
Efficient Collision Detection While Rendering Dynamic Point Clouds
Mohamed Radwan∗ Stefan Ohrhallinger† Michael Wimmer‡

Vienna University of Technology, Austria

Figure 1: Left: Subsequent snapshots of an animated HORSE traversing continuously oscillating ground. Collisions between those two
dynamic point clouds are marked by circles and HORSE is shaded red. Right: TLDIs of two objects. Colliding extents are shaded red.

ABSTRACT

A recent trend in interactive environments is the use of unstruc-
tured and temporally varying point clouds. This is driven by both
affordable depth cameras and augmented reality simulations. One
research question is how to perform collision detection on such
point clouds. State-of-the-art methods for collision detection cre-
ate a spatial hierarchy in order to capture dynamic point cloud sur-
faces, but they require O(NlogN) time for N points. We propose
a novel screen-space representation for point clouds which exploits
the property of the underlying surface being 2D. In order for di-
mensionality reduction, a 3D point cloud is converted into a series
of thickened layered depth images. This data structure can be con-
structed in O(N) time and allows for fast surface queries due to
its increased compactness and memory coherency. On top of that,
parts of its construction come for free since they are already han-
dled by the rendering pipeline. As an application we demonstrate
online collision detection between dynamic point clouds. It shows
superior accuracy when compared to other methods and robustness
to sensor noise since uncertainty is hidden by the thickened bound-
ary.

Index Terms: Computer Graphics [I.3.5]: Computational Ge-
ometry and Object Modeling—Hierarchy and Geometric Trans-
formations Image Processing and Computer Vision [I.4.8]: Scene
Analysis—Surface Fitting

1 INTRODUCTION

This paper proposes a novel accelerated approach for construct-
ing and querying the underlying surface of dynamic point clouds.

∗e-mail: radwan@cg.tuwien.ac.at
†e-mail:ohrhallinger@cg.tuwien.ac.at
‡e-mail:wimmer@cg.tuwien.ac.at

When those point clouds are rendered, calculations from the point-
based rendering (PBR) pipeline are reused in the surface construc-
tion for the points inside the view frustum.

Collision detection requires determining the distance from the
shape boundary of the object. For point clouds, especially noisy
ones, reconstructing the surface as a triangulated mesh is a tedious
process which currently is not feasible to do online. Applications
where collision detection between dynamic point clouds is relevant
include moving and posing of objects, as well as touch and grip.
Such point clouds are dynamically changing environments, e.g., ac-
quired by sensors attached to drones in a disaster scenario as simul-
taneous location and mapping (SLAM), human avatars captured by
a Kinect, or deforming virtual objects for augmented-reality appli-
cations. Physically remote point clouds may be transposed into a
common coordinate system to allow for interaction. Finally, user
interaction can lead to non-rigid deformation or fragmentation.

We target medium-to-large and possibly noisy point clouds
which are dynamic in the sense of having little or no temporal co-
herence. Constructing a spatial hierarchy for geometry, e.g., bound-
ing volume hierarchies (BVH) [12], or tree structures [20], adds a
logarithmic time factor to collision processing with respect to the
number of handled points. This setup time is amortized only for
static point clouds. Using a BVH allows for deformations and lo-
cal rigid transformations, but not for entirely dynamic point sets.
With interactive applications, the interest is often concentrated in-
side the view frustum, since it determines what the viewer can see
and manipulate.

Our main goal is to enable online processing of medium-to-large
dynamic point clouds without temporal coherence, such as Kinect
input. We achieve this by avoiding construction of spatial hierar-
chies altogether and instead discretize the surface underlying the
points into a screen-space grid. This two-dimensional structure re-
duces the dimensionality of the grid and thus results in more com-
pact storage and faster intersection testing. The advantages of using
a grid remain, namely that construction and evaluation can be par-
allelized well on the GPU.

Our contributions are:

• Efficient reconstruction of connectivity for point clouds where
an estimation of local sampling density is available, even in
the presence of noise.

• Compact boundary discretization of point clouds by extend-
ing layered depth images with range, adapted to screen space.

• Reuse of parts of the rendering pipeline for constructing the
boundary data structure for the point cloud.

• Precise and online collision detection of dynamic point clouds
as an example application for surface distance queries.

