
The Chaser
Chrome Extension For History Visualization

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Chris Boesch
Matrikelnummer 1025952

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Dipl.-Ing. Dr.techn. Ivan Viola
Mitwirkung: Dr.techn. M.Sc. Manuela Waldner

Wien, 13. August 2014
Chris Boesch Ivan Viola

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

The Chaser
Chrome Extension For History Visualization

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Chris Boesch
Registration Number 1025952

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Dipl.-Ing. Dr.techn. Ivan Viola
Assistance: Dr.techn. M.Sc. Manuela Waldner

Vienna, 13th August, 2014
Chris Boesch Ivan Viola

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Chris Boesch
Brandmayergasse 36/11 1050 Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. August 2014
Chris Boesch

v

Abstract

Revisitation of previously requested URLs happens frequently and the most common
list-view-based visualization of the user’s browsing history provided by nearly every
internet browser cannot give a compact general view. For this reason we designed
and implemented an extension for Chrome called The Chaser, by which an alternative
visualization of the content is possible. The currently available add-ons / extensions have
other aims to illustrate the history. Some of them are about to show the differences in
quantity of called pages. Others give an overview of page paths and the user’s tracks from
site to site. Our extension concentrates on helping finding a visited page and giving users
a better overview of their called URLs. The user should get the ability to control the
time-line with mouse gestures and/or keyboard input. After discarding a 3D prototype
we came to the conclusion of designing a simple, self-explanatory time-based illustration
with two dimensions. The x-axis represents the time with different levels of detail and
the y-axis the visited hosts. After performing an evaluation with six probands where The
Chaser’s visualization and its efficiency was compared to the standard list-view, all of
them would prefer our extension against the standard history view.

vii

Contents

Abstract vii

Contents ix

List of Figures x

List of Tables x

1 Introduction 1

2 Related Work 3
2.1 History Visualization with a time-line approach 3
2.2 History Visualization with different approaches 6

3 The Chaser 9
3.1 History Data . 10
3.2 Visualization . 11
3.3 Interactive Exploration / Navigation . 13

4 Implementation 15
4.1 Setup . 16
4.2 Data Mapping . 17
4.3 Used Technologies . 20
4.4 Limitations . 23

5 Evaluation 25
5.1 Evaluation Method . 25
5.2 Results . 26

6 Conclusion and Future Work 29

Bibliography 31

ix

List of Figures

2.1 Minard’s visualization of the Fate of Napoleon’s Army. 4
2.2 Screenshot of BrowseLine. 5
2.3 WebComets: Parallel browsing history. 5
2.4 Trails: Individual view with relations. 6
2.5 WebPath: Navigation from site to site. 7
2.6 WebQuilt: Visualization of linked sites. 7

3.1 The Chaser: Final interface. 10
3.2 Comparison between 2D and 3D draft . 10
3.3 Chrome standard history-view. 11
3.4 The Chaser: Navigation and date-overview. 12
3.5 The Chaser: Information with visible time interval. 12
3.6 The Chaser: Label for day-view. 12
3.7 The Chaser: Label for month-view. 12
3.8 The Chaser: Label for year-view. 12

4.1 The Chaser: Overview of used technologies. 15
4.2 VISVIP - A highly connected website. 24

5.1 Chart with usage of The Chaser. 27
5.2 Chart with usage of Chrome’s list view. 27

List of Tables

2.1 Overview of time-line-based visualization and their mapping settings. 4

x

CHAPTER 1
Introduction

Studies show that over eighty percent of the requested URLs have been visited previ-
ously [CM01]. Web histories can help users re-finding sites but they use the standard
history list rarely according to [TG97]. This suggests that the visualizations with a
list-view in the current internet browsers are not appealing to the end-users. On this
account our new history illustration called The Chaser represents the visited elements and
the temporal distribution of URL visits in a single compact time-line-based visualization
as it could support revisitation. All data is illustrated in two dimensions with the
time progress displayed on the x-axis and the hosts on the y-axis. There are several
examples exploring new history representations with the third dimension or other visual
elements like for example WebComets [CTKE13], BrowseLine [HG09] and many more.
In Chapter 2 six visualizations are presented with different goals than revisitation or
giving an overview. A very good example is WebPath - A Three Dimensional Web
History [FS98] where the user also has the ability to search for a specific visited URL
including the relationships between all site calls. As an example, Figure 2.5 shows the
navigation and the structure provided by WebPath. It is not possible to get a general
view of all site calls from one year and that is where The Chaser can score since all calls
can be visualized in a time-line-based illustration. The user should get a good overview
on his history and re-finding of visited sites should be easier than with the standard
view. Time-dependent data can be presented with a linear approach as users need an
easy-to-use system for accessing large data sets [FC00]. Proper specifications of all design
features, properties and which technologies are used can be found in Section 3.2 and
Chapter 4. To get a better insight in other history mechanism, details can be found in
Section 2.2, where other papers and visualizations are described. As a measurement of
efficiency, an evaluation with six people indicates the benefits of the Chrome extension in
comparison with the standard history view provided by Chrome (see Chapter 5). In the
last Chapter 6, some future ideas will be presented and an overview will be given.

