
Cross-Platform Development
Approaches

For the Mobile Device Platforms Android and iOS

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Oana-Aurora Moraru
Registration Number 1108261

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Vienna, 22.07.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Abstract

This paper provides an introduction to cross-platform programming for mobile devices as well
as an overview of different object-oriented programming -based cross-platform development
approaches. The presented approaches are described, discussed and evaluated based on their ad-
vantages and disadvantages, as well as a practical implementation.
The comparison relies on different aspects, including the preparation of the workspace, nec-
essary programs, installations and plug-ins, their price, the supported platforms, the effort to
implement, the ease with which the application programming interfaces can be used and much
more.
Thus the investment of time, money and energy, as well as other difficulties, which might oc-
cur while following an approach, constitute important factors which contribute to the results
of the evaluation. In the end the paper suggests which might be the best and easiest approach,
respectively which approaches are more appropriate than others in some certain cases.

i





Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Aim and Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Overview 5
2.1 Object-oriented programming -based cross-platform development approaches . 5
2.2 Table of Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Web technology -based cross-platform development approaches . . . . . . . . 12

3 Practical Application for Comparison Purposes 15

4 Object-oriented programming -based cross-platform development approaches 17
4.1 libGDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Murl Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 MoSync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Xamarin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Marmalade SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Comparison 85
5.1 Comparison of the object-oriented programming -based cross-platform develop-

ment approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion 93

Bibliography 95

iii





CHAPTER 1
Introduction

1.1 Problem Statement

As the smartphone industry is growing, the number of application developers for mobile plat-
forms has multiplied, as Heitkötter et. al [33] state in their work. Furthermore the authors of the
paper define applications, also known as apps, as innovative mobile information systems.
However even though there are already millions of applications on the market, some customers
still complain about certain applications not being available on all mobile platforms for instance.
The main reason for this problem consists in the difficulty of developing mobile applications that
are able to run of various platforms.

Heitkötter et. al [33] state in their paper that the market of mobile operating systems for
smartphones is heterogeneous, inconsistent and rapidly changing.
The same source states that Google’s Android and Apple’s iOS are the market leaders closely
followed by Microsoft’s Windows Phone.
While these mobile operating systems lead the market, a standardized platform has not yet been
established. Furthermore these platforms are all substantially divergent, according to Heitkötter
et. al [33].

1.2 Motivation

Allen et. al [6] and Heitkötter et. al [33] state in their work, that there are several aspects which
complicate an easy development of mobile applications for more than one platform. This hinders
the reaching of a larger potential audience by software developers.
First of all the mobile developer needs to be able to code in various languages, in order to write
their applications for each platform individually. Secondly the different platforms often require
differential tools or other kind of prerequisite.
Other aspects, which often constitute problems, concern the structure of the program, different

1



membership requirements as well as fees one has to pay in order to be allowed to run or deploy
certain applications on specific devices. In the same work Allen et. al [6] give a very informative
overview of the development and distribution on different platforms.

1.3 Solution

However, because of these enumerated problematic aspects, the mobile developers tend to resort
to cross-platform development approaches. Heitkötter et. al [33] define cross-platform develop-
ment as a solution which allows developers to implement applications able to run on a range of
different platforms in one single step.
This allows for the avoidance of repetition and an increase of productivity. The difficulty of
this task consists in the fact that cross-platforming approaches not only need to provide ade-
quate generality, in order to allow supply of applications for various platforms, but also must
enable software developers to take advantage of certain possibilities and advantages of specific
smartphones.

Figure 1.1: This figure shows the logograms of the market-leading mobile operating systems:
Windows, iOS, Android, HTML5 and BlackBerry (from right to left). The picture can be found
on the following source [3].

1.4 Aim and Structure of the Work

This bachelor thesis describes, compares and evaluates a series of cross-platform approaches
for mobile devices. Generally, the cross-platform development approaches can be separated into
two categories: Object-Oriented Programming -based and Web Technology -based Approaches.
However, this paper concentrates on the object-oriented programming -based procedures. These
procedures rely on Java, C/C++ and C# as programming languages and are additionally dis-
cussed based on a simple practical 3D mobile application.

2



This is meant to test, compare and evaluate the ease of development and use of typical
application programming interfaces, which are normally used in 3D applications and game de-
velopment.

Furthermore, the first part of the paper presents a short overview of the various approaches,
as well as a table illustrating their general and best features. This is meant to provide the reader
with a first overall impression.
The second part of the paper consists in a much more in-depth description of each cross-platform
development approach, followed by a more extensive comparison, which can be found in the
section ’Comparison of the object-oriented programming -based approaches.
Finally the conclusion at the end of the paper will summarize the most important results of the
comparison.

3





CHAPTER 2
Overview

2.1 Object-oriented programming -based cross-platform
development approaches

In this section an overview of the object-oriented programming -based mobile cross-platform
development approaches libGDX, Murl Engine, Unity, MoSync, Xamarin and Marmalade SDK
is given. The basic criteria on which the selection of these frameworks depended was represent-
ed by their ability to support the mobile platforms iOS and Android.
Furthermore, the support on 3D topics of the frameworks played an important role in their selec-
tion, since the practical application for comparison purposes, which accompanies this bachelor
thesis, represents a small 3D demonstration.

libGDX

LibGDX is a cross-platform game development framework from Badlogic Games. The used
programming languages are Java, Kotlin and Scala, as well as any other GNOME Display Man-
ager (GDM) language. The deployment to one of the following platforms: Desktop, Windows,
Linux, Mac, Android, iOS or BlackBerry, can be realized quite easily at the touch of a button.
When using Java, the project can also be deployed as HTML5 web application.
LibGDX offers many advantageous built-in functions, such as Input processing from the touch-
screen and model loading, which simplify the coding effort of the developer. More information
about libGDX can be found on their official web site [38].

Murl Engine

The Murl Engine represents a free platform-independent tool for developing games, multimedia
and mobile applications. The coding language is C++. The Murl Engine embraces a slightly
different approach than the other discussed frameworks, which is meant to provide more tech-
nical control and flexibility. The developer can maintain a good overview of the elements of the

5



scene and their location, after having defined these in an XML file. The elements can then be
referenced by ids, when implementing the logic of the application.
However the flexibility comes at the price of an increased implementation effort and currently
there is not much support on 3D topics, since the developers are still working on the framework
and the website. The supported platforms are: Android, iOS, Windows and Mac OS X. Further
information about the Murl Engine can be collected from their official web site [95].

Unity

Unity is a cross-platform game-development ecosystem, which contains an integrated devel-
opment environment, a game engine with an integrated rendering engine, which is meant to
simplify the programming effort and comes with a fast and intuitive set of tools and workflows.
This enables a fast and easy generation of 2D and 3D content.
The used programming languages are C#, UnityScript and Boo. Unity also disposes of an As-
set Store and a big community willing to share their knowledge. The system focuses on game
development. Unity supports the following platforms: Windows, OS X, Ubuntu, Android, iOS,
Blackberry10, Windows Phone 8, Unity Web Player, Abobe Flash, PlayStation 3, PlayStation 4,
Xbox 360, Xbox One, Wii U and Wii. More details can be gathered from the official web site of
Unity [124].

MoSync

MoSync SDK is a free, open-source tool for cross-platform mobile application development. It
comprises tools for building native applications and an Integrated Development Environment,
which is based on Eclipse. The used programming language is C/C++ and the supported plat-
forms are: Android, Blackberry, iOS, Java ME MIDP, Moblin, Symbian, Windows Mobile and
Windows Phone.
Unfortunately MoSync is no longer maintained, despite of the fact that it provides various useful
tools and supports up to eight platforms. However some support is still provided by the commu-
nity [66]. More information can be found on the official website of MoSync [55].

Xamarin

Xamarin is a software which enables users to build cross-platform native applications for An-
droid, iOS, Mac and Windows. The download includes Xamarin.iOS, Xamarin.Android, Xa-
marin.Mac and Xamarin Studio, an Integrated Development Environment. The cross-platform
applications built with Xamarin share a C# code basis.
Furthermore, even though Xamarin currently disposes of a quite big community, one does not
find much information available for free and the free Xamarin version of the IDE has a restricted
compiled code size. However there exists a 30 days free Trial of the Business Edition.

6



Since Xamarin focuses on productivity and utility applications, it must be used in combina-
tion with MonoGame, an extended 3D Engine, to provide support for 3D application and game
development, even though model loading is still quite tricky. Xamarin and MonoGame support
following platforms: Windows, Windows Phone, Mac OS, iOS, Android, Linux, PlayStation
Mobile and OUYA console. More information about Xamarin and MonoGame can be found on
their official web sites [71], [74].

Marmalade SDK

Marmalade SDK is a free cross-platform application development tool and game engine. It is a
C++ framework enabling the development in Visual Studio or Xcode. The documentation, code
samples, tools and library files are all available for free. Marmalade provides all the benefits of
C++, including high performance, openness, flexibility and low-level access, when going cross-
platform.
Furthermore Marmalade SDK also supports programming in Objective C, LUA and HTML5,
by means of Marmalade Juice, Marmalade Quick and Web Marmalade and the deployment to
one of the following platforms is possible: Android, iOS, Windows Phone 8, BlackBerry10,
Tizen, Mac OS X, Windows Desktop, LG Smart TV, Roku 2 and Roku 3. More information on
Marmalade SDK can be found of their official website [47].

7



2.2 Table of Comparison

The table represented below (Table 2.1) provides an overview of the six object-oriented pro-
gramming -based cross-platform approaches described in this bachelor thesis. The first column
from the left comprises main features of the approaches, which provide an essential basis for the
extensive comparison of the approaches.
While the complete comparison as well as its results can be found in the chapters 5.1 and 6 lo-
cated towards the end of this bachelor thesis, the following table lists the most important features
of the approaches in a most compact way, thus enabling a first overall impression.

Main
Features

LibGDX Murl Engine Unity MoSync Xamarin
with
MonoGame

Marmalade
SDK

Developer
Team

Badlogic
Games

Spraylight
GmbH

Unity
Technologies

MoSync AB Xamarin,
developers
of Mono

Marmalade
Technologies
Limited

Free Version
availability

yes yes yes yes Xamarin: yes,
but with
limited
app size.
MonoGame:
yes.

yes

Versions
in exchange
for a Fee

- Basic,
Standard,
Pro

Pro Basic Pro,
Gold Pro

Indie,
Business,
Enterprise

-

Focus mainly
on mobile
development

no no no yes no yes

Programming
Languages

Java,
Kotlin,
Scala,
or any
other GDM
language

C/C++,
LUA

C#,
UnityScript,
Boo

C/C++,
HTML5,
JavaScript

C# C++,
Objective C,
LUA,
HTML5

IDE Eclipse,
IntelliJ,
NetBeans

Xcode or
favored IDE

Unity IDE MoSync IDE Xamarin
Studio,
Visual Studio

Visual Studio,
Xcode

Download
and
Installation
Effort

easy to
medium

easy to
medium

easy easy medium
to hard

easy

Registration
required

no no no no no yes

GUI
tool for
deployment

yes, the
libGDX
Project
Generator

yes, the
Dashboard

no no no yes, the
Marmalade
Hub

8



Main
Features

LibGDX Murl Engine Unity MoSync Xamarin
with
MonoGame

Marmalade
SDK

Supported
Mobile
Platforms

Android,
iOS,
BlackBerry

Android,
iOS

Android,
iOS,
Blackberry10,
Windows
Phone 8

Android,
iOS,
Blackberry,
Java ME
MIDP,
Moblin,
Symbian,
Windows
Mobile,
Windows
Phone

Android„
iOS,
Windows
Phone,
PlayStation
Mobile

Android,
iOS,
Windows
Phone 8,
BlackBerry10,
Tizen

Other
Supported
Platforms

Windows,
Linux,
Mac,
HTML5

Windows,
Mac OS X

Windows,
OS X,
Ubuntu,
Unity Web
Player,
Abobe Flash,
PlayStation 3,
PlayStation 4,
Xbox 360,
Xbox One,
Wii U,
Wii

- Windows,
Mac OS,
Linux,
OUYA
console

Windows,
Mac OS X,
LG Smart
TV,
Roku 2,
Roku 3

Choice of
installation
path

yes no yes no yes yes

Familiariza-
tion with the
Framework

easy medium easy medium medium easy

Tutorials
availability

yes yes, but
quite few

yes no yes, in
exchange
for fees

yes

Community yes quite small yes yes, but
framework
no longer
maintained

yes, in
exchange
for fees

yes

Deployment
to other
platforms

easy easy easy easy to
medium

quite hard,
since it has to
be done
manually

easy

Running the
Desktop
Project

easy easy easy - easy easy

Running the
iOS Project

easy to
medium

easy,
by means
of Xcode

easy,
by means
of Xcode

easy to
medium,
by means
of Xcode

easy, after
project
generation

easy to
medium,
by means of a
deployment
tool

9



Main
Features

LibGDX Murl Engine Unity MoSync Xamarin
with
MonoGame

Marmalade
SDK

Running the
Android
Project

easy easy, with
the GUI

easy easy easy, after
project
generation

easy to
medium,
by means of a
deployment
tool

Rendering
API support

OpenGL ES
1.0, 1.x, 2.0,
3.0,
OpenGL

OpenGL ES
1.1, 2.0,
OpenGL,
DirectX 9.0,
11.1

OpenGL ES
2.0,
OpenGL 2.1,
3.2,
DirectX

OpenGL ES
1.1, 2.0

OpenGL ES
2.0,
OpenGL 1.x

OpenGL ES
1.x, 2.x

Camera Im-
plementation

easy easy to
medium

very easy hard, not
implemented

hard, not
implemented

easy

Camera
Controller
Implemen-
tation

very easy medium medium medium
to hard

hard, not
implemented

medium, not
implemented

Model
Loading

easy medium,
conversion to
Murl Meshes
by means of
a Scene
Converter
tool

very easy hard, not
implemented

hard,
conversion
necessary
due to not
implemented
Content
Pipeline

medium,
exportation
necessary
from a
modeling
package

Supported
Model
Formats

.OBJ,

.G3DT,

.G3D,

.MD2,

.MD5

model
formats
supported by
Assimp [12]

.FBX,

.DAE,

.3DS,

.DXF,

.OBJ

model
formats
supported by
Assimp [12]

.X,

.XNB,

.FBX

GROUP file

Object
Movement

easy easy easy,
script needed

medium easy easy

Lighting
Implemen-
tation

easy easy to
medium

very easy medium, not
implemented

easy easy

Touchscreen
Interface

very easy medium easy to
medium

medium
to hard

medium easy

Image
Loading

easy easy medium easy to
medium

easy easy

Supported
Image
Formats

.JPG,

.PNG,

.BMP

.PNG,

.JPG,

.WEBP,

.DDS,

.TGA

.JPEG,

.PNG,

.GIF,

.BMP,

.TGA,

.IFF,

.PICT

.JPEG,

.PNG,

.SVG

.BMP,

.DDS,

.DIB,

.HDR,

.JPG,

.PFM,

.PNG,

.PPM,

.TGA

.PNG,

.BMP,

.GIF,

.JPG,

.TGA

Sound very easy easy easy very easy easy medium

10



Main
Features

LibGDX Murl Engine Unity MoSync Xamarin
with
MonoGame

Marmalade
SDK

Supported
Sound
Formats

.WAV,

.MP3,

.OGG

.WAV,

.OGG
.MP3,
.OGG,
.AIFF,
.WAV

.MP3,

.WAV
.WAV,
.MP3,
.WMA,
.XAP

.MP3,

.ACC,

.QCP (with
additional
effort: .WAV)

Table 2.1: Comparison of cross-platform development approaches

11



2.3 Web technology -based cross-platform development
approaches

In this section a brief overview of the web technology -based mobile cross-platform development
approaches Appcelerator, Widgetpad, RhoMobile, PhoneGap, Sencha and Cocktail is given. The
basic criteria on which the selection of these frameworks depended was represented by their
ability to support cross-platform mobile programming.
However, these approaches will not be further discussed in this bachelor thesis, since the focus
lies on object-oriented programming -based cross-platform development approaches.

Appcelerator

Appcelerator is a private mobile technology company located in Mountain View, California.
Its most significant product is Titanium. Titanium is an open-source software development kit
which can be used for cross-platform mobile development. The Titanium framework enables
the creation of mobile applications for the following platforms: iOS, Android, Windows Phone,
BlackBerry OS, and Tizen, using a single JavaScript codebase.
Another important product of Appcelerator is the Appcelerator Platform, which is an enterprise
software suite on which mobile applications can be developed, analyzed, tested and deployed.
The programming languages which can be used are: HTML5, CSS3, JavaScript, PHP, Python
and Ruby. More information on Appcelerator can be collected on their official webpage [9].

Widgetpad

Widgetpad, created by Satoshi Nakajima, represents a collaborative, open source web-based
mobile development platform. It enables web developers to implement interactive, stand-alone
smartphone applications. The used standard web technologies are HTML 5, CSS 3, and JavaScript.
Widgetpad also enables an easy distribution of the applications to all app stores. Using Widget-
pad one can create mobile applications for operating systems such as iOS and Android as well
as for WebOS.
Widgetpad is available through the web via the Software as a Service (SaaS) model. Further-
more, Widgetpad includes everything which is needed to implement cross-platform smartphone
applications, as for example project management, a debugger, source code editing, version-
ing, collaboration and distribution directly from ones own browser, as stated by the following
source [19].

RhoMobile

The RhoMobile Suite, previously known as Rhodes Framework, is an open-source framework
for building native cross-platform applications. It is developed by Motorola and currently owned
by Motorola Solutions. RhoMobile guarantees the exact same look and feel of the produced
application independently of which operating system, device brand or screen size is used.
RhoMobile is released under the MIT license and uses Model-View-Controller pattern. While
the programming language used for the views is HTML, controllers can be written in Ruby.

12



The supported mobile platforms are: iOS, Android, Windows Mobile, BlackBerry and Windows
Phone 7. Symbian is no longer supported. More information on RhoMobile can be gathered on
their official website [67].

PhoneGap

PhoneGap is a mobile development framework developed by Nitobi. It has been purchased by
Adobe Systems in 2011. PhoneGap enables software developers to implement applications for
mobile devices. The used programming languages are JavaScript, HTML5, and CSS3, instead of
using the platform-specific application programming interfaces. The HTML, CSS and JavaScript
code is then wrapped up depending on the platform of the target device.
The features of HTML and JavaScript are being extended in order to work with the specific
devices, so that the resulting applications are hybrid. This means that they are neither purely na-
tive, since the layout rendering is realized via web views instead of the native UI framework, nor
truly web-based, since they are not just web apps, but packaged as applications for distribution
with access to the device’s native application programming interfaces. In the newest versions it
is allowed to freely mix native and hybrid code snippets.
More information on PhoneGap can be collected on their official website [4].

Sencha

Sencha Touch is a user interface JavaScript library and also a framework built specifically for the
mobile web. It enables web developers to implement mobile web applications user interfaces,
which provide the look and feel of native applications on the supported mobile devices.
Sencha is entirely based on web standards as for example HTML5, CSS3 and JavaScript and
aims to enable developers to implement HTML5 based mobile applications fast and easily. The
supported mobile platforms are Android, iOS, Windows, Tizen and BlackBerry. Sencha further-
more aims to provide a native-app-like experience inside a browser. More information on Sencha
is available on their official website [87].

Cocktail

Cocktail is an open-source rendering engine which implements the W3C HTML and CSS stan-
dards. It can be used to create native and web applications and is written as a library for Haxe
language. Cocktail is a project supported by Silex Labs released under the MIT license. With
Cocktail the developers can implement HTML/CSS application in Haxe and build them for
OpenFL and flash/Air.
Since Cocktail uses the standard document object model (DOM) application programming in-
terface, one can also create application to ordinary JavaScript. One can embedded Cocktail in-
side one’s application or game, similarly to a webview, and thus build one’s own user inter-
face in HTML/CSS. More information on Cocktail can be collected on the subsequent web-
pages [88], [30], [37].

13





CHAPTER 3
Practical Application for Comparison

Purposes

The object-oriented programming -based cross-platform development approaches presented in
this paper are not only evaluated based on theoretical knowledge and general information, but
also on the basis of a practical implementation of a simple game application.
The application is quite elementary, however it comprises image loading, 3D model loading,
sound loading, lighting, a free movable camera and a moving object represented by the model.

The scene contains a 2D background image of a galaxy and a 3D model. The model slowly
rotates around its vertical axis, while a background music is playing. The camera can be moved
freely by touch interaction, thus the model seems to be freely manipulable.
The background image can be found on the following source [129], while an arbitrary model
can either be downloaded from the internet or modeled by the developer by means of a model-
ing packages like Maya, 3DS Max or Blender. The model represented in the image below has
been used in the practical implementation of a demo application using libGDX and can be pur-
chased from the tutorial web site, which references the download page [137]. The background
music can be downloaded from the following web site [68].

This application has been implemented for each of the presented object-oriented program-
ming -based cross-platform development approaches using the programming languages Java,
C/C++ and C#. It serves for the purpose of comparison, since during the practical implementa-
tion of the same application by means of different frameworks, one can truly observe the differ-
ences between the various approaches. Likewise, the ease of development and use of Application
Programming Interfaces can be analyzed and evaluated.

15



Figure 3.1: This figure shows a Screenshot of the game application using libGDX realized on a
Mac computer. It depicts a galactic background image and a 3D model of a space ship.

16



CHAPTER 4
Object-oriented programming -based

cross-platform development
approaches

4.1 libGDX

General Information

LibGDX consists of a cross-platform game development framework. It disposes of an extensive
documentation, which comprises, among other things, a Javadoc and a Wiki, however it changes
frequently due to the numerous contributors, who constantly add new features and improve-
ments.
LibGDX is an extremely convenient and useful framework, since the developer only needs to
write the code once and the framework is able to distribute it for various platforms. LibGDX
also includes some quite advantageous classes like Screen or ApplicationListener.

Figure 4.1: This figure shows the logograms of libGDX on the left side and Badlogic Games
on the right side. The references for the illustrations can be found on the following sources [39],
[111].

17



Developer Team

LibGDX is a project created by Badlogic Games, a small game development shop with their
headquarters in Graz, Austria. Mario Zechner is simultaneously the main developer and business
leader. Further information on Badlogic Games can be found in the following source [40].

Programming Languages

For implementing a cross-platform application using libGDX, one can choose between the fol-
lowing programming languages: Java, Kotlin, Scala or any other GDM language.

Integrated Development Environments

The libGDX community offers considerable support for three different programming environ-
ments: Eclipse, IntelliJ IDE and NetBeans.

Supported Platforms

One can easily deploy their application to the subsequent platforms: Desktop, Windows, Linux,
Mac, Android, iOS or BlackBerry.
In case one writes their application in Java, it can also be deployed to the browser as an HTML5
project. LibGDX accomplishes this by transcripting the Java code to Java Script, allowing the
developer to run his game directly in his browser.

Gradle

As stated by Muschko [70], Gradle is a JVM-based build tool, which constitutes quite an im-
provement of already well-know tools like Ant or Maven. According to Muschko, Gradle en-
hances the better ideas of these tools.
LibGDX uses Gradle as a dependency management tool, therefore Gradle handles the build pro-
cess and the IDE integration. Gradle even enables programmers from the same team to develop
in different IDEs, as long as, if the team uses a distributed revision control and source code man-
agement system, they don’t commit the IDE specific files to the source control.
However if the team uses Git as such a system, the .gitignore File integrated in all libGDX
projects will automatically handle this problem.

Prerequisite

LibGDX is a Java JVM Game Development Framework for multiple platforms, however in order
to be able to develop for these platforms certain prerequisites are necessary. This preconditions
involve mostly the setup of the development environment.
LibGDX provides extensive support for this in form of Wiki pages, where each step which needs
to be fulfilled by the developer in order to be able to work with libGDX is explicitly described.
First of all it is necessary that the developer decides which Integrated Development Environment
he will use. According to this decision he will select the respective Wiki page provided by the

18



libGDX community, where the following steps are specified. In case the developer prefers to use
the command line, there also exists a wiki article which specifies the setting up of the environ-
ment using the command line.

In the following paragraph the setting up of the Integrated Development Environment (IDE)
Eclipse and the installation of some software will be elucidated. This requires approximately an
hour, if no unexpected problems emerge.

Installation of Software

• Java JDK - First the Java JDK needs to be installed. This can be downloaded from the
official oracle site [73], involves approximately 150MB and is absolutely necessary in
order to be able to program in Java.

