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Kurzfassung

Im Bereich der medizinisch-diagnostischen Bildgebung hat die Dual Energy Computed Tomo-
graphy (DECT) in letzter Zeit an Bedeutung gewonnen. Es wurde gezeigt wie durch DECT
Messungen der Dichte und die Differenzierung zwischen Materialien verbessert werden können
und dass die DECT-Bildgebung einen praktischen Gebrauch in der Medizin hat. Ein gebräuchli-
ches Verfahren zur Verbesserung der Bildgebung stellt die Verringerung des Bildrauschens dar.
In dieser Arbeit werden zwei Vorgehensweisen zur Reduzierung des Bildrauschens anhand von
DECT Daten beschrieben. Als erstes wird gezeigt, dass der “cross/joint billateral filter” dazu
verwendet werden kann um das Rauschen in DECT-Bildern zu verringern während gleichzeitig
Kanten erhalten bleiben. Zweitens zeigen wir, dass das Rauschen in zwei DECT-Bildern anti-
korreliert ist und deshalb durch den Kalenders Correlated Noise Reduction Algoritmus effektiv
entfernt werden kann. Weiters kann das Bildrauschen unter Berücksichtigung DECT spezifische
Informationen, wie zum Beispiel die spektrale Informationen, zusätzlich reduziert werden. Fer-
ner zeigen wir, dass die Effizienz des KCNR gesteigert werden kann, wenn zuvor die Korrektur
der spektralen Informationen durchgeführt wurde [1]. Die AngioVis Software erlaubt die Dar-
stellung und Bearbeitung von CT-Daten. Für die Umsetzung der Arbeit wurde ein Plugin im
AngioVis Framework entwickelt.
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Abstract

Dual energy computed tomography (DECT) recently gained popularity for medical diagnostic
imaging. It has been demonstrated how DECT can improve density measurement and material
differentiation, and practical applications for DECT imaging in medicine. Noise reduction is
standard operation in the process of image enhancement which is necessary operation prior
to image evaluation done by radiologist. In this work, we describe two approaches for noise
reduction using DECT data. First, we show in the work that the cross or joint bilateral filter can
be effectively used on DECT images to reduce noise while preserving edges. Second, noise in
two DECT images is anti-correlated and can be effectively removed by the KCNR algorithm.
Even better results can be achieved by using algorithms that exploit an additional characteristic
information of DECT data, such as the spectral information. It was shown that the KCNR can
increase its performance regarding quality when the spectral information is corrected before
applying the KCNR [1]. AngioVis framework provides ability to present and manipulate CT
data. All discussed image enhancement algorithms are implemented in AngioVis as a plugin.

v





Contents

1 Introduction 1

2 Related Work 3
2.1 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Dual Energy Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Computed Tomography in Medicine . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Gaussian Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Average Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Bilateral Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Noise Reduction in DECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 15
3.1 Water-offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Zero-crossing Pixels Correction . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Spectral-error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Kalenders Correlated Noise Reduction . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Bilateral Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Results and Discussion 29

5 Conclusion and Future Work 35

Bibliography 37

vii





CHAPTER 1
Introduction

Standard computed tomography (CT) provides single density data set of attenuation coefficients,
whereas dual energy computed tomography (DECT) provide two separate data sets, which com-
bined allow for more accurate density estimation and material differentiation. However, a su-
perimposed data set from DECT exhibits a high level of noise. Hence, estimating the accurate
density of a specific tissue is a difficult process, as described in the work of Park et al and
Kalender et al. [1] [2]. The goal of this work is to implement, test and analyze algorithms in
order to use advantages of both DECT data sets with the aim to reduce noise. These algorithms
should preserve valuable details from both images, such as fine distinction between soft tissues
of approximately the same density.

One very useful technique which is very well known from photography and which has the
ability to preserve edges while removing noise is the so-called bilateral filter. The bilateral filter
can be applied on CT data sets, and can be easily expanded to utilize benefits of DECT. The re-
sulting data set is smoothed and noise is decreased, but at the same time edges are preserved. The
bilateral filter does this task by considering spatial (neighboring densities) and range (density
differences) domains, in the low energy and high energy images respectively, during filtering.

The attenuation of human tissue depends on the energy level used by the CT device and
this information is useful for CT specific noise removal algorithms such as Kalenders correlated
noise reduction (KCNR) [2] and spectral-error correction [1]. Depending on the applied energy
level of the X-rays and depending on the tissue of interest, significantly different density values
are acquired. These deviations from real world data are considered noise and errors.

CT errors in CT data sets are unfaithful representations of the scanned object. Examples
of such errors are noise, beam hardening, Compton effect, motion artefacts, etc. Noise in the
DECT data sets is correlated and can be successfully minimized with the KCNR algorithm,
while preserving the quantitative information. The spectral-error is a specific type of CT error
defined as the deviation from expected trends of material attenuation. The spectral-error can be
detected using the fact that the attenuation of highly dense materials decreases more rapidly than
the attenuation of materials with lower density, with increasing energy level of the CT scanner.
To maximize the results of the spectral-error correction, two additional smaller corrections are
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performed beforehand, the water-offset correction and the zero-crossing pixels correction. The
KCNR algorithm delivers a better noise reduction, if the spectral-error is corrected before, as
stated by Park et al. [1].

We implemented our work in the AngioVis [3] framework as a plugin that provides a graph-
ical user interface for setting parameters and performing the aforementioned correction opera-
tions. The bilateral filter can be used stand-alone or in combination with KCNR and spectral-
error correction. The parameters of all operations can be adjusted to fit the needs of the desired
medical examination.

The remainder of this work is organized as follows: Chapter 2 provides a brief overview of
the principlse of CT principle and explains why the CT scanning procedure gained its popularity
over a traditional X-ray imaging. Some known advantages and disadvantages of CT with respect
to the medical usage are additionally listed. A brief overview of the characteristics of DECT
data and the importance of noise reduction in the imaging pipeline of modern CT scanners
is presented. Moreover, Chapter 2 provides an overview of some traditional noise reduction
techniques in image processing. Chapter 3 deals with DECT related noise removal techniques
and our implementations within the AngioVis framework. All of the algorithms are evaluated
on CT data sets and a discussion of the final results is given in Chapter 4. Our work is concluded
in Chapter 5 together with future aspects.
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CHAPTER 2
Related Work

2.1 Computed Tomography

Computed tomography (CT) is widely used in medicine as imaging technique for medical diag-
nostic. Most medical surveys classify CT among the top five medical developments in last 50
years. The continued increase of its importance for medicine was a driving factor for many com-
panies to jump on the diagnostic imaging industry which is still expected to grow. According to
a recent pharmacy report, the global CT systems market will be worth $8.6 milliard by 2022 [4].

