
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 1

Large-Scale Point-Cloud Visualization through
Localized Textured Surface Reconstruction

Murat Arikan, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke and Michael Wimmer

Abstract—In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied
by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are
augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality
representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task.
We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and
handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-
time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem,
our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since
our preprocessing phase requires only a minor fraction of the whole dataset at once, we provide maximum flexibility when dealing
with growing datasets.

Index Terms—Image-based rendering, surface representation, color, large-scale models, segmentation

F

1 INTRODUCTION

THE high-quality visualization of point-cloud data
gathered from laser scans or photogrammetric ap-

proaches is a fundamental task in many scientific and
non-scientific applications, like preservation in cul-
tural heritage, digitalization of museums, documen-
tation of archaeological excavations, virtual reality
in archaeology, urban planning, architecture, indus-
trial site management, and many others. An essential
component for the quality of the resulting visualiza-
tion is the use of registered high-resolution images
(photographs) taken at the site to represent surface
material, paintings etc. These images typically over-
lap, exhibit varying lighting conditions, and reveal
inaccuracies in registration. Consequently, for high-
quality visualizations, the individual images have to
be consolidated to provide a common, homogeneous
representation of the scene.

One way to display these data is to directly render
point-based surfaces texture-mapped with the im-
ages [1], [2]. These methods are flexible but cause vis-
ible artifacts, and are therefore not suitable for high-
quality visualization requirements (see Section 7).

In the traditional visualization pipeline, on the
other hand, a mesh surface is reconstructed from
the 3D points and textured by the registered images.
Optimization-based methods have been developed
to produce a high-resolution texture over the mesh

• M. Arikan, R. Preiner, C. Scheiblauer and M. Wimmer are with the
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Austria.
E-mail: marikan@cg.tuwien.ac.at

• S. Jeschke is with the Institute of Science and Technology, Austria.

surface while simultaneously minimizing the visibil-
ity of seams, typically using graph-cuts [3], [4]. One
problem is that such algorithms are global in nature
and thus assume that both the mesh and the images fit
into main memory. However, many real-world appli-
cations deal with large-scale input datasets, which not
only pose a problem of scalability for texturing tech-
niques, but for which it is extremely time-consuming
to construct a consistent mesh in the first place. Even if
a mesh is available, changing or extending the dataset
with new data proves nontrivial. In such scenarios,
mesh-based techniques would require first an out-of-
core meshing of the dataset, second, a robust out-of-
core texturing algorithm, and third, the maintenance
of the mesh topology and an expensive re-texturing
every time the dataset changes. This raises a main-
tenance overhead, which makes current mesh-based
methods unsuitable for certain data complexities and
applications.

One important observation about the texturing
problem is that it is “semi-global”: at each location of
the scene, only a small part of the geometric and im-
age data is required to provide a good visualization.
In this paper, we therefore propose a new semi-global
scene representation that abstracts from the deficiencies
of both point- and mesh-based techniques: it provides
the flexibility and ease of use of point-based data
combined with the quality of mesh-based reconstruc-
tion. The main idea of our system is to reconstruct
many smaller textured surface patches as seen by the
image cameras. This leads to a collection of patches,
one for each image camera, that we stitch together
at render-time to produce a high-quality visualization
of the data. We therefore avoid the need for the
reconstruction and maintenance of the whole surface

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 2

(a) (b) (c) (d)

Fig. 1. (a) Penetration artifacts caused by rendering two meshes with z-buffering. (b) Any overwriting order of
the meshes in the overlap area resolves the penetration artifacts. However, heavy artifacts occur at the transition
of the meshes. (c) Our novel image-space stitching solution, and (d) an intensity levelling post-process, assures
a seamless surface representation from multiple meshes.

at once, allowing for both an efficient data representation
and an easy extension of the dataset by new images
or points if new scans are acquired in a scanning
campaign, for example.

The main challenge when working with multiple
textured patches is to avoid stitching artifacts and
visible seams at their transitions (see Fig. 1 (a) and
(b) respectively). For this, we propose as our main
technical contribution a novel efficient image-space
stitching method that computes a smooth transition
between individual patches (Fig. 1 (c) and (d)).

2 RELATED WORK

Point-Based Rendering: To convey the appear-
ance of a closed surface, several methods [5], [6], [7]
render splats, i.e., small discs in 3D, instead of simple
one-pixel points. Botsch et al. [5] propose a splat-
filtering technique by averaging colors of overlapping
splats. Instead of using a constant color for each
splat, Sibbing et al. [2] extend this splatting approach
by blending textures of overlapping splats. Another
work [1] assigns several images to each splat and
blends between them in a view-dependent manner.

Surface Reconstruction: As an alternative scene
representation, a mesh surface can be reconstructed
from a point cloud, e.g., using methods such as the
Poisson surface reconstruction [8] and its screened
variant [9]. However, these methods are not suited
to large-scale datasets. Bolitho et al. [10] address the
out-of-core reconstruction of surfaces from large point
clouds. However, texturing a mesh surface consisting
of millions of triangles from a collection of high-
resolution images remains a time-consuming and te-
dious task. In another work, Fuhrmann and Goe-
sele [11] fuse multiple depth maps into an adaptive
mesh with coarse as well as highly detailed regions.
Turk and Levoy [12] remove redundant border faces
of two overlapping patches and glue them together
by connecting their pruned borders. Marras et al. [13]

take this idea further by allowing to merge meshes
with very different granularity.

Texturing: To generate a high-quality texture
over a mesh surface from multiple images, several
previous works [3], [4] apply a graph-cut based opti-
mization that incorporates certain criteria to select for
each surface part a portion of a single source image.
These methods reduce the visibility of seams between
areas textured by different images.

Another option is to perform a weighted blending
of all the images over the whole surface [14], [15],
[16]. However, the blending approach produces un-
desirable ghosting artifacts in the presence of misreg-
istrations.

Our approach builds on the former group and ex-
tends these methods to consider several overlapping
surface patches.

Optical Flow: Optical-flow techniques [17], [18]
have proven useful to correct small inaccuracies in-
troduced in the image-to-geometry registration. We do
not explicitly correct misaligned features along seams,
although an optical-flow strategy can be integrated
as a post-process into our pipeline. The aim of our
method is to achieve a smooth transition between sur-
face patches without requiring expensive computation
of warp fields in order to produce an accurate color
mapping of a set of images onto a 3D model.

