
Visualizing Archaeological
Excavations based on Unity3D

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Thomas Trautner
Matrikelnummer 1125421

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof.Univ.-Doz. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr. Gerd Hesina

Dipl.-Ing. Dr. Christoph Traxler

Wien, 3. Juli 2014
Thomas Trautner Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Visualizing Archaeological
Excavations based on Unity3D

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Thomas Trautner
Registration Number 1125421

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof.Univ.-Doz. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr. Gerd Hesina

Dipl.-Ing. Dr. Christoph Traxler

Vienna, 3rd July, 2014
Thomas Trautner Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Thomas Trautner
Erdbrustgasse 58/1, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Juli 2014
Thomas Trautner

v

Abstract

As part of an archaeological excavation huge amounts of different types of data, for
example laser scan point-clouds, triangulated surface meshes, pictures or drawings of
finds, find attributes like location, age, condition and description or layers of excavated
earth are collected. This detailed documentation is important to give archaeologists the
possibility to analyze the collected data at a later date since the find spot might not
be accessible anymore. Unfortunately all the accumulated data is separately saved and
consequently complex to explore.
Therefore we present a novel solution that allows the user to digitally explore a virtual
archaeological excavation in real-time. With our approach we can not only visualize
different types of textured meshes and finds but allow the user to draw on surfaces to
mark areas of certain interest that need further exploration, enable explosion views to
investigate composition of different layers of earth and arbitrary slicing of the three-
dimensional mesh structure to better visualize cross-sections and an easier tracing of
accumulation points of finds. The result of this work is a new powerful tool that will
support the analysis of future excavations. All results and the implementation itself will
be presented as part of this thesis.
An example screenshot of the final 3D viewer can be seen in Figure 1:

Figure 1: HMC+ 3D viewer in explosion view with finds enabled

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 General Information . 1
1.2 Harris Matrix Composer . 1
1.3 Unity3D Game Engine . 3

2 Related Work 7

3 Implementation 9
3.1 Technical Architecture . 10
3.2 Features . 11
3.3 Additional GUI-Settings . 26

4 Results 31
4.1 Benchmarks . 32
4.2 Project demonstration . 32

5 Conclusion 33
5.1 Future Work . 33

6 Acknowledgement 35

7 References 37

Bibliography 39

ix

CHAPTER 1
Introduction

1.1 General Information
This work complements the already implemented Harris Matrix Composer [5]. Our 3D
viewer is an additional component of the new Harris Matrix Composer - Plus System. It
is a real-time renderer with a GUI shown as a toolbox which allows the user to further
explore and verify a given three-dimensional dataset. Therefore we allow the user to
visualize selections and or combinations of all types of stratigraphic units within the
Harris Matrix Composer. Figure 1.1. shows an example of a typical Harris Matrix.

1.2 Harris Matrix Composer
The Harris Matrix Composer (abbreviated below as "HMC") is an important tool ar-
chaeologists use for documentation of archaeological sites. It is based on the Harris
Matrix which was invented in 1975 by Edward Harris. During an excavation this matrix
is used to document the stratigraphic relations of dug out sediments. Every unit of
stratification for example remains of wood or brick walls, a basement or inclusions is
displayed as a single node in the hierarchical graph. A typical HMC matrix starts at
the top with a circular green unit. It represents the top surface of the archaeological
excavation, for example measured by a laser-scan. The lowest unit is as well a circu-
lar green unit, which stands for the lowest excavated stratigraphic layer. Every other
unit in between consists of at least a top- and a bottom-surface or a hull of these two layers.

1

Additionally a HMC matrix enables an accurate assignment of the find locations. In
Figure 1.1 we highlighted a subdivision which represents "room 1" of a ruin. Every path
visualizes a different location and therefore a subdivision of the excavated area can be
easily identified.

Figure 1.1: Example of the Harris Matrix Composer

2

1.3 Unity3D Game Engine

The resulting 3D-Viewer should be dynamically, customizable and easily extendable.
Therefore we chose the Unity3D Game Engine [10] as an optimal framework for our
implementation. Furthermore Unity 3D gives us the possibility to build the 3D-Viewer
for different platforms.

Figure 1.2: Unity3D 4.5.1 - Editor screenshot

Figure 1.2 shows an example scene developed with the Unity 3D Editor. On the left
side, encircled in red and next to number 1 the current scene-graph is shown. It is a
hierarchical list which includes every element of the current scene. This scene-graph for
example consists of different types of cameras, several directional light-sources attached
to cameras to illuminate the scene, GUI elements like the 3D Orientation Indicator, a
color selection table, currently loaded and textured mesh surfaces and applied shaders.

The center next to number 2 is divided into two different displays. The left side
represents the scene with additional debug information and is called "Scene-Window".
In this case two cameras and a single light-source is visible. According to the debug
information we know that both cameras have a truncated pyramid frustum. Therefore
we can easily tell that both use a perspective projection. A view-frustum represents the
visible area of a camera and is defined by the near- and far-plane. In this example the

3

visible area is bounded by red and the invisible area between camera and near-plane
by blue lines. The reason why we use two cameras in this scene is to support stereo
display. Therefore the left camera renders images for the left eye and the right camera
for the right eye. The distance between both cameras simulates the eye distance and
can be changed dynamically. For more information about stereo rendering see Section 3.3.2

The right side of number 2 shows the current "Game-Window", which is only visi-
ble if the play-button in the top-center, above from number 2 is pressed. Then the scene
is rendered by the cameras we saw in the Scene-Window before. Additionally we already
see the GUI which was not visible in the scene mode including the yellow (front), orange
(top) and purple (left) side of the 3D Orientation Indicator telling us from what side we
are currently looking at the scene.

