FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Implementation of a PIC
simulation using WebGL

based on OpenPixi

BACHELOR’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Bachelor of Science
in
Media Informatics and Visual Computing
by

Leonard Weydemann
Registration Number 1028488

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Dr.techn. Andreas Ipp

Vienna, 22.04.2014

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Leonard Weydemann
Reinprechtsdorfer Str. 52/7, 1050 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit —
einschlieBlich Tabellen, Karten und Abbildungen —, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Abstract

This project’s aim is to find a WebGL based alternative to the Java implementation of Open-
Pixi, a Java-based Particle-in-Cell (PIC) simulation software, and to add a third dimension. For
this purpose, an existing JavaScript library, three.js, was chosen. A handful of approaches are
explored and the resulting prototypes are then compared in terms of speed, as performance is a
main concern. A shader-based implementation, the best performing of the prototypes, is then ex-
plained in more detail and recommendations for the future development of OpenPixi are given.

iii

Contents

1.4 WebGLl
. FEE.JS| « . o e

[1.6 General-Purpose Computing on Graphics Processing Units|

Implementation|

2.1 Methodology|
2.2 Usage|
2.3 Portability|
24 Resources| L e
2.5 Canvas Prototype|
[2.6 Three.Js Prototype in Two Dimensions|
[2.7 Three.s Prototype in Three Dimensions|
2.8 GPGPU Prototype].

3 Results|

3.1 Testing Environment| L.
3.2 Comparison| e e e e e

AN W W W N = =

17
17
18

21

23

27

CHAPTER

Introduction

In this chapter I will introduce some background knowledge about the problem at hand. In the
following chapter I will explain the prototypes and the methodology behind them. Finally I will
compare the prototypes’ performance and give an interpretation of the results. The paper then
concludes with recommendations for future work.

1.1 Motivation

The motivation behind this piece of work was to effectively use the Graphics Processing Unit
(GPU) for OpenPixi, a Java-based Particle-in-Cell (PIC) simulation software. On the one hand
it should be used for rendering the graphics, and on the other hand for computing the particle’s
movement. Currently OpenPixi’s web page displays its Java application, although it is possible
to download it and to run it locally. As Java applications tend to run slowly in browsers and
web-accessibility was a main concern, WebGL was chosen to develop an alternative application
in, because it is included in all modern web-browsers and makes use of the GPUs computing
powers.

1.2 Particle-in-Cell Simulation

Particle-in-Cell (PIC) simulators simulate motion of charged particles in an electro-magnetic
background, so-called plasmas. The motivation for examining plasma physics is the estimate
that 99% of the matter in the universe is in the plasma state. PIC methods have been in use since
as early as the 1960s [1]]. Plasma simulations are used to describe magnetically- and inertially-
contained fusion plasmas and to gain understanding of plasmas in space and man-made plasmas
that occur in ion guns, microwave devices or nuclear explosions. They have also been applied
to problems in solid and fluid mechanics [2], [3[], [4]. Generally PIC codes use a grid, where
electric and magnetic fields are defined on the grid points through which the particles move. For
each time-step the next position is calculated according to the particle’s position inside the grid

1

Integration of equations Particle loss/gain at the

of motion | boundaries (emission,
F —m= v —= x absarption, etc.)

Interpolation of fields WMante Carlo callisions
10 particles a of motion
(EB) —= F v, —= v

Integration of field Interpolation of particle
equations on grid st sources to grid
ey — (EB) (X v) —- (.|_J‘)

Figure 1.1: Flow Schematic for the PIC Scheme taken from Verboncoeur (2005) [1]. When
using a collisional model, Monte Carlo collision schemes are applied.

and its set of properties. Equations associated with these kind of codes are the Lorentz force as
equation of motion, solved in a so-called particle mover and Maxwell’s equations calculated in
the field solver to determine the electric and magnetic fields.

A PIC code usually consists of four components (see figure[I.1)):

e Particle Mover:
The particle mover solves the equations of motion for each particle. It also implements
prepare and complete methods, which synchronize the velocity and the position in time.
This is used to perform collisions among particles and between particles and boundaries

o Interpolator (particles to grid):
Charged particles produce electrostatic fields when they are atf rest. Moving charged par-
ticles produce currents which in turn produce magnetic and electric fields. These charge
and current source terms need to be interpolated to the field mesh.

o Field solver:
Solves Maxwell’s equations or more generally, partial differential equations.

o Interpolator (fields from grid to particle):
Interpolates between particles at arbitrary positions and grid points.

1.3 OpenPixi

OpenPixi is an open-source PIC simulator developed in Java. Several constants of the simulation
like the number of particles or strength of certain forces can be changed interactively. It is also
possible to switch between different models for solving the equations. Future plans include a
3D version and interactive distributed versions.

As the program grew gradually in size and complexity, the code soon lacked a clear model.
Initially it was planned to refactor the code into something more easily maintainable. Vari-
ous ‘code smells’ can be detected, a fact that further promotes refactoring. Code smells are
symptoms in the code that indicate a deeper problem but which do not keep the program from
functioning properly. Consequently modularity, readability, and maintainability were kept in

2

mind when developing the prototypes. JavaScript, being a multi-paradigm language, supports
many possibilities for this matter. Transporting existing Java code to JavaScript is thus relatively
easy.