1

CHAPTER 2
Related Work

Nowadays many extensions and add-ons of internet browsers are present on the market
and all of them have slightly different aims and techniques to visualize the user’s history
with its site calls. In the following sections two main categories are presented which
enclose several papers and publications. The first group tries to illustrate the history in
a strict linear way in two dimensions and on the other hand the second one visualizes
elements by trying to use a third dimension in different variations.

2.1 History Visualization with a time-line approach

The biggest and most obvious benefit of a two dimensional illustration is, that nearly
every user has an idea how to read a chart with this design which is discussed here [CM02].
To use one axis for time is not a new invention and can be found in several papers. Some
methods on how to display big data sets is described in the paper [MS03]. There is
a chart mentioned, which was made about 150 years ago by Minard, who lived from
1781 to 1870 (see Figure 2.1). It is one of the best illustrations from that century in
case of containing more than two attributes. Classic charts in two dimensions display
two attributes by having two axes. The following paragraphs describe three different
methods with a similar approach to illustrate time-dependent data. The table 2.1 gives
an overview how x-,y-axis and time-line-marks are used to map the history items and
additionally The Chaser is included to show differences.

Eyebrowse [MVK10] is the first addon presented and has three main goals but only
one of them is mandatory for this work. It is about giving users a better understanding
on their online behavior. The extension is realized with a Firefox plugin and a website.
As Figure ?? shows, Eyebrowse gives a general overview of URLs that have been clicked.
The extension tracks the time a user spends on a site and is therefore able to display
an overview of days with exact online periods. The x-axis is used to show all site calls
during one day and the days are listed in y-direction. The difference to our solution is

3

Figure 2.1: Minard’s visualization of the Fate of Napoleon’s Army.

Name x-axis y-axis marks

EyeBrowse one day (time) last 20 days URL calls with domain grouped
color-codes

BrowseLine sequence of calls hours of day domain-grouped site calls

WebComets zoom-able time-line used tabs URL calls with several attributes
(e.g.: duration)

The Chaser zoom-able time-line domains URL calls

Table 2.1: Overview of time-line-based visualization and their mapping settings.

that The Chaser uses the y-axis for the grouped site calls. To display the URL attributes,
Eyebrowse illustrates them with different colors. As it can be seen same URLs have
the identical appearance and as a consequence frequencies can be read off easily. For
re-finding a visited page this approach is not beneficial as it is hard to detect a certain
color-coded element.

Helping users to re-find a website is the task Browseline [HG09] wants to accomplish.
The app has a two-dimensional time line which can be seen in Figure 2.2. The y-axis
represents the Macro time, which encompass data values from one hour. On the other
hand the x-axis splits the hours from the vertical measurements to show orders of URL
calls. Therefore the exact time a site is called is not visualized but can be reached by
clicking on a domain stack. The blue color of those represents how many sub-pages with
the same domain are included. The darker the color the more often sub sites of a certain
domain have been called. In comparison to our approach their extension illustrates
grouped sub-domains with color codes whilst we decided to illustrate all sub-calls along
the x-direction chronologically with exact positioning according to their time stamps.

4

Figure 2.2: Screenshot of BrowseLine.

WebComets [CTKE13] includes parallel browsing. It stands for using multiple tabs
in the web browser and therefore history entries are sorted in a standard view by their
time without differentiating their origin. With this extension each tab has sort of own
history and with the use of different graphical elements, many attributes can be included
in the visualization (see Figure 2.3). Each line parallel to the x-axis represents a tab with
its tail, which indicates the active time for a web page. The size of the glyphs illustrates
the amount of sub-domains included. The pie chart itself visualizes with its degrees a
ratio of the number of site calls of the current Web page compared to all domain-calls.
To enable so much information about history items, the extension has its own logging
because all browser integrated functions are not sufficient for the needs. Due to the
complex illustration described above a user is not able to interpret all graphical elements
without any instructions. Our goal was to offer a simplified interface that users can deal
with without delving into a manual.

Figure 2.3: WebComets: Parallel browsing history.

5

2.2 History Visualization with different approaches
By trying to display as much information as possible, the approach to use the third
dimension is implemented by some further extensions. The first extension described
concentrates on connections between site calls without focusing on any time-line. The
second one visualizes history elements in a volume to show more attributes. The last one
tracks user behavior during a specified task on a website. This system is not designed for
end customers but for web design teams to run usability tests on their implemented sites.
With Trails [YI11] relations between site calls are displayed by lines. In Figure 2.4 the
so-called ’Individual View’ is shown and each ring represents a URL. At the bottom a
day can be set and appropriate items will appear. The focus is not concentrated on an
order of site calls but on how they are linked and therefore users can reconstruct their
online behavior.

Figure 2.4: Trails: Individual view with relations.

The second application to be introduced is 3D based and called WebPath [FS98]. It
can be used alongside normal browsers since it is an independent computer software to
track and visualize a users web behavior. By visiting a web site the application builds a
cube with information taken from HTML and displays it in a volume. Figure 2.5 shows
how a user navigated from one site to another. He can reconstruct where he has been.