In the bottom left corner next to number 3, a file browser that shows all available
files and directories is visible:

• Scripts: In this example the "Feature Script" folder which contains nine different
C# scripts is displayed. If one of those scripts derivers from "MonoBehaviour" it
can be added by drag-and-drop to one of the Game Objects of the scene-graph
which is visible in number 1. Such a script consists of an update function which is
called once per frame and for every scene object it is attached to.

• Materials: Apart from scripts, all materials including their main texture and
attached shaders can be displayed. By default they are attached to spheres, to
better visualize applied illumination models and shader properties.

• Models: Additionally the explorer allows us to search for 3D models. In this case
the already mentioned 3D Orientation Indicator object (*.obj) file or a Collada
(*.dae) coordinate-cross is shown.

• Prefabrications: Finally the explorer allows us to search for prefabrications
which can be downloaded via the Unity 3D Asset Store. For example the renderer
we developed uses a so-called "prefab" to simplify color selection. It allows the user
to specify the RGB values for the red, green and blue channel. Additionally the
overall alpha channel can be adjusted.

In the bottom right corner of Figure 1.2 next to number 4, a console that shows current
debug outputs is visible. If a certain layer is selected or a mesh with additional texture was
loaded it will be logged by the console. This information is marked as debug information
and will therefore not be visible to the user in the final build-version. Furthermore thrown
compiler errors or warnings are displayed. This is particularly advantageous during the
development phase.

4

Figure 1.3: Inspector after loading
a mesh during runtime

After loading a layer or scene during
runtime or in the edit-mode, the "Inspec-
tor" becomes visible. Figure 1.3 shows
an example output of the 000tbs ground
layer.

Section 1: In the first section the name
of the mesh and a checkbox to en- and dis-
able the object is visible. Additionally a tag
and layer can be chosen. Tags are impor-
tant to find certain Game Objects during run-
time. A script can for example search for all
Game Objects with the tag "000tbs" which re-
turns an array of all objects. The layer is
used for the rendering process. Every cam-
era has a list of visible layers attached to
it and only layers from that list will be ren-
dered. This is important to mask certain lay-
ers as in case of the 3D Orientation Indica-
tor.

Section 2: Section two simply tells the user
that the currently selected Game Object is
a mesh which has a mesh renderer attached
to it. If the mesh renderer is deselected it
will not be rendered and is therefore not vis-
ible anymore. Additionally the user can se-
lect if the mesh casts and/ or receives shad-
ows and set the number of materials applied to
it.

Section 3: Section three shows a very im-
portant setting for our renderer. It states
that the selected mesh has a collider in
the form of the mesh itself. This is on
one hand computationally expensive especially
the calculation of intersections, on the other
hand indispensable for visual analysis. If
the user for example selects a mesh we
simply trace a ray from the mouse cursor
and check if this ray intersects a mesh col-
lider.

5

Section 4: The same tracing procedure is used to label a mesh with its name if
the mouse cursor is moved over it. We achieve this by adding certain scripts such as
"name highlighting" from section 4 to a Game Object.

Section 5 and 6: To provide surface brushing we need at least a main texture with
diffuse illumination and a transparent alpha texture with a transparent shader and a
diffuse illumination which can be seen in section 5.

An example of this is visible in section 6. As already mentioned they are attached
to spheres to better visualize applied illumination models and shader properties.

6

CHAPTER 2
Related Work

A very similar approach of visualizing archaeological excavations is presented by [CIG+01].
They propose a tool to visualize building parts, finds, stratigraphical layers and textures
in situ and furthermore provide advanced 3D reconstruction techniques. This is done
by storing all different types of data in a multimedia database. The result is used for
presentation or publication purposes.

Another approach presents a virtual reality tool [BdCTV03] which allows the user
to measure stratigraphical units like curvature, length, thickness, height or volume to
enhance archaeological fieldwork. Furthermore it allows the user to calculate volumes
and simulate archaeological formations and deformation processes which is essential for
understanding an excavation.

The work of Vote [Vot01] focuses on visualizing the Great Temple of Petra based
on post-excavation archaeological analysis. Therefore four different prototypes were
developed and analyzed. A final concluding survey shows that a combination of classic
and new techniques is most promising for future excavation.

Dellepiane et al. [DDC+12] present amongst others a technique of interactive slic-
ing where a slicing plane is moved further away toward the viewing direction to visualize
disparity between two different time steps. A technique that is also very useful for
archaeological visualizations.

Benko et al. [BIF03] focus on a mixed-reality approach implemented for multiple
users. Furthermore it supports the tracking of see-through head mounted displays and
multi-touch table surfaces. The final visualization is similar to our approach based on
the Harris Matrix.

7

Additionally we considered a summary [Pat09] of five papers that propose different
approaches to visualize seismic measurements. This is done to allow the user to further
explore and analyze possible oil or gas reserves. For optimal use the author recommends
the following expressive visualization and rapid interaction techniques: time of creation of
such an illustration must be reduced, the program must independently recognize impor-
tant stratigraphical layers and the exploration should be as simple as possible for the user.

Remondino and Campana [RC08] present image based approaches to capture detailed 3D
information of archaeological excavations. This is done with cost-efficient approaches like
taking pictures of finds from different angles and finally computing the three-dimensional
structure. Therefore we implemented a run-time object loader for our 3D viewer which is
able to load and finally visualize such models as well.

A similar low-cost approach is presented by Doneus et al. [DVF+11]. Instead of expensive
techniques like measurements with laser scanners they use a technology called "Structure
from Motion" and create a three-dimensional point cloud. Furthermore this approach
requires only a minimal technical knowledge and user interaction and is therefore straight-
forward to use.

Allen et al. [AFT+04] introduce a 3D Modeling Pipeline for archaeological excava-
tions and finds. First the excavation site is either scanned by a laser scanner or pictured
with cameras. In the next step the site is represented as 3D model and additional context
like background-images, videos or GIS data is added.

