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Figure 1: Dataset Anna, 3D ultrasound of a fetus: visualization of the raw data (left), with all voxels filtered (middle) and
with only voxels contributing to the visualization filtered (right). Even though the middle and the right images are identical, the
filtering operation took 0.175s for the middle image and 0.098s for the right image using a Geforce 580 GTX GPU.

Abstract
In real-time volume data acquisition, such as 4D ultrasound, the raw data is challenging to visualize directly
without additional processing. Noise removal and feature detection are common operations, but many methods
are too costly to compute over the whole volume when dealing with live streamed data. In this paper, we propose
a visibility-driven processing scheme for handling costly on-the-fly processing of volumetric data in real-time. In
contrast to the traditional visualization pipeline, our scheme utilizes a fast computation of the potentially visible
subset of voxels which significantly reduces the amount of data required to process. As filtering operations modify
the data values which may affect their visibility, our method for visibility-mask generation ensures that the set of
elements deemed visible does not change after processing. Our approach also exploits the visibility information
for the storage of intermediate values when multiple operations are performed in sequence, and can therefore
significantly reduce the memory overhead of longer filter pipelines. We provide a thorough technical evaluation of
the approach and demonstrate it on several typical scenarios where on-the-fly processing is required.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Over the past years, ultrasound imaging has experienced dra-
matic improvements in quality, resolution, availability, and
range of indications. Ultrasonography is now a standard tool
in obstetrics, cardiology, gastroenterology, and many other

medical fields and the range of applications is constantly
growing. The technology has progressed rapidly from ini-
tial 1D signals over standard 2D sonography to 3D volumet-
ric ultrasound. In echocardiography, for example, ultrasound
is used to diagnose heart contraction efficiency, functional-
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Figure 2: Cardiac 3D ultrasound a) raw data visualization, b) filtering of all voxels, c) filtering of potential visible voxels. The
graph compares the performance of the pipeline used for visualizations b) and c) on a Geforce 580 GTX GPU. Data filtering for
visualization b) takes 0.076s seconds. Our approach is based on the efficient computation of the potentially visible set of voxels
(PVV) so that the expensive filtering operation is executed only on the PVV. For a PVV containing 17% voxels of the entire
dataset and a selected filtering method (lowest-variance filtering [vSHW∗12]), our total computation time sinks to 0.045s.

ity of the valve, and in intra-operative scenarios it is even
used as a navigational aid for minimally-invasive valve re-
placement. Recently, the rapid increases in processing power
coupled with advances in digital beamforming have enabled
the real-time capture of high-resolution 3D volumes hence
making ultrasound a true 4D imaging modality which paves
the way for a number of new important clinical applications.
4D ultrasound offers many potential benefits in the prena-
tal diagnosis of neurological problems by enabling the as-
sessment of grimacing, breathing movements, swallowing,
mouthing, isolated eye-blinking, and revealing the direction
of the limbs [LV11]. Similarly, 4D ultrasound provides sig-
nificant advantages in assessing heart defects [Ion10]. Re-
cent developments are even progressing towards portable 4D
scanners which open up new possibilities in point-of-care
medicine, e.g., for emergency medicine in crisis zones.

However, despite its advantages, the visualization of ul-
trasound data is plagued by several challenges. Compared
to other common tomographic imaging modalities such as
CT or MRI, ultrasound has a much poorer signal-to-noise
ratio and suffers from various acoustic artifacts such as at-
tenuation, focusing and interference [NPH∗00]. In volume
visualization these are particularly problematic as artifacts
can obscure relevant structures and hence affect the diag-
nostic value of the resulting image. Much research has gone
into the development of filtering strategies for the removal of
speckle noise and other artifacts, but effective methods typ-
ically have a considerable computational cost [vSHW∗12].
For static 3D data or prerecorded 4D sequences, filtering acts
as a preprocessing step and is therefore not performance crit-
ical. A complex filtering operation, even if it takes seconds
to process the whole volume, usually has only negligible im-
pact since it only has to be performed once (typically dur-
ing loading of the data). However, when data is streamed at

many volumes per second during a live examination, such a
delay becomes unacceptable. Thus, the effective visualiza-
tion of live 4D ultrasound data in clinical scenarios necessi-
tates solutions to this problem.

