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Abstract

Biologists at the Institute of Molecular Pathology (IMP) in Vienna scan brains of the species

Drosophila melanogaster with a confocal microscope to find relations between genes, brain

structure and behavior. The database contains now more than 40.000 volumetric images, which

makes it time-consuming to search for an image of interest. For biologists it would be very help-

ful to have a method which can be used to search for specific images and works on the perceptual

level of content.

The aim of this thesis is to develop a Content Based Image Retrieval (CBIR) method cus-

tomized for 3D fly brain images. A biologist can choose an image which shows interesting gene

expressions and as result images which are visually similar should be retrieved. Exhaustive lit-

erature research shows that in the biological field nothing comparable exists. However, CBIR

plays an important role in the medical domain, which deals also with 3D images and therefore

publications in this area can be seen as related.

The voxelwise comparison of two images would be on the one hand computationally ex-

pensive and on the other hand not practicable due to image registration errors and anatomical

variations of neuronal structures. Creating maximum intensity projections from three directions

and applying a principal component analysis on the gray values overcomes the before mentioned

drawbacks and delivers satisfying results.

The fly brain can be divided into regions, so-called neuropils. The proposed method works

on the basis of neuropils. This has, among others, the advantage that not only a global similarity

can be computed, but also a comparison of images based on only some of the neuropils is

possible.

An extensive evaluation of the developed method is given including a parameter space ex-

ploration. For example, different lengths of the feature vectors, which describe a fly brain in a

lower dimensional space, are tried and also different distance measures are tested. The evalua-

tion shows satisfying results and that the method facilitates the work of biologists when they are

looking for similar images to create a hypothesis about the connection of genes and behavior.
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Kurzfassung

Biologen des Forschungsinstitutes für molekulare Pathologie in Wien akquirieren 3D Bilder

des Gehirns der Spezies Drosophila melanogaster mittels eines Konfokalmikroskops. Mit Hilfe

dieser Bilder untersuchen sie den Zusammenhang zwischen Genen, Gehirnstruktur und Verhal-

ten. Die Datenbank umfasst mittlerweile mehr als 40.000 solcher Volumenbilder. Diese große

Datenmenge erschwert den Biologen die Suche nach bestimmten Bildern und ist sehr zeitauf-

wendig. Eine Methode zur Suche von Bildern basierend auf dem Inhalt würde ihre Arbeit sehr

erleichtern.

Das Ziel dieser Arbeit ist die Entwicklung einer Methode, welche es ermöglicht nach Flie-

gengehirnbildern zu suchen, die aufgrund ihres Aussehens von Interesse sein könnten. Biologen

sollen die Möglichkeit haben ein Bild, dass interessante Gehirnstrukturen zeigt, auszuwählen

und die Methode soll als Ergebnis visuell ähnliche Bilder zurückliefern. Eine ausgiebige Litera-

turrecherche hat ergeben, dass es noch keine Lösungsansätze für dieses Problem in der Biologie

gibt. In der Medizin spielt die Bildsuche nach Ähnlichkeiten eine große Rolle und da auch in

diesem Bereich mit 3D Bildern gearbeitet wird, kann man Publikationen aus diesem Bereich als

relevant ansehen.

Voxelweise zwei Bilder zu vergleichen wäre einerseits sehr rechenaufwändig und anderer-

seits nicht zielführend aufgrund von Registrierungsfehlern bei den Bildern und der anatomischen

Schwankung neuronaler Strukturen. Um diese Nachteile zu umgehen, wird eine Dimensionsre-

duktionsmethode (PCA) auf die Grauwerte von drei Maximumintensitätsprojektionen des Bildes

angewandt.

Das Fliegengehirn kann anhand einer Vorlage in verschiedene Regionen unterteilt werden,

sogenannte Neuropile. Der entwickelte Ansatz arbeitet auf Basis dieser Neuropile. Das hat, unter

anderem, den Vorteil, dass man nicht nur eine globale Ähnlichkeit berechnen kann, sondern, falls

gewünscht, auch nur Teile des Bildes miteinander vergleichen kann.

In dieser Diplomarbeit werden die Ergebnisse einer umfassenden Evaluierung aufbereitet

und unter anderem wird auch die Auswirkung verschiedener Parameter untersucht. Das ist zum

Beispiel die Länge des Vektors, der ein Fliegengehirn in einem niederdimensionalen Raum be-

schreibt, oder die Methode mit der die Distanz zwischen zweier solcher Vektoren berechnet

wird. Die Evaluierung liefert zufriedenstellende Resultate und zeigt, dass durch die entwickelte

Methode die Arbeit der Biologen auf der Suche nach ähnlichen Bildern, um eine Hypothese über

das Zusammenspiel von Genen und Verhalten aufzustellen, erleichtert werden kann.
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CHAPTER 1
Introduction

Researchers from the Institute of Molecular Pathology (IMP) in Vienna investigate the Central

Nervous System (CNS) of the species Drosophila melanogaster, the so-called fruit fly. It is

a popular model organism because it has many genes comparable to the human ones, but its

genome is not so complex. It can be used, for example, to study behavior and try to answer

the question how decisions are made or analyze genes responsible for diseases and find possible

therapies.

The IMP has a collection of about 15.000 transgene Drosophila melanogaster lines. Flies

with the same gene set belong to the same line and have similar expressions. Figure 1.1 shows an

example of such a line consisting of three different flies as 2D preview images. More than 40.000

flies were scanned with a confocal microscope. The acquired volumetric images show gene

expressions in neuronal structures and are stored in a database together with meta-information,

like sex, tissue type and driverline. By means of these images they try to answer their research

questions.

1.1 Problem Statement

Nearly everybody is familiar with the problem of having a lot of images stored digitally and

not being able to find a specific image coming into ones mind because the name of the image

or the path where it is stored can not be remembered. In this case it would be really helpful

to search for images by content. For example, one wants to create a photo collage as birthday

present and wants to use photographs which picture the presentee. The time needed to search

for these pictures can be reduced if an image with the person’s face on it and a retrieval method

is available. With the picture as example the retrieval method delivers all available images

containing the person.