3 PROBLEM ANALYSIS

Motivation for Multi-Mesh Approach: We con-
sider the problem of generating a textured surface
representation from captured real-world data, given
by a point cloud together with a set of registered
images I = {I1, . . . , In}. The traditional way is to
reconstruct a single mesh M from the point cloud and
choose for each triangle t ∈ M an image I(t) ∈ I
that should be mapped onto it. This image-to-triangle
assignment problem considers both local quality cri-
teria (i.e., detail provided by an image), as well as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 3

(a) (b) (c)

Fig. 2. Overview of our pipeline. (a) Meshes are generated by rendering depth maps from image cameras.
The meshes Mi and Mj are color-coded by their respective images and additively blended in the overlap area
(yellow). (b) Each of the meshes is textured by all the input images. Besides, each mesh face is equipped with a
binary label: foreground (F), if the face is assigned to its respective image during the texturing, and background
(B) otherwise. As we will show in Section 6.1, it’s beneficial to reconstruct the scene by using foregrounds. This
provides in the major part of the overlap area a deterministic solution, however, some minor ambiguities remain
such as overlaps (yellow) and thin cracks (black) between foreground faces (see inset). (c) In order to resolve
these ambiguities, we render entire meshes and decide for each screen pixel, based on faces’ binary labels,
which of the overlapping fragments to display.

continuity in the mapping (i.e., avoiding visible seams
between areas represented by different images), and
is commonly solved with a graph-cut based optimiza-
tion [3], [4]. The mesh is then displayed with each
triangle t textured by I(t). Both the optimization,
usually carried out in a preprocess, as well as the visu-
alization are straightforward. However, as discussed
above, generating M and solving the optimization
problem for large datasets is intractable.

In this paper, we observe that the problem is semi-
global, i.e., each part of the sampled surface is only
covered by a small number of images. Therefore,
instead of solving the mapping problem globally for
a single mesh M , we provide a surface representation
consisting of multiple meshes, and solve the mapping
problem locally for each mesh. This provides a strong
localization of the problem, since each individual
mesh represents only a small part of the scene. Un-
fortunately, while this multi-mesh approach makes the
mapping problem tractable, it is not straightforward
anymore, as we will discuss now.

Setup of the Multi-Mesh Approach: We will
use the following setup, illustrated in Fig. 2: from
the given point cloud we reconstruct a set of meshes
M = {M1, . . . ,Mn}. Each mesh Mi corresponds to an
image Ii ∈ I, in the sense that it represents the scene
from the same viewpoint and with the same camera
parameters as the image camera (Fig. 2 (a)). However,
the triangles of Mi can be textured by any image, not

only by Ii. Thus, in the following we examine various
ways how to determine the mapping of images to
individual triangles of each mesh (Fig. 2 (b)). This
concludes the preprocessing phase of our algorithm.
Furthermore, we also have to deal with the fact that
a representation by a collection of meshes is not a
unique representation of the surface anymore. In par-
ticular, there will be regions where multiple meshes
will overlap. As discussed, seamlessly stitching the
meshes in the preprocess is intractable. Therefore, we
need to send all the visible meshes to the GPU in
their entirety, and devise a rendering algorithm that
decides for each screen pixel in an overlap region
which of the overlapping mesh triangles to display.
This constitutes the visualization phase of our algorithm
(Fig. 2 (c)).

Challenges of the Multi-Mesh Approach: Let
us first look at visualization: the simplest approach is
to display all meshes using the standard rendering
pipeline, and resolve any overlaps using z-buffering.
However, this leads to heavy rendering artifacts, be-
cause the individual meshes exhibit geometric varia-
tions (see Fig. 1 (a)).

Even if z-buffering artifacts can be avoided by pre-
scribing an overwriting order of meshes (Fig. 1 (b)),
texturing, i.e., solving the image-to-triangle assign-
ment problem, is not straightforward. Let us first look
at the very simple image assignment, i.e., I(t) = Ii for
all t ∈ Mi. This has the obvious problem that image

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 4

Ii is usually not the best choice for every triangle
t ∈ Mi. This problem could be solved by applying
the single-mesh approach to each mesh Mi separately,
always using all images I. For each mesh individually,
this would provide an optimal solution. However,
single-mesh texturing does not take mesh borders into
account, so two problematic cases occur, illustrated in
Fig. 3 (a) and (b):

First (Fig. 3 (a)), assume Mi is rendered on top of
Mj , and at the border of Mi, Ii happens to be the best
choice after the optimization of Mi. However, Ii is
not defined beyond the border of the overlap region.
Therefore, the visible part of mesh Mj is textured with
an image Ij 6= Ii, which usually leads to color discon-
tinuities (from misalignments and lighting variations)
at the mesh border due to camera misregistrations,
geometric variations of the two meshes in their over-
lapping region, and different lighting conditions of the
images. These color discontinuities are particularly
visible when they go through salient color features
(see also Fig. 1 (b)).

Second (Fig. 3 (b)), still assuming Mi is rendered on
top of Mj , but Ii is not the best choice at the border
of Mi. In this case, no color discontinuity due to the
use of different images will appear at the mesh border.
However, geometric variations of the meshes will still
cause visible misalignments if the mesh border passes
through a salient color feature.

This shows that the idea of applying the single-
mesh approach to each mesh Mi separately is not
sufficient for a good visualization. While the optimiza-
tion can find optimal image seams on each individual
mesh, the mesh borders lead to transitions that are not
under the control of this optimization. Therefore, it is
essential to also adapt the mesh transitions so that
visible artifacts along these are minimal.

Making the Multi-Mesh Approach Work: We
start by creating individual meshes and solving an
image-to-triangle assignment problem on each mesh
separately in a preprocess. However, in contrast to the
simple approach described before, we also take mesh
borders into account. Since at mesh borders, multiple
meshes are involved, in order to keep the locality of
the approach during the preprocessing phase, we shift
some of the burden of the optimization to the visual-
ization phase. In particular, we determine at runtime
optimal transitions for mesh overlap regions.

This is done in the following way for the two
cases discussed above: if Ii is dominant at the border
of Mi (Fig. 3 (a)), we shift both the image and the
mesh transition away from the mesh border, so that
the artifacts along these transitions are less apparent
(Fig. 3 (c)). If Ii is not assigned to the border of Mi

(Fig. 3 (b)), we adjust the mesh transition so that it
follows an image seam in the overlap region, since
that is where it is least likely to be visible (Fig. 3 (d),
and see Fig. 1 (c) for another example). Finally, we
also postprocess the overlap regions in order to reduce

Fig. 3. Illustration of misalignments at mesh borders
and our solution strategy. (a) and (b) show two cases
of a graph-cut optimization of Mi. (a) Ii (i.e., the corre-
sponding image of Mi) is assigned to the border of Mi.
(b) Ii is not assigned to the border ofMi. In both cases,
rendering Mi on top of Mj leads to misalignments
along the mesh border. To avoid the case from (a), our
graph-cut optimization (c) excludes Ii from the border
of Mi, and our stitching solution (c), (d) pushes the
mesh transition towards the image seam, where the
transition is not as visible.

the remaining intensity differences among the images
(Fig. 1 (d)).