To address this challenge, we propose a novel approach
to visibility-driven processing of streaming ultrasound data.
Key to reducing the computational load of expensive filter-
ing operations is the fact that we do not need to apply the
filtering operation to the whole volume, but only to those
regions that will be contributing to the visualization. Typ-
ically, only a small fraction of all voxels will be visible
since they are either classified as transparent or occluded by
other structures. This observation is certainly not new and in
fact visibility culling and similar techniques are a mainstay
of many visualization and graphics algorithms. However, in
contrast to other approaches which exploit visibility infor-
mation for improving processing performance, we need to
account for the fact that filtering operations, since they mod-
ify the underlying data values, can themselves influence the
visibility. Our work presents a solution to this problem by
quickly identifying voxels which are potentially visible after
a subsequent filtering operation has been applied. The pro-
posed scheme guarantees that the resulting rendered image
is equivalent to applying the filtering operation to the whole
volume. The main contributions of this paper can be summa-
rized as follows:

• We introduce a new approach for visibility-driven filter-
ing of streaming volume data which avoids processing of
invisible (both due to transparency and due to occlusion)
regions of the volume but still guarantees the same visu-
alization result as processing the whole volume. This is
demonstrated in Figure 1.

• Based on this concept, we also present a novel archi-
tecture which exploits visibility information to reduce
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intermediate storage requirements for complex filtering
pipelines with multiple stages.

• We present a thorough analysis of the performance of
our system and demonstrate that the proposed approach
enables high-quality visualization of streaming 4D ultra-
sound data on current graphics hardware.

2. Related work

The topic of visibility has been extensively studied in com-
puter graphics and amounts to the classification of all ob-
jects in a scene as either being at least partially visible or
totally invisible. The task of rapidly identifying entirely in-
visible objects is of importance in any rendering system, but
it is especially crucial when interactive frame update rates
are desired. Ideally, it would be desirable to exactly identify
those objects that do not contribute to the generated image
in any way at zero cost and to draw only the visible parts
of those objects. The surveys by Bittner and Wonka [BW03]
and Cohen-Or et al. [COCSD03] provide a good introduc-
tion into basic techniques. Approaches include image-space
methods such as hierarchical z-buffering and hierarchical oc-
clusion maps, spatial subdivision (e.g., octrees, BSP trees,
K-D trees), portals, and potentially visible sets.

Deferred shading is a further related concept which aims
to move expensive operations (such as the evaluation of
complex shaders) to later processing stages where they are
only applied to those image regions that actually need to
be processed. First introduced by Deering et al. [DWS∗88],
a common realization uses two rendering passes where the
first pass simply stores the image-space depth and normals
of visible objects. The second pass then uses these val-
ues compute the final image. The deferred shading pipeline
allows for fast computation of differential surface proper-
ties, e.g., curvature magnitudes and directions. Hadwiger
et al. [HHSG05] use deferred shading on isosurfaces to
realize advanced shading effects such as ridge and valley
lines [HKG00, KWTM03] and curvature-based flow advec-
tion.

In the context of volume visualization, many techniques
for exploiting visibility information to accelerate the render-
ing process have been proposed. As occluded parts of the
volume can be easily skipped in ray casting (early-ray termi-
nation), most methods have focused on avoiding processing
of empty space. Early work by Levoy [Lev90] proposed a
hierarchical subdivison of the volume to skip empty regions.
A very common approach, originally introduced by Lacroute
et al. [LL94] for the shear-warp factorization volume render-
ing algorithm, is the use of a min-max octree in combination
with a summed area table of the transfer function to quickly
identify empty parts of the volume. Boada et al. [BNS01]
proposed a management policy which uses a hierarchical ap-
proach in homogeneous regions and regions of low interest
instead of a one-texel-per-voxel logic on the entire dataset.
Kraus and Ertl [KE02] introduced several variants of adap-