The biologists at the IMP have a similar problem. They have a database containing thousands

of images depicting fly brains and they want to filter out the ones which are relevant for their

research problem. A manual screening of all images is not feasible because of the number of
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Figure 1.1: Three brain images from the same line showing similar expressions.
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available fruit fly scans. Therefore a computer-assisted method to browse the database based on

image content would facilitate the scientific research work of the biologists. They are often only

interested in images showing specific expressed neurons. A so called search by example retrieval

method would be one way to solve this problem. If the biologists have an image showing the

neuron they are interested in, they can use it as an example and the method retrieves images

from the database with a similar content and therefore the chance is high that the specific neuron

is visible.

The fly images have some special characteristics. They are volumetric, registered to a tem-

plate and most of them are noisy, but at the same time contain small structures which may be of

importance. Hence two questions have to be answered:

1. How can the similarity between two images be defined?

2. How can the image characteristics be exploited respectively what challenges do they in-

volve?

A voxel by voxel comparison is not feasible because on the one hand it would be computa-

tionally too expensive and time consuming and on the other hand it is inflexible and can not take

the image registration errors and the anatomical variations of neuronal structures into account.

Therefore, to achieve efficiently good retrieval results based on image content, it is necessary to

reduce the dimensions of the images and find the most outstanding expression patterns.

The contribution of this thesis is the development of a retrieval method which can deal with

co-registered 3D images showing the brain of fruit flies. Additionally it should be possible

to do a global or local similarity search. Sometimes biologists are not interested in globally

similar images. However, they want to find images which are similar in specific regions and the

similarities of the other brain regions do not matter. The retrieval has to be efficient, which can

be achieved by a suitable dimension reduction.

1.2 Thesis Overview

The following chapter gives an overview of the anatomy of the model Drosophila melanogaster

and how the biologists at IMP acquire the brain activity. Also a short outline on the exist-

ing project infrastructure is given. Chapter three introduces the concept of image retrieval and

presents related work in the medical domain. The methods and approaches which are used for

the practical part of the thesis are explained in chapter four. Chapter five depicts the workflow

of the proposed method and describes the single steps in detail. In chapter six the most common

evaluation measures for retrieval are listed and the evaluation methods for the global and the

local case are discussed. The thesis concludes with a discussion about the contribution of this

work and about possible future work.
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CHAPTER 2
Background

2.1 Drosophila Melanogaster

Most people know the Drosophila melanogaster because they come in hundreds to occupy

spoiled fruits. Therefore the species is well-known as fruit fly. A drawing of a male and fe-

male fruit fly can be seen in Figure 2.1. However, it is a very important and well studied model

for life science not only since the genome is deciphered. In comparison to other common model

organism like C. elegans or zebra fish it has a more complex genome and a more extensive be-

havior repertoire. Fruit flies have the senses of sound, vision and smell and also higher level

intelligence like learning and memory [80]. Mice can be seen as competitive models, but their

brains consist of about 1000-fold more neurons, which makes it hard to understand how they

Figure 2.1: Drawing of Drosophilas - a male on the left and a female on the right [30].
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Figure 2.2: A drawing of a fruit fly with the CNS in violet [29].

work together. Therefore Drosophila is a compromise between the number of neurons and rich-

ness in behavior [65].

Another advantage is that the 1 to 7 mm small flies can be easily reared in a great number

[105]. They can be maintained without great effort. In addition they have a very short generation

time and a high reproductive rate. Within 14 days a larva evolves from the egg and transforms

into a fly. This fly is then fertile within 12 hours. A fertilized female fly can lay 300 eggs.

The fact that more than 60 % of the genes responsible for human diseases have an ortholog

in the Drosophila genome makes the Drosophila a suitable model to identify genes that ef-

fect complex traits [53]. Traits that are shown both in humans and Drosophilas are for exam-

ple circadian rhythm, sleep, drug responses and locomotion. Mackay and Anholt [53] use the

Drosophila model to study alcohol and drug dependence, sleep and neurodegenerative diseases

like Alzheimer and Parkinson.

From the anatomical point of view humans and fruit flies have also commonalities. Both

have a CNS consisting of the brain and the spinal cord respectively the Ventral Nerve Cord

(VNC) as it is called for Drosophila. In Figure 2.2 the Drosophila’s CNS is schematically delin-

eated. Another shared characteristic is that the brain is made up of two symmetric hemispheres

as it can be seen in Figure 2.3 for the Drosophila.

Very important components of the nervous system are the nerve cells also known as neurons.

They are responsible for processing and transmitting information and form together a neural

network. The number of neurons in Drosophila is still uncertain, but estimates assume that

around 200.000 neurons exist [65]. In contrast to vertebrates invertebrates have many neurons

which are unipolar [9]. This means that a single process emanates from the cell body which later

bifurcates into a pre- and post-synaptic part. A neuron consists of the following objects:

Cell body
Cell bodies are blob-like structures positioned within the cortex this means in the outer

layer. They can differ in size and shape.

6



Figure 2.3: Schematic Drosophila brain.

Figure 2.4: Drosophila brain divided into neuropils.

Projection
Projections are thin tubular structures which can reach a great distance in the brain. They

bifurcate at some point into a dendritic branch and an axonal branch. Dendrites receive

incoming signals and axons send signals.

Arborization
Arborizations are dense terminal branching structures. A neuron can consist of any num-

ber of arborizations. Unipolar neurons do not receive input signals on the cell body, there-

fore arborizations contain synapses which are needed to communicate with other neurons.
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Figure 2.5: Neuron consisting of a cell body (yellow), a projection (violet) and two arborizations

(turquoise).

The mentioned neuronal objects belong to exactly one neuron. An example of a neuron can

be seen in Figure 2.5. The cell body is delineated in yellow and the projection in violet has two

branches each terminating in an arborization shown in turquoise.

It is useful to have an atlas like it exists for the human brain. Therefore the fruit fly brain

gets divided into regions which are called neuropils. Some of the neuropils can be easily sepa-

rated because of their anatomy. Others have to be divided based on small landmarks [66]. The

optimum would be a division into regions which correspond to certain functions. Recently Ito et

al. [38] published a paper defining a nomenclature which should be the standard for future work.

The IMP defines in total 53 neuropils for the Drosophila brain based on Otsuna’s and Kei’s

classification [66]. Figure 2.4 gives an overview of the neuropils indicating each neuropil in a

different color. Not all neuropils can be seen in a single 2D view of the brain because of overlaps.