Standard radiographic techniques or X-ray imaging has some important limitations which
can be surpassed by using CT. One important limitation of conventional X-ray imaging is that
we are picturing a three-dimensional object but we project it (by superimposition) to a single
two-dimensional plane, called a ‘radiograph’ or ‘photograph’, thus losing the volumetric rep-
resentation of an object; the film (photographic plate) that is used as a medium for standard
radiography is not able to capture fine contrast differentiation between different tissues. Thus
the small differences in X-ray attenuation are not captured.

CT is able to provide a 3D representation of objects and 2D cross-sectional images or axial
slices of the anatomy. High contrast and resolution is a very important characteristic of CT and
thus important for medical diagnostic. CT is capable of differentiating between various types
of tissue if they exhibit a difference in their physical density. As an example, in CT data sets
one can easily distinguish between water and soft tissues, while in standard radiographic images
tissues with similar attenuation are listed together (same gray value is assigned to both tissues).

Both, conventional X-ray imaging and CT, are based on the absorption of X-rays as they pass
through different parts of human body. Depending on the part of body that is scanned, different
constellations of tissues are present and thus different amounts of X-rays are absorbed. CT uses
multiple 2D projections through 3D object and this allows the reconstruction of the objects in
3D space. CT also provides fine contrast differentiation between different types of tissue.

When it comes to single energy and dual energy CT, both generate data sets with the CT
numbers at every voxel position. Those numbers represent spatial distribution of linear atten-
uation coefficients, and for the standardization they are given in the Hounsfield Units (HU).
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By definition, for a given tissue with attenuation coefficient µg, HU number is calculated using
equation [5]:

CTvalue =
µg − µwater

µwater
· 1000 HU (2.1)

The mass attenuation coefficients of most tissues is energy dependent, i.e. HU numbers
differ depending on the X-ray tube energy level that is used during scan procedure. However,
HU numbers for water and air are constant, regardless of used tube voltage level and therefore
are used as references. In the HU scale the water has value of 0 HU and the air is at -1000 HU.

2.2 Dual Energy Computed Tomography

Dual energy computed tomography (DECT) also called dual source computed tomography
(DSCT) can be seen as extension of conventional single source computed tomography. The-
oretically the concept of DECT is based on separation of the spectrum into two parts, a low
energy part and a high energy part and the projection from two X-ray sources respectively [6].
Operational difference between standard CT (single energy) and dual energy CT is that stan-
dard CT uses only one X-ray source/detector pair which operating at one constant energy level,
whereas dual energy CT uses two different energy levels.

There are two approaches in designing DECT systems. The first one uses a dual-source
scanner and the second, one uses a single-source scanner with fast kilovoltage switching. Re-
gardless of the scanner type the underlying principles are similar. They differ only in the way
of how the data acquisition is done. Both dual energy approaches will generate two data sets,
one recorded at a low energy X-ray spectrum and a second recorded at a higher energy X-ray
spectrum. The energy levels for the low and high X-ray tube sources are often set at 80kV and
140kV respectively, but other configurations are possible, depending on the current study.

A virtual 120kV data set can be used as reference when comparing the DECT results with
the features of a standard CT 120kV data set. This data set is generated as the weighted sum
of the low and high energy data sets with 30% of 80kV and 70% of 140kV intensity values (an
example is shown in Figure 2.2). This method is known as linear blending. Non-linear blending
method can be used to further improve contrast-to-noise ratio (CNR) using a modified sigmoid
function, as described by Holmes et al. [7].

Although the terms dual source and dual energy can be used interchangeably (both produce
two different energy level data sets), it is important to note that not all dual energy CT systems
use two X-ray tubes. Dual source CT in contrast to a single source CT consists of two rotating
x-ray tubes and two digital detectors. Simple schematic diagram of a dual source CT system
with illustrative example from the dataset used in this work is given in Figure 2.1.

As depicted in Figure 2.1, the signal from one x-ray tube can be detected only from one
detector, placed on the opposite side. The patient is exposed to two energy levels; in this example
(Figure 2.1), the low energy level is set at 100kV and the high energy level is set at 140 kV.
With this technology two different energy level images are produced within a single scan. The
acquired intensity values of the two data sets are different due to the different attenuation of
materials exposed to the high and low energy levels. For example, in the low energy image bone

4



Figure 2.1: Schematic diagram of a DECT. Two separate scanners are used for the low 100kV
and high 140kV energy level. The blue and green circles represent images acquired from differ-
ent energy levels. The image in the left circle shows the blended one.

has the value of 1127 HU while in the high energy image the intensity value at the same spatial
location is 883 HU. The different energy spectra provided by the two X-ray tubes, expose the
patient simultaneously to the two different energy spectrums. An example of intensity values
acquired using two tube voltages is given in Table 2.1.

By performing a comparison of the intensity values of both energy levels we observe how
the HU values decrease as the energy of the X-ray increases. Higher energy X-rays penetrate
easier through a highly dense materials than low energy X-rays, but as consequence the HU
values are lower in the high energy image than the HU values at corresponding positions in the
low energy image. Note that due to noise many intensity values are not following this trend
of energy dependent material attenuation. One of the goals toward better noise reduction is to
explore spectral information in order to find and correct the intensity values that do not follow
the principle of energy dependent attenuation.

Table 2.1 depicts signal values detected by a DECT scanner, that represent the intensity of
the X-ray spectrum after passing through the patient’s body. The left side shows HU values
for the small part of the low energy image (100kV) and the right shows HU values from the
corresponding part in the high energy image (140kV). In general the HU values in the low energy
data set should be higher than the intensity values in the high energy data set. Discrepancies in
HU values at same pixel/voxel positions be seen.
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Figure 2.2: Virtual 120kV image

699 909 1012 971 777 547 398 396 531 700
472 795 1015 1044 933 773 623 576 674 826
297 658 942 1048 1018 912 780 757 864 998
167 477 796 971 988 928 887 936 1024 1078
67 338 658 840 849 850 943 1052 1094 1082
28 267 567 726 732 787 950 1068 1085 1078
39 225 490 664 712 771 906 1015 1065 1092
37 176 419 639 726 758 872 1037 1146 1141
26 157 408 657 759 761 884 1115 1225 1128
-5 111 360 636 777 797 913 1113 1164 993

(a)

593 745 783 745 650 465 274 249 359 485
362 579 779 882 841 663 465 437 545 676
152 398 688 869 870 741 618 640 738 819
66 290 558 727 759 713 698 762 837 868
52 252 482 615 655 674 719 797 856 872
28 221 442 565 591 609 677 776 838 855
1 176 409 559 568 537 622 774 866 862
-4 135 365 547 558 508 611 807 911 869
0 111 322 505 542 516 611 795 884 799
1 111 309 493 568 555 604 745 809 682

(b)

Table 2.1: (a) shows the intensity values of the low energy data set, whereas (b) the ones of the
high energy data set. Both represent the same spatial location.
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(a) Low energy image (100kV) (b) High energy image (140kV)

Figure 2.3: An axial slice images of a DECT data set. Details are presented in the zoom-ins and
the intensity values of the regions highlighted in green are shown in Table 2.1

Two images from the same DECT scan are shown in Figure 2.3. Both images have a reso-
lution 512x512 pixels. The x-ray tube for the low energy image was set at 100kV and at 140kV
for the high energy image. The data values from the green squares are exported into Table 2.1.