tive texture maps and applied them in volume rendering.
Mora et al. [MJC02] proposed the use of hierarchical oc-
clusion maps for hidden volume removal in an object-order
volume rendering algorithm. The elimination of occluded
but non-transparent parts of the volume is particularly im-
portant in the visualization of large data where costly disk-
to-main-memory or main-memory-to-GPU-memory trans-
fers need to be avoided. Most approaches employ a form
of bricking where the volume is subdivided into smaller
blocks [BHMF08, LLY06]. Gobetti and Marton [GM05] in-
troduced a voxel-based multi-resolution framework for in-
teractive rendering of large and complex models. They cou-
pled visibility culling, out-of-core construction, and view-
dependent rendering to achieve interactive frame rates. Kniss
et al. [KLF05] use the term deferred filtering to refer to a
two-pass volume rendering approach for compressed for-
mats. In the first pass, a local subset of the data is recon-
structed and the second pass can then exploit the GPUs
native interpolation capabilities. Crassin et al. [CNLE09]
suggested the use of information extracted from the pre-
vious frame to guide data streaming from slower memory
units. For the visualization of petascale volume data, Had-
wiger et al. [HBJP12] presented a visibility-driven render-
ing method which employs a virtual memory architecture.
They use visibility information to only fetch and reconstruct
needed bricks from a multi-resolution hierarchy. Fogal et
al. [FSK13] presented a detailed analysis of ray-guided ap-
proaches for large volume data visualization including an
evaluation of the effects of common tunable parameters such
as brick size. A common limitation of all these approaches,
with respect to our application, is that the volume is con-
sidered static, i.e., its values do not change from one frame
to the next. Jeong et al. [JBH∗09], for instance, perform
on-demand filtering of electron microscopy data only for
visible blocks. Pre-computed histograms are efficiently up-
dated during the filtering pass only for affected blocks. How-
ever, this approach is not feasible for streaming volume data,
where the entire volume is replaced continuously. In this
paper, we present a solution that specifically addresses this
scenario. Another very important difference to our approach
is that they do not consider the situation when the invisible
blocks become visible due to filtering.

Only few works have addressed the visualization of
4D streaming ultrasound data. The poster by Bruder et
al. [BJE∗11] shows how the Voreen volume rendering en-
gine can be used to visualize real-time 4D ultrasound data
and Elnokrashy et al. [EEH∗09] present the basic pipeline
setup for GPU-based ultrasound rendering, but neither work
discusses the important issue of filtering. Most related to
our approach is later work by Elnokrashy et al. [EEH∗09]
where they restrict themselves to single isosurfaces and ap-
ply a smoothing filter to the z-buffer. In contrast, our method
enables true filtering of the scalar field in an integrated vol-
ume rendering pipeline for live streamed 4D ultrasound.
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Figure 3: The pipeline for visibility-driven data processing:
4D data is streamed directly from the ultrasound scanner.
In the first stage the visible set of voxels is calculated based
on the opacity transfer function. The neighborhood informa-
tion is then evaluated and the set of potentially visible vox-
els is passed to the next stage. If the data does not fit into
the GPU memory, we can optimize memory consumption by
performing a visibility-driven data packing before process-
ing the data. Finally, the processed data is rendered.

3. Visibility-Driven Processing Pipeline

In the standard visualization pipeline, data enhancement
(e.g., filtering) directly follows the acquisition stage. The vi-
sual mapping and rendering steps then operate on the en-
hanced data as illustrated in Figure 2. The problem arises
when in-situ visualization of streamed data is required. In
this case, for every rendered frame the data needs to un-
dergo an expensive processing operation which may be sig-
nificantly more costly than the mapping/rendering stages
themselves. Examples of such costly common data en-
hancement algorithms are iterative anisotropic diffusion fil-
tering [PM87], iterative bilateral filtering [TM99], lowest-
variance filtering [vSHW∗12] and vessel-enhancing filter-
ing [FNVV98]. To solve this problem, we observe that in
most volume visualization applications, only a fraction of
the data is displayed at a time. Transfer functions limit the
range of displayed data values and large portions of the vol-
ume may be occluded by other structures. Additionally, par-
ticularly for ultrasound data, clipping planes or more ad-
vanced clipping geometries are commonly used to remove
unwanted parts of the data [BBBV12]. Furthermore, when
zooming-in to investigate small details, large parts of the vol-
ume may simply lie outside of the viewing frustum. For such
scenarios, it is worthwhile to execute the data enhancement
only on a subset of the data that is potentially visible, i.e.,
potentially-visible voxels (PVV).