2 RELATED WORK

Bounding volume hierarchies (BVHs). These are spatial object
representation structures that have been widely used in many appli-
cations. Different volume types are used to bound the geometric
primitives, such as AABBs [2], OBBs [8], DOPs [13], and convex
hulls [5]. BVHs are efficient in processing proximity queries, with
O(logN) time. Their construction of O(NlogN) is also considered
efficient, since for static objects the structure is constructed only
once at set up. However, updating a BVH of an entirely dynamic
data set is also of O(NlogN) time. Therefore, for data sets with
continuous temporal updates as we consider in this paper, BVHs
suffer from inefficiency, whether they are updated or constructed
from the start with every update.
Voxelization. Our work is related to scene voxelization approaches.
Eisemann and Decoret [6] utilized the capabilities of the GPU to
construct voxel-based representations which need not be aligned
in one (i.e., the view) axis but are restricted to a fixed number of
constant-size intervals, while Hinks et al. [11] use a similar repre-
sentation to construct solid models for computational modeling. An
older approach [4] also reconstructs a sampled surface implicitly at
grid cells using a signed distance function. We compute discrete
screen-space aligned layers instead, each layer represented by non-
aligned depth ranges.
Image-based techniques for collision detection. Such tech-
niques [14, 9, 10] do not require any pre-processing, and thus are
appropriate for dynamically deforming objects. In [10], layered
depth images (LDI) are computed for both objects, then volume
representations are constructed and compared to find intersection
regions. The algorithm, and almost all image-based collision detec-
tion (CD) algorithms as well, targets triangulated meshes. To our
knowledge, only one approach [1] uses image space to detect col-
lision between point clouds, but is restricted to movement in 2.5D
space. They divide the space into slices and compute a height map
for each. The approach assumes that obstacles are nearly parallel to
YZ plane and perpendicular to XY plane, and uses these assump-
tions to infer obstacle information and save them with each pixel.
Static point-cloud collision detection. The most important ap-
proach [12] is both robust to noise and fast (interactive if need be,
depending on the time budget). They construct a BVH and use
a collision probability measure between pairs of nodes, in order
to traverse the two objects’ hierarchies ordered by priority. In the
second stage, they sample the implicit surface at the leaf nodes to
measure separation distance. However, as mentioned before, con-
struction of a BVH is slow and can be memory-intensive, and the
entire data needs to reside in memory as well. Thus it is impractical
for large point sets and even detrimental to build such a structure
for points sets which change dynamically and are not queried often
enough to amortize its building cost. Our approach targets differ-
ent application scenarios, but it surpasses the accuracy achieved by
Klein’s algorithm [12], as is shown in Section 7. Pan et al. [16] ro-
bustly detect collisions between noisy point clouds by defining the

detection as a two-class classification problem and estimate colli-
sion probability with support vector machines, but runtime is com-
paratively slow. Our approach hides sensor noise by querying a
thickened boundary.
Dynamic point-cloud collision detection. A very recent pa-
per [17] uses BVHs and/or octrees to detect collisions and compute
distances between sensor-captured point clouds. They propose two
ideas, one is appropriate for static environments and the other for
dynamic ones. For dynamic environments, they propose to mu-
tually traverse an octree (environment point cloud) and an AABB
(robot), and do an unspecified, probably simple collision test at leaf
nodes. Although this approach for dynamic environments is simple,
we avoid building a spatial hierarchy at all and can keep the GPU
pipeline more occupied by streaming coherent data.

3 OVERVIEW

Our input data are unstructured points. We assume that the ren-
dering pipeline has already culled points against the view frustum
(or respective bounding box) and projected them into screen space.
Further we assume that the sampling density for the individual in-
put points is given, either globally uniform or, e.g., estimated from
sensor device properties.

In Section 4 we define a thickened boundary which envelops the
implicit surface of the point cloud, provided that the sampling is
sufficiently dense. We then transform it into projected space and fi-
nally discretize it in screen space, adapted to the view point. Based
on this representation, we show how the contained implicit surface
can be queried quickly. Then we explain in Section 5 how we effi-
ciently construct this boundary representation in parallel as a thick
layered depth image extended with depth range (TLDI). For this
we show reuse of several parts of a standard point-based render-
ing pipeline. We describe in Section 6 that detecting collisions by
querying the surface in this TLDI data structure is straightforward
to do. In Section 7 we compare our collision detection algorithm
with sampled meshes as ground truth and show that it is signifi-
cantly more precise than prior methods, robust in the presence of
noise and fast enough to handle dynamic point clouds at interactive
frame rates. We give concluding arguments in Section 8 along with
an outlook to the extensions we are currently working on.

4 SURFACE DEFINITION

Our goal is to determine the distance of a point p ∈ R3 to the man-
ifold, possibly bounded surface Σ that is implicitly defined by a set
of points S, sampled on or close to it. All distances are in the Eu-
clidean sense, unless otherwise noted. Since Σ is not known, we
first define a thickened boundary Ω that contains such a surface
near S, similar to an adaptive spherical cover as proposed in [15].
For precise evaluation of proximity queries to Σ we require that Ω

bounds it as closely as possible, but also want to avoid holes in Ω

that are not present in S. Evaluating the distance ‖p,Ω‖, which in
turn allows us to approximate ‖p,Σ‖, requires representation of Ω

by a discrete spatial structure. Our design requirements are that it
is compact and can be both constructed and evaluated quickly.

4.1 Spherical Cover Ω Containing the Surface Σ

First, we want to define a volume Ω which covers the surface Σ

underlying the samples so that we can perform distance queries to
Σ. Let Bi(si,ri) be the balls centered at samples si ∈ S in R3 with
radii ri chosen such that Σ is enclosed entirely in the union of balls
Ω (see Figure 2a):

Ω =
N⋃

i=0
Bi(si,ri)

If S is sampled non-uniformly densely, balls which are close but
from geodesically remote parts of the surface may merge in Ω, and
then Ω is not homeomorphic to Σ. This is not a problem for our

(a) Spherical cover (b) Cylinders (c) Blended and discretized

Layer 1

Layer 2

Layer 3

Layer 4

Viewing
Direction

(d) TLDI

Figure 2: Representations of the volume bounding the surface Σ: a) Union of balls Ω centered at samples. b) Projected onto the view plane
as cylinders in object space Ω′. c) Blended depth intervals Ω̂. d) TLDI shaded per layer.

use case, since determining the distance from a point p ∈ R3 to a
surface neither requires that surface to be manifold nor orientable.