4 ALGORITHM OVERVIEW

Preprocess – Textured Multi-Mesh Generation:
In a preprocessing phase (Section 5), we reconstruct
textured meshes. The first step is to generate the
meshes themselves. For each image, we create a depth
map by rendering the scene as seen by the image’s
camera. These depth maps (stored as 2D textures) can
be interpreted and rendered as triangular meshes, so-
called depth meshes [19]. For our purposes, this has the
advantage that texturing a mesh with its correspond-
ing image is guaranteed to have no occlusion artifacts,
and the accuracy of the representation can be easily
tuned through the depth-map resolution.

The second step is to texture the generated meshes
while taking into account the problematic overlap
regions, in particular mesh borders. Following the
reasoning in Section 3, we first carry out a graph-
cut optimization (also referred to as labeling in the
following) with the set of candidate images for each
individual mesh. The candidate set consists of only
the images whose camera can see the mesh. To avoid
the case from Fig. 3 (a), we will show in Section 5.2
that excluding image Ii from the border pixels in the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 5

labeling of mesh Mi (Fig. 4) will later push mesh
transitions towards image seams where the transition
is not as visible.

Visualization – Image-Space Stitching: In the
visualization phase (Section 6), the generated meshes
are visually stitched together to provide a high-quality
textured surface representation. Note that we do not
perform an actual mesh stitching, but rather resolve
conflicting fragments of overlapping meshes on a per-
pixel basis at render time. This works by rendering
all meshes in the overlap region and choosing an
appropriate mesh for each overlap pixel at runtime
(Fig. 2 (c)), based on the mesh labelings calculated in
the preprocessing phase.

Since the input images can differ arbitrarily in
viewing parameters, the generated depth maps may
represent the observed surface at different sampling
rates. Our approach of visually stitching meshes with
varying sampling rates at render-time is closely re-
lated to the work of Fuhrmann and Goesele [11].
However, our method also addresses texturing issues,
and most importantly, the runtime stitching of the
meshes makes the easy handling of large datasets
possible.

5 TEXTURED MULTI-MESH GENERATION

5.1 Depth-Map Generation

For the generation of the depth maps, the input point
cloud is converted into splats with normal vectors and
spatial extents. Here we can optionally use available
input normals, or apply an in-situ-reconstruction at
depth-map rendering time [20] if no normals are
given. Then these small discs are used as rendering
primitives to generate depth maps. For each image
camera, we render the scene as seen by this image
camera using Gauss-splatting [7]. However, since we
deal with large-scale datasets, the input points do
not necessarily fit into main or video memory. We
therefore use an out-of-core data structure to store the
points and stream only those parts seen by an image
camera into video memory (our implementation is
based on the work of Scheiblauer and Wimmer [21],
but any other out-of-core point rendering system can
be used). The out-of-core data structure also provides
the splat radii, derived from the density of the points
at the current detail level [21].

In order to reduce storage and processing costs, the
user can choose to create the depth maps at a lower
resolution than the input images. For the examples
in this paper, we used a resolution of 256 × 171 for
12 MPixel images (see Table 2). While depth-map
generation is rather straightforward, our work focuses
on generating a high-quality surface representation
from them as described in the following.

5.2 Multi-Mesh Labeling
The second step of the preprocessing phase is the
computation of a graph-cut based labeling with the
set of candidate images for each depth mesh. Com-
pared to traditional single-mesh labeling approaches,
we also take mesh borders and overlap regions into
account. We further equip each mesh triangle with a
binary value (foreground/background), which is then
utilized at runtime by our image-space stitching to
determine the overwriting order of meshes on a per-
pixel basis (Fig. 2 (c)).

5.2.1 Foreground and Background Segmentation
The optimization step, described shortly, will assign
each mesh triangle to an image. We call the set of all
triangles of mesh Mi that is assigned to its respective
image foreground (denoted by Fi), i.e., t ∈ Fi ⊆Mi iff
I(t) = Ii. The remaining part that is assigned to an
image Ij 6= Ii is called background (denoted by Bi).
In the rest of this paper, we further use the notation
Bik ⊆ Bi to distinguish between background triangles
assigned to different images, i.e., t ∈ Bik ⊆ Mi iff
I(t) = Ik.

5.2.2 Candidate Labels Selection
The set of candidate images (labels) for each mesh
triangle is formed by those images whose camera
can see the triangle. The visibility of a triangle is
determined based on an in-frustum test and an oc-
clusion test (given the computed depth maps) of each
individual triangle vertex.

However, reconsider the situation (illustrated in
Fig. 3 (a)) where the mesh borders lead to transitions
between images that are not under the control of
the optimization of individual meshes. In order to
account for this problem, we constrain the candidate
labels of outer mesh borders (i.e., those that are not
inner borders due to holes in the input datasets). Our
strategy is to exclude the foreground label (i.e., the
index of the respective image) from the candidate
label set of each outer border triangle. By setting such
a hard constraint, these triangles are forced to be la-
beled as background even if best suited as foreground.
Through the shrinking of the potential foreground
region, we intentionally insert image seams at mesh
borders (Fig. 4 (a)). The smoothness requirement of
the labeling, described shortly, will ensure that these
seams are shifted away from mesh borders to regions
where the transition is not as visible (Fig. 4 (b)).

5.2.3 Optimization Step
For each depth mesh M , we compute a labeling
L, i.e., a mapping from mesh triangles to image
indices (labels). This labeling has two goals: (1)
maximizing back-projection quality (high resolution,
low anisotropy, etc.) of images onto triangles, and
(2) penalizing the visibility of seams between areas

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 6

Fig. 4. Handling of mesh borders. (a) Excluding the
respective image from the border faces in the labeling
of mesh Mi introduces an image seam at the mesh
border. The example in (b) illustrates how the image
seam is pushed by the labeling towards more homo-
geneous color regions where artifacts caused due to
camera misregistrations are less apparent.

mapped from different images. The labeling problem
can typically be formulated in terms of an energy
minimization (see Kolmogorov and Zabih [22], and
Boykov and Kolmogorov [23] for a comprehensive
discussion of vision problems expressed in terms of
an energy minimization). The labeling L is computed
as the minimizer of the energy

E(L) = Ed(L) + λsEs(L), (1)

which is composed of a data term Ed and a smooth-
ness term Es.