1.4 WebGL

The Web Graphics Library (WebGL) is a JavaScript 3D/2D graphics application programming
interface (API). It is royalty-free and based on OpenGL ES 2.0 which is exposed through the
HTMLS5 Canvas element as Document Object Model interfaces. Furthermore WebGL is also a
shader-based API using the OpenGL shading language (GLSL), which enables code to be exe-
cuted on a computer’s GPU. WebGL as a web-standard is integrated into the major browsers like
Safari, Google Chrome, Mozilla Firefox and Opera, and enables plugin-free 3D applications. It
is designed and maintained by the non-profit Khronos Group. It was initially released on March
3,2011 [3].

1.5 Three.js

Three.js is a lightweight JavaScript library that abstracts away the lower-level API calls. This
way it makes developing WebGL applications easier and more productive. Three.js was created
by Ricardo Cabello Miguel (known by his online handle - mr.doob) and the first version was
released in 2010. Three.js is open-source with its source code located on github. It is included
within a web page by linking to a local or remote copy. As the first versions rendered to Scalable
Vector Graphics (SVG) and Canvas and only later adapted to WebGL, three.js offers a graceful
fallback for simple scenes when WebGL is not supported by rendering to canvas or SVG. It was
chosen mainly or its popularity and ease of use [J5].

Figure [1.2] should serve as an introduction to three.js and aid in reading the prototype’s
source code. This code initializes a three.js scene complete with renderer and camera. It also
creates a colored cube and places it in the scene and rotates it per render-call.

1.6 General-Purpose Computing on Graphics Processing Units

General-purpose computing on graphics processing units (GPGPU) is a term used when compu-
tations which are usually done on the central processing unit (CPU) are executed on the GPU,
that is usually reserved solely for computer graphics. The GPU offers solutions for applica-
tions that need high arithmetic rates and data bandwidths. While the CPU is optimized for high
performance on sequential code, the graphics computations on the GPU are of highly parallel
nature. The speed, increased precision and expanding programmability of the hardware make
it especially attractive for general-purpose computing. For this reason NVIDIA’s compute uni-
fied devices architecture (CUDA) and the open computing language (OpenCL) have become
quite popular. CUDA is a parallel computing platform and programming model that allows di-
rect access to the parallel computational elements of supported GPUs. OpenCL, a framework
for parallel programming of modern processors, also allows developers to use the GPU. An

3

<script src="js/three.min.js"></script>
<script>
var scene = new THREE. Scene () ;
var camera = new THREE. PerspectiveCamera (
75, window.innerWidth/window.innerHeight, 0.1, 1000);

var renderer = new THREE. WebGLRenderer () ;
renderer.setSize (window.innerWidth , window.innerHeight);
document .body. appendChild (renderer.domElement) ;

var geometry new THREE.CubeGeometry (1,1,1);

var material = new THREE. MeshBasicMaterial ({ color: 0x00ff00});
var cube = new THREE.Mesh(geometry , material);
scene .add (cube) ;

camera. position.z = 5;

var render = function () {
requestAnimationFrame (render) ;

cube.rotation.x += 0.1;
cube.rotation.y += 0.1;

renderer.render (scene, camera);

)i

render () ;
</script>

Figure 1.2: Creating a basic scene in three.js: the basic components scene, camera and ren-
derer are the core of any three.js application. A render function that repeatedly calls ren-
derer.render(scene,camera) is needed to make any object added to the scene appear. In this
case it is a simple cube. The requestAnimationFrame(render) method calls the render function
again but only if the tab is currently displayed. This aims to help save resources. The code is
taken directly from the official three.js homepage [6]

OpenCL implementation for OpenPixi also exists, and since WebCL was released in March,
2014, it might be considered for future development. WebCL, which is a JavaScript binding
to OpenCL, is not natively supported on current browsers at the time of this writing. Conse-
quently it was not considered in this project. To use WebGL for GPGPU, one needs to recast
computation into graphic terms. What this means is described in the following.

All of today’s GPUs organize their computations in a similar matter called the graphics
pipeline. This pipeline consists of several stages further explained abridgedly: The input of
the pipeline is a list of vertices in object coordinates. The first stage transforms these vertices
from object to screen space, performing lighting calculations and assembling them into trian-
gles. Next, the rasterization stage determines the screen positions covered by said triangles and
interpolating per vertex values resulting in a fragment for each pixel location. In the fragment

4

<script id="someShaderID" type="x—shader/x—fragment">
//some shader code...

</script>

Figure 1.3: Code for a fragment shader. ‘x-fragment’ in line 1 can be replaced with ‘x-vertex’
to denote it as vertex-shader. The shader’s ID can be any string. The shader code needs to be
compilable and written in GLSL.

stage, color is computed for each fragment using the interpolated values from the previous step.
This step can also take values from a texture. The vertex and fragment processing are usually
programmable by the user in form of custom vertex and fragment shaders.

Three.js allows shader programming by making use of a shader material which contains a
list of uniforms (read only variables that are consistent across vertex and fragment shader, and
serve as input), a fragment shader and a vertex shader. The shader-programs are written as text
inside the script and read out by three.js by pointing at them. The language used for shader-
programming is GLSL. The GPGPU prototype uses a method called render to texture (RTT).
This means that the particles’ coordinates are read, updated and written to a texture for each
render-loop-iteration. It is explained in detail in section 2.2.