If the radii ri associated with the samples are just sufficiently
large with respect to local sampling density, the Bi will overlap such
that Σ is entirely contained in Ω. We assume ri either to be a global
constant, estimated from range image properties or determined in
preprocessing, as for out-of-core huge point clouds [19]. Alterna-
tively, ri could be estimated locally by determining k-nearest neigh-
bors in screen space, as shown in [18]. Note that real holes in the
surface which are smaller than ri could disappear in the representa-
tion.

Since Ω consists of balls, its thickness perpendicular to Σ will be
large and oscillate considerably between samples. Determining the
connectivity between samples would allow us to blend their balls
and result in a more equally thickened boundary. As mentioned
above, inserting the balls into a spatial hierarchy in R3 to recover
the connectivity is slow because we have to sort in three dimen-
sions. Instead, we show how to achieve this more efficiently in
projected (2-dimensional) space, which has something in common
with splat rendering, as described next.

4.2 Blending Cylinders in Projected Space
We define samples in S as connected if their balls overlap. Now
we want to locate the connectivity between the samples so that we
can blend their associated balls for neighbors to equalize bound-
ary thickness. This is easier if we project them from R3 onto a
plane. Then we just need to locate overlapping disks in that plane
and check if they also overlap in depth with their radii, similar to
rendering view-plane aligned splats. In object space this represents
testing plane-parallel cylinders which contain the balls and are of
minimum size (see Figure 2b). We name the union of cylinders Ω′.

Each point x̂ in the projection plane (i.e., the view plane) rep-
resents a view ray in object space and may intersect Ω′ multiple
times. Therefore each x̂ maps to a set of depth ranges (entry-exit
point pairs of Ω′) which we call its layers, represented by the func-
tion Fi(x̂) for layer i:

Fi(x̂) = {di,near,di, f ar}
We want to equalize the boundary thickness of Ω′ since its asso-

ciated values of F(x̂) change discretely at cylinder boundaries. So
we blend its values (both near and far) for the N connected sam-
ples si whose cylinders overlap with the corresponding entry-exit

pair along the view ray of x̂ as follows:

F̂i(x̂) =
N

∑
i=1

dir(‖x− si‖)

where r(x) = ex2
. We call Ω̂ the volume defined by the depth

range layers of F̂ .
In regions where the surface is mostly parallel to the view plane,

the set of cylinders intersected by a view ray in one layer is such
that each cylinder overlaps with each other in that set. Where the
surface is oblique, this may not hold because the depth range of
a layer becomes large. We call such a set of cylinders containing
non-overlapping subsets as stacked. For such stacks, we blend the
frontmost cylinder only with its overlapping cylinders in the stack
to get di,near, and similar for the backmost cylinder to get di, f ar.
Figure 3 explains the two cases.

Σ is not known but implicitly assumed through its set of samples
S. Nevertheless, we would like Σ to be bound by Ω̂, so we attempt
to define it to lie centered in Ω̂. The way in which Σ approximates
S can then be thought of as similar as a blended surface of splats.
Our results in Section 7 confirm that Σ̂ is reasonably close to S.

We would like to define Σ̂ as the set of centers of maximum balls
contained in Ω̂ which touch both sides of its boundary. However,
boundary sides of Ω̂ are not clearly defined, but shooting view rays
through it results in entry/exit pairs. Based on that information we
can define Σ̂ as the set of centers of maximum balls contained in
Ω̂ which are centered along a view ray and growing monotonically
either from its entry or exit point. A view ray then contains for
each layer F̂i either one or two balls. Σ̂ is similar to a subset of the
medial axis [3] of Ω̂ as the maximizing of balls along the view ray
prunes spurious branches in that direction. However, it may contain
spurious branches in the other axes.

4.3 Discretization of Ω̂ in Screen Space

For efficient spatial sorting, we discretize Ω̂ into a 2D grid with
screen-space resolution. This data structure is well suited to parallel
processing as the point primitives are streamed onto the GPU and
connectivity has local extent in screen space so there is not much
interdependency.

The result is a kind of non-aligned voxelization, since each pixel
can reference multiple layers in F̂ , but their depth range does not

Projection Plane

C1C2

C3

C4

x1ˆ x0ˆ

Projection Plane

x1ˆ x0ˆ

Figure 3: Left: This figure shows blending at stacked (x̂1) and non-
stacked (x̂0) view rays. Frontmost (cyan) and backmost cylinders
(red) are drawn with continuous lines, other cylinders as dashed.
View ray x̂0 enters the layer at cylinder C1 and leaves at C2, in-
tersecting three cylinders in total which all overlap and thus are
blended together to a single di. View ray x̂1 on the other hand inter-
sects a stack of cylinders, C3 in the front and C4 at the back. di,near
is then the result of blending C3 with its overlapping (light cyan)
cylinders and di, f ar similar for C4. Right: the result of blending are
the cylinders drawn with thick stroke.

correspond between pixels (see Figure 2c). A closely related con-
cept are layered depth images (LDI), which are typically used to
peel off surface layers from a mesh as shown in [7]. In our case,
layers represent depth ranges instead of scalar values, so we extend
the depth of an LDI with a second value to represent the near (en-
try) and far (exit) intersection of the thickened boundary. We name
this a thickened LDI (TLDI).