2.3 Computed Tomography in Medicine

One disadvantage of CT compared to the conventional X-ray imaging is that it involves a higher
radiation dosage. However due to its medical diagnostic importance in diagnosis of cancer,
cardiovascular and neurological diseases, the number of CT scans is constantly increasing. Ac-
cording to CT Market Outlook Report for US in 2007 there were 72 million scans, and in 2012
the estimated amount was 85 million scans. About 0.4% of cancer diseases in US in the year
2007 are due to the exposure to radiation with a dosage similar to today’s CT scanners [8]. In
a few decades up to 2% of all cancer diseases may be caused by the radiation exposure during
CT scans. This estimate can be considerably lowered by avoiding medically not warranted CT
scans [9]. There are also diverging beliefs that the CT irradiation dose is not sufficient and will
not lead to a cancer formation. Several parameters influence the radiation dosage such as the pa-
tient’s physique, the volume scanned, the desired resolution etc. Modern CT systems allow for
auto adjustment of the exposure levels, which is a desirable feature, because it can help reducing
the radiation dosage.

Another matter of importance related to the CT is the usage of radiocontrast agents, used
to improve the visibility of internal bodily organs in CT data sets. Radiocontrast agents can
cause serious anaphylactic reactions and other side effects, as described in the work of Lasser
et al. [10]. Almost one half of all CT scans in US include some sort of radiocontrast agent, and
according to recent statistics 2-30 people per 1,000,000 die from reactions caused by radiocon-
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trast agent [11]. Radiologists should be aware of possible risk factors when using radiocontrast
agents. Each patient is treated separately and an assessment of appropriate contrast agent prior
to administration should be considered [12].

Compared to single energy CT the patient radiation dosage is in general equal or higher in
DECT, however with technical improvements and additional mechanism it is possible to reduce
the radiation dosage down to the level of single energy CT, or even lower [13].

DECT provides important new functional and specific information offering potential new ap-
plications in a number of medical areas. Cardiac imaging benefits from improved temporal res-
olution provided by DECT, making a functional evaluation of the heart valves and myocardium
possible, as presented in the work of Seidensticker and Hofmann [6]. DECT is very often used
for more accurate material differentiation and density measurement. Unique energy-dependent
profiles are basis for material differentiation [14]. In other words, DECT methods exploit the
difference in the mass attenuation coefficients of different materials as a function of energy. As
an example, the differentiation of collagen makes it possible to depict tendons and ligaments, as
mentioned by Flohr et al. [15]. Further examples show how the DECT can automatically sepa-
rate bones and iodine-filled vessels or determinate stone composition [15]. Stones composed of
different calcium salts can be more effectively detected, as described by Matlaga et al. [16].

2.4 Noise Reduction

Noise is a common problem in a variety of image processing scenarios. Noise reduction helps
providing a more accurate digital representation of objects scanned by CT. In medicine, reducing
unwanted noise of CT images is an important part of the examination of the patient’s data set.

Typical noise reduction filters like median, average and Gaussian do not take pixel intensity
distances (differences in pixel intensity values) into account during processing, which can pro-
duce unwanted effects like loss of image sharpness, and secondly they do not preserve edges.
The bilateral filter offers both of these features.

Median Filter

The median filter is a non-linear filter, meaning that the pixel intensities are not linearly com-
bined. All pixels of the filter kernel including the central pixel are sorted ascending by their
intensity values and the middle element (i.e. the median) is chosen. The middle element is then
saved in the output image at the position of the central pixel. The number of pixels that should
be sorted depends on the size of the filter kernel. The run-time complexity of the median filter
relative to the kernel depends on the chosen sorting algorithm.

An example of median filtering with a kernel size of 3× 3 is shown in Table 2.2.
Central pixel value: 125
Kernel: -4, 135, 365, 0, 125, 322, 402, 111, 309
Sorted: -4, 0, 111, 125, 135, 309, 322, 365, 402
Median: 135.
Filtered pixel intensity is 135, changed from 125.
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-4 135 365
0 125 322
402 111 309

Table 2.2: An example of a 3 × 3 median filter kernel with the corresponding pixel intensity
values.

(a) Original image (b) Median filtered image

Figure 2.4: Example of a median filter. (a) shows the original image and (b) presents the median
filtered version using a 5x5 kernel

Cons: Structured regions are smoothed and edges are blurred.
Pros: Edges between homogeneous regions are preserved. It preserves details better than aver-
age filter. Particularly good for salt and pepper alike noise.

Gaussian Filter

The Gaussian low-pass filter is widely used linear smoothing filter that can be applied straight-
forward on a CT images. The result is calculated through linear combination of all pixel intensity
values inside the filter kernel. The Gaussian low-pass filter works in the spatial domain (it
considers only the spatial distance from central pixel) and reduces noise effectively, but leads to
smoothing that removes thin edges or smears them. An example of too much smoothing in the
CT imaging would be when thin blood vessels disappear due to applying a Gaussian filter with
a big standard deviation (σ). Filter kernel is calculated as follows:

GND(x;σ) = − 1

(
√

2πσ)N
· e−

|x|2

2σ2 (2.2)
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(a) Original image (b) Gaussian filtered image

Figure 2.5: Example of a Gaussian filter. (a) shows the original image and (b) presents the
Gaussian filtered version using a 5× 5 kernel with σ = 1

The sigma parameter determines how much the neighboring values from the central pixel
influence the output pixel. A small sigma value means that distant pixels have less influence
to the central pixel, while a big sigma value makes the influence of distant pixels significantly
bigger to the result and leads to a greatly smoothed region.

0.002969 0.01331 0.02194 0.01330 0.002969
0.01331 0.05963 0.09832 0.05963 0.01331
0.02194 0.09832 0.1621 0.09832 0.02194
0.01331 0.05963 0.09832 0.05963 0.01331
0.002969 0.01331 0.02194 0.01331 0.002969

Table 2.3: 2D Gaussian filter kernel with σ = 1.0, after normalization

Cons: Edges are not preserved.
Pros: Does not have anisotropy property, i.e., filters edges of the same intensity values equally
when they have a different orientation [17]. Higher frequencies are at all times more smoothed
than lower frequencies, regardless of their direction.