Santos et al. [SCBP05] focus on realistic rendering of archaeological excavations. There-
fore they concentrate on illumination methods like global illumination. The paper
presents different approaches that guarantee a frame-rate of at least 10 fps or more and
the possibility to change the view point dynamically. Since lighting is such an important
factor for a realistic perception of a scene, we allow the user to dynamically place light
sources in the scene with our 3D renderer.

To provide stereoscopic rendering we implemented a technique called off-axis rendering
which was described by Grasberger [Gra08]. It presents different approaches of stereo
rendering and explains in detail their use, the advantages and disadvantages.

8

CHAPTER 3
Implementation

Our main goal was building a tool that allows the user to scientifically visualize ar-
chaeological excavations. The resulting renderer supports the import of high-resolution
geometry and very large geometric models.

In the beginning of our implementation we started using Unity 3.5.7 but upgraded
afterwards to Unity 4.5.1 to be able to use all the latest features. One important fea-
ture was wire-frame rendering. Before the upgrade we had to manually implement a
line-rendering algorithm to provide wire-frame rendering. Unfortunately it required too
much computation power and memory consumption.
Furthermore we chose C# as programming-language for our scripts.

9

3.1 Technical Architecture

Figure 3.1: Architecture using
MonoDevelop

All our implemented scripts can be divided into
four categories which can be seen in Figure 3.1:

1. Camera Scripts: Scripts from this category
are responsible for different types of cameras
like fly-through or origin-rotation, stereo ren-
dering using an off-axis projection matrix and
slicing views.

2. Feature Scripts: This category is responsi-
ble for scripts that are used for implementing
features and improving the overall data explo-
ration. In an alphabetical order:

• a brushing tool to paint on mesh surfaces
• explosion algorithms to increase the off-

set between the layers
• a finds visualization with location and

detailed description
• all types of mesh selections
• highlighting names
• adding further light-sources like point

lights
• providing slicing operations for cross-

section views of the scenery
• screenshot or video capturing
• volume generation

A detailed description of all mentioned fea-
tures can be found under Section 3.2.

3. GUI Scripts: This category is responsible
for the graphical user interface. Here we de-
fine the layout, color settings and button label-
ing. Additionally we use scripts to distribute
clicked button events and enable and disabled
feature selections.

10

4. Management Scripts: We used the management category to divide scripts in
subcategories for overall management tasks and debug or profiler tasks. Overall
management tasks include a file browser to search directories and files during
runtime, a key-input manager to handle user input and change keyboard settings
and a value-distributor to distribute current settings within the renderer. It includes
for example current mesh selections, active cameras, selected render-modes, active
light-sources or current camera movements. This is done by implementing a typical
singleton pattern and only distributing a single instance. Therefore the constructor
cannot be accessed from outside the class.

3.2 Features
In the following sections we want to discuss all mentioned features from Section 3.1.

3.2.1 Object import

We wanted the rendering software to be as independent and compact as possible. There-
fore we implemented algorithms and partially extended them with already existing
libraries, for example the file dialog [4]. It allows us to display different folder structures
including all their files during runtime. Additionally we applied a filter function that
allows the user to select only files with an (*.obj) extension. If a file is selected, we expect
that the corresponding material (*.mtl) is located in the same folder. To select a file
the user has to simply click the "Load Object" button in the lower left corner of the screen.

Figure 3.2: File dialog and current selection

After clicking the button a new file di-
alog opens which can be seen in Figure
3.2. Additionally all object files are
colored in light grey to mark them as
selectable and all material and texture
files are colored in dark grey. If the
mouse cursor is moved over a name
the whole line will be colored in light
blue and if the user clicks on a file
it will be locked and marked in dark
blue. After choosing a file the user
can either click the "Select" button in
the lower right corner to load this file
or "Cancel" to return to the rendering
view.

11

Instead of using the "Select" button the user can simply double-click on the file to
load it as well. Furthermore we expect the following naming restrictions to guarantee a
successful mesh import:

[0-9] _ [000-350] tbs_ [0-99] _ [A-Za-z0-9]? .obj
[Sub-Mesh Number] _ [Name] _ [Room Number] _ [Additional Information].obj

Examples:
0_000tbs_0_falkenstein_smart.obj
0_000tbs_0_falkenstein_smart.obj
1_000tbs_0_falkenstein_smart.obj
1_000tbs_0_falkenstein_smart.obj
2_006tbs_1_falkenstein_smart.obj
3_032tbs_1_falkenstein_smart.obj

1. Sub-mesh number: We use this index to detect if a mesh consists out of smaller
sub-meshes. In the given example the first two objects are named "000tbs" and
belong to the same sub-mesh with index 0. If one of them is selected by the user
during a load object operation, the other one will automatically be loaded as well.

2. Name: This name is displayed if the mouse cursor is moved over the mesh in
our rendering window. The name consists out of three digits that represent the
layer and the acronym "tbs" which stands for "top-bottom surface". All sub-meshes
that belong to the same mesh should have the same name to avoid user distraction.
The lowest layer of excavation should always be called 000tbs. All other layers can
be called according to their HMC-label although the highest possible number is
currently 350tbs. This limitation results from the current maximum number of
tags that are assigned dynamically during runtime. Unfortunately tags must be
created manually before building the renderer and cannot be created depending on
the variable which is then passed during run-time.

3. Room number: This number is important to enable future versions of the
renderer to perform manipulations separately depending on the room number of
the currently selected mesh. For example only explode layers of a single room. The
current version of the renderer explodes all layers equally independent from the
selected mesh and room it belongs to.

4. Additional information: This part is not required by the renderer. It can be
used to store additional information from the user. If there is no need for further
information it can be left out.