The last framework we want to describe is called WebQuilt [L01] and uses a proxy
logger to capture all requests from the client browser to a web server. The system helps
web designers to analyze how users interact with their web pages. The collected data will
be visualized including all links and paths. Each website is represented by its screen-shot
and Figure 2.6 shows how connections of twelve usage traces are displayed. This task
has to be done by twelve users and the optimal path is shown with thick blue arrows.
The other color-coded lines indicates how long the users have spent on a site and the
thickness of those represents more heavily traversed paths.

6

Figure 2.5: WebPath: Navigation from site to site.

Figure 2.6: WebQuilt: Visualization of linked sites.

7

CHAPTER 3
The Chaser

The Chaser is the name of the Chrome extension we implemented. It visualizes the
browsing history logged by Chrome itself and gives users an overview which pages have
been visited. After discarding many design decisions the final interface can be seen in
Figure 3.1. At the beginning an approach using a third dimension was considered. It was
accompanied by complex handling and no advantage over a two dimensional illustration.
The third dimension would be used as a time axis in z-direction. The hosts are sorted
in circles which result in a tube. As the user goes back in time by following a domain
trail, his/her view goes deeper and deeper in the tunnel. This type of illustration brings
a great user experience as 3D can impress a lot but in general 2D is a more effective
illustration and navigation technique [CM02]. The main disadvantage is a non or very
low profit of the visualization because the circular mapping is not useful as it is not linear
and therefore the number of domains around the circle is limited due to shortage of space.
In Figure 3.2 a draft illustrates the 3D approach and the final appearance in comparison.
An easier re-finding of sites is not guaranteed with the use of the third dimension as
visual distortions can occur.

Finally we decided to focus on a chart with two dimensions. The extension uses
all calls logged by chrome.history API [his] and filters after a user request which calls
are displayed. There are three different levels of detail available including a year-, a
month- and a day-view. Therefore a user has the possibility to start looking at a whole
year and then focus on a desired month followed by a day. Proper descriptions about
the navigation can be found in Section 3.3. Section 3.2 gives an overview on all design
decisions and why the final product has its appearance.

9

Figure 3.1: The Chaser: Final interface.

Figure 3.2: Comparison between 2D and 3D draft

3.1 History Data

To describe why and how the chart is illustrated with its design we have to look behind
the curtain to understand what happens in the back-end. All site-calls are visualized
by rectangles with exactly the same width. That is because chrome.history API [his]
offers an attribute called ’visitTime’ without further information about how long a user
has been active on this site. How a list with those attributes is generated and how the
mapping works in detail the Section 4.2 gives further information. The items which
represent the URL-calls are sorted by their last occurrence in the current time interval
from top to bottom. That means that the first line with its favicon and host name on
the left side contains the last URL a user has opened. All site-calls are grouped by

10

their domain to reduce the length of the list and enable users to get a summary of the
quantity of calls inside host categories. For comparison Figure 3.3 shows the list view
from Chrome and how duplicated hosts can overload the view and make it even harder
to locate a URL. Nowadays users click through hundreds of pictures in a few minutes
especially on Facebook. This results in extraordinary long lists and the standard view of
Chrome’s history is overcrowded. The Chaser tries to compensate this by its grouping
algorithm described above and in Chapter 4.

Figure 3.3: Chrome standard history-view.

3.2 Visualization
It is important to give users the ability to navigate simply and predictably. The entire
interface consists of one site which is displayed after opening the standard Chrome
history view as it is overwritten by this extension. The goal was that no instructions are
necessary when using the history. The extension has an overview and detail approach
since a whole year can be requested by a user but the zoom level is also possible to be
extended to one day. The appropriate history items are illustrated in a chart positioned
in the center of the page. At the top of the page an overview and detail navigation is
displayed to interactively change the level of detail (see Figure 3.4). That means that
a user can choose any displayed year and if s/he wants to refine the view, the zoom
level can be adjusted until the day-view is reached. This navigation illustrates the last
five years but with the addition to go back in time further by using the arrow keys. In
our opinion year-views can be really interesting as other extensions like for example
BrowseLine [HG09] do not offer something similar. With The Chaser users can detect in
which months they have been more active than in others and which domains have been
used most. The displayed time interval in the middle of the page is in addition to the
highlighted elements at the top and is illustrated in Figure 3.5.

11

Figure 3.4: The Chaser: Navigation and date-overview.

Figure 3.5: The Chaser: Information with visible time interval.

By viewing the current year, month or day a red vertical line crosses the chart. It
symbolizes the point of time the extension has been opened or refreshed. The area shaded
in grey represents the future and therefore no elements are visible there. At the top of
the chart a legend with measurement unit is displayed and depending on the actual view
one of the following variations is used for labeling. Figure 3.6, 3.7 and 3.8 display all
possible indexes.

Figure 3.6: The Chaser: Label for day-view.

Figure 3.7: The Chaser: Label for month-view.

Figure 3.8: The Chaser: Label for year-view.