5 CONSTRUCTION OF TLDI
Constructing the TLDI for a point cloud peels off layers similar
as does depth peeling for a mesh (see Figure 2d). Since opera-
tions such as visibility culling, blending and normalization are in-
volved, we can partially reuse work already done in the standard
PBR pipeline which processes the points sequentially:
The Standard Three-Pass PBR Pipeline. The common pipeline
of surface splatting employed by PBR algorithms is generally com-
posed of three shader passes:

• Visibility Pass: All splats are simply rendered, depth culled,
leaving only the front-most fragments in the output buffer.

• Blending Pass: Fragments of the splats that are within a cer-
tain threshold from the front depth values are rendered to ac-
cumulate the weighted colors and the weights themselves.

• Normalization Pass: The accumulated weighted colors value
is divided by the accumulated weights value to get the blended
depth.

For the blending and normalizing passes, we simply replace val-
ues of color with depth (front and back values respectively).
Modifications for TLDI layer computation:

For constructing a layer of the TLDI, we insert three passes be-
tween the visibility and blending pass:

• Stacking Pass: Since points are not processed in order, cylin-
ders in a stack may occur after each other such that they do
not overlap. We maintain a zero-initialized bit array for an
assumed optimal stack size of size 128 bits, 32 bits for each
one of the RGBA channels, quantized by the radius of the first
encountered point. Subsequent cylinders encountered at that
pixel and inside its range fill up the bits corresponding to their
depth (see Figure 4).

• Counter Pass: The number of contiguous filled bits is deter-
mined, starting from the first filled bit.

• Back Visibility Pass: The previous count determines the back-
most cylinder in that stack and also in the current layer.

The two pipelines are displayed in Figure 5. For each pixel in the
TLDI, a pair of depth values (dnear,d f ar) is output. In our imple-
mentation, we actually store their average davg along with half their
distance, because for non-stacked pixels, davg already represents Σ.

In our experiments, we managed to capture all layers entirely
within our assumed stack size of 128 bits. However it is important
to note that layers exceeding this size would simply be split up into
two, adding another layer to the data structure but not changing the
underlying representation. We expect this to minimally decrease
performance, but accuracy would not be affected.

We execute the above pipeline for each layer of the point cloud,
however the collision detection application that we present next of-
ten terminates already after a single layer has been constructed.

6 COLLISION DETECTION AS AN APPLICATION

We now present collision detection as one application of querying
the TLDI representation of the implicit surface of S. We show that it
can be implemented efficiently by merging TLDI construction and
collision testing into an existing PBR pipeline.

Simply put, collisions are detected by intersecting view rays
from the camera for each pixel with the TLDI for each point cloud
and testing if their depth ranges along that ray (since close to Σ̂)
intersect. For non-colliding point clouds, this also infers the sepa-
ration distance in view direction, which especially makes sense for
an object moving with the camera, such as an avatar. We describe
next how the two point clouds’ collision and distance queries are
processed.

6.1 TLDIs Comparison
Comparisons between layers are performed pixel wise. A collision
is detected if at a pixel the depth ranges for layers from two objects
overlap. Since the boundary is thickened, we expect a number of
false positives, i.e., Ω̂0,Ω̂1 of the point clouds intersect while the
actual surfaces Σ̂0, Σ̂1 do not. In our experiments we discovered
that we could compress the thickness of Ω̂ in view direction by a
significant factor in order to eliminate most false positives while
keeping the number of false negatives small. Since Ω̂ is projected
in view direction, thinning it in this axis does not affect the gen-
eral observations made in Section 4, in fact it approximates Σ more
closely.

Since a collision may already be detected in the first layer (which
terminates our method), we do not have to construct all layers of the
object and compare them against each layer of the other object. In-
stead, we compute them in depth order on demand as long as no
collision is detected, as outlined below. This limits the number of

projection plane

0

0

0

0

.

.

.

projection plane

0

0

0

.

.

.

projection plane

0

0

.

.

.

projection plane

0

.

.

.

projection plane

0

.

.

.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 4: The figure demonstrates how the connectivity of a stack inside a layer is tracked by a bit array in the stacking pass. Depth is
quantized into segments, where each segment is of height equal to the diameter of the first encountered cylinder in the initial visibility pass,
and the first segment aligned to its lower disc. In the subsequent stacking pass, cylinders of encountered points are projected to gain occupancy
information, as shown in order. Each cylinder fills the segments in the buffer bit that intersects with its cylinder depth interval. The order in
which points are projected is assumed to be random, and cylinders in the figure are not all the same size.

Figure 5: For TLDI construction we insert three additional passes
into a standard PBR pipeline.

depth comparisons by the number of layers per object, correspond-
ing to its view-dependent depth complexity.