• Eclipse - An Integrated Development Environment will be needed for the purpose of typ-
ing and compiling code. The IDE Eclipse incorporates 150-250MB, depending on the
downloaded version and can be downloaded on the official Eclipse homepage [110].

• Android SDK - The next thing one needs to install is the Android Software Development
Kit. This represents a necessary installation if the developer intends to export his LibGDX
project to Android. This SDK can be downloaded on the official Android Developer web
site [7] and involves about 100MB. However it is not recommendable to download the
whole Android Development Tools (ADT) Bundle, since the IDE has already been in-
stalled in a previous step, so that the button labeled ’GET THE SDK FOR AN EXISTING
IDE’ should be pressed.

• GWT SDK - Another required piece of software is the Google Web Toolkit SDK. This
is needed in case the developer decides to export his LibGDX project also to HTML5
or JavaScript. It can be downloaded on the Google Web Toolkit Project’s official web
site [32] and incorporates about 100MB.

Installation of Plug-ins

After finalizing all installations mentioned above, the next step consists in the installation of
some plug-ins for the Eclipse environment. These plug-ins are absolutely necessary in order to
enable a correct functioning of any libGDX project. However all the plug-ins can be installed in
a simple and quite similar way.

First of all Eclipse needs to be opened and the location of the workspace needs to be chosen.
Then the ’Help’ item in the upper toolbar needs to be selected, followed by ’Install New Soft-
ware’.
This causes a widow to open, which allows the installation of all 3 plug-ins by the same pattern:
the link to the desired plug-in must be copied and pasted into the ’Work with’ text box. After-
ward the ’Add’ button is to be pressed and the developer must ensure that the ’Group Items by

19



Category’ option is enabled. After this the developer must select the nodes he wants to install
from the presented list.
After having clicked the ’Next’ button, the list of software to be installed should be carefully
read and the ’Next’ button should be pressed once more. The license must be accepted, followed
by the pressing of the ’Finish’ button. As soon as this happens the plug-in will install itself and
Eclipse will be rebooted.

The links to the plug-ins to be installed are listed below:

• Gradle plug-in - the link ’http://dist.springsource.com/release/TOOLS/gradle’ [1] repre-
sents the latest release of the plug-in. The link has to be copied into the ’Work with’ text
box. From the presented list of nodes ’Extensions / Gradle Integration’ must be selected,
followed by ’Gradle IDE’.

• Android ADT-plug-in - the link ’https://dl-ssl.google.com/android/eclipse/’ [2] must be
copied into the ’Work with’ text box. From the list of nodes all of them will be selected.

• GWT plug-in - the link ’https://dl.google.com/eclipse/plugin/4.3’ [31] must be pasted into
the ’Work with’ text box. From the list of nodes all of them will be selected.

Similar steps need to be followed if the developer prefers the IntelliJ IDE or Netbeans instead of
Eclipse. Further information can be found on the libGDX Wiki web site.

Installation of the libGDX jar

In order to be able to create cross-platform libGDX projects, one last installation is necessary,
namely the LibGDX setup jar. The jar can be downloaded from the official LibGDX web site
[21].

Special Prerequisite for iOS

Further things need to be taken into consideration if one intends to program for iOS. This is an
important aspect, especially for programmers who develop for iOS for the first time, since there
are certain preconditions one has to fulfill before being able to develop for iOS.
The completion of these preconditions might take a few days, thus the possibility of a time delay
as well as a monetary investment must be taken into consideration.

1. A Mac - The development for iOS requires a Mac laptop or Mac personal computer. iOS
development can not be achieved on Windows or Linux. However the Eclipse IDE can be
used normally, as described above.

2. XCode - The latest version of XCode is also necessary, in order to enable the provisioning
of Apple devices. To provision an Apple device the setting up of a provisioning profile is
necessary. A provisioning profile is represented by a set of digital entities, which enable
the connection of devices and developers that have a valid Apple developer account, as
stated by the following source [131]. The provisioning is absolutely required, since one
can not deploy the project on an Apple device otherwise.

20



3. RoboVM plug-in - the RoboVM plug-in needs to be added to Eclipse. The installation
process consists in the opening of the Eclipse Marketplace, followed by a selection of the
RoboVM compiler to install. This plug-in should be updated as often as possible.

Registration as an Apple Developer

Some further information one should be aware of if intending to develop for iOS is that one first
needs to be a part of the Apple community by registering as an Apple Developer. This can be
achieved for free and simply requires the Apple ID and password of the developer.
After the registration one has access to the Developer Member Center. As a part of the Member
Center the developer can join one of the programs Apple offers. The admission to one of the
three developer programs: iOS Developer Program, Mac Developer Program or Safari Develop-
er Program, is crucial, since one can not develop for iOS devices without it.

One can gain the membership to one of these programs by paying a fee of 100 USD, respec-
tively 80 EUR, online by credit card. In order to receive the membership one must wait a few
working days. Meanwhile a background check will take place and the developer must also send
a copy of his identity card in .pdf format to Apple.
After all of this is settled and Apple decides that everything is alright, the developer will be in-
formed by e-mail that he is now a member of the requested developer program. As soon as this
happens, the development for iOS can start. More information can be found on the following
web site [23].

Addition of the Apple Device to the Member Center

A next step to be fulfilled concerns the addition of the iOS device one would like to run or test
their project on to the Member Center.
This can be achieved by opening XCode and then plugging in the respective iOS device to USB
on the Mac. After this the device must be informed that it is secure to trust this computer, in case
one connects the iOS device to the respective Mac for the first time.
After this the ’Organizer’ window will open. The ’Use for Development’ button must be clicked,
if this has never been done before. In order to connect the device with the Apple Developer Ac-
count of the developer, the latter needs to press the icon above ’Add to Member Center’. The
Apple Developer ID should then be typed in. Since the developer should already be a member
of the Developer Member Center, the developer is able to request a developer certificate for the
connected iOS device, as soon as the dialogue stating ’Certificate Not Found’ appears.

Normally this automatically triggers the download of a developer profile, however if it fails,
one needs to log in to the ’developer.apple.com’ [10] Member Center and download the provi-
sioning profile manually.
After this has been done, one needs to return to the Organizer and select ’Provisioning Profile’
from the left menu and press the ’Add’ icon. The previously downloaded file must then be se-
lected and added to the provisioning profile.

21



Further details and information concerning this topic are available on the following web site [24].
The device can now be used for developing, running, testing as well as deploying purposes.

Project Creation

After the setting up of the environment is completed, the following step is represented by the
creation of the LibGDX project. In order to create a project, the libGDX jar file must be executed.
A window should appear, where one should specify the following details related to the new
project:

• Name - The name of the project also stands for the name of the game to be developed.

• Package - The package which will contain the project should be named after the subse-
quent pattern: ’com.yourname.yourgame’.

• Game class - The game class represents the main class of the project. All main function-
ality of following classes, which the developer might add, should be invoked by this class.
According to the libGDX naming convention, the main class should be named the same as
the project’s name. However, no spaces should separate the words and each word should
begin with a capital letter.

• Destination - The destination represents a path to where the project should be created on
the developer’s computer by the libGDX setup application.

• Android SDK - In case one would like to deploy their game for Android, the path to the
installation of the Android SDK on the respective computer must be specified.

Then the libGDX version one would like to use must be selected. It is recommended that one
should chose the latest version, since that is the one most likely to contains the last bug fixes. At
the moment, the latest version is illustrated by the ’Nightlies’ version.
Subsequently, the developer must choose the platforms for which he wants to develop the ap-
plication. In order to do so, he must mark one or more of the following check boxes: Desktop,
Android, iOS, HTML.

Additional Libraries

Additionally the developer also disposes of the possibility to add further libraries to the project.
Bullet, Freetype, Tools, Controllers, Box2D and Box2DLight are placed at his disposal.
Bullet is a widely used 3D physics engine. Freetype represents a True Type Font (TTF) library.
Tools allow the use of Texture Packer, a BitmapFont creator and a Particle Editor. Controllers
allow the use of controllers in order to be used as input for the game. Box2D is a common 2D
physics enigne and is also selected by default, while Box2DLight represents a 2D lighting li-
brary based on Box2D. These libraries add addiotional functionality to the game.

As soon as the developer completes these tasks, he can press the ’Generate’ button. This
triggers an automatic download of all additional files which are necessary for the setup of the

22



Figure 4.2: The window depicted in this figure appears when the libGDX setup jar file is ex-
ecuted. It contains several input fields and check boxes, which are meant to simplify the input
of the new libGDX project’s details for the user. The picture can be found on the following
source [112].

project and libGDX will generate the project. This might take some time if executed for the first
time.

23



Project Folder

The project folder, generated in the path folder specified by the developer, contains among other
files a directory for each platform which has been targeted by the developer.
The project folder additionally includes a directory called ’core’. The core project contains all
the source code the developer will write.
The sub-project packages named by the targeted platforms are responsible for spawning the code
from the core project on the respective platform. So the ’android’ directory will include a fully
defined Android project, with all the things and files needed for an Android project. For example
a Resource directory for icons and images, the Android Manifest as well as the source code for
the Android project. This source code merely contains a Launcher, which ensures that the code
from the core project can be run on Android devices or simulators.
The same principle is applied to all other platforms, for each platform-specific sub-project con-
tains a Launcher, which facilitates the running of the developer’s code from the core project on
the particular platform.

Gradle Files Besides the directories for the various platforms, the project folder of the
game also includes additional files and folders which are necessary for Gradle. As previous-
ly specified, Gradle represents a build and dependency-management system. The build system
takes all the source folders and assets in order to package them up for the respective platform.
Furthermore, a dependency-management system allows the specification of the dependencies of
a project. For example the involved game has a clear dependency on libGDX. All dependencies
are listed in the ’build.gradle’ file. In this file one can change the version of already existing
dependencies or add new ones.
More information on dependency management with Gradle can be found on the libGDX Wiki
web site [25].

Assets The asset files of the game, for examples icons or images, are typically to be locat-
ed in the ’assets’ folder of the Android project. All other sub-projects normally reference that
folder. Another ’assets’ folder is contained by the desktop project for example, but that folder
merely represents a linked folder, that links to the ’assets’ folder of the android project. The same
principle applies to the HTML and iOS projects. If one however does not want to develop their
project for Android, there will be no Android package or sub-project. In this case the ’assets’
folder will be located either in the core project or in the desktop project.

Importing the Project

Once the project is successfully created, it can be imported into Eclipse. This is done by opening
Eclipse, clicking on the ’Files’ item from the upper tool bar and then on ’Import’.
Afterwards ’Gradle’, ’Gradle Project’ must be selected and the path to the recently created
libGDX project must be specified. Then ’Build Model’ must be pressed, which causes a list
of all the projects for each previously specified platforms to appear after a few seconds.
The developer must ensure that all projects are selected, which is done by simply selecting
’Game Project’, and can then press ’Finish’. This causes Eclipse to import the libGDX project

24



containing all sub-projects for the different platforms. The first time this is done it might take
some time, because additional dependencies must be downloaded.
Further information regarding the creation of the libGDX project can be found here [112].
After setting up the libGDX environment and importing the project into Eclipse, the developer
can finally start programming.

Running the project

As far as the running of the project is concerned, the game can not be run from the core project.
However running the project can be executed from all other sub-projects standing for the various
platforms.

Running the Desktop Project

In order to run the game on the Desktop, one first has to right click on the desktop project, then
select ’Run As’, ’Java Application’. Afterward a desktop starter class must be specified, such as
’DesktopLauncher.java’.

Running the Android Project

To run the game on Android one first has to make sure, that either an Android Simulator is
installed, or that an Android device is connected to the computer. Additionally the respective
device must be recognized by the Dalvik Debug Monitor Server (DDMS).
After ensuring that the device is available, one must right click on the Android project and then
select ’Run As’, ’Android Application’.
For more information concerning the DDMS consult the Android Developer Guide [8].

Running the iOS Project

For the running of the application on iOS RoboVM, the developer can choose between two pos-
sibilities.
The first option he has is to run the game on an Apple device. However he necessarily has to
make sure that the correspondent device is provisioned. Otherwise the running of the project on
the device will be precluded.
For more information concerning the provisioning of an Apple device, read the upper chapter
entitled ’Special Prerequisite for iOS’.
Once the device is provisioned, one can run the game on it by right clicking on the RoboVM
project and then selecting ’Run As’, ’iOS Device Application’.

The second option is represented by the developer using an iOS Simulator. The running of
the project is realized quite similarly, however ’Run As’, ’iOS Simulator Application’ must be
selected.

25



Running the HTML Project

Before being able to run the HTML project, one must create a new configuration. In order to do
this, the developer has to right click on the HTML project, then select ’Run As’, ’External Tools
Configuration’. A name should then be given to the configuration, such as HTML for example,
and the location field must be set depending on the operating system the developer uses.
If the development takes place on Windows, the location field should be set to ’gradlew.bat’.
Otherwise, if the development takes place on Linux or Max, it should be set to ’gradlew’.
Both filed can be found in the project folder. Furthermore the working directory should be
set to the project’s root folder and in the ’Argument’ input field the developer should enter
’html:superDev’. Then ’Apply’ and ’Run’ are to be pressed.

After the code server is ready, which is indicated in the console view, the developer should
open the browser an enter the URL ’http://localhost:8080/html’. The application should then run
on the browser.
One can change the code or assets without closing the server. After one or more changes, the
developer can simply press the ’SuperDev Refresh’ button located in the browser, which will
recompile the project and reload the page.
This creation of a new configuration represents a bug fix in the Gradle tooling API. However
after this is accomplished, the running of the HTML5 can be simplified by using the Gradle
integration.

Debugging the Project

Debugging the application is quite similar to running the project, the only difference being that
one has to launch their configuration via ’Debug As’ instead of ’Run As’. This can be applied to
the Desktop and Android projects.
However, one has to take into consideration that debugging is presently not supported by Robo
VM, as stated by the following source [28].
The debugging of the HTML build takes place primarily in the browser in the following manner:
the developer has to run the HTML application like previously specified. After that he must
bring up the developer tools by pressing F12 in Chrome. In the sources tab the Java file he wants
to debug can be found and opened. He can then set breakpoints, step in or over and inspect
the variables using source maps. As before, the SuperDev Refresh button can be pressed after a
change in the code, however the server process must be left running.

Application Packaging

The easiest way to package the application is using the command line. This means that the
developer merely has to enter a Gradle command in the command line, which will automatically
generate a JAR, APK or IPA file, for example, which can then be run on various devices.
Nevertheless it is also possible to use the Gradle tasks from within Eclipse.
More information concerning packaging libGDX applications for several platforms using Gradle

26



tasks can be found in the ’Gradle on the Command Line’ documentation [26] on the Wiki web
site of libGDX.

Implementation

The application described in the section ’Practical Application for Comparison Purposes’ can
be implemented using libGDX. In order to do so, the required software and plug-ins have to
be installed. Since the application should work on both Android and iOS, the acquirement of
the Apple Developer Membership as well as the addition of the Apple Device to the Member
Center, are necessary. After doing so, the Startup project can be easily created, imported into
Eclipse and run on both Andoird and iOS devices.

OpenGL and OpenGL ES

According to Munshi et al. [69], while OpenGL ES is an API for advanced 3D graphics, pre-
ponderantly used in handheld or embedded devices, such as cell phones, OpenGL represents a
standard cross-platform 3D API mostly used for desktop systems running on various operating
systems.

LibGDX disposes of interfaces which enable a direct OpenGL ES 2.0 and 3.0 access. How-
ever, if the used LibGDX version is 0.9.9 or earlier, even OpenGL 1.0 and 1.x are available.
OpenGL ES functions are being mapped to the desktop OpenGL functions, resulting in the em-
ulation of OpenGL ES on the desktop. Nevertheless, some platforms, such as iOS, Google Web
Toolkit (GWT) or HTML, merely support OpenGL ES 2.0. Further information on the subject
are provided by the following web site [27].

Integrated 3D API

LibGDX offers an integrated 3D API, so no further libraries have to be integrated. The main class
must implement ApplicationListener, so that the methods create(), render(), dispose(), resume(),
resize(int width, int height) and pause() can be overridden. All objects will then be declared and
instantiated within the create() method, and drawn within the render() method. The instantiated
objects should also be disposed of in the dispose() method. This way no memory leaks will be
generated.
The following web page [136] provides a very useful tutorials by Xoppa, which illustrate the 3D
basics using libGDX. The basic components of the 3D scene are presented below:

Camera

The first step consists of the addition of the camera. This allows the viewing of the 3D scene
from a particular perspective. The camera can be added quite simply, within a few lines of code.
For more details consult the following page [136].

27



cam = new P e r s p e c t i v e C a m e r a ( 6 7 , Gdx . g r a p h i c s . ge tWid th ( ) ,
Gdx . g r a p h i c s . g e t H e i g h t ( ) ) ;

cam . p o s i t i o n . s e t (1 f , 1 f , 1 f ) ;
cam . lookAt ( 0 , 0 , 0 ) ;
cam . n e a r = 1 f ;
cam . f a r = 300 f ;

The camera also needs to be updated.

cam . u p d a t e ( ) ;

After doing this, an object should be drawn, respectively a model should be imported, which
can then be viewed from the camera’s perspective.

Model Loading

The model can be loaded very simply by means of an integrated ModelLoader. However, the
model file together with all significant files, such as texture images, have to be included in the
’assets’ folder of the android project.

ModelLoader l o a d e r = new ObjLoader ( ) ;
model = l o a d e r . loadModel ( Gdx . f i l e s . i n t e r n a l ( " d a t a / s h i p . o b j " ) ) ;

If one would like to add more than one model to the scene, an AssetManager is recommended.
This object takes over the management of the loaded models. More information on loading a
model can be collected from the subsequent tutorial [138].
The momentarily supported 3D model formats are Wavefront OBJ (.obj), G3DT (.g3dt), G3D
(.g3d), MD2 (.md2) and MD5 (.md5), as stated by the following source [20]. As far as Wavefront
OBJ models are concerned, the textures must be assigned by hand.

Moving Object

This can easily be done by manipulating the Instance object, which contains the model, before
the model is drawn.

M o d e l I n s t a n c e i n s t a n c e = new M o d e l I n s t a n c e ( model ) ;

LibGDX offers some built-in transformation functions, such as rotation, translation and scaling.
For instance on can use the transform.rotate() method of the instance to be rotated in order to
rotate the object around one specific axis. The parameters of the method should comprise the
axis, around which the rotation should occur, as well as the multiplication of the rotation speed
with the frame rate.

i n s t a n c e . t r a n s f o r m . r o t a t e ( Vec to r3 . Y,
5 ∗ Gdx . g r a p h i c s . g e t D e l t a T i m e ( ) ) ;

28



This multiplication with the delta time, also known as the time between two frames, represents
a quite important aspect. That way the model will rotate with the same speed on each device.

Lighting

In order to add Lambert lighting to the scene, the definition of an Environment object is necessary
[136]. For this the specification of the color of the Ambient Light is required, as well as the
specification of the color and direction of the Directional Light. This can also be realized quite
easy and quick.

Envi ronment e n v i r o n m e n t = new Envi ronment ( ) ;
e n v i r o n m e n t . s e t ( new C o l o r A t t r i b u t e ( C o l o r A t t r i b u t e . AmbientLight ,

0 . 4 f , 0 . 4 f , 0 . 4 f , 1 f ) ) ;
e n v i r o n m e n t . add ( new D i r e c t i o n a l L i g h t ( ) . s e t ( 0 . 8 f , 0 . 8 f , 0 . 8 f ,

−1f , −0.8 f , −0.2 f ) ) ;

The environment object must then be used as parameter for the render() method of the mod-
elBatch object. The modelBatch object handles the rendering of the model using the correct
environment lighting.

@Override
p u b l i c vo id c r e a t e ( ) {

ModelBatch modelBatch = new ModelBatch ( ) ;
. . .

}
@Override

p u b l i c vo id r e n d e r ( ) {
. . .
modelBatch . b e g i n ( cam ) ;
modelBatch . r e n d e r ( i n s t a n c e , e n v i r o n m e n t ) ;
modelBatch . end ( ) ;

}

Camera Controller

The camera controller allows the interaction with the screen by mouse clicking on the desktop
and by Touch on mobile devices.
This interaction triggers the movement of the camera, so that the user can basically control the
camera freely and view the object from different perspectives. This is a quite nice feature which
can easily be acquired within a few lines of code by using a CameraInputController object [136].

C a m e r a I n p u t C o n t r o l l e r c a m C o n t r o l l e r =
new C a m e r a I n p u t C o n t r o l l e r ( cam ) ;

Gdx . i n p u t . s e t I n p u t P r o c e s s o r ( c a m C o n t r o l l e r ) ;

29



The camera controller must also be updated each frame. The update should take place within the
render() method.

c a m C o n t r o l l e r . u p d a t e ( ) ;

Background Image

The loading of an image is quite easy, for a single SpriteBatch object is required. However the
setting of the image as a background is a bit tricky, since one also needs a Sprite object in order
to do so. The tricky part is represented by the setting of the dimensions of the image, so that it
covers the whole background, filling the screen, namely the dimensions of the Sprite must be
adjusted, not the dimensions of the SpriteBatch.
Another problematic matter is represented by the rendering of the scene, which takes place in
the render() method. This is not as trivial as rendering merely 3D objects or rendering just 2D
object, since our scene not contains a 3D model but also a 2D image.

S p r i t e B a t c h s p r i t e B a t c h = new S p r i t e B a t c h ( ) ;
img = new T e x t u r e ( " g a l a x y . j p g " ) ;

S p r i t e s p r i t e = new S p r i t e ( img ) ;
s p r i t e . s e t S i z e ( Gdx . g r a p h i c s . ge tWid th ( ) ,

Gdx . g r a p h i c s . g e t H e i g h t ( ) ) ;

The important aspect here is that the background image has to be rendered first and the 3D model
has to be rendered second. The following source specifies that aspect in more detail [141]. That
way the image will stay in the background an not be affected by the camera movements, while
the 3D object will be rendered over the background and can still be visible.
For the rendering of the image the SpriteBatch object must begin, then the Sprite must be drawn,
followed by the ending of the SpriteBatch. Similarly, in order to draw the model, the Model-
Batch object must begin, then it must be drawn and then ended.

s p r i t e B a t c h . b e g i n ( ) ;
/ / draw 2D o b j e c t s
s p r i t e . draw ( s p r i t e B a t c h ) ;

s p r i t e B a t c h . end ( ) ;

modelBatch . b e g i n ( cam ) ;
/ / draw 3D o b j e c t s
. . .

modelBatch . end ( ) ;

The supported image formats are .jpg, .png and .bmp.

30



Sound

The playing of a music file is downright easy within libGDX projects. One simply has to load
the piece of music into a Sound object and play it.

Sound mp3Sound = Gdx . a u d i o . newSound ( Gdx . f i l e s . i n t e r n a l ( " d a t a /
s c r a p e l o w . mp3 " ) ) ;

mp3Sound . p l a y ( 0 . 5 f ) ;

For more details consult this source [22]. The momentarily supported formats are WAV, MP3
and OGG.

Potential Problems

The following lists describe various problems which might occur during the installation of the
required software, as well as during the implementation.
In case a solution to these problems exists, it is given after the description of the problem.

Installation Problems

Following problems might occur during the installation phase:

• Android SDK might not be up to date. In this case the libGDX application will require an
update.

• XCode is not updated to the latest version. This might cause some problems, because
the latest version of XCode is explicitly required. However a complication is represented
by the fact that one can not purchase the latest XCode version on older Mac operating
systems, such as Mac Lion. In this case one would be required to acquire the latest Mac
OS first, for example Mavericks at the moment, in order to be able to download the latest
XCode version. This plays an important role in the provisioning of the Apple device one
would like to run their game on.

• The Android SDK Build Tools must first be installed (from the SDK Manager), or else the
Android SDK can not function properly.

• If one can not install the Android Development Tools because of conflicting dependencies,
one has to install a new version of Eclipse, install all the plug-ins, such as Android SDK
and Gradle, and import the libGDX project again.

Implementation Problems

Following problems might occur during the implementation phase:

• When testing the application on the Android device, the device can be rotated in any
direction, however the mode will not switch from the landscape mode to the portrait mode.
It seems like the landscape mode is already preassigned.