12

3.3 Interactive Exploration / Navigation
To support the navigation within The Chaser the cursor style is adjusted to show
functionality of clickable text. If text elements are only for descriptive purposes, the
cursor does not change its appearance but as an item works as well as a link, a pointer is
shown. Another functionality implemented by us is a mouse-over function. By hovering
over rectangles inside the chart the appropriate links will be displayed beside them. After
clicking on the rectangle a new tab with this URL will be opened. Users have also the
alternative to click directly on an favicon or a host group on the left side to open this
host in a new tab. In a previous design draft a preview was included. By moving over
rectangles a small screen-shot is shown to give users an idea about the content of this
site. The main reason for not implementing this functionality is, that Chrome only saves
screen-shots of several URLs. An extension described earlier called WebPath [FS98] tries
to include background color and images of the pages in its visualization.

Users have the choice to navigate only with their mouse through the extension or
use the keyboard for some of the functions. It is not possible to handle everything with
keys and the following list shows the range of functions available. The arrow key to the
left displays the year, the month or the day before depending on the current view. It is
implemented with a fluent animation with the aid of jQuery [jqu], a JavaScript library.
The code can be seen here: 4.3.3. The right-key does exactly the same in the opposite
direction. With the use of the up-key, the zoom level is scaled down but the reverse
way does not work as it is not clear which month or day should be illustrated. The last
key supported by The Chaser is the n-key. By clicking it, the current view jumps to
the present point in time. The rest of functionality users have to resort to the mouse
navigation.

13

CHAPTER 4
Implementation

The following chapter describes which technologies are used to implement this Chrome
extension. It is a combination of different programming languages to cover all needs.
An overview can be seen in Figure 4.1. Some of them are working in the background,
whereas others are used for the front-end to display everything accurately. All parts are
united in a json file called manifest. It contains information about the plug-in as well. A
proper description can be found in Section 4.1. Further discussion of the individual parts
will be done in the next sections.

Figure 4.1: The Chaser: Overview of used technologies.

15

4.1 Setup
At the beginning of implementing a Chrome Extension, the manifest.json 4.1 has
to be written. The entire file is listed below. Some fields are required and others are
just optional. The name and the version is mandatory and as The Chaser wants to get
access to the history items of Chrome, correct permissions have to be set. Besides history
and favicon the fileSystem is responsible for saving the records persistent on the clients
computers during the logging for the evaluation. It is followed by the initialization of the
icons for the plug-in with different pixel dimensions. After this the extension overwrites
the standard history page of the browser with its own html file. The final important field
contains necessary scripts which are described here: 4.3. Manifest.json 4.1 is for all
intents and purposes like a skeleton of the whole extension to ensure correct accesses to
all files.

1 {
2 "name": "THE.CHASER.-.History.Visualization",
3 "version": "1.0",
4 "description": "Reads.your.history.",
5 "content_security_policy":
6 "script-src’self’’unsafe-eval’;object-src’self’",
7 "permissions": [
8 "history",
9 "chrome://favicon/",

10 "fileSystem"
11],
12 "icons": {
13 "48": "icon48.png",
14 "128": "icon128.png",
15 "265": "icon265.png"
16 },
17 "chrome_url_overrides" : {
18 "history": "historyVis.html"
19 },
20 "background": {
21 "persistent": false,
22 "scripts": ["d3.min.js","historyVis.js",
23 "jquery.min.js", "jquery.easing.1.3.js"]
24 },
25 "manifest_version": 2
26 }

Listing 4.1: manifest.json

16

4.2 Data Mapping

The function buildUrlList() and completeList() shown in listing 4.2 gath-
ers all the history entries saved by Chrome itself. Chrome’s history API provides a
chrome.history.search()-method to query a sorted list including HistoryItems.
This method has some parameters to be mentioned. The first text attribute can search
the history list matching this string. To get all entries, an empty value is assigned.
maxResults offers the possibility to determine a specific size of the returned list
and to get all items without an interval limit startTime is set to ’0’. The last pa-
rameter to be set is a callback function including an array of HistoryItems which
have several properties of one URL. To get all visit-times of this URL, the function
chrome.history.getVisits() returns all VisitItems encapsulating one visit to
a URL. Every site-call is saved in a list called historyList. visitTime is a property
contained by those elements and represents when this visit occurred in milliseconds since
the epoch which starts at 01/01/1601 00:00:00. To map all items accurately the difference
between this visit-time and the present time is calculated and due to the fact that the
maximum zoom level is one day, time-stamps are converted to minutes. According to
this, they represent minutes from present to the point of time a page was loaded. This is
realized in the function called calculateTimeStamp() 4.2. The exact procedure to
map this elements is described later. The function buildUrlList() 4.2 is called once
a page is loaded as all entities are saved in an array which is sorted by time-stamps at
the end of the function completeList(). The historyList is used for later queries
and requests. The advantage over working along with this assembled array is that several
custom-calculated values have to be computed and set only one time.