Let there be two point clouds O0,O1. For O0, the first and second
layers – l0,0 and l0,1 – are computed. Then we consider the subset
of O1 which is clipped by the depth range of – and between – Ω̂

of l0,0 and l0,1, construct its layers and compare it against those
of O0. The clipping is repeated similar between subsequent layer
pairs l0,i−1, l0,i, for i ≥ 2, until the backmost layer of O0 has been
reached or a collision is detected.

6.2 Early Rejection Test
Since entire TLDIs have to be constructed in case of non-collision,
we add a quick rejection test in the beginning, where we simply
compare the front layer of O0 to the back layer of O1, and vice
versa. Since the front layer is the closest to the camera, a non-
collision is reported if for all pixels dnear of the front layer of O0 is
greater than d f ar of the back layer of O1. If the depth intervals of
those layers intersect, a collision is detected early as well. This test
can be performed quickly inside the standard PBR pipeline, as only
one depth interval is required to be blended. If the test does not
deliver any result, we continue the normal procedure of comparing
the layers, in which the already computed layers can be reused.

6.3 Integration into Existing PBR Pipeline
The overlap between the standard PBR pipeline and TLDI construc-
tion suggests an integration between those two. The early rejection
test already uses the same standard pipeline of rendering to create
the two front layers. In fact, the only difference is what is being
blended, color or depth. However, in rendering the two objects
are processed and z-culled together, while TLDI construction pro-
cesses one object at a time. The preferred integration scenario is to
blend both colors and depth while creating the front TLDIs of O0
and O1. While the TLDIs are used for collision detection, the two
frames with the blended colors can be merged into one by perform-
ing z-culling at each pixel using the corresponding TLDIs to choose
which color value is copied to the merging frame pixel.

We note that TLDI construction profits from the reuse of PBR
pipeline calculations for point-cloud data located inside the view
frustum. For many application scenarios, only these data are of
interest anyway, e.g., an avatar moving with the camera.

Point clouds are almost always perspectively projected onto
the screen by rendering pipelines, whereas the cylinders in sec-
tions 4, 5, 6 are assumed to be orthogonally projected. The inte-
grated pipeline has to use the same projection for both rendering
and TLDI and so we use perspective projection in our experiments.
This results in perspective foreshortening of the cylinders and thus
turns them into truncated cones. However, since the resulting sur-
face is only an approximation, accuracy is not affected significantly
as the results in Section 7 confirm.

6.4 Distance Queries
In addition to collision queries, our method can also incidentally
answer distance queries in case of non-collision. Since we do not
consider Σ̂ as orientable, the distance function we calculate with
respect to it is unsigned. We can therefore not decide if the distance
between two objects is one of separation or of penetration. When
layers l0,i, l1, j are compared to determine a collision, their absolute
depth difference per pixel is calculated as follows:

d(x̂) = min(|F̂i(near)− F̂j(f ar)|, |F̂j(near)− F̂i(f ar)|)
We keep track of dmin(x̂) at each pixel and then report its over-

all minimum in case of non-collision, which yields the separation
distance in view direction.

7 RESULTS

The algorithm is implemented in C++, OpenGL and GLSL. Tests
were run on Core2 Quad processor, 2.4 GHz, with 4 GB RAM, and
GeForce GTX 680 graphics processor.

We used the benchmark proposed by [21] for testing, in which
two copies of the same model are tested for collision against each
other. Both objects are normalized to fit in a 23 cube. The center of
one object is positioned at the origin, and the center of the second
is positioned at a distance d0 from the origin along the +x direc-
tion. The second object is compositely rotated about the y-axis and
the z-axis, with a number of small steps. The composite rotations
are iteratively repeated, each iteration starting from a position at a
distance di = d0− i∆d from the origin. We initialized d0 with 3.0,
31 iteration/distance, and 30 steps per rotation, which makes 900
cases per iteration/distance, and 27900 total cases. The camera is
positioned at coordinates (0,0,+4), and facing the origin. Point
clouds are perspectively projected with view angle 90◦ at planes
z =+1 and z =+6 from the camera position.

Accuracy and runtime results are computed for each distance by
averaging the results of all steps in the corresponding rotation. Ac-
curacy tests are performed by comparing our outcomes with those
of an exact mesh collision procedure. We call this percentage the
accuracy error, but it should be noted that it is not actually an error.
The polygonal mesh of a point cloud is an approximation of the sur-
face, but not the surface itself. So, we consider the mesh collision
test results as an approximation of the ground truth.

Four models were used for testing: Stanford BUNNY, AR-
MADILLO, DRAGON, and HAPPY polygonal models. For each
model, the point set has been extracted from the mesh and the ri for
its points determined by kNN with k = 7 for testing purposes, where
ri is set to 0.65 of the computed distance. An efficient screen-space
method to determine a radius containing kNN has been demon-
strated in [18]. They project cylinders onto a rather large frame,
1024×1024, to achieve accurate results.

Besides synthetic models, we also tested collision detection be-
tween the huge data set of the houses of EPHESUS (> 5M points)
captured by a laser scanner (see Figure 6), and a single HAPPY
model. We tried to imitate an interactive navigation experience by
considering the HAPPY model a human discovering the big model.

Figure 6: The houses of EPHESUS. Left: View from above of the
point cloud. Right: Closer view with splat rendering.