31



• The libGDX project does not recognize newly inserted assets into the android/assets fold-
er. The Eclipse project must first be cleaned, and merely afterward the sub-projects will
recognize the new files.

• To be able to test the application on Android devices, ’USB Debugging’ must be acti-
vated. This enables the computer to recognize the device and facilitates the testing of the
application on the respective device.

• LibGDX does indeed load models quite easily, however the supported formats are very
few and quite unusual, respectively problematic. Since the only accepted formats are
Wavefront OBJ, G3DT, G3D, MD2 and MD5, one can export nothing from Blender, ex-
cept an OBJ file. However there is also the problem, that only the model, without the
texture, can be loaded into the libGDX project, for the loading of the .mtl file for mate-
rials and textures is not supported until now. It probably will be supported in the future,
however until then the textures must be assigned manually.

• Many people complain about the fact that the sound, even if successfully loaded, does not
play on Android devices, even though it works fine on the desktop application and on iOS
devices. A working solution for this problem does not seem to exist so far. It appears to be
a major bug, which has not yet been fixed. Even an official discussion from the Badlogic
games forum tackles the Android sound being unreliable [140].

4.2 Murl Engine

General Information

The Murl Engine is a platform-independent developing tool for games, mobile and multimedia
applications, available for free.
The developers of the Murl Engine decided that the existing cross-platform developing tools im-
ply certain constraints. This is especially the case when using Black-Box Game-Engines, where
most of the functionality is pre-implemented, so that the developer does not have knowledge
about the implementation, nor is he capable of altering it. These constraints limit the developer
in his/her implementation, according to the web page on Introduction to the Murl Engine [92].
This led them to developing their own framework, which requires a slightly different approach,
but allows the users a much wider flexibility during the development without limiting their cre-
ativity.

Furthermore, the Murl Engine allows for more technical control over the product, which
means that the developer maintains an overview of all aspects of the scene, including the el-
ements’ location and the logic of the application, without certain sequences being carried out
automatically.
The Murl Engine can be used not merely for the creation of applications and games for Smart-
phones, but also for Tablets, Notebooks, Personal Computers and Embedded Systems.

32



Developer Team

The Murl Engine was developed by Spraylight GmbH, a young start-up company founded in
2011, in Graz, Austria. More information on the matter can be found on the following web
site [85], as well as on the official web site of the company [104].
Their goal was to create a more flexible, powerful Multimedia Framework with better perfor-
mance than the ones which already existed on the market.

Figure 4.3: The figure depicts the logogramm of Murl Engine. The picture can be found on the
following source [103].

Application Areas

There are numerous fields of application in which the Murl Engine has proven to be quite ex-
ercisable. Mobile applications, games, visualization solutions in the field of medicine, teaching
and presentations on embedded systems represent merely some of them.

Technology

A very important aspect one needs to know about the Murl Engine is the fact that it represents
a time-controlled scene graph framework. More details on the matter will be provided in the
’Implementation’ paragraph of the section.
The framework is however divided into a platform-independent centerpiece (the ’Framework
Code’) and a platform-specific connection (the ’Platform Code’).

The framework functions combine three different types of code, as the following list reveals:

• Framework Code - is entirely written in C/C++, platform independent and compiles there-
fore on every platform.

• User Code - represents the code produced by the developer. The programming languages
which can be used for the development are C/C++ and LUA.

33



• Platform Code - is platform-specific, developed in C/C++, Objective C respectively in
Java and can be compiled on the particular platforms.

All three types of code are used to create native applications at the click of a button.
While developing on one platform using a certain programming language as User Code, the
code will automatically be translated into platform code during the automatic build, so that the
developer need not worry about anything.
The project will be able to run on all supported platforms without further complications.

Figure 4.4: The figure illustrates how the various types of code of the Murl Engine, which have
been described above, are linked together. The picture can be found on the following source [93].

Platforms

The Murl Engine currently supports the following platforms:

• Android - starting with version 2.0

• iOS - from version 4.3 onwards

• Windows - Win32 API / Win64 API starting with OpenGL version 2.1

• Mac OSX - from version 10.5 x86/x64 onwards

Linux support should be provided in the near future, for the developing team is already working
on the matter.

34



Prerequisite

In order to run the application on an iOS device, one has to fulfill a series of steps, which are all
explicitly formulated in the chapter ’Special Prerequisite for iOS’ of the ’libGDX’ section.
Since this paper rather focuses on the platforms Android and iOS, the most convenient way to
develop an application using the Murl Engine is by using a MacBook and XCode to write the
code.

Download

Furthermore one needs to download the latest version of the Murl Engine package from the
download tab of the official Murl Engine web site [94], after having agreed to the terms of the
licence. The package also includes the available tutorials and the Dashboard, which represents a
graphic user interface, mainly used to run the project on Android devices, both of which can be
of great help.

Installation

First a new directory should be created in which the Murl Engine is to be installed. The name
of this new directory should preferably not include spaces, special characters or umlauts. The
Murl Engine-archive should then be downloaded and unpacked into this respective directory.
After the unpacking the directory should contain the ’Dashboard.app’, as well as the directories
’murl’ and ’tutorials’.
The following source provides further information on the topic of a Murl Engine Quick Start for
Mac [101].

In order for the project to work on Android devices a series of packages must be installed:

• Android SDK - the Android Software Development Kit can be downloaded from the fol-
lowing source [15]. First one needs to click on ’Get The SDK For An Existing IDE’, then
download the SDK Tools only by clicking on ’Download the stand-alone Android SDK
Tools for Mac’, followed by accepting the license agreement and finally downloading the
’zip archive’.

• Android NDK - the Android Native Development Kit can be obtained from the following
link [16]. In order to do so one merely needs to select either ’Mac OS X 32-bit’ or ’Mac
OS X 64-bit’, depending on the laptop or computer in cause.

• Apache Ant Software Tool - this tool allows for the automation of the software build
process and can be downloaded from the subsequent source [108]. To do so one only has
to go to ’Current Release Art’ and select the ’zip archive’.

As far as the organization of the downloaded packages is concerned, it might be useful to
create a directory named ’Android’, which should contain three further directories named ’ndk’,
’sdk’ and ’ant’. After doing so, the downloaded packages should be extracted into the respective

35



directories.

This is quite useful for the following step, which consists in letting the ’Dashboard.app’
know where these exact Android files are located. The user can do this by opening the Dashboard
and clicking on the ’Settings’ icon in the upper right corner.
This will trigger the opening of a new window, in which the user needs to specify the exact
paths to the ’Murl Directory’, the Android ’sdk’, ’ndk’, ’ant’ and the ’Java JDK Home’. The
finding of these directories should represent no problem, after having organized the downloads
as specified.
Once all the paths have been specified, the settings must be saved and the installation and setting
up of the Murl Engine are herewith complete.

Project Creation

Tutorials

In order to familiarize oneself with the Murl Engine, one should consider looking into the exist-
ing tutorials, for instance the tutorial number zero ’Hello, World!’ [109], available on the official
web page, in the ’Develop/Tutorials’ section [100].
One can open an existing tutorial by starting XCode, selecting ’Open’, from the ’File’-menu in
the upper toolbar, and opening the project file by selecting ’tutorials’, select the first chapter,
then the ’hello world’ item, followed by ’project’, ’osx’, ’xcode’ and the contained ’hello world’
XCode project.

New Project

After having familiarized oneself with the Murl Engine, a new project can be created by simply
opening the ’Dashboard.app’ and clicking on ’Create Project’. The new window will require
the user to select the ’template’, which can be either the default C/C++ template or the LUA
template, and specify the name of the new project. This will generate a new Murl Engine project
into the existing ’Murl Engine’ folder.

Open Project

The next step is to open the newly created project. This is done similarly to the opening of
the tutorials. Xcode must be started, ’File’, ’Open’ should be clicked, the project should be
selected, followed by the contained ’project’ folder and the target platform should be chosen.
Then ’xcode’ must be pressed, the contained Xcode project must be selected and ’Open’ should
be pressed. The implementation can thus begin.

Running the Project

Running the Desktop Project

The desktop project can be run after having opened the Xcode project contained by the ’osx’
folder of the application project. Then the user has to press on the ’Product’-menu from the

36



upper toolbar and select ’Run’. This will cause the Scene Viewer App to open and visualize the
developer’s project.

Running the iOS Project

First of all one needs to ensure that the iOS device is connected to the laptop or computer, so
that XCode can acknowledge it’s presence.
After this the iOS project can be run quite easy, by merely clicking on the ’Product’-menu of the
upper toolbar, and pressing ’Run’.

Running the Android Project

In order to run the project on an Android device, one can make use of the Dashboard.app. The
respective Android device needs to be connected to the laptop or computer.
After this is taken care of, the Dashboard needs to be started and the project in cause must be
opened, by clicking on the ’Open Project’ icon, selecting the project and clicking on the ’Open
Project’ button. This might take a few seconds to open the project.
After the project is opened in the Dashboard, it can be easily run by clicking on the ’Build
Debug’ icon, which will trigger the running of the project on the connected Android device.

Implementation

As previously mentioned the Murl Engine is a native, platform independent, time-based scene
graph multimedia framework, which allows for a flexible development of games and multimedia
applications with good performance.

Time Based

When using the Murl Engine framework the fact that the applications are being executed in a
time-based way means that a Render-Thread and a Logic-Thread are being called into action in
a parallel way and in a loop, as long as the application is being run.

Logic-Thread The Logic-thread calls the user-code method OnProcessTick() in each loop
iteration. This method plays the role of an update() method. Using the GetCurrentTickDuration()
method the developer can inquire how much time has passed since the last call of the updating
method.
Furthermore all the user input will be intercepted and processed in this method. The resulting
information is used to update all the objects of the scene.

Render-Thread After the Logic-thread has intercepted all the necessary information, the
Render-thread draws all the visible objects in the scene, a process during which the Logic-thread
already begins to evaluate the information from the next loop iteration.

37



Configuration object The step size, which means the time between two executions of the
loop, for the Render-Thread and the Logic-Thread can be set by means of a configuration object,
which facilitates fixed as well as variable step sizes. Furthermore, the maximal and minimal time
values can be set, as well as the number of steps, which have to be carried out each frame, as
specified by the following source [102].

Scene Graph

Besides the logical part, taken care of in the C/C++ classes located in the ’source’ folder of
the project, there also exist a series of rather important XML-files, located under ’packages/-
main.murles’. The most important XML-files are ’package.xml’, where all the resources are
being declared and linked together, and the ’graph_main.xml’ file.
The scene graph represents an object-oriented data structure, corresponding to a directed acyclic
graph. Since the scene graph stands for a tree-like structure consisting of nodes, there can exist
only one root node with an arbitrary number of child nodes.
The ’graph_main.xml’ file contains the scene graph, which is responsible for the description
of the objects and their positioning in the scene. Each node contains information regarding the
virtual scene, as for instance geometry, transformations, colors, light sources or audio sources.
Each entry in the ’graph_main.xml’ file must be written manually, which also provides a lot of
flexibility.
The ’graph_main.xml’ file contains the scene graph, which is responsible for the description
of the objects and their positioning in the scene. Each node contains information regarding the
virtual scene, as for instance geometry, transformations, colors, light sources or audio sources.
Each entry in the ’graph_main.xml’ file must be written manually, which also provides a lot of
flexibility.

Figure 4.5: The figure represents an example of a typical scene graph, showing the hierarchical
structure of the scene’s objects. The picture can be found on the following source [102].

38



OpenGL and OpenGL ES

The rendering application programming interface supports not only OpenGL and OpenGL ES
1.1/2.0, but also by DirectX 9.0/11.1.

Implemented Application

The described application from the section ’Practical Application for Comparison Purposes’ has
also been implemented using the Murl Engine. The Murl Engine framework has been download-
ed and installed and the project has been created as in the description above.

Camera

One can add a camera to the scene by simply inserting an orthographic or perspective cam-
era node in the ’graph_main.xml’ file. However besides the ’PerspectiveCamera’ node, which
contains attributes like the id, the field of view or the near and far plane, two more nodes are
necessary, namely ’CameraTransform’ and ’CameraState’. The first one specifies the location
of the camera, while the second one specifies the id of the camera used to view the following
objects.

< P e r s p e c t i v e C a m e r a i d =" camera "
v iewId =" view "
f ie ldOfViewX ="400"
n e a r P l a n e ="400" f a r P l a n e ="2500"
c l e a r C o l o r B u f f e r ="1"

>
<CameraTransform

camera Id =" camera "
posX ="0" posY ="0" posZ ="400"

/ >
< CameraS t a t e

camera Id =" camera "
/ >
. . .

</ P e r s p e c t i v e C a m e r a >

Another important aspect is represented by the fact that all scene objects which are to be viewed
with this camera should become child nodes of the Camera node.
More details concerning the implementation of a 3D perspective camera can be found in the
tutorial ’Cube’ from the official Murl Engine web site [96].

Model Loading

Loading a model can be achieved by means of the Scene Converter Tool. This can be found in
the ’murl/base/binaries/osx/Release’ folder of the project and can be used to convert 3D models
or scenes into convenient Murl Meshes. The tool can be operated using the command line.

39



Moving Object

The rotation of the object has been implemented by the use of a transform node. This node has
to be declared within the header of the Logic class.

Murl : : Logic : : TransformNode mTransform ;

Afterward, in the OnInit()-method of the Logic class, the initialization of the transform object
takes place liking the transform instance to the id of the scene component to be moved.

AddGraphNode ( mTransform . G e t R e f e r e n c e ( r o o t , " / myGraph / myCube " ) ) ;

Then the transform object can be manipulated in the OnProcessTick()-method by means of the
SetRotation()-method. The angle of the rotation is extracted from the current tick time with the
help of the GetCurrentTickTime()-method.

Double a n g l e = s t a t e −>Ge tCur r en tT ickT ime ( ) ;
a n g l e = Math : : Fmod ( ang le , Math : : TWO_PI ) ;
mTransform−>S e t R o t a t i o n ( ang le , ang le , 0 ) ;

A quite accurate example of moving an object can be found in the same tutorial ’Cube’ from the
official Murl Engine web page [96].

Lighting

One can add lighting to the scene merely by inserting a ’Light’ node in the ’graph_main.xml’
file. The specification of an id and the diffuse color of the light is required. Also two further
nodes are necessary, namely ’LightTransform’, specifying the position of the light source, and
’LightState’, specifying which light source should illuminate the contained objects.

< L i g h t
i d =" l i g h t "
d i f f u s e C o l o r = " 0 . 5 f , 0 . 5 f , 0 . 5 f , 1 f "

/ >
< L i g h t T r a n s f o r m

l i g h t I d =" l i g h t "
posX ="0" posY ="0" posZ ="800"

/ >
< L i g h t S t a t e

l i g h t I d =" l i g h t "
u n i t ="0"

/ >

More details regarding lighting can be collected from the official Murl Engine tutorial ’Color
Cube’ [97].

40



Camera Controller

To manipulate the camera freely around the scene, the objects of the scene need to be nested
within a ’Transform’ node. Afterward the whole scene can be rotated in the Logic class accord-
ing to the user’s input. In order to process the user’s input a Device Handler is necessary. More
information on this can be found in the ’Color Cube’ tutorial from the official Murl Engine web
page [97].

Background Image

The Murl Engine supports the following image file formats: ’.png’, ’.jpg’, ’.webp’, ’.dds’ and
’.tga’.
The texture represents an image, specified as resource in the ’package.xml’ file.

< Resource i d =" g a l a x y " f i l eName =" images / g a l a x y . png " / >

The background image can then be implemented by defining a new ’FixedProgram’ node (simi-
lar to a shader), as well as a new ’Material’ and a ’FlatTexture’ node.

< FixedProgram
i d =" p r g _ c o l o r _ t e x t u r e "
t e x t u r e U n i t 0 E n a b l e d =" yes "

/ >

< M a t e r i a l
i d =" m a t _ a l p h a _ c o l o r _ t e x t u r e "
programId =" p r g _ c o l o r _ t e x t u r e "
v i s i b l e F a c e s ="FRONT_AND_BACK"
blendMode ="ALPHA"
depthBuf fe rMode ="NONE"

/ >

< F l a t T e x t u r e
i d =" t e x t u r e _ g a l a x y "
imag eResou rc e Id =" package_main : g a l a x y "
p i x e l F o r m a t ="R8_G8_B8_A8"
useMipMaps =" no "

/ >

After doing so the nodes ’MaterialState’ and ’TextureState’ should be used to specify which
material and texture should be used to render to subsequent geometry. The state will remain the
same, until a new state is defined.

< M a t e r i a l S t a t e
m a t e r i a l I d =" m a t _ a l p h a _ c o l o r _ t e x t u r e "
s l o t ="0"

/ >

41



< T e x t u r e S t a t e
t e x t u r e I d =" t e x t u r e _ g a l a x y "
s l o t ="0"

/ >

After having specified the texture as a resource and all the other mentioned nodes have been
defined, the texture can be assigned to a ’PlaneGeometry’.

<PlaneGeomet ry
i d =" p l a n e "
s c a l e F a c t o r X ="1024" s c a l e F a c t o r Y ="1024"
posX ="0" posY ="0" posZ ="−200"

/ >

More information concerning images ca be found in the following tutorial from the official Murl
Engine web page [99].

Sound

Since the Murl Engine supports merely ’.wav’ and ’.ogg’ files, the developer must ensure that
the piece of music they would like to use has an accepted format. After doing so, the track must
be defined as resource within the ’package.xml’ file.

< Resource i d =" s c r a p e " f i l eName =" sounds / s c r a p e . wav " / >

As soon as this is taken care of, an ’AudioSource’ node can be inserted into the ’graph_main.xml’
file, referencing the audio resource. Furthermore a ’Listener’ node must be inserted in order to
position the listener into the scene. Additionally a ’Timeline’ node is required. The latter speci-
fies when the track will start as well as stop to play and contains a ’AudioSequence’ node, which
references the audio source, positions it and adjusts the volume.

< L i s t e n e r
i d =" l i s t e n e r "
v iewId =" view "

/ >

< L i s t e n e r T r a n s f o r m
l i s t e n e r I d =" l i s t e n e r "
posX ="0" posY ="0" posZ ="800"

/ >

< L i s t e n e r S t a t e
l i s t e n e r I d =" l i s t e n e r "

/ >

42



<AudioSource
i d =" soundSc rape "
a u d i o R e s o u r c e I d =" package_main : s c r a p e "

/ >

< T i m e l i n e
i d =" t i m e l i n e "
s t a r t T i m e = " 0 . 0 " endTime = " 2 8 6 . 0 "
autoRewind =" yes "

>
<AudioSequence

i d =" s e q u e n c e S c r a p e "
a u d i o S o u r c e I d s =" soundSc rape "
volume = " 1 . 0 " r o l l o f f F a c t o r = " 0 . 0 "
posX ="0" posY ="0" posZ ="800"

/ >
</ T imel ine >

After having defined these nodes, one can declare a ’TimelineNode’ object in the logic.hpp
class, which will then be responsible for playing the music. The ’TimelineNode’ must then be
initialized in the OnInit() method of the logic.cpp class.

AddGraphNode ( mMusic . G e t R e f e r e n c e ( r o o t , " / myGraph / t i m e l i n e " ) ) ;

To play the music, if it is not playing already, one can insert for instance the following lines of
code into the OnProcessTick() method of the logic.cpp class.

i f ( ! mMusic−>IsRunn ing ( ) )
{

mMusic−>Rewind ( ) ;
mMusic−> S t a r t ( ) ;

}

More information on the Audio component of the Murl Engine can be collected from the official
’Audio’ tutorial [98].

Potential Problems

The following list describes some potential problems, which might occur during the installa-
tion of the required software, as well as during the implementation. In case a solution to these
problems exists, it is given after the description of the problem.

Installation Problems

No problems occurred during the installation phase. Also there was no need for the environment
variables to be changed.

43



Implementation Problems

Following problems might occur during the implementation phase:

• The approach as well as the whole concept of the Murl Engine is rather different from
the other ones described in this bachelor thesis, which was actually the intention of its de-
velopers, who wanted to revolutionize the cross-platform developing frameworks offering
the developers better performance and more flexibility.
However flexibility can be viewed not only as an advantage but also as a disadvantage,
especially for beginners, who are not so familiar with the concept. Thus the problem con-
sisted in the familiarizing with the concept and the framework, given it’s originality.

• A second problem consisted in the fact that one can not change the path to a new cre-
ated project. The default project is located within the Murl Engine folder and can not
be changed, for instance for organizational purposes. If the project is not in the default
location, the Dashboard.app can not locate it anymore.

• The framework is a rather new one, thus there isn’t much help on the internet. There
exists no actual community so far, and also the help found in the forum of the official web
page is rather humble. Also the official web page is not finished, there are lots of topics
which have no thorough documentation and many aspects and topics are announced to be
covered soon, but are not available at the moment.
For example especially for 3D Rendering, there is no aid at all at the moment, thus the
model loading and camera controlling aspects have represented quite an issue.
However the forum administrators as well as the developers of the framework, after having
contacted them directly via email, have proven to be quite friendly and helpful.

• Another problem consisted in the fact that the background image and the model placed
in front of it could not be rendered at the same time. The reason for this consisted in
the fact that the ’depthBufferMode’ variable in the respective nodes, was once set to
’READ_AND_WRITE’ and once to ’NONE’. Whereas the engine first draws all geome-
tries for which the DepthBuffer is activated, followed by all the other geometries. This
caused the model to always be overwritten by the background plane.
In order to solve this problem one simply needs to set both ’depthBufferMode’ variables
to the same value, either ’READ_AND_WRITE’ or ’NONE’.

4.3 Unity

General Information

Unity represents a cross-platform game development system, which includes not only an inte-
grated development environment (IDE) but also a game engine, for the purpose of simplifying
the programming effort. The system is mainly specialized for game development, however it can
be utilized also to create other 3D-graphics-applications.
Unity can also be described as a game development ecosystem. This is facilitated by the inte-
grated rendering engine, equipped with a complete and intuitive set of tools and fast workflows.

44



This enables the users to generate interactive 2D and 3D content quite fast and easily.
The engine furthermore provides an easy way to publish to numerous platforms, an Asset Store
as well as a community, whose members are willing to share their knowledge.

Figure 4.6: The figure depicts the logogram of Unity. The picture can be found on the following
source [86].

Platforms

The target platforms include not only desktop platforms, but also mobile devices, consoles and
web plug-ins. Windows and Mac serve not only as development platforms but also as target
platforms.
Since 2005 Unity expanded (more information on this can be found on the following web
pages [123], [17]) and now targets over fifteen platforms, which include Windows, OS X, Lin-
ux’ Ubuntu, Android, iOS, Blackberry 10, Windows Phone 8, Unity Web Player, Abobe Flash,
PlayStation 3, PlayStation 4, Xbox 360, Xbox One, Wii U and Wii.
Furthermore Unity constitutes the standard software development kit (SDK) for Nintendo’s Wii
U video game console platform.

Developer Team

Unity was created by Unity Technologies, located in San Francisco, USA.

Programming Languages

Unity is written in C++ and C#, while the game engine’s scripting is based on the open-source
implementation of the .NET Framework, Mono. In order to program for Unity, one can use ei-
ther C#, UnityScript or Boo.
UnityScript is a programming language with syntax inspired by ECMAScript. Even though the
software refers to it as JavaScript, the two languages are essentially quite different, as demon-
strated by the following source [114].
Boo on the other hand has a syntax inspired by Python.

Integrated Development Environments

One can use the Unity Editor, an included integrated development environment, to implement
cross-platform applications.

45



Fees

While the basic version of Unity can be downloaded free of charge, the Pro-Version provides
further functionality in exchange for a fee. If one intends to use Unity Pro, one can either acquire
the license ownership or get a monthly subscription. The prices are indicated by the following
source [121].
Some examples of supplementary features provided by Unity Pro are:

• Render-to-Texture effects - can be used to implement reflective water surfaces real-time
shadows

• Version Control

• Optimization features - such as Level of Detail and Occlusion Culling

• AssetBundles - are files containing assets of the developer’s choice that can be exported
from Unity. AssetBundles use a compressed format and ensure a better factorization and
performance by allowing even whole scenes to be streamed into the application. A more
detailed description of AssetBundles can be found in the following source [118].

• Post Processing effects - such as glow, motion blur and edge detection

More information on the advantages provided by the Pro license as well as a comparison be-
tween the Pro and the free license can be found in the subsequent sources [117], [126].
So there exist some features which might motivate the users to purchase the Pro license in case
of a serious project. These features can provide a more polished look to one’s game, are however
not absolutely necessary for creating a quality game.