In the ideal case, neurons located in a certain region in the brain fulfil specific tasks. This is true,

for example, for neurons in the optical lobe which are responsible for vision.

A present research field in neuroscience is how information processing and storage work in

brains. One of the research questions deals with the derivation of a decision from sensory input,

internal states and individual experience [25]. Dickson [25] uses the Drosophila and their mating

behavior to explore decision making and the behavior based on it. The goal is to find out which

neurons build a functional entity, a so-called neural circuit, and how they are interconnected.

As a result genetic manipulations can be examined to change the behavior. The challenge is to

detect the neurons which are involved in a certain behavior. Most neurons do not respond to

8



only one stimulus. Therefore the question is which activity pattern of neurons produce which

behavior [65]. However, even the output of a small neural circuit is the outcome of a complex

interplay between its elements. Olsen and Wilson [65] give an overview of how to crack neural

circuits if they are not too complex.

2.2 Data Acquisition

Brain and VNC have to be carefully dissected from the rest of the Drosophila body to be acquired

and in further consequence visualized and explored. The IMP uses confocal microscopy to scan

the CNS of Drosophila. Confocal microscopy is based on laser light, which can be focused

on a particular 3D position. The reflected light of a certain wave length is measured at this

position. A 2D image can be generated if the light is measured at every position at the same

depth. Repeating this procedure at different depths results in a stack of 2D images which can be

transformed into a 3D image. The volumetric images acquired by the IMP have a size of 420 μm

× 420 μm × 165 μm and are sampled with a resolution of 768 × 768 × 165 voxels.

For expressing targeted genes in the Drosophila brain the GAL4/UAS-system [11] is very

common. GAL4 gets inserted into the genome and encodes yeast proteins. It can be expressed

in different tissues, however in Drosophila it is typically a subset of neurons one is interested in.

Several thousand genetic variations exist and are called GAL4 lines. The counterpart to GAL4 is

an Upstream Activation Sequence (UAS). As the name indicates, UAS activates the gene next to

it. But this transgene remains silent until GAL4 binds. Only then UAS gets activated and turns

on the neighboring gene. The same applies for GAL4 - it has no effect on cells if there is no

UAS to bind. Figure 2.6 gives a visual overview how the GAL4/UAS-system works. To study

the cells which are expressed by GAL4 the Green Fluorescent Protein (GFP) is often used as

target gene for the UAS. Due to its fluorescent characteristic it can be tracked with a microscope

and the distribution in time and space is visible in a living organism. To achieve this two flies are

needed. On the one hand a fly is needed with GAL4, controlled by a specific enhancer, inserted at

a defined genomic location by site-specific integration to express the targeted neurons. Another

fly is needed with the UAS-GFP transgene in its genome. Their offspring have then both, GAL4

and UAS-GFP, in their genes which bind and activate GFP in the targeted cells. They can then be

analyzed with a microscope. High resolution 3D images can be generated showing the expressed

patterns in one channel and the brain tissue marked by the nc82 antibody in another one [68].

Figure 2.7 shows such an example as 2D image using GFP to make cells visible.

The fact that brains of different flies underlie anatomical variations and the spatial differ-

ences during acquisition makes it necessary to co-register the scanned images. Only then it is

possible to match and compare these images. Initially a manual alignment of the volume is

necessary. Then a non-rigid transformation based on the parallel warping method developed by

Rohlfing and Maurer [73] can be applied. As registration of 3D images is a complex problem

they take advantage of parallel computations to achieve low computation times. Their method

is a multiresolution approach based on B-spline transformations (see Rohlfing and Maurer [73]

for more details). For registration the channel containing the brain tissue is used. It is registered

against a standard brain template which is the outcome of averaging a set of representative brain

images.
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Figure 2.6: Schematic representation of the GAL4/UAS-system for Drosophila (adapted from

[89]).

Figure 2.8 shows an example of a co-registered fruit fly brain as 2D image. The template in

magenta and the expressed neurons in green can be seen. Blob-like cell bodies, tubular projec-

tions and arborizations, looking like dense branching structures, are visible. The point cloud all

over the brain, which reminds of fog, is noise.

2.3 Existing Infrastructure

The infrastructure to manage and mine the data at IMP consists of several components. An early

version was published by Bruckner et al. [12] in 2009. The infrastructure changed a lot since

then. A short overview of the current components is given in this section.

BrainBase
BrainBase is a relational database holding the user management, relations between neu-

robiological objects, like cell bodies, arborizations and neuropils, and information about

the image collection.

BrainBaseWeb
BrainBaseWeb is a web application to search and navigate through BrainBase. It is possi-

ble to do a textual search and retrieve objects and images with a certain name. From the

fetched results some characteristics, a preview image and a 3D preview and for images

10



Figure 2.7: CNS of a Drosophila with the expressed, fluorescent cells in green and the neuropils

in magenta acquired with the GAL4/UAS-system (adapted from [25]).

additionally a staining profile can be displayed. An alternative search for images is by

line. It returns images belonging to the specified line. If one is interested in images with

a certain amount of staining in specified brain regions the anatomical search is the right

choice. One or more neuropils and the amount of staining a neuropil should contain at

least respectively maximally can be selected. For more complex search requirements the

brainbase query language can be used. It is a simple query language to find objects and

images by using conditions that can be combined with AND and OR.

BrainGazer
BrainGazer is a desktop application that allows the user an interactive visualization and

exploration of 3D images and 2D slice views. It fully integrates BrainBaseWeb and there-

fore searching for and loading objects respectively images into BrainGazer is straight-

forward. In contrast to BrainBaseWeb a semantic search by different visual queries is

possible in BrainGazer. Depending on the type of visual query similar neurobiological

objects or images can be retrieved. The user can draw a path on the displayed image

and objects which are spatially close respectively images with a similar expression are

retrieved. Hence, visual queries are suitable for local similarity search. Including the

practical work that arises in the course of my thesis gives the user the possibility to find

similar expression patterns globally respectively in interesting neuropils.

BrainWarp
BrainWarp is the component which is responsible for the preprocessing of new images.