Restrictions of external libraries: Unfortunately our external triangulation library
[9] and Unity3D itself have a maximum vertex count limit of 65.534 vertices per mesh.
If such a mesh is imported within the editor, Unity3D will automatically divide it into

12

default sub-meshes. After building the project or during runtime this is not possible
anymore. Therefore we expect the user to either load smaller meshes or divide meshes
which have more vertices into sub-meshes by hand in a preprocessing step. If a sub-
mesh is selected during runtime our renderer will automatically look for corresponding
meshes and will load all of them without any additional user interaction into the cur-
rent scene. This is done by searching for meshes with the same name and sub-mesh
number as described above. As soon as the mesh is loaded, the renderer will look for
the texture that the materialfile is referring to. If the texture was already loaded it
will not be imported again. To enable this we implemented a texture-collection that
administrates all texture. By only using the external triangulation library [9] we were
facing a memory consumption of more than 3GByte RAM after loading a couple of
sub-meshes with less than 500.000 vertices. If the renderer does not find the texture
or if the mesh has no texture coordinates, the mesh will be colored in light grey by default.

3.2.2 Mesh selection

If a layer is selected by clicking the left mouse button, the outline of the selected object is
changed to red which can be seen in Figure 3.3. As we can see the mesh is still textured
but the shader is changed from a simple diffuse shader to an outline-shader with red as
its main color.

Figure 3.3: Mesh selection with three selected layers

13

If the "Ctrl" button is pressed and another object is selected, both objects are selected
and their shader is changed to an outline-shader. In Figure 3.3. three different layers
were selected. First of all the 000tbs ground layer then layer 074tbs in the middle and the
highest and therefore latest layer 006tbs on the most right side of the screen. If the "Ctrl"
button is not clicked the first selected object will be deselected after another element is
selected. By clicking on the background all currently selected meshes will be deselected.

Functioning of the outline shader

The dot product of two vectors ~a = [a1, a2, ..., an] and ~b = [b1, b2, ..., bn] is defined as:

a · b =
n∑

i=1
aibi = a1b1 + a2b2 + ... + anbn

The result is a scalar which represents the angle between two vectors. If the dot
product of the current viewing vector and the surface normal is zero , we simply change
the pixel color to the outline color. If the dot product is not zero we do a texture look up
for the current pixel and calculate the dot product of the surface normal and the light
direction to illuminate the pixel with a diffuse illumination model.

Note: Usually a triangle is not visible if its normal and the viewing vector have a
dot product of 0. Therefore we would need a dot product very close to 0 to still see the
red color of the surface. We chose a tolerance range of [87◦, 93◦] for reasons of simplicity
and better illustration.

An example of this algorithm can be seen in Figure 3.4. The black polygon line
represents an example layer which has an outline-shader attached to it. Every triangle of
this mesh has a surface normal which is represented by the vectors called n. The current
camera position is represented by the eye with the corresponding viewing vectors called v.
If the dot product is zero, the surface color will be changed to red, which is represented
by the red angle in the middle of Figure 3.4. In this case vector n is orthogonal to vector v.

Figure 3.4: Example of an outline-shader

14

The reason why the border of the mesh which can be seen in Figure 3.3. is not
always red is simple to explain. Due to the fact that the layer is more or less a simple
rough and bumpy plane the dot product can be larger than zero at the border. If we
always want the border to be an outline we need to load a very high resolution convex
hull instead of a plane, in the simplest case a sphere. This guarantees that the boundary
gets an outline.
If the hull is concave in certain cases no outline will be drawn. An example of this can
be seen in Figure 3.5. Here we visualize a plane with a missing border and a concave
polygon with two viewpoints from which a correct outline is drawn.

Figure 3.5: Example of low resolution meshes with an outline-shader

15

3.2.3 Show finds

During the excavation process usually different items or materials like coins, glass, wood,
porcelain, iron or others are found. To provide interactive exploration of find locations
our renderer is capable of visualizing them as well. If the user selects the "Finds" button
in the top left corner of the screen, all documented finds are imported. An example of
this can be seen in Figure 3.6.

Figure 3.6: Show finds

Finds are usually represented by a point-cloud file which stores all X-, Y- and
Z-coordinates (*.obj) and an additional description file (*.txt), which includes the layer-
number where it was found, the material and an additional description for every find.

As soon as the renderer has imported all finds, colored boxes will be displayed. Every box
represents a single find. The color is chosen randomly but finds with similar materials are
always colored the same. For example every silver coin is colored red and every copper
coin blue. If the user presses the C-key on the keyboard, the color distribution will be
changed. Then all finds of a certain layer will get the same color. This feature allows the
user to easily see which finds were found in which layer.

16

Figure 3.7: Example finds

Example of the description file:

11 Glas Fragment Glas
14 Keramik Teller 4 Teile
11 Keramik Perle
11 Metall Münze
11 Metall Haken
13 Metall Kellengriff
7 Stein Flintenstein
7 Glas Fläschchen Boden
7 Metall Zange

Figure 3.7 shows a hole in which different finds
were found.

Figure 3.8: Example finds of an excavation

17

Figure 3.8 shows an overview of an excavation site. If the mouse cursor moves over a
find, its description is shown. This can be seen in the lower left corner. The description
says "203 SE: 75 - Silber - 3 Kreuzer, Leopold I, 1699". It represents a silver coin with
sequence number 203 which was found in surface layer 75. Additionally it has a dating
of 1699, the time of Leopold the First.

3.2.4 Slice surface-layers

Figure 3.9: Bounding-box of the se-
lected mesh

After the user has selected a layer, the "Slic-
ing" button can be used to enable the slic-
ing mode. The renderer will automatically cal-
culate the bounding-box of the selected mesh
and a slicing-plane is shown. This can be
seen in Figure 3.9 which shows the de-
bug output of our renderer. The dimen-
sion of the slicing plane depends on the di-
mensions of the bounding box. To guar-
antee that the slicing-plane is always large
enough to cut through the whole currently
selected layer, the greatest dimension of the
bounding-box determines the width of the slicing-
plane.