Nevertheless, Unity is not only known for targeting an impressive variety of different plat-
forms, but also for the fact that it lowers the barriers of cost and time invested in the developing
of a game, allowing self-employed developers to create particularly beautiful games.

Popularity

A survey of the Game Developer Magazine from 2011 revealed that Unity (together with the
Unreal Engine), was elected the most popular game engine, while the Game Development Mag-
azine Gamasutra declared that Unity is the most often used game engine for mobile devices as
stated by the following article [113].

Prerequisite

Since this paper focuses on the mobile platforms Android and iOS, the following paragraph will
only cover the prerequisite necessary to create a game application for these two platforms.

Prerequisite for Android For the application to be able to run on an Android device,
one needs to install the Android SDK. More details concerning this topic can be found in the
’Prerequisite’ chapter of the ’libGDX’ section.

46



Prerequisite for iOS In order to run the application on an iOS device, one has to fulfill a
series of steps, which are all explicitly formulated in the chapter ’Special Prerequisite for iOS’
of the ’libGDX’ section.

Downloading Unity

Even though the development of applications which are also suited for iOS devices requires the
utilization of a MacBook and the newest Xcode version, the development with Unity does not
take place in Xcode, but in the IDE of Unity, which can be downloaded from the official Unity3D
web site [125].
Before downloading Unity one has to specify which Unity version is desired, depending on the
computer or laptop he or she is developing on. The main reason for this is the availability of
different versions of Unity for Mac and Windows. After one has specified the desired version,
by toggling between ’Developing on Mac OS X?’ and ’Developing on Windows?’, one can
download the free version of Unity.

Project Creation

The creation of a new project is easily done, by opening Unity and clicking ’File’, in the upper
toolbar, and then ’New Project’. One will then have to specify the location, the name of the
project and whether the application will be a 2D or a 3D one. Finally one must click on ’Create
Project’, which will initiate a new project at the specified location and the development can thus
begin.

Running the Project

Before running the project, one needs to specify the Build Settings. These can be found by
clicking ’File’, in the upper toolbar, and then selecting ’Build Setting’. A new window will be
opened, which allows the user to select the desired platform, on which he or she would like to
run the project.
The currently set platform is marked with the unity logogram. So if the desired platform isn’t
already set, the user must select a new platform and click ’Switch Platform’. This might take a
while, because a new project will be created for the respective platform and all the assets need
to be copied.

Running the Desktop Project In order to run the project on the desktop, one must click
on ’File’, ’Build Settings’, select ’PC, Mac & Linux Standalone’, if not already selected, and
press ’Switch Platform’. If an older version of the project has already been created previously,
the user can replace the old version with the new project.
After this the developer can press ’Build And Run’ and select the desired resolution of the
application.

47



Running the Android Project Running the project on an Android device is triggered by
clicking ’File’, ’Build Settings’, selecting ’Android’ and ’Switch Platform’. Then one must make
sure that the Android device is connected to the computer or laptop and click ’Build And Run’.
After a short period of time the application will run on the device.

Running the iOS Project The running of the application on an iOS device requires similar
steps: the clicking of ’File’, ’Build Settings’, the selection of ’iOS’ and the pressing of ’Switch
Platfoms’. This course of action will trigger the creation of a new project and the possible re-
placement of an old one.
After this one must make sure that the iOS device is connected to the laptop or computer and
press ’Build And Run’. This will trigger the launching of Xcode, which might take a few sec-
onds. Xcode will then transmit the application to the iOS device and run it.

Implementation

Unity Editor

The implementation takes place in the developing environment Unity Editor. Unity Editor is
inspired by established 3D-animation programs, including a main window, which shows the 2D
or 3D scene, as well as some menus and forms, which comprise the Hierarchy, the Project and
the Inspector, among others. These forms and menus enable a quick and simple manipulation of
the objects of the scene.
Another similarity to 3D-animation and modeling programs is represented by the fact that one
can select, translate, rotate or scale the components of the scene using the mouse.

The Scene

The scene is engineered as a scene graph, containing all the components of the scene, the so-
called ’Game objects’. The attribution of various components to these game objects is possible
by simply selecting the game object and then clicking on the ’Add Component’ button in the
Inspector. The components which can be added include materials, as well as sounds and coding
scripts.
After deciding which programming language one would like to write one’s script in, the script
will be created and opened in MonoDevelop, where the developer can write his or her code
down, specifying the behavior of the respective game object.

Game Objects

The game objects can be either simple, unitary objects or more complex components.

Simple Objects Light sources, cameras or other graphic primitives, such as cubes, spheres
or planes, are usually considered to be unitary or simple objects. They can be directly generated
in the Editor by selecting ’GameObject’, in the upper toolbar, then clicking ’Create Other’.

48



Complex Objects More complex objects, also called ’Assets’, on the other hand are cre-
ated externally, for instance by means of software specialized for 3D-modeling. 3D-models,
sounds, animations, or textures are usually referred to as assets and have to be imported into the
Project. However, the importing assets can be carried out quite easily by Drag and Drop.
Furthermore, the Assets folder of the Unity project will update itself if modifications of the
assets occur during the production of the project.

Game-View

The game-view allows the developer to see his application from the point of view of the main
camera, so that he can experience the look of his game without having to actually build and run
it.
The framework also provides an export function, which enables the creation of executable ap-
plications.

Graphic Support

Unity’s graphics engine supports a series of application programming interfaces (APIs) in order
to enable graphic support for numerous different target platforms. Some of these APIs are enu-
merated beneath:

• Direct3D - for Windows and Xbox 360.

• OpenGL 2.1, 3.2- for Windows, Mac and Linux. (Mac does not support OpenGL 4, as
mentioned in the Unity Forums [127].)

• OpenGL ES 2.0 - for Android and iOS devices.

• Other proprietary APIs - necessary for video game consoles. . . .

Asset Server

Unity furthermore supports Nvidia’s physics engine PhysX and an Asset server. The Asset server
constitutes a version and asset control system with a graphical user interface, meant to facilitate
the members working together. However it is merely provided after the acquisition of the Unity
Pro version. Further details on the matter can be found on Unity’s official documentation page
[119].

Implemented Application

The described application from the section ’Practical Application for Comparison Purposes’ has
also been implemented with Unity. No further software had to be installed in order to be able to
run the application on Android and iOS devices, for all the necessary aspects have been covered
by the preparations for the previously discussed frameworks. However the Unity framework has
been downloaded and the project has been created as in the description above.

49



Camera

Since any game needs a camera to view any further assets which might follow, the Main Camera
is already present in the scene once a new Unity project is generated. However the location of
this camera in the scene can be altered by translation, rotation or scaling, all of which can be
executed by means of the mouse.
However further cameras can also be added to the scene, by clicking ’GameObject’ in the upper
menu and then selecting ’Create Other’, ’Camera’.

Figure 4.7: The figure shows the ease with which a new camera object can be added to the scene
in Unity.

Model Loading

In order to import the assets into the project, one merely has to copy the desired assets into
the ’Assets’ folder, located in the created Unity project’s folder. This will trigger an automatic
import of the assets into the project, once Unity has been started and the project is loaded. The

Figure 4.8: The figure shows how the asset folder is being visualized in Unity.

positioning of the models in the scene is done outstandingly easy be dragging and dropping the
asset from the ’Assets’ folder of the ’Project’ hierarchy to the scene. The developer can then
alter the location of the asset in the scene either by varying the parameters in the ’Inspector’

50



Figure 4.9: The figure shows how assets can be dragged and dropped from the asset folder into
the scene in Unity.

or by manipulating the asset by means of the mouse. The user can therefore translate, rotate or
scale the object, with the purpose of positioning it, directly in the scene view, without having to
write any actual code.

According to the Unity Documentation web page on importing models [120], Unity can read
not only .obj (Wavefront) files, but also .FBX, .dae (Collada), .3DS, and .dxf files. Therefore it
works quite well with file formats exported from 3D Studio Max or Blender for example.
The model that has been imported into the demonstrative game application is a .dae (Collada)
file, representing a cake, which has been modeled by myself in Blender.

Moving Object

In order to be able to put into effect the constant rotation of the cake model around it’s own Y
axis, a new script had to be created and added to the cake game object. Such a script must be
added and written for the purpose of defining the behavior of an object in the game.
The attachment of a new script is done as follows: the developer must decide which object’s
behavior he wants to define, then the respective object must be selected from the ’Hierarchy’.
Then, in the ’Inspector’, the ’Add Component’ button must be pressed and ’New Script’ must
be selected from the list which appears. The name of the new script must be entered and the lan-
guage must be selected. For the demonstrative application I have chosen the language ’CSharp’
and named the script ’cakeRotate.cs’.

After the script has been created, one can start coding in MonoDevelop. In order to rotate
the cake constantly around it’s own Y axis, a single invocation of the transform.Rotate() method
was necessary in the Update() function of the script. As parameters of the Rotate() method, one
must specify a vector around which the object should rotate and the rotation speed. However, an
important fact considering the rotation speed is that it has to be multiplied with the delta time
between two frames.

51



Figure 4.10: These two figures shows how a new script can be created for a selected scene object
in Unity.

u s i n g Un i tyEng ine ;
u s i n g System . C o l l e c t i o n s ;

p u b l i c c l a s s c a k e R o t a t e : MonoBehaviour {
p u b l i c f l o a t t u r n S p e e d = 50 f ;

/ / Use t h i s f o r i n i t i a l i z a t i o n
vo id S t a r t ( ) {

}

/ / Update i s c a l l e d once p e r f rame
vo id Update ( ) {

t r a n s f o r m . R o t a t e ( Vec to r3 . up , t u r n S p e e d ∗ Time . d e l t a T i m e ) ;
}

}

Lighting

Light sources can be added to the scene as easy as cameras, since they both fall into the category
of simple, unitary objects, which can be generated directly in Unity. Therefore in order to create
the lighting, one simply has to click ’GameObject’, followed by ’Create Other’ and then chose
between different types of light. The offered light types are ’Directional Light’, ’Point Light’,
’Spotlight’ and ’Area Light’. The light I have chosen for my application is a Directional Light.
The decision has been made based on the fact that directional light simulates the sun light most
accurately.

52



Figure 4.11: The figure shows how new light objects can be added to the scene in Unity.

Camera Controller

Since the camera controller in Unity is not already implemented and encapsulated into an ex-
isting object or method as in libGDX, it has to be programmed by the developer using scripts,
which have to be added as components to the Main camera, as described below:

Orbit Movement The first script implements the orbit movement of the camera around
an object of the scene. The camera’s movement is guided by the mouse pointer on the desktop
application and by a finger touching the display on mobile devices.
Unity provides some default scripts, which can be imported by clicking ’Assets’ in the upper
toolbar, ’Import Package’, ’Scripts’. This will cause a window to open in the upper left corner of

Figure 4.12: The figure shows how to import already existing scripts in Unity.

the framework, presenting a list of items with check boxes. After ensuring that all check boxes

53



are marked, the developer can press ’Import’. This will load the imported scripts into the ’As-

Figure 4.13: The figure shows the list of scripts which can be imported in Unity.

sets’ folder, visible in the ’Project’ tab. The script needed to orbit the camera around an object is

Figure 4.14: The figure shows the list of imported scripts within the Assets tab of Unity.

located under ’Standard Assets’, ’Scripts’, ’Camera Scripts’ and is named ’Mouse Orbit’. In or-
der to add this script to the main camera, the developer must select the camera in the ’Hierarchy’
tab and then click and drag the ’MouseOrbit’ script from the ’Project’ tab into the ’Inspector’
tab, where the details of the main camera are visualized. This will automatically add the script
as a component to the camera object.

54



The next step consists in the setting of a target object around which the camera should orbit.
In order to do that, the main camera needs to be selected in the ’Hierarchy’ tab again, which
causes it’s details to be shown in the ’Inspector’ tab, and then the desired target object needs
to be clicked and dragged from the ’Hierarchy’ tab to the ’Target’ field of the ’Mouse Orbit
(Script)’ component of the main camera in the ’Inspector’ tab. After setting the target, the target
object should be highlighted in the ’Hierarchy’ view.
When running the project, the camera should now be able to orbit around the target object,
following the mouse movement. More information concerning this topic can be found in the
tutorial named ’Camera Control in Unity3D’ [72].

Scroll Wheel Zoom Even though the camera now orbits around the object, the user can
not zoom in on it yet. In order to realize an effective zooming, new scripts have to be written.
This paragraph describes the zooming within the desktop application using the scroll wheel of
the mouse.
First of all a new script component must be added to the main camera, which can be done as
already described in the upper section ’Moving Objects’ of the ’Unity’ chapter. After doing so
and the script is opened in MonoDevelop, the programming can start. First some variables need
to be declared and initialized, such as the distance of the zoom, the minimal field of view and
the maximal field of view, as well as the sensitivity, which influences the so-called speed of the
zooming. After that the scroll wheel input has to be fetched and multiplied with the sensitivity.
Then the zooming distance has to be clamped between the minimal and maximal field of view.
Finally the camera needs to be repositioned accordingly to the zooming distance.
Now the user should be able to zoom in on the target object within the desktop application by
scrolling. Further information upon the matter can be found in the tutorial ’Unity3D Tutorial 58’
on Camera Zoom [35].

u s i n g Un i tyEng ine ;
u s i n g System . C o l l e c t i o n s ;

p u b l i c c l a s s CameraZoom : MonoBehaviour {
f l o a t d i s t a n c e = 6 0 ;
f l o a t s e n s i t i v i t y D i s t a n c e = 5 0 ;
f l o a t damping = 5 ;
f l o a t minFOV = 4 0 ;
f l o a t maxFOV = 180 ;

vo id S t a r t ( ) {
}

vo id Update ( ) {
d i s t a n c e −= I n p u t . GetAxis ( " Mouse S c r o l l W h e e l " ) ∗

s e n s i t i v i t y D i s t a n c e ;
d i s t a n c e = Mathf . Clamp ( d i s t a n c e , minFOV , maxFOV ) ;
camera . f i e l d O f V i e w = Mathf . Lerp ( camera . f i e ldOfView ,

55



d i s t a n c e , Time . d e l t a T i m e ∗ damping ) ;
}

}

Pinching Zoom After managing to implement the zoom within the desktop application,
the user will still not be able to zoom on the mobile device. Therefore a new script, for instance
’PinchZoom.cs’, has to be added to the camera, as already described in the upper section ’Mov-
ing Objects’ of the ’Unity’ chapter, and implemented in MonoDevelop.
In order to zoom on a mobile device, one needs to fetch two input touches from the display first.

Touch t o u c h Z e r o = I n p u t . GetTouch ( 0 ) ;
Touch touchOne = I n p u t . GetTouch ( 1 ) ;

Then one should also get the previous locations of the touches by subtracting the ’deltaPosition’
of the touches from their current position. After managing that, one can easily calculate the
distance between the current touches and the former touches in order to see if the distance has
increased or decreased since the previous frame.

Vec to r2 t o u c h Z e r o P r e v P o s = t o u c h Z e r o . p o s i t i o n −
t o u c h Z e r o . d e l t a P o s i t i o n ;

Vec to r2 touchOnePrevPos = touchOne . p o s i t i o n −
touchOne . d e l t a P o s i t i o n ;

f l o a t prevTouchDel teMag = ( t o u c h Z e r o P r e v P o s −
touchOnePrevPos ) . magn i tude ;

f l o a t touchDel taMag = ( t o u c h Z e r o . p o s i t i o n −
touchOne . p o s i t i o n ) . magn i tude ;

f l o a t d e l t a M a g n i t u d e D i f = prevTouchDel teMag − touchDel taMag ;

If the distance between the two touches has magnified, the camera should be positioned closer
to the object, since the user would like to zoom in. Likewise, if the distance has decreased, the
user would like to zoom out and the camera should be positioned further away.

i f ( camera . i s O r t h o G r a p h i c ) {
camera . o r t h o g r a p h i c S i z e += d e l t a M a g n i t u d e D i f ∗

orthoZoomSpeed ;
/ / so model w i l l n o t f l i p :
camera . o r t h o g r a p h i c S i z e = Mathf . Max( camera . o r t h o g r a p h i c S i z e ,

0 . 1 f ) ;
}
e l s e / / camera i s i n p e r s p e c t i v e M o d e
{

camera . f i e l d O f V i e w += d e l t a M a g n i t u d e D i f ∗
pe r spec t i veZoomSpeed ;

56



/ / l i m i t f i e l d o f view , clamp i t be tween 0 and 180
camera . f i e l d O f V i e w = Mathf . Clamp ( camera . f i e ldOfView , 0 . 1 f ,

179 .9 f ) ;
}

More information on zooming by pinching can be found on the official web site of Unity under
’Tutorials’, ’Pinch to Zoom’ [122].

Background Image

The setting of the background image is slightly complex. First of all the creation of a new cam-
era is necessary, called ’background camera’. After this is done, a new GUI Texture needs to
be created, by clicking ’GameObject’, ’Create Other’, ’GUI Texture’, and named ’background
image’. Then a new layer must be added in the ’Inspector’ tab, by clicking on the ’Layer’ drop
down menu of the background image texture and selecting ’Add Layer’.

The new layer should be inserted in the next free slot and named ’background image’.

57



Afterward the background image should be selected from the ’Hierarchy’ tab, the desired
texture should be chosen and the size should be set to the current screen size, like mentioned
on the following web site regarding this subject on Unity Answers [115]. When this is done,
the ’layer’ drop down menu should be used in order to assign the earlier created ’background
image’ layer to the texture object.

The next step is represented by the selection of the background camera in the ’Hierarchy’
tab and some adjustments in the ’Inspector’ tab: ’Flare Layer’ and ’Audio Listener’ should be
unchecked, ’Clear Flags’ should be set to ’Solid Color’, ’Depth’ should be set to -1 while the
’Culling Mask’ should first be set to ’Nothing’ and then to ’background image’.

Furthermore the main camera must be selected in the ’Hierarchy’ window and then, in the
’Inspector’, the ’Clear Flags’ must be set to ’Depth Only’ and in it’s ’Culling Mask’ setting, the
’background image’ should be unchecked, which results in the word ’Mixed...’ to be visualized.
Finally, after going though all these steps, the images of the two cameras should be merged in

the game view, resulting in the model being displayed in front of the background image. More
information on the matter can be found on the following source, presenting a discussion in Unity
Answers [116].

58



Sound

The playing of a sound is also quite fast and easy with Unity. First, one has to select a game ob-
ject from which the sound should be coming or which should appear to be generating the sound.
The respective object must then be selected in the ’Hierarchy’ and ’Add Component’ must be
pressed in the ’Inspector’. From the list which appears, one must chose ’Audio’ followed by
’Audio Source’.

59



The result of this should then be visualized in the ’Inspector’. In the field ’Audio Clip’ one
must then enter the desired sound, which should previously have been inserted into the ’Assets’
folder.
For the demonstrative application I have also selected the two check boxes ’Play On Awake’ and
’Loop’. However this is arbitrary and dependent on the application. After going through these

steps, the audio sounds should play just fine not only within the desktop application and on iOS
devices but also on Android devices. Further information considering sound in Unity can be
found on the tutorial ’11. Unity Tutorial, Sound - Make a Game’ [13].

Potential Problems

The following list describes some potential problems which might occur during the installa-
tion of the required software, as well as during the implementation. In case a solution to these
problems exists, it is given after the description of the problem.

Installation Problems

No problems occurred during the installation phase, on the contrary, the installation took place
quite smoothly.

Implementation Problems

The following problems might occur during the implementation phase:

• The Wavefront model of the space ship used in the libGDX demonstrative application
could not be loaded by Unity with the correct texturing. The reason for this was that the
space ship model was specifically designed to work merely for the libGDX demonstrative
tutorials and does not work on other applications, as stated by the following source [139].

60



In order to solve the problem, I have modeled a new model myself, representing a cake,
using Blender and exported it as a Collada file.

• However after importing the new Collada cake model into Unity, only the back faces
appeared to be visualized, leading to the conclusion that the normals had somehow been
flipped, even though the model looked normal in Blender and visualized with Assimp
View. To solve this problem I flipped the normals of the model in Blender.

4.4 MoSync

General Information

MoSync Software Development Kit represents a free, open-source tool for creating cross-platform
mobile applications. It incorporates not only tools for building various applications, but also a
complete Integrated Development Environment, based on the Eclipse development environment.
MoSync enables the development of applications for all considerable mobile platforms by means
of one single code base. More information can be found on the official website of MoSync [55].
However, even though MoSync provides numerous useful tools and supports up to eight plat-
forms at the same time, it is no longer maintained. However some support is provided by the
still existing community [66].

Figure 4.15: The figure depicts the logogram of MoSync. The picture can be found on the
following source [58].

Programming Languages

The MoSync framework uses C/C++ or HTML5 and JavaScript to create native mobile applica-
tions for multiple platforms. Furthermore combinations of the two programming languages can

61



be used to build hybrid applications.

Developer Team

The development of MoSync was realized by a Swedish software company named MoSync AB.
MoSync was first released in 2005, providing support for the Java Micro Edition platform. The
support has afterward been extended for numerous other platforms.

Target

MoSync’s main target group consists of both web developers willing to enter mobile develop-
ment and ordinary C/C++ desktop developers.

Bankruptcy

The software company MoSync AB has filed for bankruptcy on the 24. June 2013 [57].

Platforms

The supported platforms include Android, Blackberry, iOS, Java ME MIDP, Moblin, Symbian,
Windows Mobile and Windows Phone. For further information considering the respective ver-
sions consult the following website [64].

Prerequisite

The main prerequisite is represented by the download and installation of the MoSync SDK.
For this the framework and IDE must be downloaded from the official website and installed as
described in the following source [65].
As far as the iOS support is concerned, the prerequisites from the chapter ’Special Prerequisite
for iOS’ of the ’libGDX’ section should be fulfilled.

Project Creation

When creating a new project, the developer must first choose whether he would like to write the
application in C/C++ or HTML5 and then select one of the eight existing templates.
The templates provide some initial help as far as the structure of the mobile application is con-
cerned, and can also include some libraries, which might be of use in specific application types,
such as OpenGL ES in 3D applications.

Running the Project

Running the iOS Project

The application must first be built within the MoSync IDE, after ’iOS’ and the respective device
have been set as active profile. Then the created Xcode project (located in the ’Output’ folder of
the project, followed by ’Release’, ’iOS’, ’iPhone’, ’package’, ’xcode-proj’) must be opened in

62



Xcode and run from there, after having connected the device. Further information can be found
on the following page [62].

Running the Android Project

To run the project on Android, one has to specify ’Android’ as the active profile. Afterward
the target device must be selected, after having connected it, by means of the ’Select Target
Device’ button in the left side of the upper menu. Finally the ’Send To Target Device’ button
must be pressed. More information concerning the topic can be collected from the following
website [63].

Implementation

Flexibility

Even though MoSync is quite easy-to-use, having in mind that it is based on the well-known IDE
Eclipse, and provides quite a lot of flexibility, it lacks ready-to-go functions. This means that it
supports almost every feature imaginable, but the programmer has to implement everything by
himself.

Moblet

MoSync targets mobile applications using a C++ event manager called Moblet. It plays the role
of a base class of the project and controls the main loop of the application.
By implementing the methods keyPressEvent() and keyReleaseEvent(), the Moblet can also re-
ceive and handle input from the screen or the keys of the targeted smartphone. More information
regarding Moblets can be found of the official documentation page [18].

MAUI versus NativeUI

There exists more than one way to create a user interface with MoSync. For instance one can
use either NativeUI or MAUI. MAUI stands for MoSync API for user interfaces and is a C++ li-
brary. It is platform-independent and provides the same aspect on every platform. The downside
is represented by the fact that it is slower than NativeUI.
NativeUI on the other hand contains libraries written in JavaScript and C++, provides better per-
formance but is not available on all platforms. Furthermore it provides a native look-and-feel in
each respective environment.
Further information concerning the various solutions for cross-platform user interface develop-
ment offered by MoSync can be found on the following source [61].

OpenGL and OpenGL ES

Since MoSync especially targets mobile platforms it supports rather OpenGL ES than OpenGL.
The supported OpenGL ES versions are OpenGL ES 1.1, for older devices, and OpenGL ES 2.0.