This includes the registration of the raw image to the template and creating an entry for

BrainBase.
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Figure 2.8: Example of a fruit fly brain (simplified to a 2D image) scanned with a confocal

microscope and registered against a standard brain.
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CHAPTER 3
Related Work

3.1 Background of Image Retrieval

The number of digitally stored images increases rapidly. Therefore a technique to search effi-

ciently for particular images is needed. The first approach to do so was a text-based search [28].

The user enters one or more keywords and retrieves images, which are tagged with these words

or embedded in text containing the keywords. This method has some disadvantages. Every im-

age has to be annotated. If this is done manually it is a time consuming task and if experts are

needed, for example for medical images, also expensive. On the other hand the annotation result

can be inaccurate if it is done automatically. Datta et al. [21] give an overview of annotation

approaches. Another disadvantage of the text-based search is the existing discrepancy between

the tags which are used to describe an image and the words which are used for searching because

of subjectiveness. A further problem is that words are often not powerful enough. Describing,

for example, a person’s face with words is difficult.

To overcome these drawbacks Content Based Image Retrieval (CBIR) was invented in the

early 1990s [74]. CBIR makes use of information extracted directly from images and tends

to work on the perceptual level of image content. Perceptual properties are for example color,

texture and shape [84]. The extracted features are then used to compute the similarity between

images. Figure 3.1 shows the usual workflow of a CBIR system.

Instead of using text to perform an image search, a query image is used. Flickner et al. [28]

implemented three possibilities in their system. The user can select an example image which

looks similar to images that should be retrieved. Painting or sketching an image to describe

color, texture, shape of objects and their spatial arrangement is another way of defining a query

image. The user can also select color and texture patterns. If one is interested in outdoor scenes

the color distribution can be chosen with 60 % green and 40 % blue and a grass texture can

be selected. Prominent examples of CBIR systems are QBIR (Query by Image Content) from

IBM [28], Virage [4], which are both commercial, and Photobook [69]. A famous example with

the world wide web as data source is Google Images. Starting the service in 2001 the search was

only text-based. Filename, link text and surrounding text are searched for the keywords the user

13
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Figure 3.1: Usual CBIR workflow.

has entered before. Since 2009 it is possible to use an example image for the search [62]. The

user has the possibility to refine the search by adding more example images for instance from

the retrieved result set in the previous step. The combination of text-based search and CBIR

seems promising [2].

In CBIR two gaps are to overcome, the sensory and the semantic gap [84]. The sensory

gap deals with viewpoint, occlusion, clutter, and illumination of objects in images. Relevant

domain knowledge can help to bridge this gap [84]. The semantic gap exists between low-level

visual features, like color, texture and shape, and the objects and their meanings for a person

in an image like table or chair, which are high-level semantic concepts. There exists several

approaches to reduce this gap, but it has not been possible to fully eliminate it yet [33]. Yang

and Zhu [108] and Min and Shuangyuan [58] give an overview about this challenge and possible

solutions. Relevance Feedback is one way of reducing the gap between low level features and

high level concepts [75]. It involves the user in the retrieval process and thereby improves the

retrieval result in a way that fits more the needs of the user. Relevance feedback is an iterative

process to refine the query. The user can indicate if an image is relevant or nonrelevant. Rui

et al. [75] suggest to use five relevance levels from which the user can choose one. Zhou and

Huang [112] give a comprehensive overview of relevance feedback in CBIR.

It depends on the image set which feature describes the images best and therefore should be

chosen. The combination of low-level features can lead to a better description of images and

to a more distinctive feature vector [103]. However, a high dimensional feature vector can lead

to correlating and irrelevant elements as it is stated by Silva et al. [82]. A dimension reduction

algorithm, for example Principal Component Analysis (PCA), can be performed to remedy this.

Features can be extracted globally for the whole image or locally for image parts. Global

feature extraction can be done without any preprocessing but a lot of spatial information is

lost. For extracting local features images have to be divided. The simplest way of doing this

is to divide the image into small, disjunctive blocks of the same size. Superior results can be

achieved if a segmentation algorithm is used and features are computed for segmented regions,

however segmentation is still an open research area.
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CBIR is a rapidly growing research area [20]. In the following sections an overview of the

most popular feature extraction methods for color, texture and shape are given. The collection

of mentioned methods does not claim to be exhaustive.

3.1.1 Color Features

Color is widely used for feature extraction. The retrieval results strongly depend on the choice of

the color space. Several different color spaces exist [96]. The probably best known is the RGB

space. RGB does not correspond to human perception and is only useful for image retrieval if

images are taken under the same circumstances [84]. A color space that overcomes this disad-

vantages is for example HSV. It has three channels for hue, saturation and lightness. Non-linear

transformations are necessary to switch between RGB and HSV [86].

The color histogram [92] is one of the most popular color features for image retrieval. It

represents the color distribution of an image. The color space has to be quantized and pixels

are assigned to the bin they lie in. Histograms from two different images can then be compared

for example with histogram intersection. Ma and Zhang [52] compare among other things the

retrieval performance of color histograms in different color spaces and with various numbers

of bins. Color histograms have the advantage of being invariant to rotation and translation and

the change in the histogram is small if the scale differs slightly or partial occlusion occurs. An

essential disadvantage is that all spatial information is lost. A simple approach to obtain at least

some spatial information is to divide images into blocks and compute for each block a color

histogram.

Stricker and Orengo [90] suggest to compute the first three moments, that are mean, standard

deviation and skewness, of each color channel of an image. In the HSV space this leads to nine

features. It is possible to assign different weights to features. For example, it is often more

important that hue is more similar than saturation and value. The authors claim that the approach

generates more robust results than color histogram does and also the retrieval is faster.

Dominant Color Descriptor (DCD) [55] is also a more compact feature based on color than

the color histogram. Initially the colors of an image have to be clustered. A widely used ap-

proach is the generalized Lloyd algorithm [51] which results at most in eight dominant colors.

The structure of the extracted feature F is defined as

F = {ci, pi, vi, s} , i = 1, 2, .., N (3.1)

For each of the N dominant colors four parameters are saved. The vector ci is the color repre-

sentation of the dominant color i and pi is the percentage of this color in the image. The color

variance vi is an optional parameter and defines the variance of the dominant color and the color

of the pixels corresponding to this dominant color. The parameter s is a scalar describing the

spatial coherency of the dominant colors. It is a term for homogeneity of the image. Like color

histogram DCD lacks also of spatial information.