GPGPU inside three.js

In chapter [2] I propose a three.js prototype that uses custom shaders to implement GPGPU. In
this paragraph I want to give an overview of how shaders are used inside three.js. How GPGPU
is applied exactly can be found in section In three.js both vertex and fragment shader can be
written by hand, the latter executing the bulk of the calculations. The vertex shader operates on
every vertex, while the fragment shader operates on every fragment produced by rasterization.
In the general case, this means changing the vertex’ position and interpolating data between
vertices that form a fragment. Shader code is included by adding a script in the manner found
in figure [[.6] The code needs to be compilable and written in GLSL. GLSL itself is a C/C++
similar high level programming language for parts of the graphic card. The main types of GLSL
are float, int, bool and sampler. Vector and matrix types are also supported. Samplers are used
mainly for reading textures. Furthermore three types of inputs and outputs exist: attributes,
uniforms and varyings. Attributes, which are input values that change every vertex can only be
used for the vertex shader. Uniforms do not change during a render pass, but can be used by
both shaders. Attributes as well as uniforms are read only. Varyings are read- and writable in
the vertex shader but read-only in the fragment shader. Additionally three.js offers a few pre-
defined uniforms to make programming shaders easier. These uniforms consist of matrices used
for viewing and modeling transformations. These are used to transform coordinates from object
space to world and camera space and camera position. To run the shader code it must be used in
a shader material and the material in turn applied to a mesh (figure[I.4)). The mesh also needs to
be added to a scene and rendered to make sure the shader-code is actually run.

O 0 N N R W N =

[E
o= O

[...]
var someShader = new THREE. ShaderMaterial ({

uniforms: {
someFloat: { type: "f", value: 0.0 }

}

vertexShader:
document. getElementByld ("someVertexShaderID ") .textContent ,

fragmentShader:
document. getElementByld ("someFragmentShaderID ") . textContent

})

var mesh = new THREE.Mesh(new THREE.SomeGeometry(...), someShader);
scene .add (mesh) ;

[...]

Figure 1.4: A ShaderMaterial is created and applied to a mesh of arbitrary geometry. Uniforms
are an array of values of certain types. The types possible are accepted types of GLSL. The
names of the values need to match the names inside the shader’s code.

1.7 Related Work

As mentioned above, particle-in-cell simulation has been employed since the 1960s. So a vast
amount of related literature can be found. With regards to computer simulation recent work
seems to have concentrated on enhancing performance and advancing physical models which
aim to make results more accurate [7]. Furthermore solutions for problems of numerical analysis
in this field are developed further as more elaborate physical models need more complex inte-
gration techniques [8]. A broad overview of PIC simulations and plasma simulation in general
can be found in Birdsall’s and Langdons’s book ‘“Plasma Physics via Computer Simulation™ [4].
Birdsall’s and Langdon’s book together with Verboncoeur’s article [[1]] are also cited by Open-
Pixi’s github page. Using the GPU highly parallel architecture for custom programming has
only been possible for a couple of years. Utilizing parallel programming for PIC simulation has
been considered for example in [9] and [10]. An approach similar to ours, using frame buffer
objects and textures in the Open Graphics Library can be found in [11]]. This project however
takes on a novel approach: albeit using existing ideas and concepts, it proposes a browser-based
application with usability in mind.

CHAPTER

Implementation

In this chapter the implementations themselves are discussed. Although it was clear from the
beginning that a WebGL Implementation was the main goal of this project other web-based
alternatives to a Java application were considered. The most basic approach is a prototype using
the HTMLS5 Canvas element without the help of a library. The next prototypes explore the
possibilities of three.js. The final one explores a more sophisticated approach to the problem.
Screenshots of the prototypes can be found in the appendix.

2.1 Methodology

At first a very basic prototype was designed, which shows the capabilities of a plug-in free,
HTMLS5-based approach. The other prototypes use three.js for creating the scene. The last
one explores the possibilities of GPU enhanced calculations. To ensure the equal calculation of
frames per second I used the library stats.js across the three.js versions. In the canvas prototype
I calculate them by hand. I tested these calculations against the ones done by stats.js and found
them to be the same. The FPS are influenced chiefly by the number of particles. All of the
prototypes utilize a render and simulation loop. The latter, calling itself, calculates the FPS
or updates stats.js. The time-steps executed per simulation call can be altered. Changing the
attributes however requires a reset.

For graphical user interfaces (GUI), many JavaScript libraries can be found across the in-
ternet. For three.js dat.gui has been used widely. I also included it in the three dimensional
prototypes. While its appearance is limited, it still offers many control elements. It supports
folders, presets, saving values and listening for events. Simple buttons can be added by making
a GUI-element call a function.

The prototypes all use a rather basic model for particle movement. The simulation consists
of particles and a bounding box. OpenPixi uses a solver class which makes use of a certain force
to calculate the motion of particles. Various solvers are available to choose from in the OpenPixi
application. These include Euler, Semi-implicit Euler, Euler Richardson and Leapfrog. Each

7

implements its own model for motion. For the prototypes the Euler-solver was chosen for its
simplicity. This solver calculates acceleration, velocity and sets the position of the particle for
each time-step. This is done in the following way: The force F' that is being exerted on the
particles in our model results from multiplying the velocity of the particle with the negative drag
constant —d and the constant gravity vector g. It is modeled as a function of the current velocity
v; and the particle’s current position x;.