63



Implemented Application

The described application from the section ’Practical Application for Comparison Purposes’
can also be implemented using the MoSync SDK and IDE. The MoSync framework has been
downloaded and installed and the project has been created as in the description above.
However not every feature has been implemented, because of the massive implementation effort
that would have been required. Nevertheless the most important aspects and features for the
described application will be described in the following sections.

Resources

Resources can be added to the project by creating a new MoSync Resource File. The name of the
file must contains the ending ’.lst’. In this file the resources must be defined, thus every resource
will afterward dispose of an identifier and a path indicating the location of the resource within
the project’s folder. More information on this topic can be found on the following source [60].

. r e s BACKGROUND_IMAGE

. image " r e s o u r c e s / g a l a x y . png "

. r e s MUSIC_MP3

. media " a u d i o / mpeg " , " r e s o u r c e s / s c r a p e . mp3"

Background Image

First the background image has to be enlisted in the resource file, as described above, and then
an Image object with the dimensions of the device’s screen size has to be created, referencing
the image resource.

Image∗ img ;

i n t s c r e e n S i z e W i d t h ;
i n t s c r e e n S i z e H e i g h t ;

/ / g e t s c r e e s i z e
MAExtent s c r e e n S i z e = maGetScrS ize ( ) ;
s c r e e n S i z e W i d t h = EXTENT_X( s c r e e n S i z e ) ;
s c r e e n S i z e H e i g h t = EXTENT_Y( s c r e e n S i z e ) ;

img = new Image ( 0 , 0 , s c r e e n S i z e W i d t h , s c r e e n S i z e H e i g h t , NULL,
t r u e , t r u e , BACKGROUND_IMAGE) ;

Then the Image object has to be set as main widget of a newly created Screen object. Fur-
thermore the respective Screen object has to be shown by means of the method show(), otherwise
the image will be drawn on a different canvas [56].

64



S c r ee n ∗ newScreen = new S c re en ( ) ;
newScreen−>se tMain ( img ) ;
newScreen−>show ( ) ;

Sound

First of all the ’.mp3’ file has to be enlisted in the Resource file as specified above. Afterward
the sound can be played within the application by merely calling the function maSoundPlay(),
referencing the identifier of the .mp3 file as first parameter.

maSoundPlay (MUSIC_MP3 , 0 , maGetDataSize (MUSIC_MP3 ) ) ;

Camera Controller

The movement of the camera, for example zooming, can be implemented within the pointer-
PressEvent() and pointerMoveEvent() methods. The factor by which the zooming should occur
must be specified by the developer.

Camera

Since MoSync does not offer ready-to-go functions, it does not offer already implemented Cam-
era objects. All code and classes have to be written by the programmer. So in order to have a
camera in the scene, one first has to implement two classes, Camera.hpp and Camera.cpp for
instance, as well as their methods and specify their positions.

Model Loading

MoSync offers no already implemented way of importing models, however it supports OpenGL
ES. This means, that the developer can make use of other libraries, like Assimp [11], and im-
plement their own ModelLoader classes, in order to save the imported models into hierarchical
structures.

Moving Object

MoSync doesn’t offer any pre-implemented solution for the movement of the imported models.
This means that after the ModelLoader has been implemented the model can be moved either by
hierarchical or skeletal animation.

Lighting

MoSync does not offer already implemented Light objects. Therefore light can be added to the
scene by writing a shader class and defining vectors, which represent the color and intensity of
the light.

65



Potential Problems

Installation Problems

No problems occurred during the installation phase.

Implementation Problems

• One can not select where on the hard disk to install the MoSync SDK. It is always installed
in ’Applications’, ’MoSync’.

• The project can not be built and can not run on iPhone. In order to fix this problem one
first has to quit the MoSync IDE and edit the template file ’project.pbxprojtemplate’ found
in ’Applications’, ’MoSync’, ’profiles’, ’runtimes’, ’iphoneos’, ’1’, ’template’ with the
OSX command line as follows: all ’GCC VERSION’ lines equal with ’com.apple. com-
pilers.llvmgcc42’ must be removed and all ’IPHONEOS DEPLOYMENT TARGET’ lines
equal with ’3.0;’ must be replaced by them being equal to ’5.0;’ lines. After this is done
the MoSync IDE can be started again. Then the project must be cleaned and rebuild. The
solution can be found in the following discussion [59].

• The resource tutorials explaining how to use images are incomplete and do not mention
that the namespace ’MAUI’ also has to be used and that the MAUI library also has to
be integrated into the project. This can be done by clicking ’Project’ in the upper menu,
followed by ’Properties’ and ’Build Settings’ and then ’MAUI.lib’ can be added in the
’Additional Libraries’ input field.

• Even after the MAUI.lib was included in the project correctly, the Resource tutorial does
not specify how to show the image on the screen, but merely how to create an Image object
using a resource. In order to show the image on the display screen of a mobile device, a
Screen object must be generated first, the Image object has to be added to the screen as it’s
main widget and finally the new screen object can be displayed by means of the method
show().

• Generally MoSync supports numerous features, sometimes even importing necessary li-
braries, like OpenGL ES, directly in the templates for a new project, but provides almost
no pre-implemented elements, leaving the whole programming effort to the developer.

4.5 Xamarin

General Information

Xamarin enables users to build native Android, iOS, Mac and Windows applications by means
of a shared C# code basis.
The developer team of Xamarin built it wanting to present the users with a better way of design-
ing, developing, integrating and testing cross-platform applications.
Meanwhile Xamarin is being used by over 500.000 developers all around the world. More gen-
eral information about Xamarin can be found on their official web site [71].

66



Programming Language

They chose C# as programming language, because in their opinion it is ’the best language for
mobile development’. They justify this statement by asserting that everything one can implement
in Objective-C or Java, can also be realized with C# [71].

Fees

Xamarin can be downloaded for free, the package including also Xamarin.iOS, Xamarin.Android,
Xamarin.Mac, the Xamarin Studio IDE and a Visual Studio integration.
However for most tutorials, code snippets, examples and lessons available online one has to pay
a rather expensive fee, so that not much help is available for free on the web, as for instance the
tutorials on the following site [75].
Since the free version of Xamarin is so restricted that one can not even implement a relatively
small application, the purchase of another version in exchange for a fee is practically necessary.
However one can make use of the Xamarin Business edition Trial, which enables the developer
to implement his or her project in Xamarin Studio for free for 30 days.

Integrated Development Environments

Xamarin can either be used in combination with Visual Studio or as a stand-alone IDE called
Xamarin Studio. It represents a free development environment, which can be used on Mac as
well as on Windows. Furthermore, Xamarin Studio enhances the look and feel specific of each
platform by means of platform-specific code inserted in diverse places.
Since the MonoDevelop project, enabling cross-platform programming with C#, together with
the Mono project are currently maintained by Xamarin, the IDE Xamarin Studio represents ac-
tually a renamed version of MonoDevelop 4.0. Further information considering Xamarin Studio
can be found on the official website of Xamarin [71].

Developer Team

Xamarin was created in May 2011, San Francisco, California by the same developers who cre-
ated Mono, MonoTouch and Mono for Android, which all represent cross-platform implemen-
tations of Microsoft .NET.
Currently the software company Xamarin disposes of 170 employees. More details concerning
the Xamarin Team can be found on the following source [135].

Application Areas

Xamarin specializes on the development of cross-platform mobile applications and the maxi-
mization of code-reuse. However the focus lies on productivity and utility applications and not
that much on game applications.
In order to receive better support for 3D and game programming, one should use Xamarin in
combination with MonoGame. Further information on the topic can be collected on the follow-
ing site [130].

67



MonoGame

MonoGame represents the most extended 3D Engine for Xamarin developers [132]. It is a free
software, which offers rather good support for cross-platform game development with Xamarin
and represents an open source implementation of XNA, as stated by the subsequent source [134].
MonoGame was initially used to make Windows and Windows phone games run also on Mac
OS, iOS, Android, Linux, PlayStation Mobile and the OUYA console. More information on
MonoGame can be collected from the official web site [74].

Figure 4.16: The left figure depicts the logogram of Xamarin and Xamarin Studio [5], while the
right figure shows the logogram of MonoGame, which can be found on the following page [128].

XNA

Microsoft XNA stands for a tool set which facilitates video game development and management
for Microsoft Window, Xbox 360 and Windows Phone.
MonoGame evolved from XNA Touch, as it represents an implementation of the Microsoft XNA
4 application programming interface. Furthermore MonoGame still depends on XNA quite much
when it comes to certain topics, as for instance the Content Pipeline.

Prerequisite

The Xamarin executable can be downloaded from the official website [71]. As far as the instal-
lation is concerned, one must first accept the license agreement, then specify the location of the
Android SDK and install the recommended software:

• Xamarin.iOS - enables the development of iOS applications with Xamarin

• Xamarin.Android - enables the development of Android applications with Xamarin

• Xamarin.Mac - enables the development of Xamarin applications on and for Mac OS

• Xamarin Studio - the IDE can also be downloaded and supports cross-platform develop-
ment with Xamarin

68



• Visual Studio integration - makes it possible to use Xamarin in combination with the
Visual Studio IDE

• Mono - enables the C# to function on several other platforms besides Windows

Furthermore as far as the iOS support is concerned, the prerequisites from the chapter ’Special
Prerequisite for iOS’ of the ’libGDX’ section should be fulfilled.

Integrating MonoGame

MonoGame can be downloaded from the official MonoGame downloads website [54]. The latest
release should be selected, followed by ’MonoGame 3.2 on GitHub’, as the actual latest release
is 3.2 and this section of the paper discusses the development with Xamarin.
Inside the downloaded package there is an ’.mpack’ file, which must be added to Xamarin Stu-
dio as follows: open Xamarin Studio, click on the application manager called ’Xamarin Studio’
in the upper left corner and select ’Add-in Manager’. Afterward the ’Install from file’ button of
the bottom of the window should be clicked and the MonoGame mpack should be selected and
loaded into Xamarin Studio.
This should cause all MonoGame templates to be available for use. The downloading instruc-
tions for MonoGame can be found on the following source [36].

Project Creation

New Project

A new Xamarin MonoGame project can be created by clicking on ’File’, ’New’, ’Solution’.
After this the developer much choose between one of the available MonoGame templates. On
Mac the available templates contain an Android template, as well as an OUYA, an iOS, a MacOS
and a Linux template.

Open Project

An existing Xamarin project can be opened by clicking on ’File’, ’Open’ to open the folder
containing the project and then selecting the ’.sln’ file, representing the project’s solution.

Running the Project

Running the Desktop Project

The desktop project can be easily run after having opened the MacOS project. The developer can
built the project by pressing ’Build’, ’Build All’ in the upper menu, as well as run it by selecting
’Run’, ’Start Without Debugging’.

Running the iOS Project

The respective iOS project solution must be opened. The project can be built in the same manner
as the desktop project. For running the project, the iOS device must be connected to the laptop

69



or personal computer. Furthermore, the device must be selected in the second drop down menu
at the top of the window, the one specifying the available devices and emulators.
Afterward ’Run’ can be selected from the upper menu, followed by ’Run With’ and the respec-
tive iOS device must be chosen from the contextual drop down menu.

Running the Android Project

To run an Android application the respective project solution must be opened. The project can
be built in the same manner as the desktop project. For running the project the Android device
must be connected to the laptop or personal computer. Furthermore the device must be selected
in the second drop down menu at the top of the window, the one specifying the available devices
and emulators.
Afterward, ’Run’ can be selected from the upper menu, followed by ’Run With’ and the respec-
tive Android device must be chosen from the contextual drop down menu.

Implementation

Cross-platform projects: Manual Creation

As far as porting applications from one platform to another is concerned, the only instructions
one can find without having to pay fees suggest, that the porting has to be performed manually.
The following source [14] shows that Xamarin projects for other platforms can not be creat-
ed automatically by automatic built, they have to be created manually. Furthermore the source
shows how to port a Windows application to an Android project.

From Android to iOS For example one starts creating a Xamarin application for Android
but wants to test it also on an iOS device. In order to do so a new project must be created or
opened based on the iOS MonoGame template.
The resources must then be inserted into the new project, the ’Build action’ of each resource
must be set to ’EmbeddedResource’ (or to ’AndroidAsset’ when porting to an Android project)
and ’Copy to output directory’ must be set to ’Copy if newer’.
Furthermore the implemented C# classes containing the logic of the game must be imported
from the former project and the ’Content.RootDdirectory’ object inside the logic class has to be
set to ’Assets/Content’ instead of simply ’Content’.
Just after fulfilling these steps one can finally test one’s application on a different platform. The
reason for this is that building the project with Xamarin does not automatically generate projects
for the other platforms as the previously described frameworks do.

OpenGL and OpenGL ES

MonoGame draws its graphics performance from OpenGL, as well as OpenGL ES or DirectX.
The focus lies however on OpenGL 2 since MonoGame version 3. Before that the earlier releases
of MonoGame used mainly OpenGL 1.x versions for the rendering of graphics.

70



Implemented Application

The described application from the section ’Practical Application for Comparison Purposes’ has
also been implemented using Xamarin in combination with MonoGame. Xamarin and MonoGame
have been downloaded and installed and the project has been created as in the description above.

Camera and Camera Controller

There exists no built-in implementation of a camera in MonoGame, so that the Camera class
containing it’s whole functionality, such as rotating around objects or pitch zooming, has to be
written by the developer. An example of a Camera class implementation can be found on the
following source [106].

Model Loading

MonoGame supports merely the following model formats: .x, .fbx, according to the following
source [79].
After having acquired such a model or having converted it to one of the respective formats, one
can add the model as well as the texture files to the ’Assets/Content’ folder of the project. The
’Build action’ of the assets must be set either to ’AndroidAsset’ on Android, or to ’Resource-
Bundle’ on iOS. In both cases ’Copy to output directory’ should be set to ’Copy if newer’.
To load the file into the Model object one has to use the Content.Load() method within the Load-
Content() method. However the type of the object to be loaded must be specified within angle
brackets. Furthermore the name of the file, without it’s file format, must be specified as parame-
ter.

Model model = C o n t e n t . Load <Model > ( " Ship " ) ;

One also needs to specify the model, view and projection matrices. Afterward a new method,
DrawModel(), should be implemented, having the three matrices as parameters. This method
goes through all the meshes of the model, followed by all the effects of each mesh and sets the
three matrices. After all effects have been set the mesh is drawn.

p r i v a t e vo id DrawModel ( Model model , Ma t r i x world , Ma t r i x view ,
Ma t r i x p r o j )

{
f o r e a c h ( ModelMesh mesh i n model . Meshes )
{

f o r e a c h ( B a s i c E f f e c t e f f e c t i n mesh . E f f e c t s )
{

/ / e f f e c t d e t e r m i n e how a model s h o u l d be d i s p l a y e d on t h e
/ / s c r e e n
e f f e c t . World = wor ld ;
e f f e c t . View = view ;

71



e f f e c t . P r o j e c t i o n = p r o j ;
}
mesh . Draw ( ) ;

}
}

The DrawModel() method will then be called within the Draw() method of the application.

DrawModel ( model , world , view , p r o j e c t i o n ) ;

More information considering loading models can be found on the following source [81].

Moving Object

Basic movement of the objects can be achieved by altering the basic matrices. Especially the
world matrix, which specifies the location of the model within the scene, should be altered to
generate object movement. The methodes ’CreateTranslation()’ and ’CreateRotationX, Y and
Z(),’ will prove to be quite useful. More details on the matter can be found on the following web
site [78].

Lighting

One can add lighting to their scene by using the BasicEffect class. This class enables the user to
implement a Default Lighting as well as a Custom Lighting.
One can easily add Default Lighting to the scene by inserting the following line of code, ’ef-
fect.EnableDefaultLighting();’, inside the inner loop of the DrawModel() method, where the
world, view and projection matrices are set.
Custom Lighting can be accomplished by adjusting the diffuse color, direction and specular col-
or of one or more directional lights. There are a total of three directional lights built into the
BasicEffect class. Additionally one can specify whether an individual light should be turned on
or off.
Furthermore the ambient light’s color can be altered and the emissive light color can be set.
More information considering this matter can be found on the following site [76].

Background Image

MonoGame supports the following image and texture formats: .bmp, .dds, .dib, .hdr, .jpg, .pfm,
.png, .ppm, .tga, according to the following source [79].
In order to load an image as a background, one needs to add the image file to the asset fold-
er, while the ’Build action’ of the asset must be set either to ’AndroidAsset’ on Android, or to
’ResourceBundle’ on iOS. In both cases ’Copy to output directory’ should be set to ’Copy if
newer’.
A Texture2D object is also needed, as a container for the image file. To load the file into the
Texture2D object, one has to use the Content.Load() method within the LoadContent() method.

72



However, the type of the object to be loaded must be specified within angle brackets. Further-
more the name of the file, without it’s file format, must be specified as parameter.

Texture2D background = C o n t e n t . Load <Texture2D >(" g a l a x y " ) ;

Furthermore, a SpriteBatch object needs to be defined and initialized in order to be able draw
the texture(s) onto the screen.

S p r i t e B a t c h s p r i t e B a t c h = new S p r i t e B a t c h ( G r a p h i c s D e v i c e ) ;

The drawing happens within the Draw() method, where the sprite.Begin() is called, followed by
the sprite.Draw(). The parameters of the sprite.Draw() method specify the texture to be drawn
as well as the height and width of the image. Finally the sprite must be ended with sprite.End().

s p r i t e B a t c h . Begin ( ) ;

s p r i t e B a t c h . Draw ( background , new R e c t a n g l e ( 0 , 0 ,
G r a p h i c s D e v i c e . P r e s e n t a t i o n P a r a m e t e r s . BackBufferWidth ,
G r a p h i c s D e v i c e . P r e s e n t a t i o n P a r a m e t e r s . B a c k B u f f e r H e i g h t ) ,
Co lo r . White ) ;

s p r i t e B a t c h . End ( ) ;

More information concerning MonoGame SpriteBatch basics can be found on the following
source [80]. Furthermore, the following web site offers a solution to setting the height and width
of the texture to the display’s resolution [53].

Sound

For starters one must import the ’Microsoft.Xna.Framework.Media’ library. This will allow the
developer to use a Song object, which will be used to store the music file. MonoGame supports
the following music files: .xap (an XACT audio project), .wma, .mp3, .wav, according to the
following source [79].
To play a song in the background, the music file has to be added as a resource to the ’Asset-
s/Content’ folder first. The ’Build action’ of the asset must be set either to ’AndroidAsset’ on
Android, or to ’ResourceBundle’ on iOS. In both cases ’Copy to output directory’ should be set
to ’Copy if newer’.

Song song = C o n t e n t . Load <Song >(" s c r a p e " ) ;

To load the music file into the Song object one has to use the Content.Load() method within the
LoadContent() method. However the type of the object to be loaded must be specified within
angle brackets. Furthermore the name of the file, without its file format, must be specified as

73



parameter.
Right after doing so the song can be played by the command ’MediaPlayer.Play(song)’.

Med iaP laye r . P l ay ( song ) ;

More information on the audio topic can be found on the following web site [82].

Potential Problems

Installation Problems

MonoGame for Xamarin is not that difficult to download, being available on the official web
site [74], but is quite difficult to install within Xamarin, since there are very few accurate instruc-
tion on how to do so. The detailed instructions can be found in the ’Prerequisite’, ’Integrating
MonoGame’ section of this paper.

Implementation Problems

• Fees - there is a fee for almost all helpful tutorials, lessons and code snippets, which makes
the implementation quite difficult, especially for new users of Xamarin.

• No automatic build of projects targeting other platforms - this represented a big problem,
since one had to pay a fee to be able to access necessary tutorials and information. The
solution used in this Bachelor thesis can be found in the section 4.5 of this paper.

• ’Your app is too large to be developed with Xamarin Starter Edition’ - even a rather small
application is too large for the Xamarin Starter Edition, so that the developer must either
buy the Business edition of Xamarin or start a Trial version of the Business edition. The
Trial version can be used up to 30 days, as stated by the following source [133].

• ’entitlements.plist file not found’ - this can happen when starting a new iOS project. In
order to solve this one needs to Right Click on the project and select ’Options’ from the
Dropdown menu. This will cause a window to open, where one should select ’iOS Bundle
Signing’ from the left side of the window and remove ’Entitlements.plist’ from ’Custom
Entitlements’, as suggested by the following source [52].

• The only accepted model file is XNA’s XNB - the fact that MonoGame only supports .x
and .xnb model files represents quite a problem. This means that in order to be able to use
other model file types, these need to be converted to .xnb files using an implementation of
XNA’s content pipeline. However, MonoGame does not dispose of such a content pipeline
at the moment according to [29], which means that the developers need to use XNA’s
content pipeline to convert their models [77]. Since XNA only works on Windows, a
Windows computer or laptop is required for the conversion. Furthermore, Visual Studio
must be installed, as well as MonoGame and XNA, which must be integrated within Visual
Studio. Then the user must create a new ’MonoGame Content Project’ [79], which must

74



be added to the initial project and will finally be able to convert the model format to the
.xnb file format.

• Trouble loading .png files, ’Asset Not Loaded’ - PNG files need to be changed to a 24 or
32 bit color format, according to the subsequent source [105]. One can do this by using
Photoshop or another graphics editor.

4.6 Marmalade SDK

General Information

Marmalade SDK was formerly known as Airplay SDK. It is defined as a free cross-platform
application development tool and game engine. It provides a C++ framework, which enables the
development not only in Visual Studio but also in Xcode.
Furthermore Marmalade SDK provides the developers with library files, documentation, useful
samples and tools, which enable the development, testing and deployment of mobile applica-
tions.
Since Marmalade SDK is a cross-platform development tool it enables the users to write their
code only once and then compile or execute it on all supported platforms. This is realized due to
a C/C++ based application programming interface, which serves as an abstraction layer for the
core API of each platform.
More information on Marmalade SDK can be found of their official website [47].

Developer Team

The Marmalade SDK was developed by Marmalade Technologies Limited, London, United
Kingdom. The company was previously known as Ideaworks3D Limited.

Figure 4.17: The figure depicts the logogram of Marmalade SDK. The picture can be found on
the following source [107].

75



Programming Languages

Marmalade SDK supports not only C++ but also Objective C, LUA and HTML5 as program-
ming languages, according to the following source [47].
Namely Marmalade Quick allows developers to use LUA; Web Marmalade provides cross-
platform application programming support based on web-technologies, so that the user can use
HTML5 in combination with CSS3 and JavaScript; while Marmalade Juice offers Objective C
support [50].

Integrated Development Environments

One can use either Visual Studio or Xcode to write their cross-platform application.

Games

Some examples of quite notorious games which have been developed using Marmalade SDK
include Call of Duty - World at War: Zombies, Doodle Jump, Lara Croft and the Guardian of
Light, Need for Speed: Shift, Plants vs. Zombies, Tetris and Worms.

The Marmalade Hub

The Marmalade Hub is a quite user-friendly graphic user interface tool, which provides an
overview of the functionality provided by the SDK. Among other functions the Marmalade Hub
enables the developer to create a new Marmalade project, offers templates, code samples, tuto-
rials and documentation.

Architecture

The Marmalade SDK has the C++ SDK at its core. This provides flexibility and performance and
enables the developers to directly access the hardware of the device, as well as the middleware
and utility modules.
Marmalade Quick, Web Marmalade and Marmalade Juice are also based on the Marmalade C++
SDK, but permit the programmers the choice of using more than one programming language.
More details as far as the Marmalade Platform is concerned, can be found at the subsequent
source [50].

Technology

The writing of the code only once as well as its compilation and execution on all supported
platforms is enabled by the C/C++ based API, which represents an abstraction layer for the core
API of every platform.
The Marmalade SDK disposes of two main layers:

• Marmalade System - is a low level C API providing an abstraction layer. It permits the
developer to access device functionality, such as file access, memory management, net-
working, input methods, sound and video output.

76



• Marmalade Studio - represents a C++ API that providing a higher level functionality.
This layer mostly focuses of 2D and 3D graphic rendering, but also comprises a resource
management system and HTTP networking.

More information on how Marmalade works and the used technology can be found on the fol-
lowing page [49].

Platforms

When purchasing the license, the developer can select his platforms of interest. The platforms
from which one can choose are: Android, iOS, Windows Phone 8, BlackBerry 10, Tizen, Mac
OS X, Windows Desktop, LG Smart TV, Roku 2 and Roku 3 [51].