Huang et al. [37] introduce the color correlograms. This feature describes the local spatial

color correlation and also the global distribution of it. It defines the probability of finding a pair

of pixels with a distance d where the one pixel has the color i and the other one has the color j. To

get only a subset of the correlogram Huang et al. [37] propose to compute an auto-correlogram
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Figure 3.2: Left: part of a gray-level image; right: Corresponding co-occurrence matrix with

distance 1 and orientation 0◦.

which considers only pixels at a distance d that have the same color. One has to decide what is

the optimal set of distances to use for computing the correlogram. The color correlogram has the

big advantage that it is more stable concerning changes in the appearance than color histograms.

Color features described in this section are just some examples which are very prominent.

Several adaptations exist and many more completely different features can be found in the liter-

ature. For example, Schettini et al. [78] list several possible color descriptors.

3.1.2 Texture Features

It exists no unambiguous definition for texture. Smith and Chang [85] give the following defi-

nition: “Texture refers to a visual pattern that has properties of homogeneity that do not result

from the presence of only a single color or intensity“. Computing a texture feature takes always

the neighborhood of a pixel into account. It does not make sense to talk about the texture of

tiger stripes while looking at just one pixel. The choice of the size of the neighborhood is very

important and depends on the structure that should be extracted.

Already in 1973 Haralick et al. [34] introduced the co-occurrence matrix or gray-tone spatial-

dependence matrix, as they called it, which is still commonly used to extract texture features

nowadays. The dimension of the matrix corresponds to the different gray values in the image

respectively the image part one is interested in. Often the gray values are quantized to keep the

matrix compact. It holds the frequency of two pixels with a distance d in a direction θ whereby

one pixel has the gray value i and the other the gray value j. Several of these matrices can be

generated with different distances between pixels and with four different orientations (0◦, 45◦,

90◦, 135◦). Co-occurrence matrices are always symmetric. An example of a co-occurrence ma-

trix is shown in Figure 3.2. On the left is an image part with gray values from 0 to 3 and on the

right is the corresponding co-occurrence matrix with a distance of 1 and an orientation of 0◦.

Haralick et al. [34] propose 14 different statistical measures, for example energy, correlation,

variance and entropy, which can be calculated from such co-occurrence matrices and represent

the extracted texture features.

Some of the measures suggested by Haralick et al. [34] can not be explained in terms of

human visual perception. Tamura et al. [95] intended to develop texture features which are
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visually meaningful and work well with all kinds of textures. They did some psychological

experiments and the outcome was compared to the computational measures. A definition of

the proposed features, namely, coarseness, contrast, directionality, line-likeness, regularity, and

roughness, can be found in [95].

Gabor filters are another way of extracting texture features which correspond to human per-

ception [22]. A 2D Gabor Filter [22] can be represented as a Gaussian modulated sinusoid in the

spatial domain. A set of filters with varying parameters is used to analyze an image. Frequency,

orientation, Gaussian standard deviation and frequency and angular bandwidths have to be cho-

sen properly to extract the texture contained in an image. Filter responses are generated by the

convolution of an image with the filter set as masks. Apart from the possibility to use these

responses directly as texture features, Clausi and Jernigan [16] and Andrysiak and Choraś [1]

state several feature extraction methods based on the Gabor filter responses. Gabor filters are

most suitable for images showing textures with highly specific frequency and orientation prop-

erties [10].

This is just an extract how texture can be described. Readers interested in more texture

features can have a look at the surveys of Rui et al. [74] and Datta et al. [20].

3.1.3 Shape Features

Besides color and texture also the shape can be used to describe an object. Shape features

should optimally be translation, rotation and scale invariant. They can be broadly organised in

the two categories boundary based and region based depending if the method takes only the

contour into account or also the interior and therefore for example holes [57]. For many shape

extraction approaches an initial challenge is the segmentation of an image into foreground, which

corresponds to objects, and background. Satisfying shape descriptions rely on good automatic

segmentation algorithms which still struggle with complex, heterogeneous image content [20].

Objects can be described for example by their edges. The most common edge extraction

methods are Canny [15], Sobel [26], Prewitt [70] and Roberts [72]. Edges can then be used

directly to build an edge direction histogram [40]. These histograms can then be compared

with histogram intersection. This very simple approach has the disadvantages of not being

rotation and scale invariant per se. Jain and Vailaya [40] suggest approaches to attenuate these

drawbacks. But they state that even with the improvements the retrieval accuracy for rotated

images is only 63 %.

A well-known shape descriptor from the boundary based category is the Fourier descriptor

[17]. It has the advantage of being invariant to translation, rotation and scaling [42]. One

drawback of this method is that boundary information is needed and that objects exist with no

clear contour. Another drawback is that two shapes with the same contours are considered to be

equal although the shape content is different. When the boundary of the shape is extracted, N

samples are taken. Based on these points a signature function is computed. Different approaches

for this task exist. For example, Zhang and Lu [111] suggest to compute for each of the N

boundary points the distance to the centroid of the shape. Zahn and Roskies [109] propose to

use the tangent angle difference between two successive contour segments as function. With
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Equation 3.2 Fourier transformed coefficients are computed.

an =
1

N

N−1∑
t=0

s(t)exp(
−j2πnt

N
), n = 0, .., N − 1 (3.2)

where N is the number of sample points and s(t) is the signature function. The normalized

magnitudes can then be used as feature vector. The similarity between two shapes can be easily

computed with the Euclidean distance.

An example of the region based category are moment invariants [36]. Moment invariants

take the shape boundary and also the interior region into account. They are invariant to affine

transformations like translation, scaling and rotation. Moment invariants are based on the regular

moments, which are defined in Equation 3.3 for the discrete case:

Mpq =
∑
X

∑
Y

xpyqf(x, y) (3.3)

p and q are natural numbers and their sum specifies the order of the moment M . f(x, y) is the

intensity function. To be translation invariant the moment invariants have to be normalized with

respect to the shape center and are then called central moments. These central moments have to

be divided by a factor depending on the order values of the moments to be scale invariant [44].