F(vi,xi) = —dsxvi+mxg 2.1

The current acceleration-vector a; is computed by dividing the current force F by the parti-
cles’ mass m:

a; = F(‘;fnxt) (2.2)

In the next step the new position is set by adding the particles’ current velocity times the
time step dt to the previous position:

Xipde = Xt + Ve x dt (2.3)
Finally the new velocity is updated as well by multiplying the previous with the acceleration:
Vitdt = Vi + a; * dt (24)

This is done for each particle and render-loop iteration. Boundaries at the edge of the simulation
area are detected and the direction of the particles is changed accordingly. This means that
as soon as a particle’s position is outside boundary limits along a certain axis, the sign of the
corresponding part of the velocity vector is changed. It would be possible to include the particles
diameter when detecting boundary limit collision, but this was not considered for the prototypes.
The above suffices to benchmark the prototypes in terms of speed. Grid and collision detection
have not been implemented.

Parallelization

The fact that we have a large amount of particles with equal properties, requiring the same
calculations for every simulation step, makes this a suitable problem for parallelization. Since
vertices and fragments can be calculated in a parallel manner on the GPU, the GPGPU prototype
interprets every particle as a vertex and every particle’s position is written to a texture by the
fragment shader. The fragment shader does this by writing the position on this texture as values
usually interpreted as color. The RGB values thus become XYZ values. The vertex shader
then reads the texture’s values and updates the vertices positions accordingly. This happens for
every particle in a parallel way: The vertex shader reads the position texture and updates the
particle’s position on screen and the fragment shader updates the position texture by calculating
the next position. The GPU’s parallel computation methods can be applied to our problem in
this manner. At least particle movement is accounted for this way and high numbers can be
simulated without a large decrease in performance. Depending on the model used for collision

detection, this principle could also be applied. A grid could be implemented for example and
collision detection would concentrate only on grid-cells which contain particles. Each grid-cell
could then be simulated in a parallel way. In the proposed model for particle movement a texture
is used where each pixel holds four values (for red, green, blue and opacity). While this model
is particularly useful for storing the particle’s position vector, it becomes difficult to use, when
more complex data structures are required. Although more models for collision detection exist,
they would still have to be translated into graphic terms when the development is limited to
WebGL.

2.2 Usage

Each prototype can be started by opening the respective HTML-file in a Chromium-based browser,
Firefox or Internet Explorer. WebGL was not successfully tested with Safari. It is necessary to
have the scripts located in the correct directories. As mentioned above a few parameters can be
set by the user. The fill-in form is replaced by dat. gui after the third prototype. Also it is possible
in this implementation to follow random particles by pressing the ‘S’-key and to terminate this
mode with the ‘A’-key. This was done to have a further look at the possibilities of three.js. Navi-
gating in the three-dimensional prototypes is done by pressing the left mouse button and moving
the mouse around. Holding down the scroll button and moving the mouse back and forth zooms
in and out. The right mouse-button in addition enables moving the 3D view from left-right or
up-down. In the case that WebGL or some of its features are not supported, an error-message
appears. Error messages from inside WebGL or JavaScript are printed to the console, which
should be checked if the application is behaving erroneously.

2.3 Portability

As of now WebGL is at least partially supported in all modern web-browsers. While mobile
browsers do offer WebGL, there are a only few devices which fully support it. There also seems
to be trouble between the Almost Native Graphics Layer Engine (ANGLE) which translates
OpenGL calls to Window’s DirectX calls when porting from Linux to Windows. Making use
of floating point textures, as is done in the last prototype, is currently not supported on mobile
hardware. Sometimes the use of textures inside the vertex-shader is not supported as well. It
should also be noted that most GPUs put a limit on the size of textures.

2.4 Resources

The canvas prototype is modeled after an application simulating molecular dynamics. It can
be found at [12]]. For the three.js prototypes the official examples, found in the source code
examples-directory have been a lot of help. Contained within the code, a few very useful scripts
have also been found. Details on what scripts are used exactly can be found inside the prototype-
code. The GPGPU-birds example [13]] deserves most attention, as it serves as the basis for the
GPGPU-prototype.

2.5 Canvas Prototype

This prototype uses the HTMLS5 Canvas element to render the particles on screen. All calcula-
tions are done inside JavaScript. To simulate the particle movement, a particle object encapsu-
lates mass, position, acceleration and velocity. A solver taken from OpenPixi’s source-code and
pre-defined force is used to calculate the next position. The Euler-solver calculates the accelera-
tion depending on mass, gravity and drag. The velocity is calculated dependent on acceleration
and delta-time, finally the coordinates according to velocity are set. The delta-time is a constant
set to control he the speed of motion. To throttle speed the user can change the steps per frame.
The movement is calculated for every particle in the particle array of size N. The paintCanvas()
method, then again iterates over the updated particles to draw them. To enhance performance,
the particles are first drawn on an off-screen canvas. This means that only one particle is drawn
onto the second canvas, and then redrawn N times to the visible one. This is less expensive than
having to draw each circle N times.