Prerequisite

Download and Installation

Marmalade SDK can be downloaded from the official website [47]. As far as the installation is
concerned, an activation key is needed in order to use the SDK. To receive such an activation
key, the developer must register to Marmalade, however the registration is for free.
During the installation one must accept the license agreement, as well as specify the location
where one wants to have Marmalade installed.
Furthermore, as far as the iOS support is concerned, the prerequisites from the chapter ’Special
Prerequisite for iOS’ of the ’libGDX’ section should be fulfilled.

Project Creation

New Project

A new project can be created by means of the Marmalade Hub GUI. One simply has to click on
’Projects’, next to the home icon in the upper left menu bar, and then press ’Create New Project’.
Then the desired template can be chosen, as well as the location and the name of the project.

Open Project

In order to open a project, one must click on ’Projects’, next to the home icon in the upper left
menu bar, then either chose a project from the list and press ’Open Project’ or import a different
project by clicking on ’Import Project’.

Tutorials

Some quite helpful Marmalade tutorials for basic functionality are also available from the Mar-
malade Hub. One must simply click on the home icon in the upper left menu bar, then choose
’Marmalade C++’ and press ’Starter Tutorial’. This will reveal a list of 7 ’Stages’, which can
help the developer implement different functionality required in a game.

77



Running the Project

Running the Desktop Project

In order to build and run the project on the desktop, one must first select ’Debug x86’ as build
type in the upper left corner of the IDE window. After doing so, the project can be easily built
by pressing ’Product’, in the upper menu bar, ’Build’, or run by clicking ’Product’, ’Run’. This
will run the project on a mobile device simulator.

Running the iOS Project

To build and deploy the project on an iOS device, the device must be connected to the computer
and one must select ’Release GCC ARM’ as build type in the upper left corner of the IDE win-
dow. After doing so one can press ’Product’, in the upper menu bar, ’Build’ to build the project
and ’Product’, ’Run’ to run it. This will launch the Marmalade Deployment Tool.
’ARM GCC Release’ must be selected as Build Type, ’iOS’ as platform and finally ’Deploy All’
must be clicked. This will create two files in the project’s folder, under the ’build’ folder ending
with the name of the IDE one has is using, ’deployments’, ’default’, ’iPhone’, ’debug’.

The .ipa file located there must then be dragged and dropped onto iTunes. Then the phone
must be selected, followed by the ’Apps’ tab, the checkbox next to the deployed project’s ap-
plication must be selected and the Sync button should be pressed. This will install the app to
the iOS device. When deploying a newer version, the old one should be deleted manually. More
information on the matter can be found on the subsequent source [91].
As an alternative solution to running the application on a device the Marmalade Hub could be
used, however a configuration of the Hub would be necessary.

Running the Android Project

To run the developed application on an Android device, the device must be connected to the
computer and one must select ’Release GCC ARM’ as build type in the upper left corner of the
IDE window. The Marmalade Hub or the Marmalade Deployment tool can both be configured
in order to install and run the application automatically on an Android device.
This can be done by selecting ’Package and Install’ or ’Package, Install and Run’ in the De-
ployment section of the Marmalade Deployment tool. This will trigger the generation of a de-
velopment package, which will be also copied to the device and even run, in case of having
selected ’Package, Install and Run’. More information on deploying to Android can be found on
the following website [45].

Implementation

OpenGL and OpenGL ES

Both OpenGL ES API versions, 1.x and 2.x, are used for accessing the graphics rendering ca-
pabilities of the supported mobile devices. OpenGL is not required since Marmalade SDK spe-
cializes on the development of mobile applications.

78



Implemented Application

The described application from the section ’Practical Application for Comparison Purposes’ has
also been implemented using the Marmalade SDK. The framework has been downloaded and
installed and the project has been created as in the description above.

Camera and Camera Controller

As far as the addition of a camera to the scene is concerned, Marmalade SDK’s CIwGameCam-
era class can be used. Such an object can be attached to a CIwGameScene object and enables the
movement of the view around a virtual world. Furthermore CIwGameCamera is a quite simple
class and supports the position, rotation and scaling of the view. The developer simply has to
create a new CIwGameCamera object and add it to the Scene.
The Camera Controller has to be implemented manually, since there are no pre-implemented
methods for pinch zooming or gravitating around an object so far. Further information can be
collected from the following website [90].

Model Loading

The first thing which needs to be taken into consideration when intending to load a model with
Marmalade SDK is that Marmalade can merely load models from a certain file format, name-
ly from GROUP files. This means that the developer first has to export the model data into a
GROUP file using a 3D modeling package.
Marmalade disposes of two exporter plug-ins for the following two modeling packages: Maya
and 3DS Max. If one would not like to purchase Maya or 3DS Max, one could download Benoit
Mueller’s exporter plug-in for Blender, a free 3D modeling package.

After having installed one of the suggested modeling packages as well as the respective ex-
porter plug-in, one can either create a new model or load one into the modeling package and then
access the exporter, which allows the exportation of the model into a GROUP file. A GROUP
file represents a text file in standard ITX format and defines a single named group, specifying
the resources to be loaded into the group.
For more information regarding the exact steps of the exportation, the subsequent source can be
consulted [83], and a detailed presentation of the exported file types can be read in the following
article [84]. In order to read the articles, one has to log in to SafariBookOnline first, however
there is a 10 days free trial available.

The group can then be loaded into the project by means of a resource manager object, which
can be fetched using the IwGetResManager() method. Then the LoadGroup() method of the re-
source manager must be used, specifying the name of the group file as a parameter.
The group can afterward be accessed by means of a pointer to a CIwResGroup object. The point-
er gets the value returned by the method GetGroupNamed() of the resource manager, using the
name of the group specified in the group file as parameter.
Finally another pointer is needed, namely for the model. The model will be referenced by a

79



pointer to a CIwModel object, part of the IwGraphics API. The pointer to the model object
should get the resource returned by the method GetResNamed(), which can be called from the
group pointer object converted to a CIwModel* pointer.

/ / Load t h e boa rd
IwGetResManager ()−> LoadGroup ( " Board . group " ) ;
/ / Get a p o i n t e r t o t h e named group
CIwResGroup∗ pGroup = IwGetResManager ()−>GetGroupNamed ( " boa rd " ) ;
/ / Get and s t o r e p o i n t e r t o t h e model r e s o u r c e
CIwModel∗ boa rd = ( CIwModel ∗ ) pGroup−>GetResNamed ( " boa rd " ,

IW_GRAPHICS_RESTYPE_MODEL ) ;

Finally, in order to render the model, the method Render() of the returned CIwModel pointer
can be used.

board−>Render ( ) ;

More details considering the exact code lines to be used for loading a model from a group file
can be found on the subsequent source [48].

Moving Object

Before rendering a model, a transformation matrix should be set. This matrix specifies the posi-
tion, scaling and orientation of the model in world space and can afterward be used to move the
object. The transformation matrix can be declared using a CIwFMat object, rotation, scaling and
orientation can then be set by using the methods SetRotX(), SetRotY() or SetRotZ(), ScaleRot
and SetTrans().

/ / B u i l d o b j e c t 3D t r a n s f o r m
CIwFMat Trans fo rm
Trans fo rm . SetRotY ( R o t a t i o n . y ) ;
Trans fo rm . S c a l e R o t ( S c a l e ) ;
Trans fo rm . S e t T r a n s ( P o s i t i o n ) ;

Finally the model can be transformed into world space by setting the actual model matrix by
means of the IwGx function IwGxSetModelMatrix(). However IwGx is state based, so that all
further models will have the same model matrix until it is changed.

/ / Trans fo rm t h e model i n t o wor ld s p a c e
IwGxSetModelMatr ix (& Trans fo rm ) ;

For further information as well as the exact lines of code consult the following page [48].

80



Lighting

Marmalade SDK uses the Lighting Model to enable scene illumination. The emissive con-
tribution can be activated using IwGxLightingEmissive(), the ambient contribution by IwGx-
LightingAmbient(), the diffuse contribution by IwGxLightingDiffuse() and the specular contri-
bution by IwGxLightingSpecular(), where the parameter of all these methods can either be true
or false, depending on whether one would like to activate or deactivate the respective contribu-
tion.
Also emissive, ambient, diffuse and specular lighting can be enabled together by using IwGx-
LightingOn(), or disabled together using IwGxLightingOff().

/ / E m i s s i ve c o n t r i b u t i o n
IwGxLigh t ingEmis s ive ( t r u e o r f a l s e ) ;

/ / Ambient c o n t r i b u t i o n
IwGxLight ingAmbient ( t r u e o r f a l s e ) ;

/ / D i f f u s e c o n t r i b u t i o n
I w G x L i g h t i n g D i f f u s e ( t r u e o r f a l s e ) ;

/ / S p e c u l a r c o n t r i b u t i o n
I w G x L i g h t i n g S p e c u l a r ( t r u e o r f a l s e ) ;

/ / Turn e m i s s i v e , ambien t and d i f f u s e l i g h t i n g on
IwGxLightingOn ( ) ;

/ / Turn e m i s s i v e , ambien t and d i f f u s e l i g h t i n g o f f
IwGxLigh t ingOff ( ) ;

Further information on the Lighting Model as well as the exact code lines can be looked up one
the subsequent sources [46], [41].

Background Image

Using the Iw2D API represents one of the simplest methods to load and render an image with
the Marmalade SDK. Even though Iw2D merely permits the rendering of rectangular polygons,
these can be flipped and rotated when drawn. To load an image into the project, one first has to
generate a new ’textures’ folder within the ’data’ folder of the project.

After the image file has been added to the ’textures’ folder, one can create a pointer of a
CIw2DImage object, in which the image can be loaded by means of the Iw2DCreateImage()
method. Iw2DCreateImage supports the following image file formats: PNG, BMP, GIF, JPG
and TGA.

81



CIw2DImage∗ image = Iw2DCreateImage ( " t e x t u r e s / g a l a x y . png " ) ;

The method Iw2DCreateImage() needs the name of the file including the file extension. Then the
loaded image instance can be rendered to the screen by means of the method Iw2DDrawImage(),
which uses the CIw2DImage object pointer, in which the image has been loaded, as well as the
coordinates, where the image should be rendered on the screen, as parameters.

Iw2DDrawImage ( image , CIwFVec2 : : g_Zero ) ;

For more information one can consult the following page [42].

Sound

The audio API s3eAudio and the sound API s3eSound are used by the Marmalade SDK to
play compressed audio data. The APIs can play the following file types: MP3, ACC and QCP.
Marmalade SDK furthermore provides the sample sound engine IwSound, which supports the
playback of compressed audio.
The Stage2 of the Starter Tutorial shows exactly how to play background music. The presented
solution wraps up the access to IwSound into a class called ’Audio’. This class is then imple-
mented by the two files ’audio.h’ and ’audio.cpp’, which are located in the project folder of
Stage2.
Stage2 of the presented Starter Tutorial used however an additional class named ’AudioSound’.
One can use this class to load and play an individual sound effect. Furthermore the Tutorial con-
tains a change made to the original sample sound engine, so that WAV files are also supported.
Further information can be collected from the following sources [44], [43].

Potential Problems

Installation Problems

No problems occurred during the installation phase and there was no need for the environment
variables to be changed. However one has to register in order to receive the activation key needed
for using the Marmalade SDK.

Implementation Problems

• Creation of the ’textures’ folder - the IDE does not find the ’textures’ folder, if it has been
created from within the IDE’s project structure or even if it has been created in the Finder
while the project was opened in the IDE. The solution is represented by the closing of the
IDE, the creation of a new ’textures’ folder within the ’data’ folder of the project by means
of the Finder and the copying of the image file inside the newly created ’textures’ folder.
When opening the project in the IDE afterward, the ’textures’ folder finally appears.

• Image can not be drawn - when running the application, even if the code was correct, the
image could still not be drawn. The reason was represented by the fact that s3e didn’t have
enough memory size allocated. This can be solved by opening the ’app.icf’ file within the

82



project and setting the ’MEMSIZE’ of the s3e group to a greater number, as for instance
’[s3e] MemSize 2̄00000000’. After doing so the image should be rendered onto the screen
without further complications. This solution is suggested by the subsequent sources [89],
[34].

• Deployment without the Hub - in case the deployment by means of the Marmalade Hub
does not work, one can still deploy the application using the Marmalade Deployment tool.
How to do this is covered by the ’Running the Project’ section .

83





CHAPTER 5
Comparison

5.1 Comparison of the object-oriented programming -based
cross-platform development approaches

As previously specified, this chapter will cover a more extensive comparison of the six cross-
platform programming approaches presented in this paper: libGDX, Murl Engine, Unity, MoSync,
Xamarin with MonoGame and Marmalade SDK.
The comparison is structured on the basis of the main features of the approaches, which are
illustrated in the chapter 2.1 at the beginning of this bachelor thesis (Table 2.1).
For each main feature the best as well as the worst choice among the discussed object-oriented
programming -based cross-platform programming approaches will be elucidated. Furthermore,
the aspects they have in common and the main differences between the solutions provided by
each approach will be emphasized.

Free Version Availability

Each of the six cross-platform programming approaches offers a free version of the respective
framework, which is quite practical and convenient. Furthermore each of the approaches allows
for them to be used by developers even for money-making purposes.
The free versions of most of the frameworks, namely 6 out of 7 including MonoGame, work
quite nicely and without further obstructions, allowing the developers to implement their cross-
platform games and applications unimpeded. However, the free version of Xamarin has an app
size limitation, which prevents even the implementation of a minimal application, which simply
loads an image.
Thus the users are practically forced to buy the Business version right away or use the free 30
days Trial of the Business version first and buy it afterwards.

85



Versions in Exchange for a Fee

The Murl Engine offers ’Basic’, ’Standard’ and ’Pro’ as further versions one has to pay for;
Unity disposes of a ’Pro’ version with costs; MoSync also presents their versions ’Basic Pro’
and ’God Pro’ for a fee and Xamarin provides three further versions, namely ’Indie’, ’Business’
and ’Enterprise’, all in exchange for a fee.
Each of these additional versions provide some extra functionality and liberties, such as render-
to-texture effects, version control, optimization features and post processing effects in Unity Pro,
however the prices are relatively high.
Meanwhile libGDX, MonoGame and Marmalade SDK each provide a single version of their
frameworks, which is available for free and includes all the functionality.

Focus on mobile development

MoSync and Marmalade SDK both focus on mobile development, even though Marmalade tar-
gets not exclusively mobile platforms. The remaining approaches target mobile platforms as
much as any other platform.
The main advantage, which is provided by the fact that a framework, such as MoSync, exclusive-
ly focuses on mobile development, is represented by the fact that the programmed application
can be deployed to much more mobile platforms, namely eight, than in the case of Murl Engine
or libGDX for example, which only support the deployment to two and respectively three mobile
platforms.

Programming Languages

The object-oriented programming language Java has been used once during this bachelor thesis,
namely for the libGDX practical implementation section. C# has been used twice, namely with
Unity and Xamarin, and C++ represents the most used programming language during this bach-
elor thesis, being required for all three frameworks Murl Engine, MoSync and Marmalade SDK.
The full list of supported programming languages can be found in the chapter 2 (Table 2.1).
One can not state that a certain object-oriented programming language is better than the others,
therefore a ranking can not be established. However according to my personal observations, all
frameworks based on the same programming language aim for different targets: for instance
the Java-based framework libGDX provides more pre-implemented functionality than the oth-
ers, the C#-based frameworks Unity and Xamarin focus on user-friendliness and fast, intuitive
workflows, while the remaining C++ -based frameworks, Murl Engine, MoSync and Marmalade
SDK, provide more flexibility and performance.

Integrated Development Environments

While Eclipse was used to implement the libGDX project, Xcode is required for Murl Engine
and Marmalade SDK implementations. The remaining three approaches all provide an included
IDE, namely the Unity IDE, the MoSync IDE and Xamarin Studio.
The IDEs were equally helpful.

86



Download and Installation Effort

Prerequisites

LibGDX appeared to require quite a lot of effort during the download and installation part,
however this was the case mainly because it represented the first tested framework during this
bachelor thesis and because many aspects had to be taken care of only once, such as the pro-
visioning and registration of the iPhone and the installation of the Java SDK and the Android
SDK.
Thus after having fulfilled these aspects during the libGDX familiarization time, these steps did
not need to be repeated for every framework. In hindsight the download and installation ef-
fort of libGDX did not surpass the effort invested in the download and installation of the other
frameworks.

Trouble with Xamarin and MonoGame

Almost each of the available frameworks could be installed without further complications, as
soon as the developer accepted the respective license agreement.
The only exception was represented by MonoGame, which had to be integrated into Xamarin.
The integration of MonoGame was rather costly, since there is almost no free and helpful infor-
mation on the matter available online.

Registration required

Only one framework requested a registration and a key before enabling it’s use, namely the
Marmalade SDK. For all other frameworks a registration was not necessary.

Choice of Installation Path

All frameworks except the Murl Engine and MoSync allowed the developers to choose their pre-
ferred installation path. The fact that the installation path can not be determined personally when
using the Murl Engine and MoSync can lead to certain problems: for instance the installation
causing the respective disk to be nearly full, the developer not being able to remember where the
framework is installed, or even the impossibility to install the framework at all, when the disk
has insufficient free space left.

Familiarization with the Framework

The familiarization periods for libGDX, Unity and the Marmalade SDK have been explicitly
shorter than the familiarization time required to understand how the Murl Engine, MoSync and
Xamarin with MonoGame are working. This is mainly the case because there are much more
tutorials, documentation and generally help found for free available especially for libGDX and
Unity. For the Marmalade SDK the tutorials provided by the Marmalade Hub were quite helpful
during it’s familiarization process.
For the Murl Engine there are very few tutorials availiable on the official web site, and they
provide no support at all for 3D applications at the moment. The MoSync tutorials are also not

87



that many, since it is no longer maintained, so that the significant information had to be collected
from forums. For Xamarin there are quite many tutorials, however they are not available for free.

Tutorials

The availability of tutorials facilitates a quicker familiarization with a certain framework, as also
mentioned in the section 5.1.
There are quite many tutorials available for Unity, libGDX and even Marmalade SDK. There are
also many tutorials available for Xamarin but merely in exchange for a fee. The Murl Engine
provides a few tutorials, but they do not offer any help for 3D application programming yet. For
MoSync there are almost no tutorials available, so that all necessary information, such as how
to set up a project, how to process user input and how image, sound and model loading can be
realized, had to be extracted mainly from forum discussions.

Community

Unity posesses the largest community and therefore quite a big amount of help and instructions
are available online. Each of the other 5 frameworks also has a community, even if the commu-
nity of the Murl Engine is still rather small. However one can contact the developers of Murl
Engine directly; they proved to be quite helpful and friendly.

Supported Mobile Platforms

All approaches support the mobile platforms Android and iOS, since this represented the main
criteria for their selection in order to be presented in this bachelor thesis.
MoSync clearly supports the most mobile platforms of all, namely at least 8, these representing
their main target. Some examples of mobile platforms supported merely by MoSync and no
other of the described frameworks are: Java ME MIDP, Moblin, Symbian and Windows Mobile.
Meanwhile Murl Engine supports the least mobile platforms, namely just Android and iOS.

Other Supported Platforms

All approaches except MoSync support the desktop computer platforms Windows and Mac OS.
MoSync does no support any other platforms than the previously mentioned mobile platforms,
since the latter ones represent their main target. Unity supports the most other platforms of all,
namely at least 11. LibGDX, Unity and Xamarin provide also support for Linux as a target
platform.
While Unity provides support for considerably many game consoles, Marmalade SDK supports
quite some television devices as platforms. Murl Engine supports the lowest number of other
platforms, namely just Windows and Mac OS.

Deployment to other Platforms

The easiest deployment to other platforms is provided by libGDX, since if one makes a change
in the core project, all other sub-projects are automatically altered when building.

88



Xamarin on the other hand does not provide automatic deployment to different platforms, so that
the so-called sub-projects have to be created and altered manually.
Murl Engine, Unity, MoSync and Marmalade SDK all provide a relatively smooth deployment,
even if Xcode is necessary for the Murl Engine and MoSync in order to deploy the application
to iOS devices.

GUI Tool for Deployment

LibGDX, Murl Engine and Marmalade SDK provide the developers with graphical user interface
tools, namely the libGDX Project Generator, the Dashboard and the Marmalade Hub. These tools
are meant to simplify the deployment on different platforms.
The libGDX Project Generator is the most user-friendly one, the Dashboard provides only help
with the deployment to Android and the Marmalade Hub, although it is not that user-friendly, it
helped with the deployment to both iOS and Android.

Running the Project

Running the Desktop Project

Running the Desktop Project is enabled quite easily by all frameworks, except for MoSync,
which focusses merely on mobile platform development.

Running the iOS Project

Murl Engine, Unity and MoSync all use Xcode in order to run the implemented application on
an iOS device, even if the application was not developed in Xcode.
Running the iOS project can be initiated directly from Xamarin Studio when developing with
Xamarin, and Eclipse when developing with libGDX.
The running of the iOS project developed with Marmalade SDK can be realized by means of a
deployment tool.

Running the Android Project

The libGDX, Unity, MoSync and Xamarin projects can be run on an Android device quite easily,
namely directly from the IDE which is used for the development of the application.
In order to run the Murl Engine project on Android, the Dashboard GUI can be used, while
running the Marmalade project can be realized by means of a deployment tool.

Rendering API support

All presented cross-platform approaches provide rather extensive OpenGL ES support. Further-
more all of them, except MoSync and Marmalade SDK, provide also OpenGL support. Murl
Engine and Unity also support DirectX. The exact versions of the APIs can be seen in the chap-
ter 2 (Table 2.1).

89



Camera Implementation

The camera can be added most easily to the scene with Unity. However libGDX, Murl Engine
and Marmalade SDK also offer pre-implemented camera objects, which can be used after read-
ing the documentation.
The most problematic frameworks concerning the camera implementation are MoSync and Xa-
marin, where one has to write the entire camera object from scratch.

Camera Controller Implementation

The camera controller can be added very easily when using libGDX, because a lot of helpful
functions, such as zooming by scrolling, zooming by pinching and orbitation around an object
are already implemented.
Murl Engine and Unity offer some help in this direction at least, even if a complete pre-implementation
is not available, in comparison to MoSync and Xamarin, where the developer must implement
the Camera Controller from the beginning.

Model Loading

Model Loading is easiest with Unity, since the model importation is realized mainly by dragging
and dropping it into the game engine. However, libGDX also offers a quite easy to use pre-
implemented Model Loader.
Murl Engine supports model loading, however a conversion of the model to Murl Meshes has to
be carried out by means of a Scene Converter tool. Similarily, Marmalade SDK requires that the
model is exported from a modeling package in the form of a GROUP file.
The model loading with Xamarin and MonoGame is exceptionally complicated, since the only
accepted file formats are .xnb files and since MonoGame does not dispose of a Content Pipeline.
Thus the Content Pipeline of another framework, XNA, needs to be used. This entire conversion
to .xnb requires further installation effort and quite much time and memory loss.
MoSync does not provide a model loader at all, so that it has to be implemented from scratch by
the developer.

Supported Model Formats

LibGDX and Unity support the most model file formats without any conversion being neces-
sary, except the Murl Engine and MoSync, which both accept all model formats supported by
Assimp, however a conversion is necessary when using the Murl Engine and MoSync requires
the implementation of a model loader from scratch first.
Xamarin with MonoGame and the Marmalade SDK both support just quite few and unusual
model formats, so that various conversions are necessary. The complete list of supported model
formats can be found in the Chapter ’Overview’ (Table 2.1).

90



Object Movement Implementation

Moving an object or a model can be realized quite easily with libGDX, Murl Engine, Unity,
Xamarin and Marmalade SDK, even though each framework has its own approach.
MoSync requires however a full implementation by the developer, since no effort-minimizing
methods are available.

Lighting implementation

Lighting can be added to the scene quite easily by means of Unity, libGDX, Xamarin, Mar-
malade SDK and even Murl Engine. The only framework where the light has to be implemented
manually and from the beginning within shaders is MoSync.

Touchscreen Interface

The Touchscreen interface can be accessed extremely easy by means of libGDX, which provides
this exact pre-implemented function among others. Unity and Marmalade SDK also provide
quite some helpful methods on this topic, however the implementation is not complete. Xamarin
and MoSync provide the least support in this direction, so that a higher implementation effort is
required.

Image Loading

Image Loading can be realized relatively fast and easy using libGDX, Murl Engine, Xamarin
with MonoGame, Marmalade SDK and even MoSync. This time the Unity solution proved to be
the most problematic, since a complicated construct using two cameras had to be established.