By using the num-pad the user can change the position and orientation of the slicing
plane. This can be seen in Figure 3.10 Additionally we want the user to be able to
place the plane exactly at the desired location. To simplify this task the slicing plane
is semitransparent and its color is very different from ordinary earth colors to further
strengthen the contrast.

Figure 3.10: Different positions of the slicing plane

18

If the "Space"-Key is pressed, the renderer changes to the slicing view. The slicing
view uses two orthographic cameras to visualize cross-sections of surfaces. An example
of the sliced model can be seen in Figure 3.11 Additionally all the finds are visible and
room 1 is currently in explosion mode. Even if the slicing view was already enabled it is
still possible to move the slicing plane with the num-pad and cut through the model in
real-time. This allows the user to analyze cross-sections of all layers until certain finds or
artifacts are visible.

Figure 3.11: Two different slicing views

19

Figure 3.12 shows that both camera near-planes are almost equal to the slicing plane.
We did this to automatically slice the selected mesh at the point of interest and used a
minimal offset to avoid z-fighting if both planes are too close to each other. If the slicing
plane is moved both cameras are moved perpendicularly and therefore their near-planes,
which are used to render the cross-section of the mesh, change. Figure 3.12 shows an
illustration of how we achieved the slicing.

Figure 3.12: Explanation of the slicing mode

20

3.2.5 Explosion view

Another important feature we implemented allows the user to explore the structure of all
stratigraphical layers of an excavation in explosion view. Using this type of visualization
the hierarchical order and composition of all layers are better visible and therefore easier
to analyze.

The explosion view is enabled by either pressing the "Explosion View" button or holding
the "E" key on the keyboard. As soon as the explosion view is enabled, the offset of the
layers to each other can be changed with the mouse-wheel. The resulting animation steps
can be seen in Figure 3.13.

Figure 3.13: Explosion view animation

Figure 3.14 shows a graphical explanation of our algorithm. The expander variable
is a float value which controls the factor of explosion. Depending on the number of layers
it is multiplied with k minus current layer index. Therefore the collection of expandable
layers is always sorted in descending order. The sign factor depends on the direction in
which the mouse wheel was turned. With this adaption the same algorithm can either
perform an explosion to enlarge the offset or an inverse explosion and move all layers
back to their original position.

Figure 3.14: Simplified explosion view explanation

21

Explosion - Source code

The following source-code is used to perform the explosion. The variable valueDistributor
is an instance of the already mentioned management script which distributes values
within the renderer. It is instanced with ValueDistributor.getInstance() and has a private
constructor. Input.GetAxis("Mouse ScrollWheel") returns a float value that represents
the angle of the mouse-wheel rotation. Depending on the direction the mouse-wheel is
turned we determine the sign which influences the direction of the explosion.

pub l i c void PerformExplosion (){

// de l t a movement that happend in the l a s t frame
mWheelDelta = Input . GetAxis ("Mouse Scro l lWhee l ") ;

i f (mWheelDelta != 0){

// dec ide i f exp l o s i on or i nv e r s e exp l o s i on
i f (mWheelDelta < 0){

s i gn = −1 f ;

i f (vd . GetExplos ionFactor () > 0){

vd . SetExplos ionFactor (vd . GetExplos ionFactor () −1);

oncePerWheel = true ;
}

} e l s e {
s i gn = 1 f ;

vd . SetExplos ionFactor (vd . GetExplos ionFactor ()+1) ;
}

//wheel was changed perform act i on
i f (vd . GetExplos ionFactor () > 0) oncePerWheel = true ;

}

i f (oncePerWheel == true){

//Update Current l i s t
UpdateSur faceDict ionary () ;

accumulatedSum = expander ∗ s i gn ∗ Time . deltaTime ;

f o r each (s t r i n g s in su r f a c eD i c t i ona ry . Keys){

//Move every l ay e r be s i d e r ground l e v e l −−> 000 tbs
i f (s != "000 tbs "){

GameObject [] currentSubmeshes = new GameObject [2 5] ;
s u r f a c eD i c t i ona ry . TryGetValue (s , out currentSubmeshes) ;

f o r each (GameObject s u r f a c e in currentSubmeshes){

su r f a c e . transform . po s i t i o n = new Vector3 (
su r f a c e . transform . po s i t i o n . x ,
s u r f a c e . transform . po s i t i o n . y ,
s u r f a c e . transform . po s i t i o n . z−accumulatedSum) ;

}

accumulatedSum += expander∗ s i gn ;
}

}
}

oncePerWheel = f a l s e ;
}

22

3.2.6 Brushing

The brushing tool can be used to mark certain regions of interest. To enable this we
implemented multilayer-texturing using an additional alpha texture. If the renderer
imports a mesh it will have two texture layers. The fist layer is the texture that the
material file was pointing at. The second layer will be added by the renderer. It is a
simple alpha-texture that is used for all the brushing operations. After selecting a color
and enabling the brushing tool, the user can use the left mouse button to draw and the
right button to erase drawings.
The brush size is calculated dynamically whereas k stands for the kernel size. We only
support quadratic kernels so an example for a 3x3 kernel could look like as shown in
Figure 3.15:

Figure 3.15: Proceeding for a 3x3 kernel

The value inside a cell represents the percentage of the brush-color that is added to
the alpha texture. For example 2 * (1/(Floor(kernelSize/2) + 1)) can be simplified to 2 *
(1/(1+1)) which is equal to 1. With this formula the center will always be 1, therefore
100% of the new color is added. If we increase the distance to the center, the original
color intensity decreases. In this case the outer circle will only add 50% of the selected
color (see Figure 3.16).

Figure 3.16: Exact values of the 3x3 kernel

If we apply a 5x5 kernel the color gradient will be smoother. An example of the different
brushing kernels can be seen in Figure 3.17.

Figure 3.17: Example of a 5x5 kernel

23

Another characteristic can be observed in Figure 3.18. If the brushing is repeatedly
performed on the same spot the opacity of the color increases.