Average Filter

The average or mean filter also belongs to the category of linear filters. The creation of the kernel
is simple because all of its elements are set to a constant value. Using a symmetrical kernel of
the size 5× 5, the constant value would be 1/25, as shown in Table 2.4.

After convolving the average filter kernel with the input image, an example is presented in
Figure 2.6.
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Table 2.4: Average filter mask

(a) Original image (b) Average filtered image

Figure 2.6: Example of a average filter. (a) shows the original image and (b) presents the average
filtered version using a 5× 5 kernel

Cons: If the pixel intensity values of the noise varies too much from the values of neighboring
pixels, the average filter will not reduce much of the noise, and the image becomes blurry, be-
cause the mean value of the kernel is greatly changed. Another disadvantage of the average filter
is the smoothing of sharp edges, and the resulting image loses high frequency details, mean-
ing the edges are softened. The average filter does not filter edges of the same intensity values
equally when they have a different orientation. This filtering property is known as anisotropy, as
stated by Burger and Burge [17].
Pros: The average filter is often used for noise reduction because it is easy to implement.

Bilateral Filter

The bilateral filter belongs to the category of non-linear and edge preserving filters. In additional
to the spatial information used by the Gaussian filter, it also takes the pixel intensity differences
into account. This second intensity weighting is an important part of the algorithm because each
value in the filter kernel is multiplied not only by the spatial weight as in the Gaussian filter but
also with the intensity weight. As a consequence, the pixels with high intensity difference do
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(a) Original image (b) Bilateral filtered image

Figure 2.7: Example of a bilateral filter. (a) shows the original image and (b) presents the
bilateral filtered version using a 5× 5 kernel, with σs = 1.0 and σr = 2.0

not influence the result that much as the pixels with small intensity difference. This leads to the
preservation of edges and thin structures. Because of the intensity weighting part of the bilateral
filter, edges do not influence surrounding homogeneous regions during smoothing process, and
the image does not lose sharpness. Usually, the bilateral filter is applied on a single image but
it can be easily expanded to two images that depict the same scene but with different extrinsic
properties such as surrounding light intensity, slightly different angle (stereo images) or for the
DECT images. In this work, we will implement a variation of the bilateral filter that is also
known as joint or cross bilateral filter in image processing. The bilateral filter is described in
more detail in Section 3.5, where it is applied on DECT data.
Cons: Computationally more demanding compared to average, median or Gaussian filter.
Pros: Popular choice amongst various smoothing filters because it preserves edges, hence, leaves
the structured regions undistorted. Spatial parameter σs and intensity range parameter σr enable
fine adjustment of smoothing.

2.5 Noise Reduction in DECT

The easiest way to effectively reduce noise in the CT imaging is to use higher energy levels
for the CT scanning of the patient. However, this is not common practice, because the patient
is exposed to an increased radiation dosage. In general, common noise reduction techniques,
such as bilateral, Gaussian or median filtering can be applied on regular CT data sets, but due
to the specific nature of the DECT imaging (two data sets of the same region but with different
intensity values), several specific algorithms have been developed. Popular methods for noise re-
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duction in the DECT imaging are the KCNR, noise clipping (NOC) and edge-predictive adaptive
smoothing (EPAS) filter, as described in the work of Warp and Dobbins [18].

As stated by Kalender et al., the KCNR algorithm exploits the fact that noise in two energy
levels is anti-correlated [2]. In the following chapter the KCNR algorithm is explained in more
details.

Spectral information of DECT data is the difference between low and high energy data sets.
This information is used in this work for the spectral-error correction [1]. The KCNR provides
better results after applying it on the images with corrected spectral information. The bilateral
filter can be also effectively used for noise reduction using DECT data. The first part of the
bilateral filter, namely the spatial part, uses the distance information from the low energy image,
while the second part of the algorithm (range part), uses the intensity information from the high
energy image.
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CHAPTER 3
Methodology

DECT offers new possibilities for innovative noise reduction techniques with the help of the
additional spectral information. This information can be found in the difference between pixel
intensities of two energy level data sets, as stated by Park et al. [1].

An example of input data sets used in this work is shown in Figure 3.1. It shows two axial
slice images where the left image is from the data set generated using lower X-ray energy and
the right image is from the data set generated using higher X-ray energy.

(a) Low energy (b) High energy

Figure 3.1: Axial slice images of a DECT data set. Example of DECT data. (a) shows a slice
image of the low energy data set (acquired at 100kV) and (b) presents the same slice image of
the high energy data set (acquired at 140kV). The low energy image has higher contrast but the
high energy image has less noise.
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Figure 3.2: Diagram of the noise correction pipeline for DECT images.

In this Chapter we describe a pipeline (see Figure 3.2) for noise reduction in medical DECT
data. As input, two energy level data sets are required. Data sets used in this work are consisting
of axial cuts (slices). The implemented pipeline works with a volumetric data, and it is imple-
mented slice-wise. All implemented techniques in our pipeline operate on both energy level data
sets and the final output is again two data sets, with the noise reduced and edges preserved.

CT data sets we are using in this work are computed using standard back projection method.
This means that energy- and material-selective reconstruction is not performed.

The water-offset correction algorithm corrects the HU values at the pixel positions that are
supposed to be water with an intensity value of 0 HU, but their actual intensity values are higher
than the user defined tolerance parameter (allowable deviation from 0 HU), as explained in the
Section 3.1.

Zero-crossing pixels appear in the form of salt and pepper noise. They can effectively be
removed using a standard median filter, as described in Section 2.4. We classify pixel pairs as
zero-crossing if the following equation is true: PL · PH < 0, where PL and PH are the pixel
intensities of the low and high energy images respectively.

The spectral-error correction algorithm, together with the zero-crossing algorithm, aims to
correct the pixel intensity values that do not follow the expected trend of attenuation, as ex-
plained in Section 3.3. This is an important part of the overall pipeline because noise is isolated
and can be efficiently removed with the subsequent KCNR algorithm. The spectral-error is
detected in the pixel pairs that satisfy the following equation: P0(PL − PH) < 0, where P0

represents the virtual 120kV image. However, a contribution of the fatty component in the tissue
affects the strength of the change of the HU value, depending on the X-ray energy. This means
that false positive spectral-error pairs are also possible. Thus, it is advisable to use the a param-
eter to restrict the spectral-error correction only on the pixel pairs when their difference exceed
the user-specified tolerance.

The bilateral filter is optional and it can be applied prior or after the mentioned pipeline is
executed. It takes two data sets as input and produces a single, combined data set as output.
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3.1 Water-offset Correction

Even when the CT scanner is calibrated by using a phantom before the actual imaging process,
the water references appear to be biased, sometimes over 10 HU, especially in the low energy
data set [19]. Therefore, a water correction is usually done in the image-processing algorithm
directly on the CT scanner. However, by studying the test data we observed that some intensity
values still need a water-offset correction, as shown in Figure 3.3.