Supported Image Formats

Xamarin supports the most image formats, followed by Unity. .PNG and .JPG are supported by
all described frameworks.
An exact list of the supported image file formats can be viewed in the chapter ’Overview’ (Ta-
ble 2.1).

Sound Implementation

The implementation of the sound is realized very easily with MoSync and libGDX. Murl Engine,
Unity and Xamarin also provide good support for sound loading. Marmalade SDK however
requires some more implementation, since not all necessary classes are pre-implemented.

Supported Sound Formats

Xamarin and Unity support the most music file formats. .MP3 and .WAV are supported by nearly
all frameworks, with the exception of Murl Engine, which does not support .MP3 files and Mar-
malade SDK, which offers support for .WAV files merely with some additional programming
effort.

91



An exact list of the supported music file formats can be viewed in the chapter ’Overview’ (Ta-
ble 2.1).

92



CHAPTER 6
Conclusion

This bachelor thesis covers the presentation of six of the currently most popular cross-platform
programming approaches. Not only the general information is covered, but also important imple-
mentation-related aspects. In the beginning of the thesis an overview of the approaches is pre-
sented, followed by the detailed description of each framework. In the end a comparison of the
approaches is provided, which is structured based on the main features of the frameworks.

Besides, this bachelor thesis was written with the intention of providing the readers with a
basic knowledge of the State of the Art in object-oriented programming -based cross-platform
developing approaches, as well as give an overview of their advantages and disadvantages. Fur-
thermore, the thesis was meant to emphasize that even though the approaches are quite different,
they still produce similar and comparable results and that each of the approaches aims for dif-
ferent targets. These so-called targets can stand either for certain nonfunctional requirements,
such as usability or performance, or for target customers, representing different developers with
various implementation styles.

For instance the libGDX framework provides more pre-implemented functionality than the
other frameworks. libGDX therefore aims for a faster implementation, intending to save the
developers the time of developing basic 3D scene components, such as camera objects, light
sources, camera controllers and model loaders, which are needed basically in every 3D game
application. The developers can thus use this time to focus on the application’s logic, the game
play and the level design.

Murl Engine aims especially for flexibility and performance, so that it does not provide
much pre-implemented functionality, leaving the whole programming effort to the developer.
Also Murl Engine embraces a very distinct approach, separating the positioning of the objects in
the scene and the logic part very strictly using XML files. This provides a series of advantages,
such as a clear view of the scene graph and a good structure of the code.

93



Unity enables a remarkably fast workflow, by means of its user-friendly, embedded game
engine and the impressive ease with which it enables assets management. Unity also provides a
relatively quick positioning of the objects in the scene and simultaneously enables the developer
to envision how the scene will look like in the end, all of which facilitate the level design. Fur-
thermore Unity supports the most platforms and the most model formats.

MoSync, despite the fact that it is no longer maintained, enables all possibly imaginable
features, however their main goal was also flexibility, so that the user, even though more imple-
mentation effort was required, could implement all the features to his own taste. In this situation
one does not have to adhere to the implementations of built-in functions anymore, in exchange
for more implementation effort.

Xamarin also aims for user-friendliness and fast intuitive workflows, however the imple-
mentation using Xamarin is relatively expensive and in order to be able to support 3D applica-
tion implementation it has to be combined with MonoGame. MonoGame offers quite good 3D
graphics support and also provides much pre-implemented functionality. However model load-
ing still represents a problematic topic due to the missing integrated Content Pipeline.

Last but not least Marmalade SDK provides great support for cross-platform mobile devel-
opment, even though it does not focus on mobile platforms especially. It provides great flexibility
and performance due to it’s C++ basis and combines at the same time pre-implemented func-
tionality with the liberty of extending an implementation or implementing a functionality from
the beginning.

Thus one cannot state that one approach is better than the rest, for every one of them excels in
diverging aspects. In the end all presented cross-platform programming approaches are capable
of creating amazing applications and games for more than one platform by means of a single
code base. Therefore the choice of which one to use is dependent on the context and left to each
and every developer.

94



Bibliography

[1] http://dist.springsource.com/release/TOOLS/gradle. Link to Gradle
plug-in. Accessed: 2014-10-14.

[2] https://dl-ssl.google.com/android/eclipse/. Link to Android Eclipse
plug-in. Accessed: 2014-10-14.

[3] 360logica.com, Sadik Ali. http://www.360logica.com/blog/2014/05/auto
mated-cross-platform-testing.html. Accessed: 2014-10-12.

[4] Adobe Systems Inc. http://phonegap.com/. PhoneGap, official website. Accessed:
2014-11-17.

[5] Alejandro Ruiz Varela. http://alejandroruizvarela.blogspot.co.at/
2014/06/simple-listview-with-xamarinforms.html. Xamarin and Xa-
marin Studio logogram, source. Accessed: 2014-10-17.

[6] Sarah Allen, Vidal Graupera, and Lee Lundrigan. Pro smartphone cross-platform devel-
opment: iPhone, blackberry, windows mobile and android development and distribution.
Apress, 2010.

[7] Android Developers. http://developer.android.com/sdk/index.html. An-
droid SDK download page. Accessed: 2014-10-14.

[8] Android Developers. https://developer.android.com/guide/index.html.
Android Developer Guide. Accessed: 2014-10-14.

[9] Appcelerator Inc. http://www.appcelerator.com/. Appcelerator, official web-
page. Accessed: 2014-11-17.

[10] Apple Inc. https://developer.apple.com/. Apple Developer web site. Ac-
cessed: 2014-10-14.

[11] Assimp Development Team. http://assimp.sourceforge.net/. Assimp, offi-
cial web page. Accessed: 2014-10-17.

[12] Assimp Development Team. http://assimp.sourceforge.net/main_featu
res_formats.html. Assimp, supported model formats. Accessed: 2014-10-19.

95

http://dist.springsource.com/release/TOOLS/gradle
https://dl-ssl.google.com/android/eclipse/
http://www.360logica.com/blog/2014/05/automated-cross-platform-testing.html
http://www.360logica.com/blog/2014/05/automated-cross-platform-testing.html
http://phonegap.com/
http://alejandroruizvarela.blogspot.co.at/2014/06/simple-listview-with-xamarinforms.html
http://alejandroruizvarela.blogspot.co.at/2014/06/simple-listview-with-xamarinforms.html
http://developer.android.com/sdk/index.html
https://developer.android.com/guide/index.html
http://www.appcelerator.com/
https://developer.apple.com/
http://assimp.sourceforge.net/
http://assimp.sourceforge.net/main_features_formats.html
http://assimp.sourceforge.net/main_features_formats.html


[13] Brackeys. https://www.youtube.com/watch?v=xafs9uljpqE. Unity, Audio
Tutorial. Accessed: 2014-10-17.

[14] Dean Ellis. https://www.youtube.com/watch?v=hF0sm5KGPPM. MonoGame,
Instructions on how to port a Windows application to Android. Accessed: 2014-10-17.

[15] Developer Android. http://developer.android.com/sdk/index.html. An-
droid SDK, download page. Accessed: 2014-10-15.

[16] Developer Android. http://developer.android.com/tools/sdk/ndk/ind
ex.html. Android NDK, download page. Accessed: 2014-10-15.

[17] Dice. http://news.dice.com/2013/06/03/how-unity3d-become-a-gam
e-development-beast/. Unity, Game Development Beast. Accessed: 2014-10-17.

[18] doxygen. http://www.mosync.com/files/imports/doxygen/latest/ht
ml/class_m_a_util_1_1_moblet.html#details. MoSync Documentation,
Moblet. Accessed: 2014-10-17.

[19] Dreamcss. http://blog.dreamcss.com/frameworks/widgetpad-mobil
e-development-platform/. Widgetpad, information. Accessed: 2014-11-17.

[20] Eric Spitz. https://code.google.com/p/libgdx-users/wiki/Importin
gModelsFromBlender. LibGDX, Supported 3D model formats. Accessed: 2014-10-
15.

[21] GameFromScratch.com. http://libgdx.badlogicgames.com/download.htm
l. LibGDx setup jar, download page. Accessed: 2014-10-14.

[22] GameFromScratch.com. http://www.gamefromscratch.com/post/2013/
11/19/LibGDX-Tutorial-8-Audio.aspx. LibGDX tutorial, audio. Accessed:
2014-10-15.

[23] GameFromScratch.com. http://www.gamefromscratch.com/post/2014/
02/20/Registering-for-an-Apple-Developer-ID.aspx. Information on
how to register for an Apple Developer ID. Accessed: 2014-10-14.

[24] GameFromScratch.com. http://www.gamefromscratch.com/post/2014/
02/23/Deploying-a-LibGDX-RoboVM-project-to-an-actual-iOS-d
evice.aspx. Information on how to deploy a LibGDX RoboVM project to an iOS
device. Accessed: 2014-10-14.

[25] GitHub, Inc. https://github.com/libgdx/libgdx/wiki/Dependency-m
anagement-with-Gradle. Information on dependency management with Gradle.
Accessed: 2014-10-14.

[26] GitHub, Inc. https://github.com/libgdx/libgdx/wiki/Gradle-on-t
he-Commandline#packaging-for-android. Gradle on the Command Line,
documentation. Accessed: 2014-10-14.

96

https://www.youtube.com/watch?v=xafs9uljpqE
https://www.youtube.com/watch?v=hF0sm5KGPPM
http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://news.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
http://news.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
http://www.mosync.com/files/imports/doxygen/latest/html/class_m_a_util_1_1_moblet.html#details
http://www.mosync.com/files/imports/doxygen/latest/html/class_m_a_util_1_1_moblet.html#details
http://blog.dreamcss.com/frameworks/widgetpad-mobile-development-platform/
http://blog.dreamcss.com/frameworks/widgetpad-mobile-development-platform/
https://code.google.com/p/libgdx-users/wiki/ImportingModelsFromBlender
https://code.google.com/p/libgdx-users/wiki/ImportingModelsFromBlender
http://libgdx.badlogicgames.com/download.html
http://libgdx.badlogicgames.com/download.html
http://www.gamefromscratch.com/post/2013/11/19/LibGDX-Tutorial-8-Audio.aspx
http://www.gamefromscratch.com/post/2013/11/19/LibGDX-Tutorial-8-Audio.aspx
http://www.gamefromscratch.com/post/2014/02/20/Registering-for-an-Apple-Developer-ID.aspx
http://www.gamefromscratch.com/post/2014/02/20/Registering-for-an-Apple-Developer-ID.aspx
http://www.gamefromscratch.com/post/2014/02/23/Deploying-a-LibGDX-RoboVM-project-to-an-actual-iOS-device.aspx
http://www.gamefromscratch.com/post/2014/02/23/Deploying-a-LibGDX-RoboVM-project-to-an-actual-iOS-device.aspx
http://www.gamefromscratch.com/post/2014/02/23/Deploying-a-LibGDX-RoboVM-project-to-an-actual-iOS-device.aspx
https://github.com/libgdx/libgdx/wiki/Dependency-management-with-Gradle
https://github.com/libgdx/libgdx/wiki/Dependency-management-with-Gradle
https://github.com/libgdx/libgdx/wiki/Gradle-on-the-Commandline#packaging-for-android
https://github.com/libgdx/libgdx/wiki/Gradle-on-the-Commandline#packaging-for-android


[27] GitHub, Inc. https://github.com/libgdx/libgdx/wiki/Opengl-es-s
upport. LibGDX OpenGL ES support. Accessed: 2014-10-15.

[28] GitHub, Inc. https://github.com/libgdx/libgdx/wiki/Project-set
up,-running-&-debugging. libGDX, Information on project setup, running and
debugging. Accessed: 2014-11-15.

[29] GitHub, Inc. https://github.com/mono/MonoGame/wiki/MonoGame-Con
tent-Processing. MonoGame, Information on MonoGame Content Processing and
the Content Pipeline. Accessed: 2014-10-18.

[30] GitHub, Inc. https://github.com/silexlabs/Cocktail. Cocktail, Informa-
tion on GitHub. Accessed: 2014-11-18.

[31] Google Developers. https://dl.google.com/eclipse/plugin/4.3. Link to
GWT plug-in. Accessed: 2014-10-14.

[32] Google Inc. http://www.gwtproject.org/download.html. Google Web
Toolkit SDK download page. Accessed: 2014-10-14.

[33] Henning Heitkötter, Sebastian Hanschke, and TimA. Majchrzak. Evaluating cross-
platform development approaches for mobile applications. In José Cordeiro and Karl-
Heinz Krempels, editors, Web Information Systems and Technologies, volume 140 of
Lecture Notes in Business Information Processing, pages 120–138. Springer Berlin Hei-
delberg, 2013.

[34] Ideaworks3D Limited. https://legacy.madewithmarmalade.com/ru/node
/51039. Marmalade, Information on fixing Memory Allocation Issues. Accessed: 2014-
10-18.

[35] JesseEtzler0. https://www.youtube.com/watch?v=wi0iI8LgWSQ. Unity,
Camera Zoom by Scrolling Tutorial. Accessed: 2014-10-17.

[36] Justin Aquadro. http://jaquadro.com/2013/09/monogame-hello-world
-on-mac-os-x-and-xamarin-studio/. MonoGame, Install instructions. Ac-
cessed: 2014-10-17.

[37] LinkedIn Corporation. http://de.slideshare.net/raphaelharmel/ny-c
oders-crossplatform-development-with-haxe-openfl-and-cockt
ail. Cocktail, Information on slideshare. Accessed: 2014-11-18.

[38] Mario Zechner. http://libgdx.badlogicgames.com/index.html. libGDX
official website. Accessed: 2014-10-12.

[39] Mario Zechner. http://www.badlogicgames.com/wordpress/?attachmen
t_id=1884. Logogram of libGDX, source. Accessed: 2014-10-13.

97

https://github.com/libgdx/libgdx/wiki/Opengl-es-support
https://github.com/libgdx/libgdx/wiki/Opengl-es-support
https://github.com/libgdx/libgdx/wiki/Project-setup,-running-&-debugging
https://github.com/libgdx/libgdx/wiki/Project-setup,-running-&-debugging
https://github.com/mono/MonoGame/wiki/MonoGame-Content-Processing
https://github.com/mono/MonoGame/wiki/MonoGame-Content-Processing
https://github.com/silexlabs/Cocktail
https://dl.google.com/eclipse/plugin/4.3
http://www.gwtproject.org/download.html
https://legacy.madewithmarmalade.com/ru/node/51039
https://legacy.madewithmarmalade.com/ru/node/51039
https://www.youtube.com/watch?v=wi0iI8LgWSQ
http://jaquadro.com/2013/09/monogame-hello-world-on-mac-os-x-and-xamarin-studio/
http://jaquadro.com/2013/09/monogame-hello-world-on-mac-os-x-and-xamarin-studio/
http://de.slideshare.net/raphaelharmel/ny-coders-crossplatform-development-with-haxe-openfl-and-cocktail
http://de.slideshare.net/raphaelharmel/ny-coders-crossplatform-development-with-haxe-openfl-and-cocktail
http://de.slideshare.net/raphaelharmel/ny-coders-crossplatform-development-with-haxe-openfl-and-cocktail
http://libgdx.badlogicgames.com/index.html
http://www.badlogicgames.com/wordpress/?attachment_id=1884 
http://www.badlogicgames.com/wordpress/?attachment_id=1884 


[40] Mario Zechner. http://www.badlogicgames.com/wordpress/?page_id=2.
About Badlgic Games. Accessed: 2014-10-13.

[41] Marmalade Technologies Ltd. http://developer.roolez.com/marmalade
sdk/api/iwgxapidocumentation/iwgxapioverview/lighting/ligh
tingscenelights.html. Marmalade, Information on Lighting: Scene Lights.
Accessed: 2014-10-18.

[42] Marmalade Technologies Ltd. http://docs.madewithmarmalade.com/dis
play/MD/Displaying+images#Displayingimages-Loadingandrende
ringimagesusingIwGLandOpenGLES. Marmalade Documentation, Displaying
images. Accessed: 2014-10-18.

[43] Marmalade Technologies Ltd. http://docs.madewithmarmalade.com/displ
ay/MD/Input+and+Audio. Marmalade Documentation, Stage 2 - Input and Audio.
Accessed: 2014-10-18.

[44] Marmalade Technologies Ltd. http://docs.madewithmarmalade.com/displ
ay/MD/S3E+Audio+overview. Marmalade Documentation, S3E Audio overview.
Accessed: 2014-10-18.

[45] Marmalade Technologies Ltd. http://docs.madewithmarmalade.com/displ
ay/MD/Testing+and+debugging+on+Android+devices. Marmalade Docu-
mentation, Information on Testing and debugging on Android devices. Accessed: 2014-
10-18.

[46] Marmalade Technologies Ltd. http://docs.madewithmarmalade.com/displ
ay/MD/The+Lighting+Model. Marmalade Documentation, The Lighting Model.
Accessed: 2014-10-18.

[47] Marmalade Technologies Ltd. https://www.madewithmarmalade.com/.
Marmelade official site. Accessed: 2014-10-12.

[48] Marmalade Technologies Ltd. https://www.madewithmarmalade.com/blog/
easy-3d-lights-camera-action. Marmalade, Easy 3D – Lights, camera, ac-
tion! Tutorial. Accessed: 2014-10-18.

[49] Marmalade Technologies Ltd. https://www.madewithmarmalade.com/marma
lade/how-marmalade-works. Marmalade Technology. Accessed: 2014-10-18.

[50] Marmalade Technologies Ltd. https://www.madewithmarmalade.com/marma
lade/marmalade-platform. Marmalade Platform, Information on Marmalade
Quick, Web Marmalade and Marmalade Juice. Accessed: 2014-10-18.

[51] Marmalade Technologies Ltd. https://www.madewithmarmalade.com/marma
lade/supported-platforms. Marmalade, Supported Platforms. Accessed: 2014-
10-18.

98

http://www.badlogicgames.com/wordpress/?page_id=2
http://developer.roolez.com/marmaladesdk/api/iwgxapidocumentation/iwgxapioverview/lighting/lightingscenelights.html
http://developer.roolez.com/marmaladesdk/api/iwgxapidocumentation/iwgxapioverview/lighting/lightingscenelights.html
http://developer.roolez.com/marmaladesdk/api/iwgxapidocumentation/iwgxapioverview/lighting/lightingscenelights.html
http://docs.madewithmarmalade.com/display/MD/Displaying+images#Displayingimages-LoadingandrenderingimagesusingIwGLandOpenGLES
http://docs.madewithmarmalade.com/display/MD/Displaying+images#Displayingimages-LoadingandrenderingimagesusingIwGLandOpenGLES
http://docs.madewithmarmalade.com/display/MD/Displaying+images#Displayingimages-LoadingandrenderingimagesusingIwGLandOpenGLES
http://docs.madewithmarmalade.com/display/MD/Input+and+Audio
http://docs.madewithmarmalade.com/display/MD/Input+and+Audio
http://docs.madewithmarmalade.com/display/MD/S3E+Audio+overview
http://docs.madewithmarmalade.com/display/MD/S3E+Audio+overview
http://docs.madewithmarmalade.com/display/MD/Testing+and+debugging+on+Android+devices
http://docs.madewithmarmalade.com/display/MD/Testing+and+debugging+on+Android+devices
http://docs.madewithmarmalade.com/display/MD/The+Lighting+Model
http://docs.madewithmarmalade.com/display/MD/The+Lighting+Model
https://www.madewithmarmalade.com/
https://www.madewithmarmalade.com/blog/easy-3d-lights-camera-action
https://www.madewithmarmalade.com/blog/easy-3d-lights-camera-action
https://www.madewithmarmalade.com/marmalade/how-marmalade-works
https://www.madewithmarmalade.com/marmalade/how-marmalade-works
https://www.madewithmarmalade.com/marmalade/marmalade-platform
https://www.madewithmarmalade.com/marmalade/marmalade-platform
https://www.madewithmarmalade.com/marmalade/supported-platforms
https://www.madewithmarmalade.com/marmalade/supported-platforms


[52] Microsoft. http://community.monogame.net/t/entitlements-plist-n
ot-created-by-xamarin-ios-plugin/1014. Xamarin, Solution to ’entitle-
ments.plist file not found’. Accessed: 2014-10-18.

[53] Microsoft. https://monogame.codeplex.com/discussions/406917.
MonoGame, Information on fullscreen images. Accessed: 2014-10-18.

[54] MonoGame Team. http://www.monogame.net/downloads/. MonoGame,
Download page. Accessed: 2014-10-17.

[55] MoSync AB. http://www.mosync.com/. MoSync official website. Accessed: 2014-
10-12.

[56] MoSync AB. http://www.mosync.com/content/how-embed-image.
MoSync, Information on How to embed an image. Accessed: 2014-10-17.

[57] MoSync AB. http://www.mosync.com/content/mosync-future-bankrup
tcy. MoSync, information of bankruptcy. Accessed: 2014-10-17.

[58] MoSync AB. http://www.mosync.com/content/mosync-logo-colour-v
ertical-light. MoSync logogram, source. Accessed: 2014-10-17.

[59] MoSync AB. http://www.mosync.com/content/unsupported-compile
r-architecture-armv7. MoSync, solution to project not being able to run on
iPhone. Accessed: 2014-10-17.

[60] MoSync AB. http://www.mosync.com/docs/sdk/cpp/guides/adding-r
esources-mosync-project/index.html. MoSync, Information on Resource
Management. Accessed: 2014-10-17.

[61] MoSync AB. http://www.mosync.com/docs/sdk/cpp/guides/ui/creati
ng-user-interfaces-mosync/index.html. MoSync, Information on Creating
User Interfaces With MoSync, MAUI vs NativeUI. Accessed: 2014-10-17.

[62] MoSync AB. http://www.mosync.com/docs/sdk/tools/guides/ide/dev
eloping-iphone-applications/index.html. MoSync, Run on iPhone. Ac-
cessed: 2014-10-17.

[63] MoSync AB. http://www.mosync.com/docs/sdk/tools/guides/ide/sen
ding-to-device/index.html. MoSync, Run on Android. Accessed: 2014-10-17.

[64] MoSync AB. http://www.mosync.com/docs/sdk/tools/references/f
eature-platform-support/index.html. MoSync, supported platforms. Ac-
cessed: 2014-10-17.

[65] MoSync AB. http://www.mosync.com/download. MoSync, Download. Ac-
cessed: 2014-10-17.

99

http://community.monogame.net/t/entitlements-plist-not-created-by-xamarin-ios-plugin/1014
http://community.monogame.net/t/entitlements-plist-not-created-by-xamarin-ios-plugin/1014
https://monogame.codeplex.com/discussions/406917
http://www.monogame.net/downloads/
http://www.mosync.com/
http://www.mosync.com/content/how-embed-image
http://www.mosync.com/content/mosync-future-bankruptcy
http://www.mosync.com/content/mosync-future-bankruptcy
http://www.mosync.com/content/mosync-logo-colour-vertical-light
http://www.mosync.com/content/mosync-logo-colour-vertical-light
http://www.mosync.com/content/unsupported-compiler-architecture-armv7
http://www.mosync.com/content/unsupported-compiler-architecture-armv7
http://www.mosync.com/docs/sdk/cpp/guides/adding-resources-mosync-project/index.html
http://www.mosync.com/docs/sdk/cpp/guides/adding-resources-mosync-project/index.html
http://www.mosync.com/docs/sdk/cpp/guides/ui/creating-user-interfaces-mosync/index.html
http://www.mosync.com/docs/sdk/cpp/guides/ui/creating-user-interfaces-mosync/index.html
http://www.mosync.com/docs/sdk/tools/guides/ide/developing-iphone-applications/index.html
http://www.mosync.com/docs/sdk/tools/guides/ide/developing-iphone-applications/index.html
http://www.mosync.com/docs/sdk/tools/guides/ide/sending-to-device/index.html
http://www.mosync.com/docs/sdk/tools/guides/ide/sending-to-device/index.html
http://www.mosync.com/docs/sdk/tools/references/feature-platform-support/index.html
http://www.mosync.com/docs/sdk/tools/references/feature-platform-support/index.html
http://www.mosync.com/download


[66] MoSync AB. http://www.mosync.com/forum/. MoSync Mobile Development
Forum, Community. Accessed: 2014-10-12.

[67] Motorola Solutions, Inc. http://rhomobile.com/. RhoMobile, official website.
Accessed: 2014-11-17.