Data Term: For each triangle t, the data term
should favor the image with the highest “quality”.
The quality was previously computed by counting
the number of texels covered by the projection of a
triangle into an image [24]. This was later extended
by taking color variation of the covered pixels into
account, favoring more detailed images [4]. However,
color variation can also be caused by noise in the
image, so we prefer a purely geometric term. Further-
more, while the number of covered texels combines
both distance from the image and orientation into
one term, we found that in the case of depth meshes
generated from noisy point clouds, it is beneficial
to allow more control over the relative importance
of these two factors. In particular, since the selected
image also determines the mesh to be rendered, and
since meshes generated from orthogonal views have
better quality, we usually give more weight to the
orientation factor.

We therefore propose the following data term:

Ed = σt
(
λdistEdist + λorEor), (2)

with the distance factor

Edist =
∑
t∈M

1

h
min(‖tc − cit‖, h), (3)

where tc is the triangle center and cit the center of

projection of image Iit . The orientation factor

Eor =
∑
t∈M

1−
∣∣∣∣nt ·

tc − cit
‖tc − cit‖

∣∣∣∣ (4)

uses the triangle normal nt.
In order to make the data term comparable between

different meshes with differently sized triangles (e.g.,
in overlap areas), it is scaled by the world-space area
σt of the triangle. The parameter h allows adjusting
the relative influence of Edist and Eor: the distance
term is clamped to a maximum of h and then nor-
malized to one, so that for all images at a distance h
or larger, the distance penalty matches the orientation
penalty of an image with normal deviation of π/2
degrees.

Smoothness Term: As in Gal et al. [4], we use
the smoothness term

Es =
∑

(t,t′)∈N

∫
ett′

∥∥Φit(x)− Φit′ (x)
∥∥ dx, (5)

where Φi is the projection operator into image Ii,
ett′ is the edge between neighboring faces t and t′,
and the integral is evaluated by regular sampling
along the edge. The smoothness term penalizes color
differences due to label changes at triangle edges, and
therefore biases the method towards solutions where
the transitions from one image to another are less
visible.

Energy Minimization: For the minimization
of the objective function of Eq. 1, we apply an
α-expansion graph-cut algorithm [25]. Further, the
choice of the parameter λs reflects the trade-off be-
tween the local quality provided by the images and
the color smoothness.

5.2.4 Summary
Through the particular handling of border triangles
during the candidate labels selection, the presented
optimization routine accounts for optimal image tran-
sitions in overlap regions. However, visible artifacts
at transitions from one mesh to another remain (e.g.,
see Fig. 4 (b)). In Section 6, we will show our stitching
solution that uses the binary labels to also adapt mesh
transitions so that these coincide with image seams.

6 IMAGE-SPACE STITCHING

6.1 Overview
A depth mesh represents the scene from the same
viewpoint and with the same viewing parameters
as its corresponding image camera. Therefore, the
quality of projection of an image onto a surface region
on the one hand and the sampling rate of this region
by the image’s depth mesh on the other hand are in-
herently coupled. As we have shown in Section 5.2.3,
the data term of the graph-cut optimization always
favors the image with the highest quality. Thus, for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 7

(a) (b)

Fig. 5. (a) Two meshes Mi and Mj are binary seg-
mented into foreground and background regions. (b)
However, rendering only foreground-labeled regions
causes holes due to different mesh discretizations.

rendering a region of several overlapping meshes, it is
preferable to also render the corresponding mesh, i.e.,
the mesh labeled as foreground, as this may imply an
increase of the sampling rate of the overlap area (for
an example, compare Fig. 10 (a) and (b), respectively).
Note, however, that foreground regions do not always
have higher sampling rates, since the optimization has
to consider color continuity as well.

Ideally, the label assignment of mesh regions is
consistent between meshes in overlap regions, so all
foreground regions together could theoretically cover
the whole surface. However, in practice this will not
work due to two reasons:

1) Triangles of different meshes sharing a spot of
the scene typically differ in size and rotation,
which makes a “perfect” alignment of fore-
ground borders impossible (see Fig. 5).

2) Since each individual mesh is optimized sep-
arately, the local minimization of the objective
function of Eq. 1 for different meshes can pro-
duce different seams in their overlapping region,
as in the example of Fig. 6 (a) and (b).

The union of all resulting foregrounds is thus not
guaranteed to cover the whole surface (Fig. 6 (c)).
Our stitching approach, therefore, is to reconstruct
the scene by preferably drawing foreground regions,
while still being able to fall back to background-
labeled regions where no foreground label is avail-
able (Fig. 6 (d)). In practice, this is implemented by
assigning mesh faces a depth value according to their
binary label (foreground/background) and employing
z-buffering to perform the corresponding overwriting
decisions.

6.2 Rendering Pipeline

The rendering pipeline consists of five steps, which
are described in the following:

mesh transition

image seam

image seam

Fig. 6. Illustration of our stitching idea. (a) and (b) show
the labelings of the meshes Mi and Mj , respectively.
(c) Rendering only foreground regions Fi and Fj does
not cover the complete object, due to the different
seams in the overlap area. (d) The rendering algorithm
resorts to the background-labeled regionBij , where no
foreground label is available.

Visibility Pass: In this first pass, all meshes
intersecting the view frustum are rendered with z-
buffering, writing to a depth buffer, a mesh-index buffer,
and a triangle-label buffer. We will use the triangle-label
buffer in the image-management step to determine
which images are required for texturing the currently
visible meshes, and to cache those images to the
GPU if necessary. Similarly, the mesh-index buffer
contains the indices of all the visible meshes that will
be rendered in the stitching pass. Other meshes are
considered to be occluded. The depth buffer will be
used in the stitching pass to determine which triangles
belong to the front surface and need to be resolved.

Image Management: Since all the high-resolution
images do not fit into video memory, we employ
an out-of-core streaming technique for continuously
caching the currently required images into a GPU tex-
ture array. Due to the limited size of this texture array,
it is our goal to always have the most relevant images
available on the GPU. We measure this relevance by
the frequency of occurrence of an image’s label in the
triangle-label buffer. In this step, we therefore com-
pute a label histogram from the triangle-label buffer,
based on which we can always cache the currently
most relevant images onto the GPU. If the texture
array is already full, the least relevant images are
dropped to make space for more relevant images. For
performance reasons, we currently restrict the number
of image loads to only one high-resolution image per
frame. In case of the unavailability of images that
are required for the texturing, we alternatively use
precomputed per-vertex colors.

Stitching Pass: In this pass, the visible meshes
are rendered again, and visually stitched together in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 8

image space in order to produce a coherent repre-
sentation of the observed surface. The visible meshes
are determined from the mesh-index buffer during
the computation of the label histogram in the image-
management step.