2.6 Three.js Prototype in Two Dimensions

The second prototype uses the same components as the first. PaintCanvas() has been replaced
with a render() method. For each frame, again, a set of step is executed. The particle object
now contains its own mesh, which in turn contains its position. The position is then updated
according to the same formulae as before. Meshes in three.js consist of a geometry and material.
The former holds all data necessary to describe a model, the latter describing its appearance.
For these meshes a basic two dimensional circle shape is being used, the material only denoting
the color to fill in. While technically being a three-dimensional scene, the camera is fixed at a
certain angle and z value, creating the impression of looking at a plane.

2.7 Three.js Prototype in Three Dimensions

At first a third coordinate was added to the particles properties and calculations. It still uses
the same formula for motion. The circle mesh has been replaced by a sprite, which as opposed
to the circle mesh always faces the camera. It is already implemented this way inside three.js.
A sphere-mesh was tested first, but soon turned out to be computationally to expensive. The
popular dat.gui has been added in this prototype. To make the bounding box visible, three grids
have been added in red, green and blue.

2.8 GPGPU Prototype

Overview

The GPGPU prototype approaches the problem in a more elaborate manner: to speed up the
simulation, it uses code executed on the graphics hardware. This way the browser’s limitations
to the CPU are overcome. It does this in a way described in[2.1] The prototype uses a simulation
loop which calls a separate simulator to calculate the new position of the particles and a render

10

Pasition

L3 = +—p

texture double |
buffer

Velocity ‘ » i

texture double
buffer

Static info

per particle:

time of birth (tob),
particle type (pt) ...

Figure 2.1: Data storage on textures from Latta (2004) [14]. The RGB values are reinterpreted
as XYZ-coordinates, but can also be used for other data and passed between two buffers. This
buffering is further described in the simulation part of section [2.8]

function for updating the position and rendering the particles to the screen. So for every iteration
the simulator updates particle position, velocity and acceleration using the GPU and then passes
these calculations to the rendering part, where the actual particles are updated accordingly.

Data Textures

The data is passed between these parts in the form of a texture. Each pixel of the texture usually
holds the information for red, green, blue and opacity values.These values are interpreted as the
X-, y- and z-coordinate of a particle’s position. The opacity value is not used. This is shown
in figure [latta]. The velocity in each direction is stored in the same way. This happens for
acceleration analogously. Some devices do not support floating-point textures. In that case the
values for each pixel would be clamped at a certain point after the comma. As less information
can be stored this would result in a very limited space for particles to be in. This is hardly the
case with desktop computer and laptop hardware. Our testing devices were also not limited
by this and I use 32-bit-floating point values. Additionally reading from textures inside the
vertex shader is also sometimes not supported, making it impossible to lookup and to update
the particles’ position. This process is explained further in [[11]]. The cited paper is based on
OpenGL but the technical aspects are the same for WebGL. Because GPUs usually limit the size
of textures possible the textures size is limited to 1024 squared pixels. This makes rendering of
more than 1,000,000 particles possible and should be handled well on most modern GPUs.

Simulation Part

In an initialization-step a data-array is generated for each particle’s acceleration, velocity and
position. Each array is then stored in a texture in the way described in the previous section.
Now for every simulation-call, a texture is taken from one frame-buffer object and fed into the
fragment shader. Each shader takes one or two textures and the texture’s resolution as input via

11

a list of uniforms and writes the calculated output as the color value to each texture fragment.
To look up the correct texture pixel the window-relative coordinates of the current fragment
are divided by the texture’s resolution with the result used as lookup-vector. The shader then
renders the texture using a quad-geometry covering the whole viewport to another frame-buffer
object since it is not possible to write the shader program’s result to the same texture it read
from. In the next step the direction is reversed and the data is read from the second texture, then
updated and written to the first. This is called ping-pong or more generally double buffering.
The fragments result in a colored pixel on the texture after rendering. Three shaders used are
each responsible for updating one texture according to the rules found in section[2.1} Since the
fragments of the texture are updated in a parallel way, a performance gain can be observed. The
texture containing the updated position is then passed to the render method in the main part of
the prototype.

Render Part

The render part makes use of a vertex shader to read the new position from the texture created
by the simulator. The particles are modeled by using three.js’s ParticleSystem which basically
consists of an arbitrary number of vertices without fragment shading in-between. Three.js of-
fers a pre-defined vector containing the initial coordinates of the vertices of the particle system
in object-space. This vector’s x- and y-coordinates are used to look up the correct pixel in the
texture for each vertex. The particle system’s vertex-coordinates have been initialized with val-
ues that correspond to the center of each texture pixel when being used for lookup. After the
simulator has been called and a texture containing the updated positions has been received, this
texture is then fed into a vertex shader. There each vertex is set to a new position in accordance
with the data stored in the texture. This too happens in a parallel way, and aids in enhancing the
performance of the simulation as a whole.