Table 1: The percentages of false negatives and false positives
with various compression ratios ρ for: BUNNY, ARMADILLO,
DRAGON, HAPPY.

ρ false negatives (%) false positives (%)
B A D H B A D H

1.0 0 0 0 0 0.92 0.47 0.47 0.12
0.5 0 0 0 0 0.68 0.29 0.29 0.08
0.25 0 0 0 0 0.52 0.23 0.21 0.03
0.1 0 0.1 0.01 0 0.43 0.18 0.15 0.02
0.05 0 0.01 0.02 0.01 0.39 0.17 0.14 0.02
0.01 0.01 0.03 0.05 0.05 0.33 0.16 0.13 0.01
0.005 0.05 0.04 0.06 0.06 0.3 0.16 0.13 0.01

The same benchmark described above is used, where EPHESUS
keeps its size, HAPPY scaled to the size of a human – relative
to EPHESUS – and the view emanates from the eyes of HAPPY
and directed forward. HAPPY is initially positioned at coordinates
(0,0,+D), where D is the x-extent of the EPHESUS bounding box.
Number of iterations and number of steps per iteration are the same
as above. A polygonal mesh of EPHESUS is not available, so only
runtime is measured.

Figure 7: Accuracy error of collision detection compared with the
sampled mesh as approximate ground truth. Based on these results
we chose ρ = 0.05 for subsequent tests.

When querying the intersection between thickened bounding in-
tervals as an indicator of collision, we have encountered very few
cases of false negatives in our experiments (none for most object
pairs tested), but the ratio of false positives is rather high (see Ta-
ble 1). Compressing the intervals as mentioned in Section 6.1 with a
factor ρ decreases this number effectively while yielding only an in-
significant number of false negatives. The accuracy resulting from
different compression values is plotted in Figure 7, which shows
that accuracy peaks for ρ between 0.01 and 0.05. Smaller values of
ρ yield less false negatives, but more false positives, which results
in less overall accuracy. Based on that, we chose ρ = 0.05 for all

Table 2: Point clouds with total TLDI construction time (in mil-
lisec). CD runtime, time overlap with rendering, and error from
mesh ground truth are averaged following the benchmark of Sec-
tion 7.

Model Size TLDI CD Render Error
Bunny 36k 13.9 2.2 0.9 0.39 %
Armadillo 173k 43.7 8.1 3.1 0.18 %
Dragon 438k 122.5 15.8 6.7 0.16 %
Happy 544k 134.9 18.3 8.2 0.03 %

following tests, to maximize accuracy (= minimizing sum of false
negatives and false positives).

Figure 8: Accuracy error vs distance for all models.

Accuracy
Figure 8 shows a plot of accuracy error against distance di. For

all models, the error is zero when the two objects centers are either
far or close, and increases in between, where the object surfaces
collide. The accuracy error stays below 3% for all models for any
distance. Table 2 shows accuracy error averaged over distances, and
is always below 0.4%. Note that false negatives result from Ω̂ not
covering Σ̂ entirely. This can occur if either ρ is too small, overly
compressing Ω̂, or if radii are estimated too small.

Figure 9: Accuracy error for different resolutions of HAPPY.

We are particularly satisfied by the accuracy results of our
method. In Figure 10, [21] showed accuracy error of different reso-
lutions of HAPPY. We reproduce this plot based on the same bench-
mark in Figure 9, albeit with the different resolutions of HAPPY
which were available to us. Interestingly their accuracy do not
improve much when increasing sampling density (always < 7%).
Our results improve significantly with increasing sampling density
as we expect the TLDI to approximate the surface better, down to
< 0.3% for the original resolution.

Figure 10: Runtime vs distance.

Figure 11: Runtime for colliding large EPHESUS (5M points) with
HAPPY averaged over different distances (using benchmark). The
numbers on the x-axis are the distances normalized to [0,1].

Runtime
The result of the benchmark shows that runtime increases ap-

proximately linearly with point cloud size (see Table 2). The same
table also shows the large overlap of collision detection with the
rendering pipeline: about 40% of collision detection runtime is re-
moved if the point clouds are rendered as well. Colliding the large
EPHESUS model with HAPPY is still possible at interactive frame
rates (see Figure 11). Similar to accuracy, runtime also decreases
for near or far object centers and increases in between where sur-
faces collide, as Figure 10 demonstrates.

Figure 12 confirms that the early rejection test outlined in Sec-
tion 6.2 reduces runtime significantly as well.

The runtime of TLDI construction is directly proportional to
point cloud size, and number of captured layers, whereas the num-
ber of layers in turn depends on how tight the TLDI is. The more
the TLDI adheres to the actual surface, the more layers are captured
and the longer the construction time. TLDI tightness is controllable
via scaling the splats radius and the frame resolution. For colli-
sion detection, it is necessary to construct a tight TLDI to achieve
accurate results, but this is balanced by the fact that it is not nec-
essary to construct the whole TLDI as explained in Section 5. For
other applications where the TLDI functions as a bounding vol-
ume rather than a surface estimator, the construction time can be
traded off with the tightness level. Table 3 shows the runtime of
full TLDI construction for HAPPY and DRAGON models, against
different frame resolutions and splat scales. The table shows the
accuracy error values as well. The smallest error is achieved by a
radius scale of 1.0 and frame resolution of 1024×1024. There is no
specific rule how accuracy error changes with the two parameters,
but the trend is that it decreases as the radius scale increases.