We resolve conflicting fragments of overlapping
meshes on a per-pixel basis, using the binary labeling
of the meshes. One or more triangle fragments are
said to be overlapping at a pixel position p if their
depth values differ by less than ε from the front-most
depth value of p, stored in the depth buffer which
is bound as a texture. Triangle fragments beyond
this threshold are considered to be occluded and
discarded. For the overlapping triangle fragments, our
stitching chooses the fragment from the best-suited
mesh based on their binary labels. To this end, we
equip each mesh triangle with a depth according to
its binary label (foreground: 0, background: 1). In this
way, for each pixel p of an overlapping region, z-
buffering automatically picks one mesh whose label
at p is foreground, and chooses a background-labeled
mesh if no foreground candidate is available. This
pass outputs two textures that store positions and
labels of the chosen triangle fragments.

Similar to surface splatting [5], [7], visibility is not
resolved for features smaller than epsilon. Except for
small concave features, the resulting artifacts can be
avoided by using back-face culling using the mesh
orientations given by the generating camera positions.

Texturing Pass: We render a full-screen quad to
retrieve the color of each chosen triangle fragment
by projecting it onto its assigned image based on the
position and label retrieved from the output textures
of the previous stitching pass.

Levelling: The outcome of the texturing pass
is a rendering of the current view (see Fig. 7 (a)),
which typically reveals visible seams caused by light-
ing variations among the input images. To minimize
the visibility of such seams, we apply as a render-
ing post-process an adapted version of the seamless
cloning method of Jeschke et al. [26], which we briefly
illustrate in Fig. 7. The goal of this method is to
compute a levelling texture (denoted by L) that can be
added to the output of the texturing pass to locally
alleviate lighting variations. This is done by mini-
mizing the Laplacian ∇2L of a texture, where border
pixels of uniformly labeled regions (Fig. 7 (b) and
(c)) impose boundary constraints on that optimization
problem. Moreover, our levelling is geometry-aware,
which means that we prevent levelling over non-
connected parts of the surface. This is easily achieved
by introducing depth-discontinuity border pixels as
additional boundary constraints.

Before applying the levelling texture, we average it
with the textures of previous frames in order to avoid
flickering during animations. For this, we follow the
idea of temporal smoothing presented in Scherzer et
al. [27]. We first determine for each currently rendered

Fig. 7. Levelling pipeline. (a) Output of the texturing
pass. (b) Output texture of the stitching pass storing
fragment labels. (c) A one-pixel wide border around
each connected pixel region of the same label is de-
tected. The color of each border pixel is fixed to the
average of its own and that of its direct neighbors
on the other side of the border. Additionally, we fix
colors of depth-discontinuity border pixels. All these
fixed border pixels impose color constraints on the
minimization of the Laplacian of the levelling texture.
The difference between the fixed and original colors of
the closest border pixels is the initial guess (d) of the
levelling texture (e). (a) is added to (e) to produce the
final result (f) with the locally levelled intensities.

fragment at position (xc, yc) its corresponding pixel
position (xp, yp) in the previous frame. Then, we
compute the smoothed levelling value as lc(xc, yc) =
wL(xc, yc)+(1−w)lp(xp, yp), where lp stores levelling
values of the previous frame. For all new fragments
(xnew, ynew) that are not present or occluded in the
previous frame, we use the non-averaged levelling
value lc(xnew, ynew) = L(xnew, ynew).

7 RESULTS

We have tested our method on four large-scale point
datasets acquired by a laser scanner, accompanied by
a set of high-resolution images (Table 1, see Fig. 14
for various results and the accompanying video for a
walkthrough of the Hh2 We1 model). In the following,
we give a detailed analysis of the performance, the
memory consumption, the reconstruction and ren-
dering quality, and the extensibility of our proposed
system in comparison to a point-based and a single-
mesh approach.

As a comparable point-based method involving
texturing, we adapted the work of Sibbing et al. [2]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 9

TABLE 1
Model statistics.

Model #Points #Scans
Point cloud memory |I| Image resolution

Images memory
consumption consumption

Hanghaus 2 Wohneinheit 1 (Hh2 We1) 682.6M 46 16.4GB 276 4258× 2832 (36MB) 9.9GB
Hanghaus 2 Wohneinheit 6 (Hh2 We6) 34.7M 25 0.8GB 188 4032× 2674 (32MB) 6GB

Siebenschläfer (7schläfer) 907.4M 44 21.8GB 254 4258× 2832 (36MB) 9.1GB
Centcelles 1091.3M 42 26.2GB 161 4258× 2832 (36MB) 5.8GB

Fig. 8. Plot of the labeling timings of the single-mesh
and our multi-mesh approach, applied to the Hh2 We1
dataset, for increasing mesh sizes.

to handle large-scale point clouds.
As a comparable surface-reconstruction technique,

we used the out-of-core Poisson-based approach pro-
posed by Bolitho et al. [10]. To texture the meshes, we
employed Lempitsky and Ivanov’s work [3], which
most closely matches our approach. For the minimiza-
tion of their energy function, we used the α-expansion
algorithm in Boykov et al. [25], as in our case.

7.1 Performance and Memory Consumption

All results in this paper were produced on a standard
PC with an Intel i7 2600K 3.40 GHz CPU, 16 GB RAM
and NVIDIA GeForce GTX580 GPU.

The reference single-mesh reconstruction- and la-
beling approach was applied to the datasets Hh2 We1
and 7schläfer. Table 2 compares the resulting mesh
sizes and timings with those of our proposed multi-
mesh system for one particular configuration. A direct
comparison of the timings at the same reconstruction
accuracy is non-trivial due to our runtime surface
representation. However, we observed that during
rendering, the majority of the overlap areas is repre-
sented by foreground regions (see also Fig. 2). There-
fore, to obtain an expressive comparison, we chose
the resolution of our depth maps in a way that the
total number of all foreground faces approximately
matches the number of single-mesh faces (see Table 2).

0

5

10

15

20

25

30

35

40

45

0

20

40

60

80

100

120

140

160

Fig. 9. Rendering timings and numbers of rendered
meshes measured during a walkthrough of the Hh2
We1 model.

In this configuration, our approach is faster by an
order of magnitude or even more.

Fig. 8 analyzes just the labeling times for increasing
mesh sizes. In both approaches, image loading alone
already requires a significant amount of total labeling
time. This is due to the image requests during the
computation of the smoothness costs. Since not all
of the high-resolution input images fit into main
memory, images are loaded on demand. We reserved
3GB (∼80 images) of main memory for them. Im-
ages in memory that are not required for a longer
time are dropped according to the least recently used
paradigm [28]. Table 2 also indicates that in the multi-
mesh case, much fewer images are loaded, for reasons
explained in Section 7.3. However, even ignoring im-
age load time, our method is significantly faster.