In this section, we describe an approach for visualizing

streaming volume data which exploits visibility informa-
tion to leverage computational resources only to contributing
parts of the data to enable high-performance on-the-fly data
enhancement operations. An overview of our approach is de-
picted in Figure 3. Our pipeline receives one volume of the
ultrasound stream at a time. This volume can then undergo
multiple sequential processing operations and the result of
these operations is then displayed by a volume rendering
algorithm. Our strategy to enable on-the-fly processing of
live streamed volume data is that processing operations only
have to be applied to those regions which affect the final dis-
played image. This means that completely transparent voxels
do not have to be processed, but it also means that occluded
regions (regions where viewing rays have already accumu-
lated full opacity before reaching them) can be skipped.

To make this possible, we need to make certain assump-
tions about the nature of the permissible processing oper-
ations and how they affect the visibility in the volume. Our
input volume is a scalar-valued volumetric function f :R3→
R. In general, a processing operation g(p) replaces the origi-
nal value at a voxel position p with a new value. For any such
operation, we require that the filtered function value g(p)

1. is only dependent on values of f in a finite neighborhood
Ωp around a position p, i.e, that it has compact support,
and

2. that g(p)∈ [infΩp,supΩp], i.e., the new value falls within
the minimum and maximum values in that neighborhood.

Both requirements are trivially true for any convolution
with normalized weights (mean, Gaussian, etc.), but also
hold for a wide range of other smoothing or denoising op-
erations including nonlinear filters such as the median or bi-
lateral filters. An edge-detector, containing negative values
in the operator mask, naturally does not conform with this
requirement. Without the above requirements a processing
operation could, in principle, be a random number generator
and there would be no way to predict the resulting visibil-
ity. In order to exactly determine the final visibility at every
position, we would have to perform the full processing and
volume rendering steps. Given these two assumptions, how-
ever, we can now develop methods to conservatively predict
the visibility of a voxel position p, prior to the application of
g. We introduce a visibility prediction function v(p)∈ {0,1}
which, for every position p, is 0 when the application of the
processing operation at that position can be safely (i.e., with-
out changing the final image) skipped and has a value of 1
otherwise. Ideally, this prediction function is much cheaper
to compute than g itself and we can therefore not only amor-
tize its costs but also reduce the overall processing time by
only applying g to those positions that are potentially visible
(i.e, where v(p) = 1). We aim at finding the smallest possible
potentially visible set of voxels, but at the same time we need
to ensure that the additional processing does not outweigh
our gains. Hence, there is a trade-off between the computa-
tional cost of evaluating v and the number of voxels that are
incorrectly classified as visible. Our approach for computing
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A: NOISE
(OCCLUDER)

B: OBJECT
(OCCLUDEE)

Figure 4: Points in subset A (noise) are tagged as visible in
the original dataset. They are surrounded by invisible voxels.
A occludes subset B and according to the straight-forward
solution, B would be tagged as invisible and will not be fil-
tered. Data filtering will remove noise, then the subset A will
become invisible. Later rendering will reveal B that was not
filtered.

v is comprised of two basic steps described in Section 3.1:
First, we obtain infΩp and supΩp for the neighborhood of
the processing operation. We then perform a visibility pass
which generates a binary volume that stores the values of v.

Based on the set of potentially visible voxels, we then
generate a working set of the volume data which needs to
be processed (see Section 3.2). Our pipeline uses a block-
based volume layout which enables optimized memory ac-
cess and volume traversal and also reduces the intermedi-
ate storage requirements for multiple processing steps. Only
blocks which contain at least one non-transparent voxel need
to be accessed during the processing operation. Similar to
Hadwiger et al. [HBJP12] we use a virtual block table which
is generated on-the-fly. After the volume has been processed,
it is rendered using a standard GPU-based volume raycaster
as briefly described in Section 3.4.