Hu [36] developed seven invariant moments based on the normalized central moments which are

also rotation invariant and with an order of two or three. Because some values for the moment

invariants can get quite small, it is recommend to normalize them into the range from 0 to

1 [57]. The seven normalized values represent a feature vector which can be compared using the

Euclidean distance.

Fourier descriptor and moment invariant approaches can also be combined and deliver bet-

ter retrieval results than each of them alone [57]. Many more shape description methods and

possibilities to compare shapes have been developed [74], [57], [20].

3.2 CBIR in Medicine and why is it related to this work

Bioimage informatics is quite a new research area [67]. Recently published papers comparable

to this thesis can be found mainly in the medical domain using images from different medical

imaging techniques and also histological images from microscopic studies.

A useful CBIR system in the medical domain is needed because a vast number of images

is generated. Already in 2003 Montagnat et al. [59] stated that a radiology department in an

industrialized country hospital generates images of about 10 Terabytes in total in a year. The

Radiology Department of the University Hospitals in Geneva produced 80.000 images a day in

2008 [24]. Different image modalities exist, for example, Computer Tomography (CT), Mag-

netic Resonance Imaging (MRI), Positron Emission Tomography (PET), X-ray and ultrasound.

Every modality generates images with different characteristics and therefore for each of these

images other features are suitable and should be extracted. Domain knowledge is important for

a satisfying medical retrieval system. That means it should take into account the image modal-

ity and from which body part the image is taken. The domain knowledge can be extracted, if
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provided, for example, from the Digital Imaging and COmmunications in Medicine (DICOM)

header [7]. DICOM is a standard for an interchange protocol and file format for biomedical

images. The DICOM header contains metadata and can provide information about the patient, a

case description, information about the acquisition or the diagnosis. The DICOM standard was

a prerequisite for the development of a system to store and access digital medical images. Such

a system is called Picture Archiving and Communication System (PACS) [47]. It is possible to

use the DICOM header for a text-based image retrieval, but it involves the same problems as

described in Section 3.1. Two reasons for developing good CBIR systems for the medical do-

main are the support for physicians in finding medical diagnosis and educational purposes [93].

For a physician it is helpful to find similar cases with proven pathologies. In education it is also

important to find images which are visually similar but have a different diagnosis. A lot of re-

search has been done in the last decade in medical CBIR. However, most of the approaches can

handle only a single image type and are designed for a specific body part. Müller et al. [60] give

an overview which medical CBIR system can handle which image modality. Kumar et al. [45]

published a review paper in 2013 that lists about 50 studies from the medical image retrieval

area assigend to several imaging modalities. Other challenges are the fact that pathologies are

often local and not global, the difference between health and pathology is often small and the

variability of anatomical structures between patients.

Why are medical images comparable to fruit fly brain images in the context of CBIR?

Monochromatic
Medical images differ from daily life images. They are monochromatic and therefore

color and other features based on color are not expressive. On the other hand lighting

conditions do not have to be taken into account [60]. The same holds for the images in the

fruit fly brain dataset as information is only held in one channel.

Noise
Another characteristic of medical images is the high amount of noise [32]. Noise is also

existent in the fly brain images because of the acquisition with a confocal microscopy as

it is explained in Section 2.2 and visible in Figure 2.8.

Registration to template
After scanning a fly brain the image is registered to a template (see Figure 2.3). Medical

images used in a CBIR system are often aligned to an atlas, for example brain images are

registered to the Talairach atlas [94]. This is also necessary for multi-modality images like

the popular PET-CT overlapping. A great advantage, that justifies the effort of registration,

is a less complex comparison of registered images.

Local feature selection
Due to the complexity and heterogeneity of medical images it is difficult to describe the

whole image. Therefore it is useful to segment the image into regions, which can for

example correspond to anatomical structures. Extracting features only from regions a

user is interested in is more accurate. This could be for example the lung for lung tumor
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research. Also for the fly brain images the features are not computed for the whole image,

but for neuropils (see Chapter 5 for details).

A lot of work was invested in the research of CBIR in the medical domain [60], [104], [14],

[45]. Therefore a restriction on papers mentioned as related work has to be made. Hence the

following sections concentrate on works which emphasize that they are using 3D images or

dimension reduction methods for feature extraction because the fly brain images are 3D and the

proposed image description method is based on PCA.

3.3 Retrieval of 3D Images

Several data acquisition methods support 3D imaging, for example CT and MRI. Two ap-

proaches in CBIR exist to deal with 3D images. Either one dimension is removed which sim-

plifies the task or feature descriptors designed for 2D images are adapted to the 3D space. In

Section 3.4 works dealing with CBIR in medicine and using PCA as feature descriptor are dis-

cussed.

3.3.1 Medical CBIR for 3D images transformed to a 2D problem

The most common way to get rid of the third dimension is to build a 2D stack and compute the

features for each slice or for a key slice. However, a problem of this approach is that interlaced

data are missed. This are objects or structures, which are spread in the third dimension

One of the most popular medical image retrieval systems is ASSERT [81]. The image

database holds high-resolution CT lung images. A physician has to select the most outstand-

ing slice of each 3D image. This slice is called key slice and saved in an extra database for

retrieval purposes. On each key slice the Pathology Bearing Regions (PBRs) have to be delin-

eated by a physician and the lung is extracted automatically. Figure 3.3 shows an example query

in ASSERT. The image on the top left is the query image and the four images on the bottom are

the retrieved images which match the query image best. Next to the query image is an enlarged

version of a retrieved image and on the right are the adjacent slices of it. This is helpful for

the physician to see how the disease spreads over the slices. For each PBR a 26 dimensional

feature vector is computed. 14 of these 26 features are perceptual features like thickness of the

bronchi walls or average nodule size. The remaining 12 features are selected from 255 addi-

tional extracted features from each PBR including the gray scale mean and deviation inside the

region, gray-level histogram values, and the texture measurements entropy, energy homogeneity,

contrast, correlation, and cluster tendency. Shape attributes are described with the length of the

axis and their orientation and with measures using Fourier descriptors and moments. Besides

the edge distribution is computed. Some of the features to describe the relationship between the

PBRs and the entire lung are the Mahalanobis distance from the centroid of a PBR to the nearest

lung boundary point and the difference of gray-scale mean respectively deviation of a PBR and

that of the lung. From the 255 features only 12 are selected with sequential forward search to

reduce computational overload. For evaluation purposes only precision was taken into account.