Fig. 9 shows the performance of our rendering
approach for a walkthrough of the Hh2 We1 model,
rendered at a resolution of 1280 × 720 (see also the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 10

TABLE 2
Timings of the single-mesh (in hours) and our

multi-mesh approach (in minutes), and in both cases,
the mesh sizes.

Model Hh2 We1 7schläfer

Si
ng

le
-m

es
h

Meshing time 3h 8h
#Vertices 1.9M 3.95M
#Faces 3.8M 7.9M
Memory consumption 68.4MB 142.3MB
Labeling time 14.3h 102.95h

of which image loading/count 10.9h/171k 96.9h/1592k
Cycles1 2 2

Total preprocess time 17.3h 110.95h

M
ul

ti
-m

es
h

Depth maps generation time 4m 5.3m
Depth-map resolution2 256× 171 256× 171

#Faces 17M 16.7M
Memory consumption 48.4MB 44.4MB
Labeling time 53.5m 30m

of which image loading/count 16.6m/7.5k 6.8m/3.3k
Cycles1 2 2

Candidate images min/aver/max 2/46/122 4/39/93
#Foreground faces 4.6M 7.2M
Overlap ratio3 (or) 0.73 0.57

Total preprocess time 57.5m 35.3m
1 Each cycle performs an iteration for every label (expansion algorithm).
2 The depth-map aspect ratio matches the image aspect ratio.
3 Overlap ratio is the ratio of the number of background faces to the total

number of multi-mesh faces.

TABLE 3
Parameters used for the rendering performance

analysis.

Labeling Image man. Stitching Levelling

λs λdist λor h1 tex. array size ε1 #iter. w

0.2 1 2 10 25 (∼0.9GB) 0.1 8 0.4

1 in meters

accompanying video). It also gives numbers of depth
meshes rendered during the visibility and stitching
render passes. For this performance analysis, the
depth maps are generated at a resolution of 256×171
(Table 2). These depth maps and auxiliary textures
storing triangle labels and vertex colors were stored
on the GPU. In total, these textures require ∼180MB
of video memory. Table 3 shows the parameters used
for the labeling and during the rendering. The min-
imum, average and maximum frame rates obtained
during the walkthrough are 24 fps, 34 fps and 55 fps,
respectively. For the same walkthrough, rendering of
the single mesh (with 3.8M faces) and textured splats
took 42 and 23 fps on average, respectively. For single-
mesh rendering, we employed OpenSceneGraph [29]
and a virtual-texturing algorithm [30]. For textured
splatting, we used an out-of-core point renderer [21]
to stream visible parts of the point cloud to the GPU.
We restricted the renderer to stream a maximum
amount of 10M points to the GPU each frame.

The lower memory consumption of depth meshes
(despite the much higher total number of faces) results

Fig. 10. Comparison of the single-mesh reconstruction
(left) and our multi-mesh approach (right, (a)) applied
to a part of the Hh2 We1 dataset. For a fair comparison,
the number of single-mesh faces approximately equals
the number of multi-mesh foreground faces (∼1M). In
the presence of high-resolution depth maps of this
particular region, the multi-mesh approach produces
a very accurate surface representation as it chooses
a foreground for rendering (a). (b) shows one of many
backgrounds of this region, which are not considered.

from the fact that each depth-map pixel stores one
float compared to three floats per single-mesh vertex
and three integers per single-mesh triangle. On the
other hand, while mesh-based visualization can avoid
further storage of the input points, textured splatting
requires points and their normal vectors for rendering,
which results in a vast memory consumption (see
Table 1).

7.2 Reconstruction and Rendering Quality
As stated in Fuhrmann and Goesele [11], a Poisson-
based reconstruction technique [8] does not account
for input data at different scales. In contrast, the
multi-mesh approach seamlessly combines overlap-
ping depth meshes at various scales, and in overlap
areas, prefers meshes with higher sampling rates for
rendering. Thus, a multi-mesh representation uses
more triangles in regions where high-resolution depth
maps are present. Our approach therefore can repre-
sent particular surface regions more accurately than
the reference single-mesh reconstruction (for an ex-
ample, compare Fig. 10 left and right, respectively).

However, a direct comparison of the reconstruction
accuracy of the single-mesh and our multi-mesh tech-
nique is not straightforward, since the consideration
of the smoothness also affects the accuracy of a multi-
mesh representation. Fig. 11 shows a close-up view

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 11

Fig. 11. A close-up view of our rendering without (a) and with (b) the color-smoothness constraint during the
computation of the labelings. (b) Artifacts due to lighting variations and registration errors are barely visible along
the transition of the meshes, but this comes at a price of an overall lower detail.

(a) (b) (c)

Fig. 12. Side-by-side comparison of our approach (a)
and textured splatting (b). (c) demonstrates the depen-
dency of the blurriness of the images generated by
textured splatting on the noise and the view direction.C
denotes the user camera and I an input image camera.

of a multi-mesh result with (b) and without (a) the
consideration of color smoothness. The trade-off of
both the texture resolution and the geometric detail
for less noticeable artifacts along the seam is clearly
visible.

Comparing to textured surface splatting, Fig. 12
demonstrates the superior quality of our multi-mesh
approach in terms of visual quality. It can be clearly
seen that in contrast to mesh rendering, blending
texture-mapped splats can cause heavy blurring arti-
facts depending on the viewing angle and the degree
of the noise present in the point datasets.

7.3 Asymptotic Analysis
In this section we give an asymptotic argument why
the multi-mesh approach is significantly faster in the
labeling step. We first consider the upper bound of the
number of smoothness computations: In the single-
mesh case, each iteration of the expansion algorithm
accounts for O(eS ∗ |I|2) smoothness computations,
where eS and |I| denote the number of mesh edges
and the number of labels, respectively. A number of

|I| iterations results in O(|I| ∗ eS ∗ |I|2) total compu-
tations. In the multi-mesh case, the upper bound for
the number of smoothness computations per mesh is
O(k ∗ eM ∗ k2), where eM is the number of edges in a
single depth mesh and k denotes the average number
of candidate images considered for the labeling of
each depth mesh (Table 2). The labeling of all the
|I| meshes results in O(|I| ∗ k ∗ eM ∗ k2) smoothness
computations. Without loss of generality, to obtain
an expressive comparison, let’s choose the resolution
of – and thus the number of edges eM in – each
depth map in a way that in total, all foregrounds
contain the same amount of edges as the single
mesh, i.e., (1 − or) ∗ |I| ∗ eM = eS . Then the upper
bound of the multi-mesh case can be reformulated as
O(eS ∗k3/(1−or)), whereas the single-mesh bound is
O(eS ∗ |I|3). Thus, the computation of the smoothness
costs in our multi-mesh approach is generally faster
by a factor of (|I|/k)3 ∗ (1 − or). In general, k << |I|,
so we obtain a significant speed up in comparison to
the single-mesh case.