3.1. Potentially-Visible Voxel Determination

Our goal is to obtain a view-dependent set of potentially vis-
ible voxels (PVV) after application of the filtering operation
which takes into account both transparency and occlusion.
As our approach is designed to handle live streaming vol-
ume data, this set needs to be recomputed for every volume
update. We need to consider two cases:

1. A region in the volume considered to be an occluder be-
fore the filtering operation has been applied, may get new
values which are be mapped to opacity α = 0 during the
visualization stage. This means that it no longer acts as an
occluder. This case is illustrated in Figure 4.

2. The filtering operation can also change data values in such
a manner that previously invisible regions will be non-
transparent after its application. An example of such a
scenario is shown in Figure 5.
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Figure 5: a) is a 2D projection of a noisy object. We use a
simple averaging kernel 3×3. b) Full filtering that includes
also transparent regions (background) and we consider it the
ground truth. c) The result if we filter on non-transparent
regions.

To take into account such potential visibility changes
without actually executing the filtering operation, we make
use of the two assumptions stated in the previous section,
i.e., the filter has compact support and the result of the op-
eration lies within the minimum and maximum of its neigh-
borhood. To quickly determine the relevant opacity contri-
butions for a particular neighborhood, we generate the fol-
lowing two lookup tables:

αmin(i, j) = min
u∈[i, j]

t f α(u) (1)

αmax(i, j) = max
u∈[i, j]

t f α(u) (2)

where αmin and αmax are the minimum and maxmimum,
respectively, opacity values in the transfer function t f α for
all values in the interval [i, j]. Both αmin and αmax can be
computed simultaneously and stored in a single 2D texture
as two channels. Computation of these tables is straight-
forward and only consumes a negligible amount of time
when the transfer function is modified. This is conceptually
similar to pre-integrated volume rendering which employs
a lookup table for accumulated colors and opacities along
a viewing ray [EKE01]. An example of an opacity transfer
function and its corresponding αmin and αmax are given in
Figure 6.

Our approach for potentially visible voxel determination
then proceeds as follows:
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Figure 6: An opacity transfer function and its corresponding
αmin and αmax tables.

Minimum/maximum computation. Unlike other ap-
proaches, which do not consider dynamically changing
data, we can not rely on any preprocessing. Hence, in
order to obtain information about the voxel neighbor-
hood, it needs to be recomputed for every new volume.
We compute, for each position p in the volume, the
minimum infΩp and maximum value supΩp with a
given neighborhood Ωp determined by the support of
the processing operation (i.e., the size of the kernel for
convolution operations). We use an OpenCL kernel in a
multi-pass approach which exploits the fact that the min
and max filters are separable. While this is not a cheap
operation, it is still significantly less costly than the types
of filtering operations we want to support.

Visibility evaluation. The set of potentially visible voxels
is then computed in a front-to-back visibility pass which
outputs a binary volume. As one value needs to be gen-
erated for each voxel, we use axis-aligned traversal im-
plemented as an OpenCL kernel. Similar to 2D texture-
mapped volume rendering, we choose the slice axis as
the major axis of the volume most parallel to the current
viewing direction. The αmax table is used to determine
the visibility of a voxel, while αmin is used to evaluate its
contribution to the accumulated opacity in the following
manner:

Api = Api−1 +(1−Api−1)αmin(infΩpi ,supΩpi) (3)

where Api is the accumulated opacity at the i-th sample
position pi along a viewing ray, and infΩpi , supΩpi are
the minimum and maximum values, respectively, in the
filter neighborhood. Accumulating with αmin ensures that
no viewing ray will be terminated too early. The final visi-

1 iteration
2 iterations 3 iterations

band of in�uencePVSV

Figure 7: If data enhancement consists of one operation
only, expansion of the PVV is not necessary. If it runs in two
iterations, values within the band of interest (BOI) must have
been processed in the 1st iteration since the 2nd iteration re-
lies on its results. If the enhancement runs in three iterations,
the radius of the BOI is larger accordingly.

bility prediction function, which is the characteristic func-
tion of the PVV set, is then defined as:

v(pi) =

{
αmax(infΩpi ,supΩpi)> 0 if Api−1 < 1
0

(4)

While the PVV gives us information about which voxel
positions are potentially visible in the final image after the
processing operation has been applied, we also need to make
sure that the results of the processing operation are cor-
rect. Many data enhancement techniques require informa-
tion about the neighborhood. Moreover, many approaches
are carried-out in an iterative fashion, e.g., when filters are
separable. If we rely only on the PVV that considers reduced
occlusion and increased visibility discussed so far, iterations
will obtain incorrect information from the neighborhood of
the PVV in later passes. This problem is sketched in Fig-
ure 7.