The number of retrieved images is set to four. A retrieved image is correct when it shows the
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Figure 3.3: Screenshot from ASSERT – a computer aided diagnosis system [81].

same disease as the query image. ASSERT is one of few CBIR systems which were evaluated

concerning their benefit in computer assisted diagnosis. The voluntary physicians could improve

their answers from 29 % correctly given diagnoses to 62 %.

Song et al. [87] describe an approach based on 2D slices for 3D PET-CT thoracic images

showing lung cancer. Initially the slices are preprocessed to extract roughly lung and medi-

astinum. For each slice and each modality 24 Gabor filters are applied. The slices are divided

into 4x4 pixel patches and the Gabor responses for each patch are combined into one for PET

respectively CT. From these combined patches a feature vector can be generated with six ele-

ments. It contains mean, minimum and maximum of both modalities. To preserve local spatial

information the first-order local auto-correlation is calculated. This leads to a feature vector

length of 294. The feature vectors of each patch are then used to generate a visual bag of words.

Due to the effect that spatial information is lost with the bag of words approach a hierarchical

partition model was designed. It consists of three levels and the half of the image containing

most probably the pathological patch is divided into smaller blocks in each level. In each level

for every block a bag of words histogram is generated. All the histogram results are concatenated

and represent the feature vector. It is possible to describe the whole 3D image by extracting the

feature vectors from the 2D slices and combine them using a weight according to the estimated

distance to the pathological region. The method was tested with 40 PET-CT image sets with vis-

ible lung tumors. For each of them the ground truth was determined by labelling the other image
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sets as similar or not similar. Two experiments were performed. In the first one each image set

was used as query and average precision and recall were computed. For the other experiment

five key slices from each image set were selected. With each key slice a query was performed

and the average precision after 3, 5 and 7 retrieved images was computed.

The basis for Batty et al.’s work [5] are brain images recorded with PET. The images are

registered to the Talairach atlas [94] and segmented into anatomical regions. In this case CBIR

works only with a 2D slice as query image which has to be selected by the user besides the

anatomical regions he is interested in. For each selected region the mean intensity and Gabor

texture features are computed. The Gabor filter was applied with six different scales and four

rotations. Mean magnitude and standard deviation of the filter responses build a feature vector

with 48 elements. The similarity measure is based on the sum of squared differences. Not much

is said about evaluation. The retrieved images are in the order they expected and the ones with

small distances are diagnostically close to the query image.

The approach from Glatard et al. [32] uses also Gabor functions, but with six orientations

and based on MR images. They are interested in the cardiac cycle which can be acquired with

eight to ten 3D images. Each image shows the thorax with the heart near the center. One

query possibility could be to retrieve images with the same slice number and therefore showing

the same anatomical structures. For that purpose features are extracted globally. The heart

occupies only a small part of the image and therefore the heart state does not have a great

influence on the retrieval results. Feature vectors are compared using the Euclidean distance. To

retrieve images from a specific state of the heart, the heart as Region Of Interest (ROI) has to be

selected. A segmentation algorithm which uses the Gabor texture features divides the snippet

into the three regions blood, myocardium and background with the help of the k-nearest neighbor

algorithm. As the contraction of the myocardium gives information about the state of the cardiac

cycle the texture features of the center from the k-nearest neighbor algorithm from this class is

extracted. The magnitude responses are used to compute the coarseness of the myocardium and

this measure can be taken for retrieval. The authors give only results for the first query case.

They define the accuracy of their approach by comparing the slice number of the query image to

the slice numbers of the eight best retrieved images and compute a mean weighted by the ranks

of the retrieved images in the result set.

Li et al. [48] deal with traumatic brain injuries scanned with CT. Lesions are identifiable as

pixels with high intensity. Each slice from a CT volume has to be preprocessed. The scull region

is segmented with a simple threshold and from this result the intracranial region is extracted.

Translation and rotation transformations are performed so that the region is in the center. Further

steps are the normalization of intensities and the removal of cupping artefacts, which lead to

pixels near the scull with high intensities. The last preprocessing step is to resize the image to

a quadratic bounding box. Then a threshold segments the lesion pixels. To generate a binary

feature vector a circle divided into N angular and N annular regions, resulting in N2 equally

sized bins, is used as mask. If more than half of the pixels in one bin correspond to lesion pixels,

the bin is set to 1. The feature vectors of two slices can be compared with the Jaccard-Needham

measure [110]. The similarity of two CT volumes is computed as the weighted sum of the

similarity measure of corresponding slices. From 500 CT studies 30 were chosen as queries for

evaluation. An expert scored the retrieved cases with points from zero to three, which is used as
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ground truth for computing the normalized discounted cumulated gain [41].

MR brain images are used to analyze the different accuracies of intensity and texture features

and which impact spatial information has [100]. Initially the images are registered, intensities are

normalized and the brain tissue is segmented. From each volume four landmark slices showing

the same anatomical structures are selected manually. As intensity feature a simple intensity

histogram with 256 bins is used. Local Binary Pattern (LBP) [64] are chosen as texture feature

and result also in a 256 bin histogram. Due to the fact that spatial information is lost with

ordinary histograms a spatial histogram is generated with the help of a grid in the shape of a

circle divided into several regions. As similarity measure for two slices the Euclidean distance

of two histograms is used. To evaluate the methods they use each landmark slice as query image

and the retrieval task is to find in every MR volume the corresponding landmark slice. Therefore

the performance measure depends on the rank of the relevant slice. The sum of the difference of

the slice numbers of the images, which are ranked better than the relevant slice, and the number

of the relevant slice multiplied by the slice thickness gives the query error. The evaluation

shows that the spatial texture histogram delivers the best results. In a follow-up work [101]

they compare LBP, Kanade-Lucas-Tomasi (KLT) feature points [97] and a spatial method based

on edge points identified by the Sobel operator [26]. In contrast to their previous work the

only preprocessing steps are segmenting the brain tissue and finding the mid-sagittal plane for

rotation, however the images do not get registered and no normalization of the intensities is

applied. It is again shown that LBP with spatial information is superior to LBP without this

information. The KLT feature tracker selects feature points representing corners in a slice. These

feature points can be used to find matching points on another slice. The ratio of the number

of matched feature points to the number of points found in the query image is the similarity

measure. Due to the computational effort of feature point matching a grid can be used like

the one for the spatial LBP method to capture just the spatial distribution of feature points.