(a) (b)

Figure 3.3: Water-offset correction. (a) shows the original image, (b) presents only the water-
offset corrected pixels.

Water in the CT data is like air unaffected by the change of the CT energy level, as stated
by Park et al. [1]. In other words, the CT values of the water-reference are not dependent on the
X-ray energy level and stay always closely around 0 HU. However, mostly due to the quantum
noise, beam hardening and scattered radiation, the water references are biased and the values for
water vary mostly in the range from -10 HU to 6 HU [5]. In order to correct the water-reference
offset we need a reference to compare with, and in practice the virtual 120kV image is used as
the reliable source; As explained in Section 2.2, the virtual 120kV image is a weighted blend,
or linear combination of the low and high energy level images, using 30% of the 100kV and
70% of the 140kV images. The virtual 120kV image is supposed to have accurate intensity
values of water, even when the low and high energy images are biased, as stated by Park [19].
Using the virtual 120kV image as the trustworthy reference, erroneous pixels are recognized
(see Figure 3.3) in the low and high energy images and corrected if they surpass a user-specified
tolerance intensity value. In our experiments we use intensity values of -10 HU for the negative
and 6 HU for positive tolerance respectively. Note that the ratio of the corrected water-reference
offset pixels in the low and high energy images to the total number of pixels in the images is
relatively low, meaning that correction is barely visible and noticeable in our test data sets. The
majority of the detected water-like pixels is located on the boundaries of different types of tissue.
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3.2 Zero-crossing Pixels Correction

When zero-crossing pixel pairs are present in DECT images they are visually manifested in the
form of salt and pepper noise or spike-like noise that can distort the final image, as stated by
Park et al. [1]. Zero-crossing pixel pairs are determined by examining a pair of pixels, where
one is taken from the low energy and another from high energy image, and verified whether they
meet the criteria of the following equation,

PL · PH < 0 (3.1)

where PL and PH are pixel intensity values of the low and high energy images respectively.
In other words, if the result of the multiplication of two intensity values is negative, instead of
being positive, then such pixel pairs are called zero-crossing pixels. They are corrected before
the spectral-error correction. The zero-crossing pixel pairs in the low and high energy images
are replaced with the median of their respective 3× 3 neighborhood.

3.3 Spectral-error Correction

Spectral-error correction is the most important part in the correction process of our pipeline (see
Figure 3.2). The spectral-error correction algorithm is based on the fact that the attenuation of a
highly dense material decreases more rapidly than the attenuation of materials with low density,
with increasing CT tube voltage. Pixel pairs that deviate from the expected trend of Equation 3.2
are treated as spectral-error,

P0(PL − PH) ≥ 0 (3.2)

where PL and PH are pixel intensities of the low and high energy images respectively, and P0 is
the intensity value of the virtual 120kV. All spectral-error pixel pairs detected in previous step
are corrected with new intensity values P ′L and P ′H , for low and high energy data set respectively,
calculated using following equations:

P ′L = 0.3 · PL + 0.7 · PH (3.3)

P ′H = 0.7 · PL + 0.3 · PH (3.4)

It is important to note that the criteria for the spectral-error can not be generalized, for
example, some types of tissue have increased CT values, depending on the distribution of fatty
components, and therefore, the spectral-error pixels should be replaced only if the difference of
the intensity values of the pixel pair exceeds a certain tolerance, as described by Park [19].

The intensity values from the green squares shown in Figure 3.4 are illustrated in the graphs
in the middle Figure. The final result of the spectral-error correction algorithm is shown in
Figure 3.5. Random noise is still present, which will be removed in the next step with the
KCNR.
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Figure 3.4: The intensity valued of the areas highlighted by the green squares in the left (low
energy) and right (high energy) CT images are shown in the central graphs. The top graph
shows the intensity values before the spectral-error correction, whereas the bottom graph after
the correction. The vertical axis of the graphs shows the pixel intensity values measured in HU,
for the 100kV (left) and 140kV (right) energy levels. Pixel pairs of the low energy (100kV) and
high energy (140kV) images are connected with lines from left to right. The red lines represent
a spectral-error, meaning that these pixel pairs do not follow the trend of the expected material
attenuation P0(PL − PH) ≥ 0. According to this expectation, the intensity values of the low
energy image should be always higher than the intensity values of the high energy image.
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(a) (b)

(c) (d)

Figure 3.5: Results of the spectral-error correction in both energy levels. (a) shows the original
low energy image, (b) the original high energy image. (c) shows the low energy image after the
spectral-error correction, (d) the high energy image after the spectral-error correction.

3.4 Kalenders Correlated Noise Reduction

The KCNR is a reliable and efficient algorithm for decreasing noise in DECT data sets. It
exploits the differences in intensity values between the low and high energy data sets and suc-
cessfully reduces negatively correlated random noise, as described by Kalender et al. [2].

The KCNR, which is used in the last stage of our pipeline in order to reduce correlated noise,
delivers better results when applied after the spectral-error correction [1].

First we calculate means PL and PH of the intensity values in the n × n kernels centered
on the input pixels PL and PH from the low and high energy images respectively. Throughout
our work we use a kernel of size 5× 5.
In the next step differences between original pixel intensity values PL and PH and their related
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means PL and PH are subtracted and saved as ∆PL and ∆PH according to the Equations 3.5
and 3.6. This is equivalent to a high-pass filtered versions of original pixel intensity values.

∆PL = PL − PL (3.5)

∆PH = PH − PH (3.6)

If ∆PL and ∆PH are of opposite signs, the filtered versions P ′L and P ′H are calculated using the
subsequent Equations:

C = (WH ·∆PH −WL ·∆PL)/2 (3.7)

P ′L = PL + C/WL (3.8)

P ′H = PH − C/WH (3.9)

where C is the correction term, and WL and WH are weights. If ∆PL and ∆PH are of the same
sign the correction term will have none or a very little effect.

Results of our pipeline, including the KCNR, are shown in Figure 3.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Results of KCNR. (a) shows the original low energy image and, (b) the original
high energy image. (c) presents the result of applying KCNR to the low energy image and (d)
displays the results of KCNR for the high energy image. (e) and (f) show the results of KCNR
when applied after the spectral-error correction, for the low and high energy images respectively.
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3.5 Bilateral Filter

Noise in images can be effectively reduced by applying different smoothing filters. However,
in many situations it is not desired to lose important details, like thin edges or sharp tissue
boundaries. The question is how many details we want to preserve, because smoothing does
not only remove noise but details too. This undesirable effect partly originates from the design
of traditional smoothing filters. Most of the traditional smoothing filters operate in the spatial
domain, i.e., they look only at differences of the distance to the central pixel.