1 function buildUrlList(divName, timeInterval) {
2
3 var historyListTMP = new Array();
4 var url2 = "";
5
6 chrome.history.search({’text’: ’’,maxResults: 1000000,
7 ’startTime’: 0}, function(historyItems) {
8
9 historyList.length = 0;

10 historyListTMP.length = 0;
11 url2 = historyItems[0].url;
12
13 for (var i = 0; i < historyItems.length; ++i) {
14
15 ...
16
17 historyListTMP.push({
18 ’url’:historyItems[i].url,
19 ’title’: historyItems[i].title,
20 ’host’: getHost(historyItems[i].url),
21 ’groupNumber’: getGroupNumber()
22 })

17

23
24 if(i == historyItems.length-1) {
25 completeList(historyListTMP);
26 }
27 }
28 });
29 }
30
31 function completeList(historyListTMP) {
32
33 var url2 = "";
34 var title2 = "";
35 var host2 = "";
36 var groupNumber2 = "";
37
38 for (var i = 0; i < historyListTMP.length; ++i) {
39
40 url2 = historyListTMP[i].url;
41 title2 = historyListTMP[i].title;
42 host2 = historyListTMP[i].host;
43 groupNumber2 = historyListTMP[i].groupNumber;
44
45 chrome.history.getVisits({"url":url2}, function(visitItems) {
46
47 for (var j = 0; j < visitItems.length; ++j) {
48
49 historyList.push({
50
51 ’timeStamp’: calculateTimeStamp(visitItems[j].
52 visitTime),
53 ’url’:url2,
54 ’title’: title2,
55 ’host’: host2,
56 ’hostID’: getURLid(url2),
57 ’groupNumber’: groupNumber2,
58 ’lastVisitTimeReal’: (visitItems[j].visitTime)
59 });
60 }
61 })
62 }
63 var listSorted = historyList.slice(0);
64 listSorted.sort(function(a,b) {
65 return a.timeStamp - b.timeStamp;
66 });
67
68 historyList = listSorted;
69 }

Listing 4.2: Function buildUrlList().

18

1 function calculateTimeStamp(oldTimeStamp) {
2 var t = (now - oldTimeStamp) / 1000 / 60;
3 return t;
4 }

Listing 4.3: Function calculateTimeStamp().

After a user requested a time interval to be displayed an appropriate list named
listToDraw will be filled-up with calcListToDraw() 4.2 (see Figure 4.1). A variable
called timeInterval has to be set before. It represents the requested range of view in
minutes. If a user calls for a specific month to be displayed, the suitable timeInterval
has to be calculated to guarantee that all entries added to listToDraw are correct. The
time stamp of all entries has to lie inside the specified interval which is checked with the
first if-statement. Next a list is filled with appropriate attributes including all items
from buildUrlList() 4.2 and in addition a groupNumber. This value is calculated
with the function setGroupNumber() 4.2. All URLs with the same host are combined
to one group and have the same groupNumber which starts at zero. The importance of
this step and why it is necessary is explained later.

Figure 4.1 gives a better understanding of the used technologies and how the JavaScript
file receives a request triggered by a user input. To complete the mapping the computed
listToDraw 4.2 has to be integrated dynamically in the SVG-element included by the
HTML file. The chart container which will contain all history items is pre-positioned with
absolute pixel values in the HTML by using CSS. It is important and necessary that the
width has exactly 720 pixels to guarantee an accurate positioning of the history entities.
To draw all elements inside this container a JavaScript library called D3 [BOH11] is
used which is described in Section 4.3.4. To calculate positions of the rectangles, the
extension uses the requested interval and all time stamps. To display one day, with 24
hours, as an example, there are 1440 minutes to be shown within 720 pixels. For this
reason one pixel illustrates two minutes. Other display modi, the month or the year view,
have different minute to pixel conversations. As it is mentioned above, groups contain
different URLs but with the same domain. They are represented on the y-axis and all
elements of them are drawn in the same row with their computed x-values. To determine
the correct x-positions time stamps are used and the implementation of this method
can be seen in Listing 4.3.4. Due to the fact that URLs with different endings but same
hosts are treated as one group, the user has the ability to get an overview on how often
different hosts from one domain have been visited.

1 function calcListToDraw(completeList) {
2 listToDraw.length = 0;
3 for (var i = 0, ie = historyList.length; i < ie; ++i) {
4
5 if(completeList[i].timeStamp + nowPosition <= (timeSteps
6 + timeIntervall) && completeList[i].timeStamp +
7 nowPosition >= timeIntervall) {
8 setGroupNumber(completeList[i].host, listToDraw);
9 listToDraw.push({

19

10 ’timeStamp’: ((completeList[i].timeStamp)) ,
11 ’url’:completeList[i].url,
12 ’title’: completeList[i].title,
13 ’host’: completeList[i].host,
14 ’groupNumber’: getGroupNumber(),
15 ’lastVisitTimeReal’: completeList[i].lastVisitTimeReal});
16 }
17 }
18 }

Listing 4.4: Function calcListToDraw().

1 function setGroupNumber(host, hisList) {
2 for (var i = 0, ie = hisList.length; i < ie; ++i) {
3 if(hisList[i].host == host) {
4 groupNumberTmp = hisList[i].groupNumber;
5 return;
6 }
7 }
8 groupNumberTmp = groupCounter;
9 groupCounter++;

10 }
11
12 function getGroupNumber() {
13 return groupNumberTmp;
14 }

Listing 4.5: Group number calculation.