Comparing the runtime of our method to others, e.g. [21], is of

Figure 12: Runtime for HAPPY (using benchmark), without (blue)
and with (red) the early rejection test. It clearly shows that it in-
creases efficiency significantly.

Table 3: The average TLDI construction time for HAPPY and
DRAGON models at different frame resolutions and splat scales.
Average number of captured layers are denoted inside brackets, and
accuracy error values are denoted below in italic. The values on top
of the columns indicate the scaling value of the splat radius. The
numbers show how the TLDI construction time decreases as the
frame resolution decreases and the splat radius scale increases.

Model Resolution 1.0 3.0 5.0

Happy

1024×1024 134.9(10.4) 88.2(6.9) 67.5(5.4)
0.16% 0.79% 1.9%

512×512 121.8(9.5) 85.3(6.8) 68.6(5.6)
0.18% 0.67% 1.7%

256×256 113.4(9.0) 75.9(6.2) 63.2(5.1)
0.71% 0.57% 1.4%

Dragon

1024×1024 122.5(11.5) 98.2(9.1) 93.4(6.4)
0% 0.20% 0.24%

512×512 116.2(11.1) 94.2(9.0) 64.6(6.2)
0.16% 0.19% 0.63%

256×256 108.3(10.1) 89.9(8.7) 62.5(6.2)
0.67% 0.25% 0.42%

limited usefulness. Their algorithm was designed for static objects,
as the underlying structure takes considerable time to construct.
For those pre-processed data structures it performs collision queries
faster than ours (being of O(logN) versus our O(N) complexity),
but for dynamically changing objects, hierarchy construction time
needs to be added to each query, and for that our algorithm is faster
by orders of magnitude, even considering that they were measured
on older hardware. The construction of their underlying BVH may
become faster if parallelized and performed on modern hardware.
The tested models contain about 1M points. For objects of that size,
a BVH-based algorithm of O(NlogN) complexity would require an
extra time factor O(logN) of 20, which is quite large.
Robustness to Noise

Since the boundary of Ω is thickened to the extent of sampling
density, we expect it to smooth noise up to a similar level. We
tested the robustness of our approach by adding Gaussian noise with
different σ to HAPPY, the most densely sampled synthetic model
used in our tests. We set σ = nravg, where ravg is the average over
ri, and random n = [0,1]. Runtime did not change significantly and
accuracy error was always below 3% (see Figure 13).
Real Data and Dynamic Simulation

Point clouds captured with the Kinect often exhibit noise and
holes, as ROOM (300k points, captured by Kinect) shown in Fig-
ure 14a. Figures 14b-d show snapshots of collision detection be-
tween BUNNY and ROOM. Collisions are robustly detected near

Figure 13: Accuracy error for different levels of uniform Gaussian
noise (σ = nravg) added to HAPPY.

flat surfaces and small holes. We also simulated a dynamic envi-
ronment of an animated model (HORSE) (10 frames, 8.5k points
each) traversing the EPHESUS model. Figure 15 shows snapshots
from the simulation. BUNNY and HORSE are rendered as meshes
in the figures for visual plausibility.

7.1 Complexity Analysis

Worst-case time complexity between pairs of objects occurs only
if there is no collision and the early rejection test does not detect
that. An example is an object that is partially obscured from the
view point by a concavity in the other object. This requires con-
struction of all TLDIs per point cloud and comparing all of those
for one point cloud against the subsets of TLDIs clipped between
them. TLDI construction is linear in the size of the point clouds,
with the added factor of depth complexity, as points are processed
in order for each layer and therefore O(LN).The collision test is
output-sensitive with O(LXY) for screen space resolution X×Y and
scales with the depth complexity of the point cloud being clipped.

For collision detection among a set of more than two point
clouds, using the proposed algorithm would make the overall run-
time (both construction and collision detection) quadratic, as the
construction of a cloud TLDI is dependent on the other cloud TLDI
and thus would be reconstructed for each comparison. However, if
the number of clouds is large and the size of each cloud is relatively
small, we could also construct the TLDI of each point cloud just
once and separately. The then linear TLDI construction time has
the trade-off that the previously linear time of collision detection
becomes O(L1L2XY).

If we compare a single large point cloud (environment) against
multiple small ones (avatars), we could also use another approach.
In that case, all avatars are treated as a single combined point cloud,
and the same complexity of a single pair comparison holds. Increas-
ing the number of avatars in that scenario increases N2 in the above
expression, and therefore construction time increases linearly. In
order to know which avatars collide with the environment, labels at
the points would have to be stored as well, which would result in a
small increase in memory storage.

8 CONCLUSION AND FUTURE WORK

We have proposed a novel data structure for representing the sur-
face of dynamic point clouds. We show that it can be constructed
efficiently and reuse computation from an existing PBR pipeline.
As an application we have demonstrated online collision detection
for large models. Our results show that our surface extraction is sig-
nificantly more precise than for a previous method [12], especially
where points are densely sampled, and that it is also robust to noise
since the surface underlying the points is thickened.