Smoothing filters, including the bilateral filter, are mostly based on convolution. During
the convolution, a smoothing filter accounts only for intensity values in the neighborhood of a
central pixel. The neighborhood is defined by the filter kernel size, typically 3 × 3, 5 × 5 or
7× 7.

Convolution means that we have a 2D filter kernel and a 2D image and the filter looks only
for values in the neighborhood of the central pixel, where the neighborhood is defined by the
filter kernel size (typically 3 × 3, 5 × 5 or 7 × 7). Usually the kernel size is odd, meaning
there is always one central pixel. The output of the filter operation at certain location is given as
weighted average of the neighborhood intensity values. As already mentioned, the proximity of
the central pixel plays an important role.

The bilateral filter is also used for image smoothing and noise reduction but in addition
it preserves edges. This is possible because in addition to the spatial domain it operates in
the range domain, as described by Tomasi and Manduchi [20]. This means that not only the
proximity of the central pixel in the spatial domain is important, but bilateral filter also accounts
for pixels with similar intensity values. Neighbors of the central pixel that vary significantly in
their intensity value are taken less into account during filtering. This method greatly succeeds
in preserving edges of objects in the image, as shown in Figure 3.7. The bilateral filter is a
noniterative nonlinear method proposed for single image filtering. However, it can easily be
extended for two images, as proposed by Petschnigg et al. [21].

DECT uses two different X-ray energy levels and it generates two images which are regis-
tered to each other; image registration in DECT is very important because the intensity values at
the same image pixel position in the low energy image and the high energy image must be cor-
related to each other. The bilateral filter can benefit from this correlation by using information
from both images at the same time in order to reduce noise without smoothing the edges. An
image taken at low X-ray energy has a large intensity range similar to what we get when we are
taking a picture with a camera in a half-dark environment. In the low X-ray energy image we
can easily distinguish various types of tissue, but it has a high amount of noise. The image taken
at high X-ray energy is like an image taken with a flash, we get better details but the image has
a narrower intensity range. The idea is now to combine these two images and thus gain a large
scale of intensity values (contrast) from the low energy image, and details from the high energy
image.

We implemented the bilateral filter for volumetric CT data, by considering neighborhood
voxels along every axis. In the spectral part of the bilateral filter smoothing is done on the low
energy images in order to remove noise, but in its range part the bilateral filter looks for pixel
intensities in the high energy images, thus avoiding blurring of the edges and preserving details.
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Two user-specified parameters, the spatial parameter σs and range parameter σr, influence the
strength of the filtering. The spatial parameter has a direct influence on the estimation of the
filter kernel size:

n(kernel size) = 6 · σs − 1 (3.10)

by affecting the 3D Gaussian kernel in its geometric spread and size. The kernel is 3× 3× 3 if
the user inputs σs smaller than 0.666. The size of the kernel is rounded and adjusted to be odd.
The range parameter dictates the edge preservation tolerance.

BF [I]p =
1

Wp

∑
q∈S

Gσs(||p− q||)Gσr(|Ip − Iq|)Iq (3.11)

Wp =
∑
q∈S

Gσs(||p− q||)Gσr(|Ip − Iq|) (3.12)

Convolution is done in 3D space and the kernel size defines how many neighboring slices of
the volumetric data set have to be taken into account. The low energy image is smoothed with the
spatial Gaussian weight (Gσs), at the same time, the edges are preserved using intensity details
taken from the high energy image, with the so-called range Gaussian weight (Gσr ) [22]. The
range Gaussian weight is taken from the high energy image in order to decrease the influence
of neighboring pixels q (in 3D), from central pixel p, when their intensity value Iq differs much
from intensity value of central pixel Ip. A normalization step Wp ensures that the weighted
sum of the pixels equals one (see Equation 3.12). The pseudocode of our DECT bilateral filter
algorithm is shown in Algorithm 3.1.

The effectiveness of the noise reduction of the DECT bilateral filter is evaluated using the
same DECT data set explained in the previous section. Filtering is done in 3D.

The amount of smoothing depends on the factor σs used in the calculation of the spatial part
of the bilateral filter. As shown in Formula 3.10, the σs influences the kernel size. Results of the
DECT bilateral filter using four different σs values, 1.0, 1.4, 1.7 and 4, are shown in Figure 3.7.
From the images demonstrated in Figure 3.7 one can derive that the amount of blurring is directly
proportional to σs.

The σr parameter is used only in the range domain of the bilateral filter but directly influ-
ences the strength and quality of the final smoothing result. We use six different σr values (2, 5,
10, 30, 100, 250). A small σr means that only the neighboring pixels with a small difference in
intensity value (smaller than the σr) to the central pixel intensity are mixed together, and those
whose intensity values are higher than σr are not. In other words, the range Gaussian part of the
bilateral formula (see Equation 3.11) decreases the influence of the pixels in the neighborhood
of the central pixel, whose intensity values Iq differ much from the intensity value Ip of the
central pixel.

Figure 3.8 illustrates the smoothing effect of the larger σs values. When the kernel size is
larger than 7 × 7, i.e. σs is higher than 1.7, the blurring is too much with the consequence
that many edges are completely removed from the resulting image. Note that the appropriate
parameter values, σs and σr, must be chosen depending on the anatomical region of interest.
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(a) σs=1, σr=2 (b) σs=1.4, σr=2 (c) σs=1.7, σr=2

(d) σs=1, σr=5 (e) σs=1.4, σr=5 (f) σs=1.7, σr=5

(g) σs=1, σr=10 (h) σs=1.4, σr=10 (i) σs=1.7, σr=10

(j) σs=1, σr=30 (k) σs=1.4, σr=30 (l) σs=1.7, σr=30

(m) σs=1, σr=100 (n) σs=1.4, σr=100 (o) σs=1.7, σr=100

Figure 3.7: The results of using different combinations of the σs and σr parameter values for the
DECT bilateral filter.
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Data: low energy volume L, high energy volume H, σs, σr
Result: volume O
/* input volumes and output have same dimensions */

1 3Dkernel = compute3DGaussianKernelMask(σs);
2 k = 3Dkernel.countOfElements() ;
3 foreach voxel position p in volume do
4 normalizer = 0;
5 sum = 0;
6 I_high = voxel intensity at position H(p) ;
7 Ql = intensities of k neighbors for L(p) ;
8 Qh = intensities of k neighbors for H(p) ;
9 for i = 1 to k do

10 range_domain = e
−
|Ihigh−Qh(i)|

2

2·σ2r ) ;
11 spatial_domain = 3Dkernel(i) ;
12 sum += range_domain · spatial_domain · Ql(i) ;
13 normalizer += 3Dkernel(i) · spatial_domain ;
14 end
15 outputVoxel = sum

normalizer ;
16 save outputVoxel at O(p) ;
17 end

Algorithm 3.1: The pseudo-code of the DECT bilateral filter.