[68] mp3olimp. http://www.mp3olimp.net/blue-stahli-scrape-instrumen
tal/. Reference for the game’s background music: Blue Stahli - Scrape (Instrumental),
free download page. Accessed: 2014-10-12.

[69] Aaftab Munshi, Dan Ginsburg, and Dave Shreiner. OpenGL ES 2.0 programming guide.
Pearson Education, 2008.

[70] Benjamin Muschko. Gradle in Action. Manning, 2014.

[71] MXamarin Inc. http://xamarin.com/. Xamarin official web site. Accessed: 2014-
10-12.

[72] Nesis. https://www.youtube.com/watch?v=6eUt1yHvH_U. Unity, Camera
Controll Tutorial. Accessed: 2014-10-17.

[73] Oracle Corporation. http://www.oracle.com/technetwork/java/javase
/downloads/index.html. Java SDK download page. Accessed: 2014-10-14.

[74] Philip Stolpe, MonoGame Team. http://www.monogame.net/. MonoGame official
site. Accessed: 2014-10-12.

[75] pluralsight. http://pluralsight.com/training/courses/TableOfCon
tents?courseName=monogame. Xamarin, Tutorials on Cross-Platform Game De-
velopment with MonoGame in exchange for fee. Accessed: 2014-10-17.

[76] RB Whitaker. http://rbwhitaker.wikidot.com/basic-effect-lightin
g. MonoGame, BasicEffect Lighting Tutorial. Accessed: 2014-10-18.

[77] RB Whitaker. http://rbwhitaker.wikidot.com/monogame-accessing-t
he-xna-content-pipeline. MonoGame, Information on Accessing the XNA
Content Pipeline. Accessed: 2014-10-18.

[78] RB Whitaker. http://rbwhitaker.wikidot.com/monogame-basic-matri
ces. MonoGame, Basic Matrices Tutorial, Information on model movement. Accessed:
2014-10-17.

[79] RB Whitaker. http://rbwhitaker.wikidot.com/monogame-managing-c
ontent. MonoGame, Supported Content Formats. Accessed: 2014-10-17.

[80] RB Whitaker. http://rbwhitaker.wikidot.com/monogame-spritebatch
-basics. MonoGame, Monogame Spritebatch Basics, Image Loading Tutorial. Ac-
cessed: 2014-10-18.

100

http://www.mosync.com/forum/
http://rhomobile.com/
http://www.mp3olimp.net/blue-stahli-scrape-instrumental/
http://www.mp3olimp.net/blue-stahli-scrape-instrumental/
http://xamarin.com/
https://www.youtube.com/watch?v=6eUt1yHvH_U
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.monogame.net/
http://pluralsight.com/training/courses/TableOfContents?courseName=monogame
http://pluralsight.com/training/courses/TableOfContents?courseName=monogame
http://rbwhitaker.wikidot.com/basic-effect-lighting
http://rbwhitaker.wikidot.com/basic-effect-lighting
http://rbwhitaker.wikidot.com/monogame-accessing-the-xna-content-pipeline
http://rbwhitaker.wikidot.com/monogame-accessing-the-xna-content-pipeline
http://rbwhitaker.wikidot.com/monogame-basic-matrices
http://rbwhitaker.wikidot.com/monogame-basic-matrices
http://rbwhitaker.wikidot.com/monogame-managing-content
http://rbwhitaker.wikidot.com/monogame-managing-content
http://rbwhitaker.wikidot.com/monogame-spritebatch-basics
http://rbwhitaker.wikidot.com/monogame-spritebatch-basics


[81] RB Whitaker. http://rbwhitaker.wikidot.com/monogame-using-3d-m
odels. MonoGame, Model Loading Tutorial. Accessed: 2014-10-17.

[82] RB Whitaker. http://rbwhitaker.wikidot.com/playing-background-m
usic. MonoGame, Playing Background Music Tutorial. Accessed: 2014-10-18.

[83] Safari. https://www.safaribooksonline.com/library/view/marmalad
e-sdk-mobile/9781849693363/ch04s03.html. Marmalade, Information on
Using a 3D modeling package to create and export model data. Accessed: 2014-10-18.

[84] Safari. https://www.safaribooksonline.com/library/view/marmalad
e-sdk-mobile/9781849693363/ch04s04.html. Marmalade Information on
The Marmalade 3D model datafile formats, loading and rendering models. Accessed:
2014-10-18.

[85] Science Park Graz GmbH. http://sciencepark.at/aktuelles/news/458/
murl-engine-geht-in-die-open-beta. Information on the Murl Developers.
Accessed: 2014-10-15.

[86] Sebastien Dubois. http://blog.gfx47.com/2011/03/08/unity3d-httph
ttps-proxy-problem-solved-o/. Unity Logo, source. Accessed: 2014-10-17.

[87] Sencha Inc. http://www.sencha.com/. Sencha, official website. Accessed: 2014-
11-17.

[88] Sencha Inc. http://www.silexlabs.org/haxe/cocktail/. Cocktail, Infor-
mation on Silexlabs. Accessed: 2014-11-18.

[89] Shlomi Noach. http://www.drmop.com/index.php/2011/09/27/marmalad
e-sdk-bitesize-tutorial-running-out-of-memory-and-how-to-f
ix-it/. Marmalade, Bitesize Tutorial – Running out of memory and how to fix it.
Accessed: 2014-10-18.

[90] Shlomi Noach. http://www.drmop.com/index.php/2011/10/28/marmal
ade-sdk-tutorial-actors-scenes-and-cameras-make-the-world
-go-round/. Marmalade - Actors, Scenes and Cameras Make the World Go Round
Tutorial. Accessed: 2014-10-18.

[91] Shlomi Noach. http://www.drmop.com/index.php/2011/12/10/marmalad
e-sdk-tutorial-apple-iphone-and-ipad-deployment-and-submi
ssions/. Marmalade, Apple iPhone and iPad Deployment and Submissions Tutorial.
Accessed: 2014-10-18.

[92] Spraylight GmbH. http://murlengine.com/?murlpage=about&murllang=
de. Introduction to the Murl Engine. Accessed: 2014-10-15.

101

http://rbwhitaker.wikidot.com/monogame-using-3d-models
http://rbwhitaker.wikidot.com/monogame-using-3d-models
http://rbwhitaker.wikidot.com/playing-background-music
http://rbwhitaker.wikidot.com/playing-background-music
https://www.safaribooksonline.com/library/view/marmalade-sdk-mobile/9781849693363/ch04s03.html
https://www.safaribooksonline.com/library/view/marmalade-sdk-mobile/9781849693363/ch04s03.html
https://www.safaribooksonline.com/library/view/marmalade-sdk-mobile/9781849693363/ch04s04.html
https://www.safaribooksonline.com/library/view/marmalade-sdk-mobile/9781849693363/ch04s04.html
http://sciencepark.at/aktuelles/news/458/murl-engine-geht-in-die-open-beta
http://sciencepark.at/aktuelles/news/458/murl-engine-geht-in-die-open-beta
http://blog.gfx47.com/2011/03/08/unity3d-httphttps-proxy-problem-solved-o/
http://blog.gfx47.com/2011/03/08/unity3d-httphttps-proxy-problem-solved-o/
http://www.sencha.com/
http://www.silexlabs.org/haxe/cocktail/
http://www.drmop.com/index.php/2011/09/27/marmalade-sdk-bitesize-tutorial-running-out-of-memory-and-how-to-fix-it/
http://www.drmop.com/index.php/2011/09/27/marmalade-sdk-bitesize-tutorial-running-out-of-memory-and-how-to-fix-it/
http://www.drmop.com/index.php/2011/09/27/marmalade-sdk-bitesize-tutorial-running-out-of-memory-and-how-to-fix-it/
http://www.drmop.com/index.php/2011/10/28/marmalade-sdk-tutorial-actors-scenes-and-cameras-make-the-world-go-round/
http://www.drmop.com/index.php/2011/10/28/marmalade-sdk-tutorial-actors-scenes-and-cameras-make-the-world-go-round/
http://www.drmop.com/index.php/2011/10/28/marmalade-sdk-tutorial-actors-scenes-and-cameras-make-the-world-go-round/
http://www.drmop.com/index.php/2011/12/10/marmalade-sdk-tutorial-apple-iphone-and-ipad-deployment-and-submissions/
http://www.drmop.com/index.php/2011/12/10/marmalade-sdk-tutorial-apple-iphone-and-ipad-deployment-and-submissions/
http://www.drmop.com/index.php/2011/12/10/marmalade-sdk-tutorial-apple-iphone-and-ipad-deployment-and-submissions/
http://murlengine.com/?murlpage=about&murllang=de
http://murlengine.com/?murlpage=about&murllang=de


[93] Spraylight GmbH. http://murlengine.com/?murlpage=about&murllang=
de. Introduction to the Murl Engine, source of code types diagram. Accessed: 2014-10-
15.

[94] Spraylight GmbH. http://murlengine.com/?murlpage=download&murll
ang=de. Murl Engine, download page. Accessed: 2014-10-15.

[95] Spraylight GmbH. http://murlengine.com/?murlpage=murl&murllang=
de. Murl Engine official website. Accessed: 2014-10-12.

[96] Spraylight GmbH. http://murlengine.com/tutorials/de/tut0101_cub
e.php. Murl Engine, Cube tutorial, information regarding 3D camera and moving ob-
jects. Accessed: 2014-10-15.

[97] Spraylight GmbH. http://murlengine.com/tutorials/de/tut0102_col
or_cube.php. Murl Engine, Color Cube tutorial, information regarding lighting and
user input. Accessed: 2014-10-15.

[98] Spraylight GmbH. http://murlengine.com/tutorials/de/tut0104_aud
io.php. Murl Engine, Audio tutorial. Accessed: 2014-10-15.

[99] Spraylight GmbH. http://murlengine.com/tutorials/de/tut0107_ima
ges.php. Murl Engine, Images tutorial. Accessed: 2014-10-15.

[100] Spraylight GmbH. http://murlengine.com/tutorials/de/tutorials.p
hp. Murl Engine, Tutorials. Accessed: 2014-10-15.

[101] Spraylight GmbH. http://murlengine.com/usersguide/de/target_ins
tallation_guide_mac.php. Murl Engine, information of installation. Accessed:
2014-10-15.

[102] Spraylight GmbH. http://murlengine.com/usersguide/de/user_guide
_short_introduction.php. Murl Engine, Introduction to the development with
the framework. Accessed: 2014-10-15.

[103] Spraylight GmbH. http://spraylight.at/?spllang=de&splpage=murl.
Murl Engine logogram, source. Accessed: 2014-10-15.

[104] Spraylight GmbH. www.spraylight.at. Spralight official site. Accessed: 2014-10-15.

[105] stack exchange inc. http://stackoverflow.com/questions/14450449/mo
nogame-loading-a-png-file. MonoGame, Information on solving problem
when loading png files. Accessed: 2014-10-18.

[106] Superbest. http://pastebin.com/Wt4F321m. MonoGame, XNA camera imple-
mentation example code. Accessed: 2014-10-17.

102

http://murlengine.com/?murlpage=about&murllang=de
http://murlengine.com/?murlpage=about&murllang=de
http://murlengine.com/?murlpage=download&murllang=de
http://murlengine.com/?murlpage=download&murllang=de
http://murlengine.com/?murlpage=murl&murllang=de
http://murlengine.com/?murlpage=murl&murllang=de
http://murlengine.com/tutorials/de/tut0101_cube.php
http://murlengine.com/tutorials/de/tut0101_cube.php
http://murlengine.com/tutorials/de/tut0102_color_cube.php
http://murlengine.com/tutorials/de/tut0102_color_cube.php
http://murlengine.com/tutorials/de/tut0104_audio.php
http://murlengine.com/tutorials/de/tut0104_audio.php
http://murlengine.com/tutorials/de/tut0107_images.php
http://murlengine.com/tutorials/de/tut0107_images.php
http://murlengine.com/tutorials/de/tutorials.php
http://murlengine.com/tutorials/de/tutorials.php
http://murlengine.com/usersguide/de/target_installation_guide_mac.php
http://murlengine.com/usersguide/de/target_installation_guide_mac.php
http://murlengine.com/usersguide/de/user_guide_short_introduction.php
http://murlengine.com/usersguide/de/user_guide_short_introduction.php
http://spraylight.at/?spllang=de&splpage=murl
www.spraylight.at
http://stackoverflow.com/questions/14450449/monogame-loading-a-png-file
http://stackoverflow.com/questions/14450449/monogame-loading-a-png-file
http://pastebin.com/Wt4F321m


[107] Thalo LLC. http://news.doddleme.com/news-room/rim-lures-app-m
akers-with-marmalade-software-2/attachment/blackberry-rim
-marmalade-logo/. Marmalade logogram, source. Accessed: 2014-10-18.

[108] The Apache Software Foundation. http://ant.apache.org/bindownload.cgi.
Apache Ant Software Tool, download page. Accessed: 2014-10-15.

[109] The Apache Software Foundation. http://murlengine.com/tutorials/de/
tut0100_hello_world.php. Murl Engine, Hello World Tutorial. Accessed: 2014-
10-15.

[110] The Eclipse Foundation. http://www.eclipse.org/downloads/. Eclipse IDE
download page. Accessed: 2014-10-13.

[111] ToDroid. http://www.todroid.com/android-gdx-game-creation-par
t-i-setting-up-up-android-studio-for-creating-games/. Lo-
gogram of Badlgic Games, source. Accessed: 2014-10-13.

[112] ToxSick Productions. http://www.toxsickproductions.com/libgdx/ho
w-to-setup-your-libgdx-project/. Information on how to set up a libGDX
project. Accessed: 2014-10-14.

[113] UBM Tech. http://www.gamasutra.com/view/news/169846/Mobile_g
ame_developer_survey_leans_heavily_toward_iOS_Unity.php#.UFz
e0I1lTAE. Article on Unity being elected best mobile device game engine. Accessed:
2014-10-17.

[114] Unify Community. http://wiki.unity3d.com/index.php?title=Unit
yScript_versus_JavaScript. Unity, Difference between UnityScript and
JavaScript. Accessed: 2014-10-17.

[115] Unity Answers. http://answers.unity3d.com/questions/292620/scal
e-gui-texture-to-current-screen-size.html. Unity, Information on
Scaling GUI Texture to current screen size. Accessed: 2014-10-17.

[116] Unity Answers. http://answers.unity3d.com/questions/9729/how-can
-i-display-a-flat-background-2d-image-not-a.html. Unity, Infor-
mation on how to display a 2D background behind all models of the scene. Accessed:
2014-10-17.

[117] Unity Community. http://answers.unity3d.com/questions/12909/pr
o-versus-free.html. Unity Answers, Pro versus Free. Accessed: 2014-11-17.

[118] Unity Technologies. http://docs.unity3d.com/Manual/AssetBundlesIn
tro.html. Unity, Information on AssetBundle. Accessed: 2014-11-17.

[119] Unity Technologies. http://docs.unity3d.com/Manual/AssetServer.htm
l. Unity Documentation, Asset Server. Accessed: 2014-10-17.

103

http://news.doddleme.com/news-room/rim-lures-app-makers-with-marmalade-software-2/attachment/blackberry-rim-marmalade-logo/
http://news.doddleme.com/news-room/rim-lures-app-makers-with-marmalade-software-2/attachment/blackberry-rim-marmalade-logo/
http://news.doddleme.com/news-room/rim-lures-app-makers-with-marmalade-software-2/attachment/blackberry-rim-marmalade-logo/
http://ant.apache.org/bindownload.cgi
http://murlengine.com/tutorials/de/tut0100_hello_world.php
http://murlengine.com/tutorials/de/tut0100_hello_world.php
http://www.eclipse.org/downloads/
http://www.todroid.com/android-gdx-game-creation-part-i-setting-up-up-android-studio-for-creating-games/
http://www.todroid.com/android-gdx-game-creation-part-i-setting-up-up-android-studio-for-creating-games/
http://www.toxsickproductions.com/libgdx/how-to-setup-your-libgdx-project/
http://www.toxsickproductions.com/libgdx/how-to-setup-your-libgdx-project/
http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_leans_heavily_toward_iOS_Unity.php#.UFze0I1lTAE
http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_leans_heavily_toward_iOS_Unity.php#.UFze0I1lTAE
http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_leans_heavily_toward_iOS_Unity.php#.UFze0I1lTAE
http://wiki.unity3d.com/index.php?title=UnityScript_versus_JavaScript
http://wiki.unity3d.com/index.php?title=UnityScript_versus_JavaScript
http://answers.unity3d.com/questions/292620/scale-gui-texture-to-current-screen-size.html
http://answers.unity3d.com/questions/292620/scale-gui-texture-to-current-screen-size.html
http://answers.unity3d.com/questions/9729/how-can-i-display-a-flat-background-2d-image-not-a.html
http://answers.unity3d.com/questions/9729/how-can-i-display-a-flat-background-2d-image-not-a.html
http://answers.unity3d.com/questions/12909/pro-versus-free.html
http://answers.unity3d.com/questions/12909/pro-versus-free.html
http://docs.unity3d.com/Manual/AssetBundlesIntro.html
http://docs.unity3d.com/Manual/AssetBundlesIntro.html
http://docs.unity3d.com/Manual/AssetServer.html
http://docs.unity3d.com/Manual/AssetServer.html


[120] Unity Technologies. http://docs.unity3d.com/Manual/HOWTO-importObj
ect.html. Unity Documentation, on importing models. Accessed: 2014-10-17.

[121] Unity Technologies. https://store.unity3d.com/products/pricing. Uni-
ty, License pricing. Accessed: 2014-11-17.

[122] Unity Technologies. http://unity3d.com/learn/tutorials/modules/b
eginner/platform-specific/pinch-zoom. Unity, Camera Pinch Zoom Tu-
torial. Accessed: 2014-10-17.

[123] Unity Technologies. http://unity3d.com/public-relations. Unity, democ-
ratizing development. Accessed: 2014-10-17.

[124] Unity Technologies. http://unity3d.com/unity. Unity official website. Ac-
cessed: 2014-10-12.

[125] Unity Technologies. http://unity3d.com/unity/download. Unity, Download
page. Accessed: 2014-10-17.

[126] Unity Technologies. http://unity3d.com/unity/licenses. Unity, Licenses
comparison. Accessed: 2014-11-17.

[127] Unity3D Forum. http://forum.unity3d.com/threads/openg
l-4.152867/. Unity, Information on Mac not supporting OpenGl 4. Accessed:
2014-10-18.

[128] Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Mono
Game_Logo.svg. MonoGame logogram, source. Accessed: 2014-10-17.

[129] Wonderful Engineering. http://wonderfulengineering.com/35-hd-galax
y-wallpapers-for-free-download/. Reference for the game’s background
picture, galaxy. Accessed: 2014-10-12.

[130] Xamarin Inc. http://developer.xamarin.com/guides/cross-platfor
m/application_fundamentals/building_cross_platform_applica
tions/part_0_-_overview/. Xamarin, Building Cross Platform Applications
Overview, information on Xamarin game apps better with MonoGame. Accessed:
2014-10-17.

[131] Xamarin Inc. http://developer.xamarin.com/guides/ios/getting_sta
rted/installation/device_provisioning/. Xamarin, Information on the
Provisioning of iOS devices. Accessed: 2014-11-15.

[132] Xamarin Inc. http://forums.xamarin.com/discussion/11129/goin
g-3d. Xamarin, Information on MonoGame and Going 3D with Xamarin. Accessed:
2014-10-17.

104

http://docs.unity3d.com/Manual/HOWTO-importObject.html
http://docs.unity3d.com/Manual/HOWTO-importObject.html
https://store.unity3d.com/products/pricing
http://unity3d.com/learn/tutorials/modules/beginner/platform-specific/pinch-zoom
http://unity3d.com/learn/tutorials/modules/beginner/platform-specific/pinch-zoom
http://unity3d.com/public-relations
http://unity3d.com/unity
http://unity3d.com/unity/download
http://unity3d.com/unity/licenses
http://forum.unity3d.com/threads/opengl-4.152867/
http://forum.unity3d.com/threads/opengl-4.152867/
http://commons.wikimedia.org/wiki/File:MonoGame_Logo.svg
http://commons.wikimedia.org/wiki/File:MonoGame_Logo.svg
http://wonderfulengineering.com/35-hd-galaxy-wallpapers-for-free-download/
http://wonderfulengineering.com/35-hd-galaxy-wallpapers-for-free-download/
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_0_-_overview/
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_0_-_overview/
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_0_-_overview/
http://developer.xamarin.com/guides/ios/getting_started/installation/device_provisioning/
http://developer.xamarin.com/guides/ios/getting_started/installation/device_provisioning/
http://forums.xamarin.com/discussion/11129/going-3d
http://forums.xamarin.com/discussion/11129/going-3d


[133] Xamarin Inc. http://forums.xamarin.com/discussion/2367/your-app
-is-too-large-to-be-developer-with-xamarin-starter-edition
-for-employeedirectory. Xamarin, Information on Xamarin Business Edition
30 days Trial. Accessed: 2014-10-18.

[134] Xamarin Inc. http://rbwhitaker.wikidot.com/monogame-accessing
-the-xna-content-pipeline. Xamarin, MonoGame Content Pipeline and
MonoGame Definition. Accessed: 2014-10-17.

[135] Xamarin Inc. http://xamarin.com/about. Xamarin, Information on the Xamarin
Team. Accessed: 2014-10-17.

[136] Xoppa. http://blog.xoppa.com/basic-3d-using-libgdx-2/. Xoppa tu-
torial, basic 3d tutorials using LibGDX. Accessed: 2014-10-15.

[137] Xoppa. http://blog.xoppa.com/loading-models-using-libgdx/. Load-
ing models using LibGDX Tutorial by Xoppa. Reference for the 3D model of a ship.
Accessed: 2014-10-12.

[138] Xoppa. http://blog.xoppa.com/loading-models-using-libgdx/. Xop-
pa tutorial, Loading models using LibGDX. Accessed: 2014-10-15.

[139] Xoppa. http://blog.xoppa.com/loading-models-using-libgdx/.
libGDX, Model Loading Tutorial - warning considering space ship model not working
on other applications. Accessed: 2014-10-17.

[140] Zoom dinosaurs. http://badlogicgames.com/forum/viewtopic.php?f=
11&t=11464&p=51607&#p51550. Badlogic games forum - Discussion on Android
sound being unreliable. Accessed: 2014-10-15.

[141] Zoom dinosaurs. http://badlogicgames.com/forum/viewtopic.php?f=
11&t=11786. Information on the use of SpriteBatch in mixed 2D and 3D rendering,
libGDX. Accessed: 2014-10-15.

105

http://forums.xamarin.com/discussion/2367/your-app-is-too-large-to-be-developer-with-xamarin-starter-edition-for-employeedirectory
http://forums.xamarin.com/discussion/2367/your-app-is-too-large-to-be-developer-with-xamarin-starter-edition-for-employeedirectory
http://forums.xamarin.com/discussion/2367/your-app-is-too-large-to-be-developer-with-xamarin-starter-edition-for-employeedirectory
http://rbwhitaker.wikidot.com/monogame-accessing-the-xna-content-pipeline
http://rbwhitaker.wikidot.com/monogame-accessing-the-xna-content-pipeline
http://xamarin.com/about
http://blog.xoppa.com/basic-3d-using-libgdx-2/
http://blog.xoppa.com/loading-models-using-libgdx/
http://blog.xoppa.com/loading-models-using-libgdx/
http://blog.xoppa.com/loading-models-using-libgdx/
http://badlogicgames.com/forum/viewtopic.php?f=11&t=11464&p=51607&#p51550
http://badlogicgames.com/forum/viewtopic.php?f=11&t=11464&p=51607&#p51550
http://badlogicgames.com/forum/viewtopic.php?f=11&t=11786
http://badlogicgames.com/forum/viewtopic.php?f=11&t=11786

	Introduction
	Problem Statement
	Motivation
	Solution
	Aim and Structure of the Work

	Overview
	Object-oriented programming -based cross-platform development approaches
	Table of Comparison
	Web technology -based cross-platform development approaches

	Practical Application for Comparison Purposes
	Object-oriented programming -based cross-platform development approaches
	libGDX
	Murl Engine
	Unity
	MoSync
	Xamarin
	Marmalade SDK

	Comparison
	Comparison of the object-oriented programming -based cross-platform development approaches 

	Conclusion
	Bibliography