In a similar way, upper bounds of the number of
data-term computations can be formulated: In the
single mesh case, each iteration accounts for O(fS∗|I|)
computations, where fS denotes the number of mesh
faces. A number of |I| iterations results in O(fS ∗
|I|2) computations. In the multi-mesh case, the upper
bound is given by O(fM ∗ k2). Then, the labeling
of all meshes results in O(|I| ∗ fM ∗ k2) total data-
term computations. Analogous to above, by setting
(1 − or) ∗ |I| ∗ fM = fS we get a speed-up factor of
(|I|/k)2 ∗ (1− or).

7.4 Extensibility
Our system is designed to provide maximum flexi-
bility and extensibility when dealing with large-scale
datasets, which might be extended over time. In the
single-mesh case, adding new images would require
an expensive global relabeling of the model incor-
porating all previous and new images. On the other

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 12

(a) (b)

Fig. 13. Point and image data acquired from new scan
positions can be easily integrated into an existing multi-
mesh representation without requiring a complete re-
computation. To evaluate this, we generated a multi-
mesh representation from (a) 44 scan positions of the
Hh2 We1 model and then (b) added two new scan po-
sitions (red and blue). In this example, a recomputation
for 63 and 11 of 264 previous meshes was necessary.

hand, given our proposed multi-mesh representation
of the model, adding a new photograph of the scene
involves the generation and labeling of one new depth
mesh, and a relabeling of (on average) only the k
meshes that overlap with the new one.

A more interesting scenario is to extend a model
by new point and image data acquired from a new
scan position. In this case, we first generate depth
maps for the new images. Then, we determine all
the previous images whose camera can see the new
point data, since the corresponding depth maps have
to be regenerated. For this purpose, we perform for
each image an occlusion query for the new points
by rendering them as seen by the image’s camera,
where the corresponding depth mesh serves as an
occluder. If the new point data is visible, i.e., if at
least one point is drawn, we regenerate the depth
map incorporating all previous and new point data.
Finally, we compute for all new and regenerated
depth meshes the labeling.

To evaluate the effectiveness of the proposed exten-
sibility method, we first used 44 scan positions (Fig. 13
(a)) and corresponding 264 images to generate the
multi-mesh representation of the Hh2 We1 model and
then subsequently added the remaining 2 scan posi-
tions (shown in Fig. 13 (b) red and blue, respectively)
and 12 images. To a major extent, both scan positions
are contained in the existing model, which means that
the corresponding points add detail to the point data
acquired from the previous 44 positions. Adding these
two new scans caused a regeneration and relabeling
of 63 and 11 previous meshes, respectively.

8 CONCLUSION

In this paper, we proposed a novel two-phase ap-
proach for providing high-quality visualizations of

large-scale point clouds accompanied by registered
images. In a preprocess, we generate multiple overlap-
ping meshes and solve the image-to-geometry map-
ping problem locally for each mesh. In the visual-
ization phase, we seamlessly stitch these meshes to
a high-quality surface representation.

We have shown that the localization of the global
mapping problem provides a huge performance gain
in the preprocessing phase, an overall lower memory
consumption, and a higher flexibility and extensibil-
ity of large-scale datasets, in exchange for a slightly
higher rendering complexity (due to the rasterization
of multiple meshes in overlap regions) and minor
stitching artifacts at object concavities. Similar to
Fuhrmann and Goesele [11], our approach produces
an adaptive surface representation with coarse as well
as highly detailed regions. Additionally, our multi-
mesh method addresses texturing issues.

9 LIMITATIONS AND FUTURE WORK

The most time-consuming steps of the preprocessing
phase are the computation of the smoothness costs
and the minimization of the objective function of
Eq. 1, since these are currently performed on the
CPU. However, the 4-connected grid neighborhood of
triangle pairs could be further exploited to transfer
these tasks to the GPU. Note that we perform the
remaining operations of the labeling step (i.e., the
computation of candidate labels and data costs) on
the GPU.

In order to keep the image-management step sim-
ple, we currently do not support mipmapping. We use
the high-resolution images for texturing, and resort
to per-vertex colors if images are not available on the
GPU. However, a more sophisticated method for so-
called virtual texturing [30] can be easily integrated
into our system to alleviate this.

Another limitation is that our stitching currently
makes a random decision between overlapping back-
ground fragments. This can lead to low-resolution ge-
ometry filling small gaps between foreground regions.
By favoring fragments with a lower data penalty,
the resolution provided by backgrounds could be
improved. Unfortunately, such a per-pixel decision
would not consider label continuity over neighboring
pixels. We thus plan to investigate further possibilities
to make a more elaborate choice between overlapping
backgrounds.

ACKNOWLEDGMENTS

We wish to express our thanks to the reviewers for
their insightful comments. We also thank Norbert
Zimmermann for providing us with the datasets and
Michael Birsak for his assistance in the performance
analysis.

This research was supported by the Austrian Re-
search Promotion Agency (FFG) project REPLICATE

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 13

Fig. 14. Two views of each input point cloud, and the corresponding multi-mesh representations of (from top to
bottom) Hh2 We1, Hh2 We6, Centcelles and 7schläfer datasets. The point clouds are displayed with the colors
acquired by a scanner. In the last example, points are color-coded according to their normals.

(no. 835948), the EU FP7 project HARVEST4D (no.
323567), and the Austrian Science Fund (FWF) project
DEEP PICTURES (no. P24352-N23).

REFERENCES

[1] R. Yang, D. Guinnip, and L. Wang, “View-dependent textured
splatting,” The Visual Computer, vol. 22, no. 7, pp. 456–467,
2006.

[2] D. Sibbing, T. Sattler, B. Leibe, and L. Kobbelt, “Sift-realistic
rendering,” in Proc. the 2013 International Conf. 3D Vision (3DV
13), 2013, pp. 56–63.

[3] V. Lempitsky and D. Ivanov, “Seamless mosaicing of image-
based texture maps,” in Computer Vision and Pattern Recognition
(CVPR 07), IEEE, June 2007, pp. 1–6.

[4] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or,
“Seamless montage for texturing models,” Computer Graphics
Forum, vol. 29, no. 2, pp. 479–486, 2010.

[5] M. Botsch and L. Kobbelt, “High-quality point-based render-
ing on modern gpus,” in Proc. the 11th Pacific Conf. Computer
Graphics and Applications (PG 03), 2003, pp. 335–343.

[6] M. Botsch, M. Spernat, and L. Kobbelt, “Phong splatting,” in
Proc. the 1st Eurographics Symp. Point-Based Graphics (SPBG 04),
2004, pp. 25–32.