Our solution to this problem is to dilate the visibility mask
to obtain a working set of voxels (WSV). Then we define a
band of influence (BOI) as WSV\PVV and BOI ∩ PVV=
∅. For example, similarly to the min-max computation, if a
filtering operation has m iterations and in each iteration, the
operation requires a neighborhood of radius n, then the visi-
bility mask must be dilated by a radius m ·n. Using WSV for
filtering calculations will ensure that the values of all voxels
∈ PVV will be correct after the final iteration of the filter. In
Figure 8, we show an example of a WSV for a kernel size of
9.

3.2. Working-Set Assignment

Many filters require additional buffers to store information.
Lowest-variance filtering, for example, requires the direc-
tion along the lowest variance to be stored as a 3D vector
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a:  Volume rendering, 
front view

b:  WSV, 
front view

c: Volume rendering, 
side view

d: WSV from b),
view from the side

Figure 8: Example of a working set of voxels (WSV): a) A
rendering of a 3D ultrasound frustum. b) The WSV seen from
the front, same as a). This WSV contains 22% of the voxels.
In the bottom row, the view is rotated. c) The 3D frustum ren-
dered from this viewing direction. d) The WSV is computed
for the same viewing direction as in b), but it is rendered
from the same viewing direction as in c) to show the empty
space.

field [vSHW∗12]. Other operations such as anisotropic dif-
fusion require an additional swap-buffer. With larger vol-
umes, it can be challenging to keep such buffers in GPU
memory simultaneously. As we are only filtering the visi-
ble data, we are only required to keep a fraction of the data
on the GPU for processing. We can reduce memory usage by
only storing buffers for the actually visible parts of the vol-
ume. For instance, lowest-variance filtering needs to store an
additional 3D vector with float components for each voxel it
processes. For the entire volume, this extends the memory
requirements by a factor of 12 if the original volume is an
8-bit byte array and a 32-bit floating point representation is
used for the vectors.

In our approach, we subdivide the volume into fixed-size
blocks. We then need to only store and process those blocks
that contain voxels which are part of the WSV. We can then
process the array one block at a time, rather than the entire
volume. The packing mechanism is illustrated in Figure 9.
From the WSV we create the following data structures which
are used during the execution of the filtering operations:

Block data pool. The block pool is a buffer which stores
the data values for all blocks in the working set. Addi-
tionally, for reasons explained below, we store one empty
block (filled with zero values) at index zero. The block
size is set at compile-time and for all experiments in the
paper we used a block size of Bx,y,z = 32.

Virtual block table. The virtual block table stores the loca-
tions of virtual blocks indices in the block data pool. For
an input volume of size Vx ·Vy ·Vz, it has a size of Tx ·Ty ·Tz
with Tx,y,z =Vx,y,z/Bx,y,z +2. The inflated parts of the vir-
tual block table are initialized with zero, i.e., they point
to the empty block. In this way, the subsequent process-
ing passes can safely access locations beyond the volume
boundaries while avoiding costly out-of-bounds checks.
Note that this inflation is different from the common du-
plication of voxel values within each brick, which does
not occur in our approach. For blocks which are not in the
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Working set assignment

1 2 3 40 10985 76

1 2 654 149 13108

1 2 3 40 10985 76

1 2 654 149 13108

Store only visible blocks

Process data in the block array
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PVV
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a) INPUT DATA d) OUTPUT DATA

BLOCK DATA POOL

Block indices
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Figure 9: Concept of data packing on a 2D example. A set
of visible voxels determines which blocks from the input data
(a) will be active and copied to the block data pool (b). Only
blocks in the pool will be processed. After the processing op-
eration is finished, the blocks in the data pool are assembled
back to the output volume.

current working set, the virtual block table also contains
the value zero.

Working set array. This array contains only the indices of
blocks in the current working set. Hence, the working
set array is a linearized version of the virtual block ta-
ble where zero entries have been removed. It is used for
volume traversal during the execution of the processing
operation.