A σs smaller than 1.4 appears more appropriate for our tested slice of the abdominal DECT
image, while keeping the σr parameter between 10 and 30.

Note that the computing time drastically increases for larger kernels. For the 3D Gaussian
kernel of the size 23× 23, computation time of the bilateral filter for one slice took nearly about
one hour (on the Intel processor Core 2 Duo 2.1GHz). The result of this extreme smoothing is
shown in Figure 3.8. Due to the very high σr parameter, the bilateral filter approximates the
standard Gaussian smoothing because the range Gaussian widens and flattens.

We observed that noise reduction can be improved when applying a bilateral filter after the
series of enhancement described in our pipeline (see Figure 3.2 ). As result a single fused image
with clearly defined regions and drastically reduced noise is obtained.
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(a) Original image (b) Filtered image

Figure 3.8: An example of the DECT bilateral filtering with very large parameter values (σs =
4.0, σr = 250).
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CHAPTER 4
Results and Discussion

We applied our pipeline to medical DECT data sets without the given ground truth image and
without doing two-material decomposition as it was done in the original proposition of the
KCNR algorithm. KCNR algorithm can be applied on any DECT image independent of the
spectral-error correction, however the results are better when the KCNR is applied on images
with corrected spectral information [18]. We observed good results in noise reduction using
KCNR.

Water-offset correction and zero-crossing pixels correction are also viable techniques for
DECT imaging and we applied them in the course of spectral-error correction. Figure 4.1 shows
the results of applying the spectral-error correction in combination with the KCNR algorithm. It
is evident that noise is reduced and homogeneous regions are now more distinguishable.

The bilateral filter can be used as a stand-alone filter, or in combination with the presented
noise reduction pipeline. For the bilateral filter it is necessary to adjust parameter values for the
strength of the smoothing. In contrast to the implemented noise reduction pipeline where we
have two data sets as output, the bilateral filter generates only a single, fused data set as output.
Such a data set, as demonstrated on an axial slice image in Figure 4.2 (a) has improved contrast
and less noise, compared to original data set shown in Figure 4.1 (a), but the boundaries between
different types of tissue are distorted.

We observed that the bilateral filter produces the best results when it is applied on the data
sets that have already been processed with KCNR, i.e., as the final step of the pipeline (see
Figure 4.2 (b)). Boundaries between homogeneous regions are now clearly visible.

The jaggy boundaries between different regions, as shown in Figure 4.2 result from applying
the DECT bilateral filter only, without the other steps of our pipeline. This can be explained
with the range parameter, σr = 10, applied on the noisy original low and high energy images.
Because the range parameter takes pixel intensity values around the central pixel into account, a
large range parameter leads to a significant influence of the noise on the output intensity value.
As we can see in Figure 4.5, applying the bilateral filter on the noise reduced images, even when
the range parameter is large, σr = 20, the boundaries between different types of tissue are not
jaggy.

29



(a) (b)

Figure 4.1: Results of our noise reduction pipeline. (a) shows the original image and (b) after
noise reduction and spectral error-correction, but without the final bilateral filter. One can clearly
notice the reduced noise and the preserved edges of the structures in (b).

(a) (b)

Figure 4.2: Bilateral filtering with parameters: σs = 1.4, σr = 10. (a) shows the result of
applying the bilateral filter on the original low and high energy images. The resulting image,
so-called ‘fused smoothed image’ takes benefits from both energy images, i.e. the new image
is a smoothed version of the low energy image with removed noise but preserved high contrast
range, and the edges are preserved using the intensity information from the high energy image.
The noise is mostly removed, but many regions have jaggy boundaries. (b) shows the result
of applying the bilateral filter after correcting the spectral-errors and removing anti-correlated
noise.

30



Figure 4.3 shows another slice of a DECT data set, in the pelvis region, processed by our
pipeline. The psoas muscle in the input images Figure 4.3 (a) and (b) is not clearly defined due
to noise. The same muscle is shown in the output image of our pipeline, but with less noise and
higher contrast. Without the bilateral filtering, the output images of our pipeline, as shown in
Figure 4.3 (c) and (d), have good contrast, but still a small amount of noise is present and spread
across the images.

In Figure 4.4, we present a coronal slice images of a DECT data set. We compare the
virtual 120kV image with final results of our pipeline. The virtual 120kV image is explained in
Section 2.2. Comparing it to the original high energy image Figure 4.4 (a), we see that noise
is mainly reduced and the contrast from the high energy image is preserved. Our pipeline, as
demonstrated in Figure 4.4 (c), reduces the correlated noise, compared to the virtual 120kV
image. In Figure 4.4 (d) we show that the DECT bilateral filter with parameters σs = 1.5 and
σr = 5.0 improves the contrast compared to Figure 4.4(b), while still preserving the boundaries
of different types of tissue.

We can clearly see benefits of using the bilateral filter in our pipeline, when comparing with
the virtual 120kV image shown in Figure 4.5 (a) with the results of our pipeline, once without
and once with the DECT bilateral filter. We observe that the result of our pipeline together
with the DECT bilateral filter, shown in Figure 4.5 (c), has significantly less noise compared to
Figure 4.5 (a) or (b), and the boundaries of different regions are clearly visible.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Results depicting the entire noise reduction pipeline in the pelvis region. The bilat-
eral filter parameters are σs = 1.4, σr = 30. (a) shows the original low energy image and (b)
the original high energy one. (c) presents the KCNR of the low energy image and (d) the KCNR
of the high energy image. (e) displays the DECT bilateral filter applied in the original images,
whereas (f) shows the result of the DECT bilateral filter applied on the KCNR processed images.
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(a) (b)

(c) (d)

Figure 4.4: Coronal slice images of DECT data set. (a) shows the original high energy image
and, (b) the virtual 120kV image. The final result of our pipeline is shown in (c) without the
bilateral filter, and in (d) with the bilateral filter using parameters σs = 1.5 and σr = 5.0.
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(a) (b) (c)

Figure 4.5: Axial slice images of DECT data set. (a) shows the virtual 120kV image. Final
result of our pipeline is shown in (b) without the bilateral filter, and in (c) with the bilateral filter
using parameters σs = 1.5 and σr = 20.0.
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CHAPTER 5
Conclusion and Future Work

The aim of this work was to get a better understanding of the DECT, to explore additional
information provided by the energy dependent imaging and to implement several image enhanc-
ing techniques for this specific data. In order to get familiar with the information acquired by
DECT it is necessary to obtain knowledge about the attenuation of various materials and its de-
pendance on the energy levels. The spectral information, which lies in the difference between
two images obtained at different energy levels, is a valuable tool and we used it effectively in
our implemented algorithms. We demonstrated that noise in DECT data sets is correlated and
that the KCNR, together with other techniques, can be used to substantially reduce noise. Our
algorithms reduce noise without degrading structural information of DECT data sets.