In the top left corner of Figure 3.18 the color selection is visible. It can be used
to select RGBA colors either by simply clicking on a color or by inserting values from 0
to 255 for every red, green, blue and alpha channel. After the brushing the alpha texture
can be exported by using the "T" key of the keyboard. It will be saved as (*.png) in the
folder for screenshots of the opened scene. In addition, the date and time is recorded in
the name of the file.

For example:

6-18-2014_10-42-50_AMScreenshot_44

[month]-[day]-[year]_[hour]-[min]-[sec]_[AM/PM]Screenshot_[sequence number].png

An example of how marked regions could look like can be seen in Figure 3.19.

To remove drawings, they are changed back to the original alpha value. For ideal
results we recommend a erase-kernel size that has at least two or three times the size of
the brushing kernel.

Figure 3.18: Color selection
and kernel with different opacities

Figure 3.19: Example of marked regions

24

3.2.7 Adding light sources

To enhance the perception of the structure of the reconstructed geometry the scene can
be illuminated manually during runtime. After pressing the "P" key, an additional light
source is added to the scene. The current version of the renderer supports point-light,
however future versions will include different types of light sources for example spot-lights
or directional-lights.

If a light source was added to the scene, its intensity can be changed by using the
mouse-wheel. An example of how different intensities could look like is shown in Figure
3.20. To manipulate the light source position three arrows representing the X-, Y- and
Z-axis are displayed which can be seen in Figure 3.21. By clicking on one of them with
either the left or right mouse button their position can be moved up or down along this
axis respectively. Thereby we guarantee that even after a light-source was added to the
scene its intensity and position can be changed.

Figure 3.20: Controlling the intensity of the point-light source using the mouse-wheel

An example of the scene using different light-source colors and intensities can be seen
in Figure 3.22. It shows the scene illuminated by four different light-sources. An orange
light-source in the top left corner, a turquoise one in the top right corner, a purple one
in the left center and a green light-source in the bottom right corner.

Figure 3.21: Controlling of the point-light
source Figure 3.22: Different light-sources

25

3.2.8 Name highlighting

If the mouse cursor moves over a mesh we automatically display the name of the mesh.
We do this by continuously emitting rays from the mouse position into viewing-direction.
If such a ray hits a mesh-collider we print a label with the corresponding mesh name
next to the cursor. Thereby we allow the user to interactively explore the given dataset.
The same highlighting technique is used to label light-sources and coordinate axes which
was shown in Figure 3.21.

3.3 Additional GUI-Settings
Apart from the already mentioned exploration features we allow the user to change some
basic settings of the rendering system as well. These adjustments include the actual type
of camera and the used render mode.

3.3.1 Camera modes

Currently we support two different camera modes. The first mode which can be seen in
Figure 3.23 is called "Origin-Rotation-Mode" and the second mode which is visible in
Figure 3.24 is called "Fly-Through-Mode".

Figure 3.23: Origin-Rotation-Mode
explanation

Figure 3.24: Fly-Through-Mode
explanation

26

1. Fly-Mode:
If the "Shift" button is pressed the viewing direction can be changed by moving the
mouse. The camera transformation is then calculated according to the difference
of the old and new mouse position. Therefore we subtract both, the old X- and
Y-axis from the new coordinate position. To move the camera its position can be
changed by using the W, A, S and D keys. With the resulting vector we transform
the camera to obtain the new camera position and viewing direction.

2. Origin-Rotation-Mode:
Using this mode the camera moves circular around its center-point. After pressing
the "Shift" key the distance to the center-point can be changed by using the mouse-
wheel. Additionally this mode consists out of two cameras to provide stereoscopic
rendering. To render these images we implemented off-axis-projection by using
different projection matrices for the left-eye camera as well as for the right eye cam-
era. Both images are then displayed side-by-side. With the "G" (=GUI) keyboard
button, all GUI-buttons are set invisible so that they do not disturb the 3D effect.

3.3.2 Off-axis rendering

For our implementation of stereo rendering we chose the off-axis technique. Therefore we
had to calculate a new projection matrix that computes a new projection plane. This
plane is defined by 5 green spheres which can be seen in Figure 3.25. The four green
outer spheres define the border and the middle sphere the center of the projection plane.
This technique is most commonly used and additionally ensures that the user will not
feel uncomfortable even after longer experience.

Figure 3.25: Off-axis rendering

27

An overview of different approaches can be seen in Figure 3.26.

Figure 3.26: Stereo techniques

The offset technique is very simple. In this case the same projection matrix can be
used for both cameras. The only thing that needs to be considered is the eye-distance
which is usually about 6,3 cm. Irritating for the user in this technique is that parts of
the image are only visible in either the left or the right eye. This might make the user
feel uncomfortable depending on the time of use.

The toe-in technique is very similar to the offset technique. The only thing that needs to
be changed is an additional rotation towards the center of the projection plane. Although
this approach seems to be slightly better the projection planes in this approach are still
not equal and therefore the result will make the user feel uncomfortable as well.
The last technique which is called off-axis rendering is the best approach although it
requires two different projection matrices.

28

3.3.3 3D Orientation Indicator

We add a 3D Orientation Indicator to the scene to simplify the navigation for the user.
With this approach it is always immediately clear from which direction the excavation is
observed.

To avoid irritations like flickering of the cube while it intersects with another surface,
it is rendered in a separate layer, which can be seen in Figure 3.27 (image 1 and 2).
Subsequently these two separate images are combined. With this approach the cube is
always visible even though geometry was already in front of it. This is not possible by
using a single camera with a cube attached to it and only considering the Z-buffer. The
result of final composition can be seen in Figure 3.27 image 4.

We do not consider any light source except ambient light in the separate cube layer.
This is important because otherwise disturbing light artifacts could be seen after adding
further light-sources. Finally we always render the cube in surface render-mode even if
the rest of the scene is rendered in wire-frame mode which can be seen in Figure 3.27
image 3. Otherwise the texture of the cube would not be readable and the cube would
get useless.