3.3. Visibility-Driven Filtering

After generating our working set data structures, we can now
apply the actual filtering operation. Each processing pass
takes as input the block data pool and the virtual block ta-
ble, and writes its result into a new buffer which duplicates
the structure of the working block pool. By traversing the
working set array, each block can be processed indepen-
dently. The virtual block table is used to resolve the loca-
tions of neighborhood voxels which lie outside the current
block. For a voxel position x,y,z, we first compute its in-
dex i in the virtual block table i = (x/Bx + 1) + (y/By +
1)Tx + (z/Bz + 1)TxTy which is then used to retrieve the
corresponding block’s offset o in the block data pool. The
final location of the voxel in the block table pool is then
o+(x mod Bx)+(y mod By)Bx +(z mod Bz)BxBy.

3.4. Volume Rendering

While our block-based representation could be directly used
for rendering, the fact that we do not duplicate boundary
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a) Full lowest-variance �ltering  vs. PVV-based b) Full and PVV-based �ltering for di�erent datasets

Figure 10: Performance boost of visibility-driven processing compared to full processing with the lowest-variance filtering with
radius 5 on a stream of 3D cardiac ultrasound datasets (128 × 100 × 128) – a snapshot is shown in Figure 2. b) illustrates the
behavior of the same filter for the different dataset sizes: the same cardiac stream as in a). A streamed 3D ultrasound of a fetus
(232× 262× 114) shown in Figure 1 and streamed 3D ultrasound of a gall bladder (256× 256× 256) as shown in Figure 11.

voxels would prevent us from utilizing native trilinear inter-
polation which impacts the performance. Instead, however,
we can exploit the recent GL_ARB_sparse_texture exten-
sion which natively supports rendering from sparse texture
representations without duplicated block borders. While this
implies an additional copy operation of the visible blocks
into the sparse texture, we found that this option is prefer-
able both in terms of performance and flexibility/ease-of-
implementation. Our approach is not tied to any specific
volume rendering algorithm, and in fact the current im-
plementation of our pipeline flexibly integrates several dif-
ferent renderers including standard GPU-based ray casting
and slice-based multidirectional occlusion volume render-
ing [vPBV10]. Furthermore, as block-based visibility in-
formation – as described in the previous sections – is al-
ready available, it can be straight-forwardly employed for
rasterization-based empty-space skipping.

4. Evaluation

Our system was implemented in C++ using OpenCL for the
realization of our processing pipeline. The volume rendering
itself is performed in OpenGL. All benchmarks displayed in
this section were performed on a PC with a 3.06 GHz CPU
with NVIDIA GTX680 GPU with 2 GB of dedicated graph-
ics memory running Windows 7. We investigated that our
approach for culling invisible regions of the volume is cor-
rect in the sense that it can not affect the final image. Our
goal was to show that if we solve the problems of reduced
occlusion and increased opacity, the visualizations will be
identical. One can prove that it can never occur that these
visualization are not identical. To formally prove this, one

can break down the main problem. Each subproblem rep-
resents a different situation with respect to transparent and
non-transparent voxels. We refer the reader to the Appendix
(part of the supplemental material) for the complete proof.

Figure 10 profiles the performance of our method. In 10a,
we summarize the performance of for the lowest-variance
filter. The black horizontal line shows the constant time that
is needed to process the full volume. The blue line shows
the dependency of the performance of the visibility-driven
filtering on the amount of visible data, using a trivial set of
visible voxels (trivial VV). This means that this set of vox-
els was defined only based on the immediate occlusion and
opacity of the voxels, but not on the eventual change dur-
ing filtering as we described in Section 3.1. The red line
shows the performance with respect to the amount of vis-
ible data, but using the correct PVV as described in Sec-
tion 3.1. We observe that the difference between the blue
and the orange line is approximately constant and relatively
small, also for other datasets for which we do not display
the performance curves. Therefore, we can conclude that the
correct PVV computation does not represent a significant
performance overhead in the entire pipeline. Only if more
than 85% of the data is visible, which is most likely not the
case for cardiac 3D ultrasound, the visibility-driven filtering
optimization would no longer pay off. We also measured per-
formance using other filters, e.g., Perona-Malik anisotropic
diffusion and bilateral filtering and they showed a very sim-
ilar trend as lowest-variance filtering. In Figure 10b, we plot
the performance gain for ultrasound datasets with different
sizes using lowest-variance filtering.