We analyzed common image noise reduction techniques, as well as advanced techniques of
noise reduction of DECT data. In order to get the best results from our noise removal pipeline,
it is necessary to test and fine tune several parameters, available during the process. For spe-
cific anatomical regions of interest different parameter values may be necessary. In general, we
demonstrated in this work, that medical DECT data can lead to substantial less noisy data when
applying specific algorithms. Nevertheless, a thourough qualitative evaluation has to be done in
order to strengthen and justify the results.

As one possible future avenue of our work, we see the application of several segmentation
techniques after our noise reduction. An example for such technique would be CT angiogra-
phy. Some of the implemented noise removal algorithms like the bilateral filter, tend to be very
slow when applied to large volumetric data, because our implementation is done on the CPU.
Hence, a possible improvement in terms of speed would be to implement a parallel version of the
DECT bilateral filter (possibly on the GPU). The Angiovis framework already supports CUDA
that provides the functionality of general purpose computing on the GPU. Adopting the noise
reduction algorithms in this work to fully utilize CUDA could make our noise reduction pipeline
significantly faster.

35





Bibliography

[1] K.-K. Park, C.-H. Oh, and M. Akay, “Image enhancement by spectral-error correction for
dual-energy computed tomography,” in Proceedings of the Annual International Confer-
ence of the IEEE on Engineering in Medicine and Biology Society, EMBC, pp. 8491–8494,
2011.

[2] W. Kalender, E. Klotz, and L. Kostaridou, “An algorithm for noise suppression in dual
energy CT material density images,” IEEE Transactions on Medical Imaging, vol. 7, no. 3,
pp. 218–224, 1988.

[3] “Angiovis toolbox.” http://www.angiovis.org/, Feb. 2014.

[4] Visiongain, “Computed Tomography (CT) Systems: Global Market Outlook 2012-2022.”
http://www.visiongain.com/Report/796/Computed-Tomography-%
28CT%29-Systems-Global-Market-Outlook-2012-2022, Feb. 2012.

[5] W. Kalender, Computertomographie Grundlagen, Gerätetechnologie, Bildqualität, An-
wendungen. Erlangen: Publicis Corp. Publ, 2006.

[6] P. Seidensticker and L. Hofmann, Dual Source CT Imaging. Springer, 2008.

[7] D. R. Holmes, J. G. Fletcher, A. Apel, J. E. Huprich, H. Siddiki, D. M. Hough, B. Schmidt,
T. G. Flohr, R. Robb, C. McCollough, M. Wittmer, and C. Eusemann, “Evaluation of non-
linear blending in dual-energy computed tomography,” European journal of radiology,
vol. 68, no. 3, pp. 409–413, 2008.

[8] D. J. Brenner and E. J. Hall, “Computed Tomography — An Increasing Source of Radiation
Exposure,” New England Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007.

[9] D. T. Schwartz, “Counter-Point: Are We Really Ordering Too Many CT Scans?,” The
western journal of emergency medicine, vol. 9, no. 2, pp. 120–122, 2008.

[10] E. C. Lasser, C. C. Berry, L. B. Talner, L. C. Santini, E. K. Lang, F. H. Gerber, and H. O.
Stolberg, “Pretreatment with corticosteroids to alleviate reactions to intravenous contrast
material,” New England Journal of Medicine, vol. 317, no. 14, pp. 845–849, 1987.

[11] H. Wang, H. S. Wang, and Z. P. Liu, “Agents that induce pseudo-allergic reaction,” Drug
Discoveries & Therapeutics, vol. 5, no. 5, pp. 211–219, 2011.

37

http://www.angiovis.org/
http://www.visiongain.com/Report/796/Computed-Tomography-%28CT%29-Systems-Global-Market-Outlook-2012-2022
http://www.visiongain.com/Report/796/Computed-Tomography-%28CT%29-Systems-Global-Market-Outlook-2012-2022


[12] H. S. Thomsen, “Guidelines for contrast media from the European Society of Urogenital
Radiology,” American Journal of Roentgenology, vol. 181, no. 6, pp. 1463–1471, 2003.

[13] C. H. McCollough, A. N. Primak, O. Saba, H. Bruder, K. Stierstorfer, R. Raupach,
C. Suess, B. Schmidt, B. M. Ohnesorge, and T. G. Flohr, “Dose performance of a 64-
channel dual-source CT scanner,” Radiology, vol. 243, no. 3, pp. 775–784, 2007.

[14] W. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality,
Applications. Wiley, 2011.

[15] T. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, M. Grasruck,
K. Stierstorfer, B. Krauss, R. Raupach, A. Primak, A. Küttner, S. Achenbach, C. Becker,
A. Kopp, and B. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT)
system,” European Radiology, vol. 16, no. 6, pp. 1405–1405, 2006.

[16] B. R. Matlaga, S. Kawamoto, and E. Fishman, “Dual source computed tomography: a
novel technique to determine stone composition,” Urology, vol. 72, no. 5, pp. 1164–1168,
2008.

[17] W. Burger and M. J. Burge, Digitale Bildverarbeitung : Eine Einführung mit Java und
ImageJ. Berlin, Heidelberg: Springer-Verlag, 2., revised ed., 2005.

[18] R. J. Warp and J. T. Dobbins III, “Quantitative evaluation of noise reduction strategies in
dual-energy imaging,” Medical physics, vol. 30, no. 2, p. 190, 2003.

[19] K.-K. Park, A New Approach for the Enhancement of Dual-energy Computed Tomography
Images. PhD thesis, Arizona State University, 2011.

[20] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings
of the Sixth International Conference on Computer Vision, pp. 839–846, 1998.

[21] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama, “Digital
photography with flash and no-flash image pairs,” ACM Trans. Graph., vol. 23, no. 3,
pp. 664–672, 2004.

[22] P. Kornprobst and J. Tumblin, Bilateral filtering: Theory and applications. Now Publishers
Inc, 2009.

38


	Introduction
	Related Work
	Computed Tomography
	Dual Energy Computed Tomography
	Computed Tomography in Medicine
	Noise Reduction
	Median Filter
	Gaussian Filter
	Average Filter
	Bilateral Filter

	Noise Reduction in DECT

	Methodology
	Water-offset Correction
	Zero-crossing Pixels Correction
	Spectral-error Correction
	Kalenders Correlated Noise Reduction
	Bilateral Filter

	Results and Discussion
	Conclusion and Future Work
	Bibliography