4.3 Used Technologies
The following sections give a short introduction of all technologies which are used. Some
of them are front end parts and others handle all the data in the background.

4.3.1 HTML

HTML is responsibly for the general structure of the extension. In combination with
CSS, 4.3.2, an exact positioning and sizing of DIV- and SVG-containers is possible as it
can be seen in Figure 4.1. History related elements and denotations will be loaded and
integrated dynamically during run-time. To get a better overview the main part of the
HTML-code can be found here: 4.3.1. With the assistance of D3 [BOH11], SVG-contents
can be changed dynamically from the JavaScript file. With this approach, the general
user interface can be designed and configured in the HTML-file without taking care of
the mapping of the data. Neither rectangles nor favicons or other history related data is
pre-positioned within the HTML-code at first.

20

1 ...
2 <div id="container">
3
4 <div id="timelineContainer">
5 <svg class="timeline"></svg>
6 </div>
7
8 <div id="chartContainer">
9 <svg class="chart">

10 <svg class="nowLine"></svg>
11 <svg class="grid"></svg>
12 </svg>
13 </div>
14
15 <div id="faviconContainer">
16 <svg class="favicon"></svg>
17 </div>
18
19 </div>
20 ...

Listing 4.6: historyVis.html

4.3.2 CSS

CSS stands for Cascading Style Sheets and is a markup language to change the formatting
and the design of an HTML site. In this Chrome Extension it is used to give all containers
exact measurements and is responsible for all font and color settings. Without CSS
The Chaser is not usable in case of all elements predefined in the HTML-file are not
positioned correctly.

4.3.3 jQuery

jQuery [jqu] is a JavaScript library offering general JavaScript/Ajax functionality, as
it is necessary to animate whole DIVs. All transitions of The Chaser are made with
jQuery. Whether a user wants to change the view to an earlier or future time interval
by clicking the left or the right arrow key, a nice and smooth animation will guide to
the next field of view. At first the DIV-element shifts to the right to disappear. If it
is positioned 900 pixels from the left, it is not visible any more. Next it is positioned
on the left side and the content is refreshed to be shifted afterwords back in the view.
The javaScript-code can be seen in Listing 4.3.3. D3 is not used for this as an animation
with many history items is more complicated to implement than just shifting the whole
DIV including all items. The difference between these two libraries is that D3 offers
data-driven functionality to create and manipulate visual documents and jQuery is a
more general JavaScript library offering functions for basic tasks.

21

1 function animateLeftRight() {
2 $(chartContainer).animate({
3 left:’900px’
4 });
5 $(chartContainer).promise().done(function(){
6 positionBoxLeft();
7 ...
8 refreshView();
9 });

10 $(chartContainer).promise().done(function(){
11 $(chartContainer).animate({left:’250px’});
12 });
13 return;
14 }
15
16 function positionBoxLeft() {
17 $(chartContainer).css({left: ’-720px’});
18 }

Listing 4.7: Functions for DIV animation.

4.3.4 D3

The main purpose of D3 [BOH11] is the visualization and integration of dynamic data.
D3 enables a direct manipulation of the document object model (DOM). By selecting
different classes of SVGs initialized in the HTML file, developers can bind arbitrary data
to them. D3 is a JavaScript framework and is really fast even with very large data sets.
Therefore it is perfect for a history visualization as the list size of visited pages can
be a four-digit number or more. To get a better understanding on how D3 works, the
following excerpt of historyVis.js 4.3.4 is listed below. First a SVG element has
to be selected to bind data to it. In this case after selecting .chart, rectangles and text
items are appended to it. How this works will be discussed in the following section.

1 ...
2 var chart = d3.select(".chart")
3 .attr("width", width)
4 .attr("height", heightOfBox);
5 ...

Listing 4.8: Selecting a DIV with D3

At the beginning of integrating elements to a SVG an ID will be assigned to them
which are the URLs of the history items. Additionally the class clickAble is set as
an attribute to track all clicks with an event listener. In that case it will be possible to
jump directly to a located site by just clicking on the rectangle or the displayed URL.
After adding several attributes, including a translation in y orientation to focus on the
appropriate domain row, positioning of the rectangles and text items in x-direction is
the next step to perform. The code snippet at 4.3.4 shows how the x-positioning is done

22

with different variables and how time stamps of the elements are used to convert minutes
to pixel values. timeDivisor() returns a value according to the current level of zoom
to map the elements within the displayed box. The attribute width has the value 4 and
therefore all rectangles are exactly 4 pixels wide. Every item from listToDraw runs
through this code section until every history element is displayed. These are only a few
potentials of D3 since this library offers many other functions such as smooth animations
and interaction. All transitions included in the extension are made with jQuery [jqu], a
JavaScript library which is described in Subsection 4.3.3.

1 ...
2 var bar = chart.selectAll("g")
3 .data(data)
4 .enter().append("g")
5 .attr("id" , function(d, i) { return elements[i].url; })
6 .attr("class" , "clickAble")
7 .attr("transform", function(d, i) { return "translate(0,"
8 + (elements[i].groupNumber * barHeight) + ")"; });
9

10 bar.append("rect")
11 .attr("x", function(d , i) { return (chartWidth -
12 (elements[i].timeStamp - timeIntervall + nowPosition)
13 / timeDivisor()); })
14 .attr("width", 4)
15 .attr("height", barHeight - 10)
16 ...