Visibility-driven filtering requires a certain amount of
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Figure 11: Visualization US of a gall bladder: a snapshot of
streamed data. Raw data visualization on the left and par-
tially filtered (35% of the dataset) data visualization on the
right.

supporting buffers which consume memory. This will be-
come an issue when handling larger datasets than ultrasound
datasets used in obstetrics or 3D echocardiology. The ex-
amples shown in Figures 1 and 2 do not require memory
optimization. For datasets that do not fit into the memory
together with their supporting buffers, visibility-driven data
packing becomes necessary. In Figure 10a, the green line
plots the performance dependency if we use the data pack-
ing scheme with blocks. Obviously, the data packing scheme
does not pay off for small datasets, but it is inevitable for
large datasets that do not fit into the GPU memory together
with the supporting buffers.

On modern ultrasound scanners with a 4D cardiac probe,
ultrasound volumes are acquired at rates of 10-15 volumes
per second [PVMd12], depending on the spatial extent of the
acquired volume (sector). The larger the sector, the bigger is
the volume and the lower is the acquisition rate. According
to our own experience, larger sectors are acquired at approxi-
mately 15 volumes per second. Figure 2 shows that we allow
for higher framerates which is relevant in-situ visualization
for current 3D ultrasound acquisition capabilities.

5. Discussion and Limitations

The presented approach was designed to support complex
filtering operations for live streaming volume data. Clearly,
for very simple filters (such as, trivially, the min and max fil-
ters themselves), the overhead of minimum/maximum com-
putation does not pay off, but in those cases filtering the
whole volume is easily possible in real-time. Our goal was
to enable application of filters that normally would be too
expensive in such a scenario.

Furthermore, naturally our approach becomes less effec-
tive if a high percentage of the voxels remain visible. In this
case, processing of the full volume might even be faster.
However, if we detect a high percentage of visible voxels
(e.g., due to a highly transparent transfer function) in one
frame, we can simply disable our pipeline until the transfer
function is modified again. This means that in most practi-

cal scenarios, the overall performance of our approach will
always be as fast as processing of the entire volume.

Currently, there are some limitations in our implementa-
tion which result in sub-optimal performance and which we
aim to address in the future:

• We start from an already reconstructed regular grid which
we receive from the ultrasound scanner’s software. How-
ever, it would also be possible to integrate our pipeline
earlier to potentially eliminate or at least reduce some
of the overhead. For, instance it would be easy to com-
pute the minimum/maximum information during the re-
sampling step from beam space to the regular grid.

• While using minimum/maximum neighborhood informa-
tion to determine the set of potentially visible voxels is
general enough to enable a wide range of practically use-
ful filters, it is also quite conservative and can, in some
cases, lead to considerable overestimation. For this, a
closer analysis of the mathematical properties of individ-
ual filters may enable us to determine tighter bounds for
special cases.

• While our block-based data packing scheme is effective
in reducing memory overheads and enables efficient vol-
ume traversal, it sacrifices performance in processing op-
erations which could exploit native trilinear filtering. If
mechanisms similar to GL_ARB_sparse_texture were ex-
posed in OpenCL, our approach could easily take advan-
tage of them to remedy this drawback.

Despite these limitations, however, we have shown that
our approach already results in a considerable reduction of
processing times for realistic percentages of visible vox-
els and hence enables real-time filtering and, consequently,
high-quality visualization of streaming volume data in cases
where this was previously impossible.

6. Conclusions

In this paper, we presented a novel approach for integrated
processing and visualization of streaming volume data. Our
method conservatively estimates visibility information to
limit processing operations to regions in the volume which
can potentially contribute to the final image and hence can
result in a considerable reduction of the processing load.
By employing a memory efficient data packing scheme, our
method also limits the amount of intermediate storage re-
quired for complex multi-pass operations. We have demon-
strated that the resulting pipeline enables high-performance
integrated filtering and visualization of steaming volume
data such as 4D ultrasound.
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