Implementation

In the implementation the simulate() function seen in figure [2.2] takes care of the ping-pong
rendering. The render method is called in every render-loop iteration. After each call a boolean
is set to reverse the direction of the rendering. The render functions called each time, take input
textures pass them to a shader and then write the output to the second buffer. What happens
inside each of these functions can be seen in figure [2.3] The mesh in our case is a plane whose
ShaderMaterial is being overwritten for using a different shader. The texture is then rendered
onto the mesh and read by the fragment shader. Figure[2.4] shows how the data from one texture
is read and then being used to update the position texture. The render method which called the
simulator, then uses the output to update the vertices. How the vertex shader does this can be
seen in figure[2.5]

12

O 0 N N R W N =

]

this.sinnﬂate = function () {
if (pingpong) {
renderAcceleration (rtVell , rtAccl, rtAcc2);
renderVelocity (rtPosl , rtAccl, rtVell, rtVel2);
renderPosition (rtPosl , rtVel2, rtPos2);
} else {
renderAcceleration (rtVel2, rtAcc2, rtAccl);
renderVelocity (rtPos2, rtAcc2, rtVel2, rtVell);
renderPosition (rtPos2, rtVell , rtPosl);
}

pingpong = !pingpong;

Figure 2.2: The simulation-loop found inside SimulatorRendererjs. At first the acceleration
texture is updated (according to formula [2.2)) then the new acceleration is combined with the
old velocity into the updated velocity texture (formula[2.4). Finally the position is updated and
stored in the second position texture (formula[2.4)). In the next iteration the direction is reversed.

The texture-names have been shortened in this example.

13

O 0 N N R W N =

—_ = = e
w N = O

14

function renderPosition(position, velocity , output) {
mesh. material = positionShader;

positionShader.uniforms. texturePosition.value = position;

positionShader . uniforms. textureVelocity . value velocity ;
renderer.render (scene, camera, output);

this.currentPosition = output;

Figure 2.3: The mesh’s (in our case a plane) material is overwritten to load the required shader-
program. The uniforms, two textures, are updated and the current position set. The other render
methods work analogously.

<script id="fragmentShaderPosition" type="x—shader/x—fragment">
uniform vec2 resolution;
uniform sampler2D textureVelocity;
uniform sampler2D texturePosition;
void main () {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec3 position = texture2D (texturePosition , uv).xyz;
vec3 velocity = texture2D (textureVelocity , uv).xyz;
gl_FragColor=vec4 (position + velocity, 1.0);
}
</script>

Figure 2.4: Position- and velocity-textures are read, then added together. This is done according
to The resolution is necessary to calculate a correct lookup vector. The other two shaders
are responsible for the remaining calculations. Each pixel now holds the values for the particles’
coordinates. The opacity value is set to 1 throughout all shaders.

14

<script id="particleVertexShader" type="x—shader/x—fragment">
uniform sampler2D lookup;
void main () {
vec2 lookupuv = position.xy ;
vec3 pos = texture2D (lookup, lookupuv).rgb; //
vec4 mvPosition = modelViewMatrix * vec4(pos, 1.0);//
gl_PointSize = 1.0;
gl_Position = projectionMatrix *x mvPosition;
}
</script>

Figure 2.5: Lookup-texture is read out and each vertex’ position updated. The necessary
view-transformation is also applied. The point size determines the particle’s appearance.

15

CHAPTER

Results

In this chapter I will present the results of the prototype evaluation. I measured the FPS for
every prototype on two different computers. Furthermore I tested the prototypes across mobile
devices and browsers and compared the results. Floating point textures and texture support in
vertex shaders are not supported on certain devices. The computers and mobile devices are
further described below.

3.1 Testing Environment

The prototypes were tested on the following devices described in tables[3.1] and

Computer A Computer B
OS Windows 7 64 Bit Windows 7 64 Bit
Processor | Intel Core 13 M370 @ 2,4Ghz | Intel Core i5 4200H @ 2,8Ghz
RAM 4,0 GB 8,0 GB
GPU NVIDIA GeForce 310 NVIDIA GeForce GTX 760M

Table 3.1: Specifications of computers used for testing the prototypes.

While computer B is generally a more powerful machine the computers’ most notable differ-
ence regarding our use is their graphics cards. The benchmarking tool 3DMark06 [|15]] gives us
the median values of 3274 for computer A and 19221 for computer B. The higher score makes
it obvious that computer B is supported by the better graphics hardware.

Mobile Device A | Galaxy Nexus with Android 4.3
Mobile Device B | iPhone with i0S7

Table 3.2: Mobile devices used for testing the prototypes

17

While both mobile devices (see figure [3.2) did not support WebGL they still could be used
for testing fall-back methods. Three.js’s CanvasRenderer which renders by using the slower
Canvas 2D Context API was used to test the three.js prototypes. The Canvas in CanvasRenderer
refers to the fact that it uses Canvas instead of WebGL to render scenes. Both WebGLRenderer
and CanvasRenderer are embedded in the web page through the canvas element.

