botha, Frits H. Post, Sebastiaan de Winter, E Regar, R Hamers,
and N Bruining. A novel approach to quantitative analysis of intravascular optical
coherence tomography imaging. In Proceedings of Computers in Cardiology,
http://www.cg.its.tudelft.nl/Projects/DeVIDE, 2008.

[SL07] Ol. Marquardt S. Lietsch. A cuda-supported approach to remote rendering. In
Proceedings of the 3rd International Conference on Advances in Visual Comput-
ing, ISVC ’07, 2007.

[SML07] W. Schroeder, K. Martin, and B. Lorensen. The visualization toolkit, third edition.
Kitware Inc., 2007.

[SNC12] S. Shi, K. Nahrstedt, and R. Campbell. A real-time remote rendering system
for interactive mobile graphics. ACM Transactions on Multimedia Computing,
Communications, and Applications, 8(3s), 2012.

[SW05] H.-C. D. Stalling and M. Westerhoff. Amira - a highly interactive system for
visual data analysis. In C. Johnson and C. Hansen, editors, The Visualization
Handbook, pages 749–767. Elsevier, 2005.

[vir] Virtualgl - http://www.virtualgl.org/, last visited 02-07-2014.

[VWE05] Joachim E. Vollrath, Daniel Weiskopf, and Thomas Ertl. A generic software
framework for the gpu volume rendering pipeline. In In Proc. Vision, Modeling,
and Visualization, pages 391–398, 2005.

[web] Webgl playground - http://webglplayground.net/, last visited 02-07-2014.

List of Figures

2.1 Screenshot of the WebGL Playground Website . 6

36

List of Figures 37

2.2 Screenshot of the bkcore Shader editor Website 6
2.3 Screenshot of the bkcore Shader editor Website 6

3.1 VolumeShop Playground Architecture . 8

4.1 Compiling an erronous script will result in an error message showing the line, col-
umn and a hint regarding the compilation error 15

4.2 Structural Overview of the Frontend views . 16
4.3 Screenshot of the Gallery Browser . 16
4.4 Screenshot of the Show Project View . 17
4.5 Architecture of the Javascript Layer . 18
4.6 The code editor realized via ACE Editor . 19
4.7 Rendering when the Technique property is set to Direct Volume Rendering 20
4.8 Rendering when the Technique property is set to Maximum Intensity Projection . . 20
4.9 The property editor widget . 20

A.1 First Version of the Frontend Design . 28
A.2 2nd Version of the Frontend Design . 28
A.3 Final Version of Frontend Design . 28