Figure 3.27: Composition of rendered images

29

3.3.4 Render modes

In the beginning of our implementation we were using Unity 3.5.7 and therefore it was
not possible to render a scene in wire-frame mode without manually implementing a line
renderer. The main disadvantage of this implementation was the performance. With
this approach we had to iterate through all vertices per mesh and manually draw lines
connecting vertices with triangles.

Since Unity 4 this is possible. Therefore we implemented functions like OnPreRen-
der() and OnPostRender() and either set GL.wireframe to true or false depending on the
current camera layer. The user can change this setting in our GUI by selecting either the
"surface" or "wireframe" render mode.

An example of this can be seen in Figure 3.28. In this image we additionally selected a
layer to visualize the function of the outline shader while the wireframe mode was enabled.

3.3.5 Color selection

Furthermore we added a color selection to our renderer so that the user can select any
combination of RGBA colors. RGBA colors are chosen by either simply clicking on a
color or by inserting values from 0 to 255 for the red, green, blue and alpha channel. An
example of this can be seen in Figure 3.29.

These colors can then be used for either brushing or illuminating the scene. The
library we are using to add this feature was developed by Sergey Taraban [3] and can be
found in the Unity Community Wiki [2].

Figure 3.28: Wireframe rendering
with mesh selection

Figure 3.29: Color Picker

30

CHAPTER 4
Results

The most important performance criteria for us was the accessibility in real-time to allow
the user to interactively explore our visualization. Therefore we focused mainly on GPU-
and CPU consumption and the average number of frames per second.

The following hardware settings were used on the testing computer:

Operating system: 64-bit Windows 7 Home
RAM: 16 GB
CPU: Intel(R) Core(TM) i7 -3930K CPU @ 3.20Ghz
Graphic card: NVIDIA GeForce GTX 690 with 4096 MB memory

The scene we used for testing consists of twelve different stratigraphic layers. Every layer
is a triangulated and textured high-resolution point-cloud (*.obj). The biggest layer we
used is the 000tbs ground layer which consists of 314.347 vertices and has an overall size
of 20,17 MB.

Furthermore we used a 1024x1024 picture (*.png) taken during the excavation to tex-
ture the ground layer and a 128x128 checkerboard pattern (*.png) to texture all other
sub-meshes.

31

An overview of all object and texture sizes can be seen in Table 4.1:

Number of layers 1 2 3 4 5 6 7 8 9 10 11 12

Added layer 000tbs 006tbs 020tbs 032tbs 035tbs 054tbs 074tbs 096tbs 100tbs 106tbs 109tbs 115tbs

Vertices in layer 314347 6070 10931 10543 7734 10589 10393 8793 3067 10403 5731 3465

Vertices in scene 314347 320417 331348 341891 349625 360214 370607 379400 382467 392870 398601 402066

Size of *.obj file(s) (kB) 20.170 329 618 800 706 616 612 519 162 593 395 311

Texturesize of layer (kB) 2.370 4,74 4,74 4,74 4,74 4,74 4,74 4,74 4,74 4,74 4,74 4,74

Table 4.1: Overview of the example scene "Falkenstein"

4.1 Benchmarks
Usually an average frame rate of at least 35 frames per second is needed to ensure
interactivity in real-time. The following Table 4.2 shows a minimum average frame rate
of 40 FPS. Thereby we can guarantee that our viewer is able to deal with large data sets
with a high vertex count.

Number of layers 0 1 2 3 4 5 6 7 8 9 10 11 12

Added layer - 000tbs 006tbs 020tbs 032tbs 035tbs 054tbs 074tbs 096tbs 100tbs 106tbs 109tbs 115tbs

lowest FPS 140 133 120 103 88 80 73 69 43 35 31 22 19

highest FPS 173 168 165 152 149 148 132 113 109 91 80 75 60

average FPS 156 148 142 135 134 125 115 95 73 48 45 41 40

Table 4.2: Overview of the lowest, highest and average frame rate

4.2 Project demonstration
The renderer was already presented to the potential end-user group of archaeologist of the
"Ludwig Boltzmann Institut für Archäologische Prospektion und Virtuelle Archäologie"
[1] which is led by PD ao. Univ.-Prof. Mag. Dr. Wolfgang Neubauer. They found the
3D viewer to be especially helpful and easy to use, on one hand to watch cross-sections
and explosion views to analyze structures and their relations and on the other hand the
stereo rendering for public presentations such as press conferences.

32

CHAPTER 5
Conclusion

Although we built a stand-alone renderer and could therefore not totally benefit of a
fully developed game engine like in our case Unity3D, we were able to achieve excellent
results. We presented the development of a powerful tool, which is designed to simplify
the future work of archaeologists. With this solution it is possible to not only analyze a
graph-representation of an archaeological excavation, but visually represent all measured
data at run time. This provides a virtual exploration for archaeologists who were not able
to physically visit the excavation site. In addition, it allows archaeologists to research
different stratigraphic layers at the same time. This is usually difficult as younger layers,
which are mostly located above older layers must be irretrievably removed to reach lower
surfaces. With our approach no information is lost and even younger surface layers can
be studied easily.

5.1 Future Work
The aim of our future work will be to develop an interface between this viewer and
the Harris Matrix Composer - Plus. It will be possible to not only investigate the
three-dimensional data-set but also determine its position in the Harris Matrix and vice
versa. As result we want to create a single even more powerful tool out of two already
developed components. Additionally we want to improve our current volume generation
and replace the current octree-like representation with a real volumetric computation.
Finally we plan to implement selection based manipulations like exploded views which
only affect certain areas or rooms of an excavation.

33

CHAPTER 6
Acknowledgement

We want to thank "Ludwig Boltzmann Institut für Archäologische Prospektion und
Virtuelle Archäologie" [1] which generously provided us with actual data from their
excavation in "Falkenstein".