Listing 4.9: Append data to a selected SVG.

4.4 Limitations
Google Chrome has many features included in its chrome.history API [his]. Adding and
removing of URLs is well supported. The extension The Chaser displays all site calls
with rectangles exactly the same width. That is because Chrome offers the attributes
lastVisitTime and visitItem. The Chaser uses the second value and therefore it
is not possible to illustrate for how long a user visited a page. Another interesting thing
to display would be the paths from one site to another by clicking a link. It means that
a user can go back in time the exact way the URLs have been called and it is illustrated
from which page he was forwarded to another one. An approach to realize this could use
visitItem mentioned above. visitItem has properties called referringVisitId
and transition which describe how a user was forwarded from a site and what the
unique identifier of the first web page was. By using these two values paths could be
illustrated but a problem occurs if users start to browse in multiple tabs. The graphical
interface of The Chaser is not able to display several trails without loosing its overview.
WebComets [CTKE13] is a tool described in 2.1 whose visualization displays all paths
within one browser window. Another program to visualize all user behavior within one
website is called VISVIP [CS99]. It gives developers more flexibility to evaluate and test

23

their own sites by getting a better insight in users online activities and how they move
in the website. It is possible by using the third dimension, which illustrates the time.
Figure 4.2 displays how the interface looks like.

Figure 4.2: VISVIP - A highly connected website.

24

CHAPTER 5
Evaluation

The Chaser can be used to replace the standard-history-view of the Chrome browser
by giving a compact time-line-based representation. In this chapter an evaluation is
described. The aim of the extension was implementing a system to help users re-finding
their URLs in an easier way and giving them an overview of their browser behavior. The
effectiveness was considered in this evaluation. Another goal was to determine whether
the interface and navigation is self-explanatory and users do not have problems when
using the history. During evaluation six people used The Chaser for a specific time and
the list view of Chrome afterwords for the same period. By logging different clicks it can
be detected how and how often our extension was used in comparison to Chrome’s build
in visualization. In addition the test person gave an informal feedback of the benefits or
disadvantages in their opinion and if they would prefer The Chaser instead of Chrome’s
built in list-view. In the following Section 5.1 the evaluation is described in detail and
in Section 5.2 the results are presented.

5.1 Evaluation Method

At the beginning of the evaluation six people were selected. All of them are between
23 and 26 years old and use a computer and the internet at least once a day. Two
of them are studying software engineering, one is studying marketing and three are
working in a non-IT-related company. The female male ratio is five to one. The complete
evaluation took two weeks which consisted of a one week test phase using The Chaser
and in the second week the same subjects had to use a list-view history visualization.
Both systems contain a logging function to save how they interacted with the illus-
trations. The task for all users in both weeks was to use the browser and its history
like they would do it normally and give a informal feedback after the test phase on
both histories in comparison. The feedback-session took about twenty minutes each
and included several questions in general about The Chaser and difficulties or other

25

disadvantage as well. It was a face-to-face survey and the conversation was recorded and
analyzed afterwards. Asked questions were for example ’Did you have problems using the
extension in case of navigation problems?’ or ’Was the interface and the displayed chart
self-explanatory?’. Besides the oral feedback the logging files point out the usage in num-
bers. As an example, list 5.1 shows a fragment of a logging-file. The point in time they
opened the visualization and furthermore all clicks within the extensions were recorded.
In the listing beneath the user has clicked on a favicon, an URL and other buttons as well.

1 ----------------------------
2 "new session"
3 Wed, 30 Jul 2014 13:39:57 GMT
4 ----------------------------
5 backward key pressed
6 favicon: "http://www.stackoverflow.com clicked"
7 up key pressed
8 url: "http://chrisboesch.at/ clicked"

Listing 5.1: Part of a logging file.

5.2 Results

After collecting all log-files we made two charts representing all usage statistics from
The Chaser and Chrome’s list view, see Figure 5.1 and 5.2. The height of the bars
indicates how often the histories have been opened. In total the standard view was used
ten times and for comparison The Chaser 46 times. Our extension was opened about
five times more often than Chrome’s history. This indicates that The Chaser offers more
interesting facts or easier re-finding algorithms because it is more attractive to the users.
To figure out how they were satisfied with the navigation or the overview the feedback
gives further information. ’Thanks to the appealing and well-arranged design of The
Chaser I can now easily browse my history whereas the standard interface would be
too confusing. Especially the timeline-feature was extremely helpful if I needed some
in-depth information.’ These are the words of a proband and indicates the fact that the
aim to make the history more usable and compact is achieved by The Chaser. Others
say that they don’t use the standard view at all and now they have the possibility to
get a great overview of their online history. One feedback contains disadvantages. Users
cannot adjust the width of the rectangles to see all individual URL calls if they are
lying too close resulting in one big element. Re-finding was not covered by any feedback
because either it is not relevant for the users or the illustration does not support this
well. Therefore we asked a question additionally: ’Does The Chaser offer an easier way
re-finding previously visited pages compared to the standard list?’ The given answers
reveal that revisitation for most of the users is not a mandatory functionality. If they
know parts of their browser history re-finding of a page with our extension is easier
because URLs are grouped by domains and shown in a temporal visualization. After
asking if they will use this extension in the future, some answered that they do not need

26

any history visualization at all and others said that they like the better overview and will
use The Chaser in the future as well. To sum everything up we conclude that our Chrome
extension gives a better overview of the user’s history in different temporal levels of zoom
and that they would prefer this extension against Chrome’s standard visualization.