(a) (b) (c) (d)

Figure 14: Collision detection between BUNNY and the (a) Kinect captured ROOM. BUNNY is blue in cases of non collision, and turns red
in cases of detected collisions. (b) shows BUNNY near a flat surface, and crosses it in the next frame (c). Both cases are correctly detected.
BUNNY passes through a wide hole in (d) which is not recognized as part of the surface, and thus no collision is detected.

Figure 15: Animated HORSE inside EPHESUS, passing through a column.

We are currently working to improve our data structure in terms
of compactness and efficiency of construction and traversal. Im-
plementation of the more exact surface extraction for stacks would
even further increase accuracy, since we currently simply assume
the center of the depth range of a layer along a view ray to be the
surface intersection. We think that augmenting the TLDI with data
from sampling such as normals and uncertainty information could
permit even more precise surface extraction. TLDI could also be
used instead of a voxelization as a more compact representation,
for example to accelerate global illumination computations.

ACKNOWLEDGEMENTS

This research was supported by the EU FP7 project HARVEST4D
(no. 323567).

REFERENCES

[1] R. K. Anjos, J. M. Pereira, and J. F. Oliveira. Collision detection
on point clouds using a 2.5+d image-based approach. J. of WSCG,
20(2):145–154, 2012.

[2] G. V. D. Bergen. Efficient collision detection of complex deformable
models using AABB trees. J. of Graphics Tools, 4(2):1–14, 1997.

[3] H. Blum. A Transformation for Extracting New Descriptors of Shape.
In W. Wathen-Dunn, editor, Models for the Perception of Speech and
Visual Form, pages 362–380. MIT Press, Cambridge, 1967.

[4] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. Proc. SIGGRAPH, pages 303–312, 1996.

[5] S. A. Ehmann and M. C. Lin. Accurate and fast proximity queries
between polyhedra using convex surface decomposition. cgforum,
20:500–510, 2001.

[6] E. Eisemann and X. Dècoret. Fast scene voxelization and applications.
ACM SIGGRAPH Symp. on Interactive 3D Graphics & Games, pages
71–78, 2006.

[7] C. Everitt. Interactive order-independent transparency. Technical re-
port, NVIDIA, 2001.

[8] S. Gottschalk, M. Lin, and D. Manocha. OBB-tree: A hierarchical
structure for rapid interference detection. SIGGRAPH 96 Conf. Proc.,
pages 171–180, Aug 1996.

[9] N. K. Govindaraju, M. C. Lin, and D. Manocha. Fast and reliable col-
lision culling using graphics hardware. Vis. and Computer Graphics,
IEEE Trans. on, 12(2):143–154, Mar-Apr 2006.

[10] B. Heidelberger, M. Teschner, and M. H. Gross. Detection of colli-
sions and self-collisions using image-space techniques. In J. of WSCG,
volume 17, pages 145–152, 2004.

[11] T. Hinks, H. Carr, L. Truong-Hong, and D. Laefer. Point cloud data
conversion into solid models via point-based voxelization. Surveying
Engineering, 139(2):7283, 2013.

[12] J. Klein and G. Zachmann. Point cloud collision detection. In Euro-
graphics 2004, volume 23, pages 567–576, Sep 2004.

[13] J. T. Kloswski, M. Held, J. S. B. Mitchell, H. Sowrizal, and K. Zikan.
Efficient collision detection using bounding volume hierarchies of k-
dops. IEEE Trans. on Vis. & Com. Graphics, 1(4):21–36, Jan 1998.

[14] D. Knott and D. K. Pai. Cinder: Collision and interference detection
in real-time using graphics hardware. In Graphics Interface, pages
73–80, May 2003.

[15] Y. Ohtake, A. Belyaev, and H.-P. Seidel. An integrating approach to
meshing scattered point data. In Proc. of 2005 ACM symp. on Solid &
physical modeling, pages 61–69. ACM, 2005.

[16] J. Pan, S. Chitta, and D. Manocha. Probabilistic collision detection
between noisy point clouds using robust classification. Int. Symp. on
Robotics Research, 2011.

[17] J. Pan, I. A. Sucan, S. Chitta, and D. Manocha. Real-time collision
detection and distance computation on point cloud sensor data. In
IEEE Int. Conf. on Robotics & Automation, pages 3593–3599, 2013.

[18] R. Preiner, S. Jeschke, and M. Wimmer. Auto splats: Dynamic point
cloud visualization on the gpu. In H. Childs and T. Kuhlen, editors,
Proc. of Eurographics Symp. on Parallel Graphics & Vis., pages 139–
148. Eurographics Association 2012, may 2012.

[19] C. Scheiblauer and M. Wimmer. Out-of-core selection and editing of
huge point clouds. Computers & Graphics, 35(2):342–351, Apr 2011.

[20] D. Steinemann, M. Otaduy, and M. Gross. Efficient bounds for point-
based animations. Symp. Point-Based Graphics, pages 57–64, 2007.

[21] G. Zachmann. Minimal hierarchical collision detection. In ACM
Symp. on Vir. Reality Software and Tec., pages 121–128, Nov 2002.