At this point I also want to thank my supervisors that always had helpful suggestions
and useful tips. Through this work I got an excellent insight in real-world applications in
the field of computer graphics. Thank you!

35

CHAPTER 7
References

[1] Ludwig Boltzmann Institut für Archäologische Prospektion und Virtuelle Archäologie
June, 25th, 2014 - 3:15 pm
http://archpro.lbg.ac.at/

[2] Unity3D - unify community Wiki
June, 25th, 2014 - 3:45 pm
http://wiki.unity3d.com/index.php/Main_Page

[3] GUI Element - Color Picker by Sergey Taraban
May, 23th, 2014 - 10:35 am
http://staraban.com/en/simple-color-picker-control-for-unity/

[4] GUI Element - File Browser by Daniel Brauer
May, 26th, 2014 - 2:20 pm
http://wiki.unity3d.com/index.php?title=ImprovedFileBrowser

[5] Harris Matrix Composer
June, 25th, 2014 - 3:40 pm
http://www.harrismatrixcomposer.com/

[6] Off-axis-projection with Unity3D
June, 16th, 2014 - 9:45 am
http://forum.unity3d.com/threads/192409-Off-axis-projection-with-Unity

[7] Texture Scale in real-time
June, 10th, 2014 - 5:00 pm
http://wiki.unity3d.com/index.php/TextureScale

37

http://archpro.lbg.ac.at/
http://wiki.unity3d.com/index.php/Main_Page
http://staraban.com/en/simple-color-picker-control-for-unity/
http://wiki.unity3d.com/index.php?title=ImprovedFileBrowser
http://www.harrismatrixcomposer.com/
http://forum.unity3d.com/threads/192409-Off-axis-projection-with-Unity
http://wiki.unity3d.com/index.php/TextureScale

[8] Additional Debug Console
June, 2nd, 2014 - 6:45 pm
http://wiki.unity3d.com/index.php?title=DebugConsole

[9] Object Loader by Jon Martin
May, 30th, 2014 - 3:45 pm
http://www.jon-martin.com
http://www.fusedworks.com

[10] Unity3D Game Engine
July, 31st, 2014 - 10:30 am
http://unity3d.com//

38

http://wiki.unity3d.com/index.php?title=DebugConsole
http://www.jon-martin.com
http://www.fusedworks.com
http://unity3d.com//

Bibliography

[AFT+04] P. Allen, S. Feiner, A. Troccoli, H. Benko, E. Ishak, and B. Smith. Seeing into
the past: Creating a 3d modeling pipeline for archaeological visualization.
Proceedings of the 2nd International Symposium on 3D Data Processing,
2004.

[BdCTV03] Juan A. Barcelo, Oscar de Castro, David Travet, and Oriol Vicente. A 3d
model of an archaeological excavation. The Digital Heritage of Archaeology,
Computer Applications and Quantitative methods in Archaeology, 2003.

[BIF03] Hrvoje Benko, Edward W. Ishak, and Steven Feiner. Collaborative mixed re-
ality visualization of an archaeological excavation. Workshop on Collaborative
Virtual Reality and Visualization (CVRV), 2003.

[CIG+01] John Cosmas, Take Itegaki, Damain Green, Edward Grabczewski, Fred
Weimer, Luc Van Gool, Alexy Zalesny, Desi Vanrintel, Franz Leberl, Markus
Grabner, Konrad Schindler, Konrad Karner, Michael Gervautz, Stefan
Hynst, Marc Waelkens, Marc Pollefeys, Roland DeGeest, Robert Sablatnig,
and Martin Kampel. 3d murale: A multimedia system for archaeology.
Proceedings of the 2001 conference on Virtual Reality, archaeology, and
cultural heritage, pages 297–306, 2001.

[DDC+12] Matteo Dellepiane, Nicolo DellUnto, Marco Callieri, Stefan Lindgren, and
Roberto Scopigno. Archeological excavation monitoring using dense stereo
matching techniques. Journal of Cultural Heritage, 2012.

[DVF+11] M. Doneus, G. Verhoeven, M. Fera, Ch. Briese, M. Kucera, and W. Neubauer.
From deposit to point cloud - a study of low-cost computer vision approaches
for the straightforward documentation of archaeological excavation. Geoin-
formatics CTU FCE 2011, 2011.

[Gra08] Herbert Grasberger. Introduction to stereo rendering. Student Project,
Institute of Computer Graphics and Algorithms - Vienna University of
Technology, 2008.

[Pat09] Daniel Patel. Expressive visualization and rapid interpretation of seismic
volumes. Thesis for the degree of Philosophiae Doctor (PhD) at the University
of Bergen - Norway, 2009.

39

[RC08] Fabio Remondino and Stefano Campana. Fast and detailed digital documen-
tation of archaeological excavations and heritage artifacts. Proceedings of the
35th International Conference on Computer Applications and Quantitative
Methods in Archaeology (CAA), 2008.

[SCBP05] Luis Paulo Santos, Vitor Coelho, Paulo Bernardes, and Alberto Proenca.
High fidelity walkthroughs in archaeology sites. 6th International Symposium
on Virtual Reality, Archaeology and Cultural Heritage VAST, 2005.

[Vot01] Eileen Louise Vote. A new methodology for archaeological analysis - using
visualization and interaction to explore spatial links in excavation data.
Thesis for the degree of Philosophiae Doctor (PhD) at Brown Computer
Science - Rhode Island, 2001.

40

	Abstract
	Contents
	Introduction
	General Information
	Harris Matrix Composer
	Unity3D Game Engine

	Related Work
	Implementation
	Technical Architecture
	Features
	Additional GUI-Settings

	Results
	Benchmarks
	Project demonstration

	Conclusion
	Future Work

	Acknowledgement
	References
	Bibliography