Figure 5.1: Chart with usage of The Chaser.

Figure 5.2: Chart with usage of Chrome’s list view.

27

CHAPTER 6
Conclusion and Future Work

We presented an alternative visualization for Chrome’s history view. It is implemented
with a time-line-based approach in two dimensions. All URL calls are grouped by their
domains and listed in the y-axis. The x-axis represents the time and gives the user the
ability to change the level of detail from one day to one year. The main focus was on
creating a compact illustration by which a user is supported re-finding a visited page and
and getting a good overview. The implementation contains the functionality to display
all URLs in a day-, a month- or a year-view. Different time-intervals can be queried but
manipulation or filtering of the data in more detail is not supported. As an example, the
domains listed on the left side including their URL-marks could be blanked out by the
user. That means, that if s/he wants to hide several columns, boxes in front of them can
be ticked and these groups are removed and showed up in another chart, where all hidden
domains are displayed. Another improvement can be that by hovering over rectangles or
hosts, this line will be highlighted to facilitate the correlation from domain to rectangles
and vice versa. The Chaser has one disadvantage worth mentioning. It deals with the
illustration of paths between site calls. With this extension, a user cannot view trails or
jump from the last opened URL to the site before. Due to the fact that our extension
uses this time-line-based visualization, problems with the loss of the overview occur and
the illustration will be overcrowded by elements. To realize this, the interface would have
to be redesigned and the appearance of The Chaser would change completely.

29

Bibliography

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven
documents. IEEE Trans. Visualization & Comp. Graphics, pages 2301–2309,
2011.

[CM01] A. Cockburn and B. McKenzie. What do web users do? an empirical analysis
of web use. In International Journal of Human-Computer Studies, pages
903–922, 2001.

[CM02] Andy Cockburn and Bruce McKenzie. Evaluating the effectiveness of spatial
memory in 2D and 3D physical and virtual environments. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages
203–210, 2002.

[CS99] J. Cugini and J. Scholtz. VISVIP: 3d visualization of paths through web
sites. In Tenth International Workshop on Database and Expert Systems
Applications, pages 259–263, 1999.

[CTKE13] Daniel Cernea, Igor Truderung, Andreas Kerren, and Achim Ebert. Web-
Comets: A tab-oriented approach for browser history visualization. Inter-
national Conference on Information Visualization Theory and Applications,
pages 439–450, 2013.

[FC00] S. Fernandes and T. Catarci. Visualization of linear time-oriented data:
A survey. In Proceedings of the First International Conference on Web
Information Systems Engineering, volume 1, pages 310–319, 2000.

[FS98] E. Frecon and G. Smith. WEBPATH: A three dimensional web history. In
IEEE Symposium on Information Visualization, pages 3–10, 148, 1998.

[HG09] O. Hoeber and J. Gorner. BrowseLine: 2d timeline visualization of web brows-
ing histories. In Information Visualisation - 13th International Conference,
pages 156–161, 2009.

[his] chrome.history - google chrome. URL: https://developer.chrome.com/ exten-
sions/history. Accessed: 2013-07-28.

[jqu] jQuery: Javascript library. URL: http://jquery.com. Accessed: 2014-07-30.

31

[L01] James A. L. WebQuilt: A framework for capturing and visualizing the web
experience. In Proceedings of the 10th international conference on World
Wide Web, pages 717–724, 2001.

[MS03] W. Muller and H. Schumann. Visualization methods for time-dependent data
- an overview. In Simulation Conference, volume 1, pages 737–745, 2003.

[MVK10] Brennan Moore Max Van Kleek. Eyebrowse: Real-time web activity sharing
and visualization. CHI EA - Extended Abstracts on Human Factors in
Computing Systems Pages, pages 3643–3648, 2010.

[TG97] Linda Tauscher and Saul Greenberg. How people revisit web pages: empirical
findings and implications for the design of history systems. In Int. J. Human-
Computer Studies, pages 97–137, 1997.

[YI11] Wenhui Yu and Todd Ingalls. Trails: An interactive web history visualization
and tagging tool. In Design, User Experience, and Usability. Theory, Methods,
Tools and Practice, number 6770, pages 77–86. 2011.

32

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	History Visualization with a time-line approach
	History Visualization with different approaches

	The Chaser
	History Data
	Visualization
	Interactive Exploration / Navigation

	Implementation
	Setup
	Data Mapping
	Used Technologies
	Limitations

	Evaluation
	Evaluation Method
	Results

	Conclusion and Future Work
	Bibliography