[7] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, “High-
quality surface splatting on today’s gpus,” in Proc. the 2nd
Eurographics / IEEE VGTC Symp. Point-Based Graphics (SPBG
05), 2005, pp. 17–24.

[8] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface
reconstruction,” in Proc. the 4th Eurographics Symp. Geometry
Processing (SGP 06), 2006, pp. 61–70.

[9] M. Kazhdan and H. Hoppe, “Screened poisson surface recon-
struction,” ACM Trans. Graph., vol. 32, no. 3, pp. 29:1–29:13,
June 2013.

[10] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe, “Multilevel
streaming for out-of-core surface reconstruction,” in Proc. the
5th Eurographics Symp. Geometry Processing (SGP 07), 2007, pp.
69–78.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 14

[11] S. Fuhrmann and M. Goesele, “Fusion of depth maps with
multiple scales,” in Proc. the 2011 SIGGRAPH Asia Conf. (SA
11), 2011, pp. 148:1–148:8.

[12] G. Turk and M. Levoy, “Zippered polygon meshes from range
images,” in Proc. the 21st Annual Conf. Computer Graphics and
Interactive Techniques (SIGGRAPH 94), 1994, pp. 311–318.

[13] S. Marras, F. Ganovelli, P. Cignoni, R. Scateni, and R. Scopigno,
“Controlled and adaptive mesh zippering,” in GRAPP, 2010,
pp. 104–109.

[14] F. Bernardini, I. M. Martin, and H. Rushmeier, “High-quality
texture reconstruction from multiple scans,” IEEE Transactions
on Visualization and Computer Graphics, vol. 7, no. 4, pp. 318–
332, Oct. 2001.

[15] A. Baumberg, “Blending images for texturing 3d models,” in
Proc. the British Machine Vision Conference (BMVC 02), 2002, pp.
38.1–38.10.

[16] M. Callieri, P. Cignoni, M. Corsini, and R. Scopigno, “Masked
photo blending: mapping dense photographic dataset on high-
resolution 3d models,” Computers and Graphics, vol. 32, no. 4,
pp. 464–473, Aug 2008.

[17] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert,
E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sellent, “Floating
textures,” Computer Graphics Forum, vol. 27, no. 2, pp. 409–418,
Apr. 2008.

[18] M. Dellepiane, R. Marroquim, M. Callieri, P. Cignoni, and
R. Scopigno, “Flow-based local optimization for image-to-
geometry projection,” IEEE Transaction on Visualization and
Computer Graphics, vol. 18, no. 3, pp. 463–474, Mar 2012.

[19] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson,
K. Hoff, T. Hudson, W. Stuerzlinger, R. Bastos, M. Whitton,
F. Brooks, and D. Manocha, “Mmr: an interactive massive
model rendering system using geometric and image-based
acceleration,” in Proc. the 1999 Symp. on Interactive 3D Graphics
(I3D 99), 1999, pp. 199–206.

[20] R. Preiner, S. Jeschke, and M. Wimmer, “Auto splats: Dynamic
point cloud visualization on the gpu,” in Proc. Eurographics
Symp. on Parallel Graphics and Visualization (EGPGV 12), May
2012, pp. 139–148.

[21] C. Scheiblauer and M. Wimmer, “Out-of-core selection and
editing of huge point clouds,” Computers and Graphics, vol. 35,
no. 2, pp. 342–351, Apr. 2011.

[22] V. Kolmogorov and R. Zabih, “What energy functions can be
minimized via graph cuts?” in Proc. the 7th European Conf.
Computer Vision-Part III (ECCV 02), 2002, pp. 65–81.

[23] Y. Boykov and V. Kolmogorov, “An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9,
pp. 1124–1137, Sep. 2004.

[24] C. Allene, J.-P. Pons, and R. Keriven, “Seamless image-based
texture atlases using multi-band blending,” in Proc. 19th Inter-
national Conf. Pattern Recognition (ICPR 08), 2008, pp. 1–4.

[25] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[26] S. Jeschke, D. Cline, and P. Wonka, “A gpu laplacian solver
for diffusion curves and poisson image editing,” ACM Trans.
Graph., vol. 28, no. 5, pp. 116:1–116:8, Dec. 2009.

[27] D. Scherzer, S. Jeschke, and M. Wimmer, “Pixel-correct shadow
maps with temporal reprojection and shadow test confidence,”
in Proc. the 18th Eurographics Conf. Rendering (EGSR 07), 2007,
pp. 45–50.

[28] P. J. Denning, “The working set model for program behavior,”
Comm. ACM, vol. 11, no. 5, pp. 323–333, May 1968.

[29] D. Burns and R. Osfield, “Open scene graph a: Introduction,
b: Examples and applications,” in Proc. the IEEE Virtual Reality
(VR 04), 2004, pp. 265–.

[30] M. Mittring and C. GmbH, “Advanced virtual texture topics,”
in ACM SIGGRAPH 2008 Games (SIGGRAPH 08), 2008, pp. 23–
51.

Murat Arikan is a Ph.D. student at the Insti-
tute of Computer Graphics and Algorithms of
the Vienna University of Technology. He re-
ceived his M.Sc. degree in Mathematics from
Vienna University of Technology in 2008. His
current research interests are real-time ren-
dering, point-based rendering, and interac-
tive modeling.

Reinhold Preiner received his B.Sc. degree
in Computer Science from Graz University
in 2008 and his M.Sc. degree in Computer
Science from Vienna University of Technol-
ogy in 2010. His research interests include
reconstruction, geometry processing, and in-
teractive global illumination. He is now an
assistant professor and doctoral researcher
at the Institute of Computer Graphics and
Algorithms of the Vienna University of Tech-
nology.

Claus Scheiblauer is a Ph.D. student at
the Institute of Computer Graphics and Algo-
rithms of the Vienna University of Technol-
ogy, where he received an M.Sc. in 2006.
His current research interests are real-time
rendering, point-based rendering, and out-of-
core processing.

Stefan Jeschke is a scientist at IST Austria.
He received an M.Sc. in 2001 and a Ph.D. in
2005, both in computer science from the Uni-
versity of Rostock, Germany. His research in-
terest includes modeling and display of vec-
torized image representations, applications
and solvers for PDEs, as well as modeling
and rendering complex natural phenomena.

Michael Wimmer is an associate professor
at the Institute of Computer Graphics and
Algorithms of the Vienna University of Tech-
nology, where he received an M.Sc. in 1997
and a Ph.D. in 2001. His current research
interests are real-time rendering, computer
games, real-time visualization of urban en-
vironments, point-based rendering and pro-
cedural modeling. He has coauthored many
papers in these fields, and was papers co-
chair of EGSR 2008 and Pacific Graphics

2012, and is associate editor of Computers & Graphics.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2312011

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