3.2 Comparison

FPS were measured by monitoring them over the span of 10 seconds and noting minimum and
maximum with constant steps per frame. The difference between the browsers was negligible
on computer B and barely noticeable on computer A. The three.js implementations were not
successfully tested in Safari 5.1.1 on a MacBook Pro A1278, because WebGL failed to load
properly. The tables [3.3] and [3.4] contain the measured FPS for each prototype and a given
number of particles N. FPS values above 60 were cut off, as animations are then percepted as
smooth and visually appealing. Also higher numbers make no difference in animation on 60Hz
monitors. The prototypes can still be compared however by looking at their FPS values for
high particle numbers. A hyphen was put where the simulation took above 10 seconds to load
or did not move, once loaded. Since the three.js 3D prototype uses textures which can slow the
animation down I also tested it by not supplying a texture. Three.js then falls back onto WebGL’s
gl_point to render the particles. This makes it possible to compare it to the GPGPU prototype,
which uses the same method. The difference between rendering with and without a texture was
only at around 3 to 4 FPS. For this reason the values are not included in the tables. The three.js
3D protoype is able to handle 10000 particles with 7 FPS on computer B however when gl_point
is used. This means using textures is not feasible for higher particle numbers.

We can clearly see that computer B performs better than computer A. The difference be-
comes already apparent in the canvas prototype which does not use the GPU for acceleration.
The differences become even more evident when comparing the prototypes which are based on
WebGL. The advantage of using the GPU can be further emphasized by comparing the GPGPU
prototype to the 3D-prototype in three.js. This means that the effort put into programming using
the proposed technique really pays off. The mobile devices do not handle three dimensional
scenes as complicated as our implementations. The FPS results were found to be approximately
the same on both phones. The HTMLS5 Canvas prototype supported 100 particles at around 30
fps. Around 5 FPS could be reached for the three.js prototypes with canvas fall-back imple-
mented, excluding the GPGPU implementation as a fall-back was not possible. Higher particle
numbers resulted in very little movement or difficulties loading the application.

18

N: [100 [1000 [10000 [100000 | 1000000

Canvas 35 3 - - -
three.js 2D | 46-47 | 3 - - -
three.js 3D | >60 27-28 | - - -
GPGPU 30-38 | 30-38 | 30-37 | 29-31 9-11

Table 3.3: FPS measurement results for computer A for each prototype and a certain number of
particles N.

N: | 100 | 1000 | 10000 | 100000 | 1000000
Canvas >60 | 7 1 - -
three.js 2D | >60 | 7 1 - -

three.js 3D | >60 | >60 | - - -
GPGPU >60 | >60 | >60 >60 24-26

Table 3.4: FPS measurement results for computer B for each prototype and a certain number of
particles N.

19

CHAPTER

Conclusion and Future Work

A WebGL based alternative for OpenPixi’s Java application was found by exploring the pos-
sibilities of a pure HTML5 prototype and two- and three-dimensional prototypes that use the
versatile and popular graphics library three.js. Background information on particle-in-cell sim-
ulations was also given. A method was implemented which allows to effectively use the GPU to
accelerate computations for particle movement by storing the particles’ coordinates in a texture.
This results in the simulation being able to handle particle numbers of more than one million
relatively well. Using the graphics card this way for general computations is called General-
purpose computing on graphics processing units or GPGPU. Although programming on the
graphics hardware makes it necessary to translate computing problems into graphical terms the
performance gain shows that this approach pays off. The prototypes’ performance has then been
compared in terms of FPS, where the results show that the GPGPU prototype is performing best
on desktop computers, surpassing the others immensely. This makes it the most attractive for
future development. Since mobility was also a concern, this solution however does not seem
to be as attractive for mobile development because mobile devices usually do not support the
techniques used in the GPGPU prototype. Instead other solutions should be considered if future
work concentrates on mobility. Using three.js’s own fallback CanvasRenderer which makes no
use of WebGL for this results in unsatisfactory performance.

As shown in this work GPGPU inside the browser is not only possible but also very feasible.
Since collision detection (between particles and mesh, and particles themselves) is a computa-
tionally expensive procedure using the GPU for this as well seems only natural. As computing
on the GPU is limited by the need to remodel program flows to graphic processing, one may
prefer a simpler three dimensional solution, doing all calculations inside JavaScript. Although
JavaScript engines are constantly being developed further it will still be behind a GPU solution
performance-wise. Since errors inside the shaders are only printed as general WebGL errors it is
hard to debug shader code. Although the JavaScript console of web-browsers usually also print
the line number where the WebGL error was thrown, it takes a lot understanding of three.js inner
workings to understand what went wrong. I tested two Chrome/Firefox extensions which offer
WebGL content tracing.

21

WebGL inspector [[16] offers more features specially made for WebGL, but has not been
updated for a while. Notably it lets you keep track of what shaders are running and makes
it possible to disable and enable them at run-time. The other, Google’s Web Tracing Frame-
work [[17], makes it possible to further make connections between JS code and WebGL content.
Currently it is still under construction.

Mobile web-browsers do not yet fully support WebGL. Additionally not every mobile de-
vice has the hardware necessary to render WebGL scenes. This makes a canvas solution more
attractive. Three.js can also render 3D content to canvas without the use of WebGL. This how-
ever results in only few FPS, since the CPU now needs to do the graphics calculations. Other
libraries provide a better solution to this problem however. One of them, pixi.js [18], is modeled
for two dimensional applications, using WebGL where possible and falling back to canvas where
not. If a faster web-based OpenPixi application in two dimension is desired, pixi.js would prob-
ably be the best choice. OpenPixi also has an OpenCL implementation. It would be possible to
use WebCL to transport this functionality to a web-based version. This would probably make it
easier to use the GPU, especially when more complex data structures are needed or translating a
programming model into graphic terms is not possible.

It should also be mentioned that user interfaces are not limited to existing libraries in three.js.
It would be possible to design one’s own, by placing static elements at a fixed position in front
of the camera. Ray tracing, tracing the path of light through pixels, can be used for determining
which elements are clicked. Examples for this can be found inside the examples directory [19].

WebGL remains a highly versatile environment for 3D-graphics applications and as shown
in this work is also suitable for performance enhancement through GPGPU. Three.js serves as
an adaptable and accessible framework to develop WebGL applications in. Its popularity and
the fact that it is constantly updated adds to its appeal.

22

APPENDIX

Screenshots

Figures A.1-4 show screenshots of the prototypes discussed in chapter 2] The images result
from testing the prototypes on computer B whose specifications can be found in chapter [3] The
prototypes were all loaded with 100 particles and no gravitational forces. Figure A.3 and A.4
also include the libraries stats.js for FPS-measurement and dat.gui which is used for graphical
user interfaces.

23

reset

N: 100

steps pet frame: 250
fps: |70

gv: |0

drag: (0.0001

Figure A.1: The HTMLS5-Canvas Prototype. The user can change number of particles N, steps
per frame, gravitational force in y-direction and the drag constant. The FPS are updated each
render-loop iteration. To have a change of values take effect the reset button must be clicked.

24

reset
N: 100
steps per frame: 250
fps: |60
gv: [0

drag: |0.0001

camera.z: 250

Figure A.2: The two dimensional three.js prototype. It has the same control elements as de-
scribed in figure A.1 with the addition of the camera’s position on the z axis which enables the
user to zoom in and out.

25

Figure A.3: The three dimensional three.js prototype. The screenshot also includes the stats.js
seen in the upper left corner. Visible in the upper right is the graphical user interface made with
dat.gui. The simulation uses a turquoise circle as sprite for the particles appearance.

Figure A.4: The GPGPU prototype. In contrast to figure A.3 no sprite is in use and the particles
are represented by WebGl’s gl_point.

26

[12]

Bibliography

J P Verboncoeur. Particle simulation of plasmas: review and advances. Plasma Physics
and Controlled Fusion, 47(5A), 2005.

G.R. Liu and M.B. Liu. Smoothed Particle Hydrodynamics. World Scientific Publishing
Co. Pte. Ltd, 2003.

Byrne, Ellison, and Reid. A survey of solar flare phenomena. In Space Science Reviews,
Volume 3, Issue 3, pp.319-341, 1964.

C K Birdsall and A B Langdon. Plasma Physics via Computer Simulation. Taylor &
Francis Group, 2005.

Tony Parisi. Programming 3D Applications with HTMLS5 and WebGL. O’Reilly, 2014.
Official three.js website: http://threejs.org/docs/, April 22, 2014.

H Burau, R Widera, W Hoenig, G Juckeand, A Debus, T Kluge, U Schramm, T E Cowan,
R Sauerbrey, and M Bussman. Picongpu: A fully relativistic particle-in-cell code for a gpu
cluster. Plasma Science, IEEE Transactions on, 38(10), 2010.

T Tuckmantel, A Pukhov, J Liljo, and M Hochbruck. Three-dimensional relativistic
particle-in-cell hybrid code based on an exponential integrator. Plasma Science, IEEE
Transactions on, 38(9), 2010.

Xianglong Kong, Michael C. Huang, Chuang Ren, and Viktor K. Decyk. Particle-in-cell
simulations with charge-conserving current deposition on graphic processing units. Jour-
nal of Computational Physics, 2011.

George Stantchev, William Dorland, and Nail Gumerov. Fast parallel particle-to-grid in-
terpolation for plasma PIC simulations on the GPU. Journal of Parallel and Distributed
Computing, 2008.

Peter Kipfer, Mark Segal, and Ruediger Westermann. Uberflow: a GPU-based particle
engine. In HWWS 04 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pages 115-122, 2004.

Daniel V. Schroeder. http://physics.weber.edu/schroeder/software/demos/moleculardynamics.html,

April 22, 2014.

27

[13] Authors github page: https://github.com/zz85, example can be found at:
threejs.org/examples/#webgl_gpgpu_birds, April 22, 2014.

[14] Lutz Latta. Building a million particle system. Game Developers Conference, 2004.
[15] Official website: http://www.3dmark.com/, April 22, 2014.
[16] Webgl inspector github page: http://benvanik.github.io/webgl-inspector/, April 22, 2014.

[17] Google webgl tracing framework github page http://google.github.io/tracing-framework/,
April 22, 2014.

[18] Official website: http://www.pixijs.com/, April 22, 2014.

[19] http://threejs.org/examples, April 22, 2014.

28

	Introduction
	Motivation
	Particle-in-Cell Simulation
	OpenPixi
	WebGL
	Three.js
	General-Purpose Computing on Graphics Processing Units
	Related Work

	Implementation
	Methodology
	Usage
	Portability
	Resources
	Canvas Prototype
	Three.js Prototype in Two Dimensions
	Three.js Prototype in Three Dimensions
	GPGPU Prototype

	Results
	Testing Environment
	Comparison

	Conclusion and Future Work
	Screenshots
	Bibliography