However, this method performs worse. Selecting only the dominant patterns when using the

LBP histogram with spatial information delivers the best results. The retrieval task for evaluation

is defined as in the previous work.

A paper that deals with 3D CBIR in the biomedical field was published by Berretti et al. [6].

They are interested in intracellular structures and deal with 3D cell images obtained from a

confocal microscopy. The images are defined as an ordered stack of 2D images. For each of

these images four statistical measures from the co-occurrence matrix are computed. To retain the

information about the sequence of the feature vectors a Hidden Markov Model (HMM) is trained

for each cellular structure one is interested in. It is now possible to compute for each HMM the

likelihood that an image belongs to the class the HMM is representing. This results in a vector

containing the likelihoods for every HMM. With this vector two tasks can be solved. The image

can be classified by taking the class which belongs to the HMM with the highest likelihood. For

image retrieval the reciprocal value of the sum of squared differences of the likelihood vectors

give the similarity between two image stacks. The authors claim that the accuracy using HMMs

is higher than with features from only one image per stack. The paper does not say if and how the

cellular structures are segmented. Precision and recall for 40 query image stacks are computed,

but it is not stated how a true positive image is defined.
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3.3.2 Medical CBIR for 3D images adapting 2D feature descriptors

Less papers can be found that deal with CBIR of 3D medical images as a whole and do not only

extract features from slices.

Liu et al. [49] developed their approach for neuroimages. These are images showing the

brain and ideally help to understand how it works. Initially the images have to be registered

based on a template and anatomical regions according to the Tzourio-Mazoyer atlas [99] have

to be labelled. It represents 116 3D functional regions. Masks can be defined which contain

several regions that are relevant for a disease. Different diseases infect different regions and

therefore the search area can be constrained to the user’s interests. To extract features from

the image part that is covered by the mask the grey-level co-occurrence matrix for volumetric

data [46] is computed. A voxel has 26 neighbours. Besides the distance two angles have to be

defined. Only 13 directions are required to cover the data with no information loss. From the co-

occurrence matrix eleven Haralick features [34] are computed and normalized to be comparable.

For each of these feature spaces the top 5 % are eliminated because they are probably noise.

The remaining values are divided by the maximum value of this space. The extracted image

features are compared with the Euclidean distance. The approach was tested on PET images

taken from patients with suspected dementia. For evaluation the leave-one-out strategy is used.

As similarity measure serves a relevance score depending on if the retrieved image belongs to

the same disease as the query image.

The distinction between malign and benign lung nodules is very important to detect lung

cancer. The physician can be supported by finding similar images and their diagnoses. Kawata

et al. [43] introduce an approach based on 3D CT thoracic images. These images do not have to

be registered. As an initial step the lung area has to be extracted from the images. Then the ROI

including the nodule one is curious about has to be selected interactively. As the last segmenta-

tion step the nodule in the ROI is automatically segmented by a deformable surface approach.

The internal structure of a nodule is described by two joint histograms. In both histograms the

distance to the nodule center is one dimension. The other dimension is either the CT density

value or the scale index, which is computed from two principal curvatures. Two nodules can

then be compared by computing a correlation coefficient based on their joint histograms. It is

not described how the method gets evaluated.

Liu et al. [50] focus on the semantic image retrieval of CT brain data. For this purpose

expert-labelled data are needed. Their goal is to extract features and find a subspace which

suites best for classification by pathology. They give an overview of three different feature

space reduction methods so that it is still possible to discriminate the data. Features which are

redundant or irrelevant can be discarded. They explore memory-based learning, classification

trees and discriminant analysis which gives the best trade-off between the dimension of the re-

duced feature space and the improvement of the classification rate. For retrieval evaluation 48

CT volumes showing a normal brain, stroke or blood cases are used. Due to the fact that reg-

istration of brains with lesions is challenging only the midsagittal plane is computed and the

images are rotated accordingly to have the same alignment. As features multiscaled statistical

properties like mean, standard deviation and gradient in two directions are extracted from dif-

ferent regions of the original image. They exploit the fact that healthy brains are symmetric for
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additional feature extraction. The difference image which is computed between the two brain

halves divided by the midsagittal plane, the thresholded difference image and the original image

filtered with it are potential features. They authors use Vizier [79] for computing the best fea-

ture subset and a kernel regression classifier simultaneously. Depending if one is interested in a

classifier that can discriminate between normal state and pathology or in a three-class classifier

the reduced feature vector contains five to nine elements. How this feature vectors are compared

is not stated. Although they developed their framework for 3D image retrieval, they evaluate

it with 2D slices as query images. Depending on which classifier is chosen, a retrieved image

is correct if it has the same label as the query image respectively for the two-class classifier no

distinction between the pathologies is made. To show the accuracy of the method only precision

is computed.

3.4 Retrieval through Dimension Reduction

The CBIR approach developed by Bucci et al. [13] is based on a set of numerical attributes ex-

tracted with PCA from each image. They evaluate their method with tomographic images. As

these images show variabilities in anatomy, geometry and grey levels a computationally expen-

sive preprocessing step is necessary to obtain satisfying results with PCA. To compensate these

variabilities images are scaled by a factor that keeps the ROI constant, a registration method is

applied and a histogram equalization is performed. The images are also filtered with a Gaus-

sian filter because the brain is centered in the image and thus the regions one is interested in

are emphasized. From the preprocessed images a representative set is selected to compute a

lower dimensional space onto which the images can be projected. The lower dimensional fea-

ture vectors of the images can then be simply compared with the squared Euclidean distance.

They generated software-simulated MR images from the brain and added Gaussian noise. With

this image set they show that with an appropriate number of eigenvectors the method is robust

against noise. As performance measure of their method they use the comparison of the slicing

level of the query image to the mean level of the first seven retrieved images weighted by their

similarity to the query. Using real MR data 13 eigenvectors are used to project the images. In

77 % the correct level was computed and in the other cases a difference of only one level was

achieved.

The work from Bucci et al. [13] serves as basis for Sinha et al. [83]. They propose the same

preprocessing steps to compensate image variabilities, but they compute the covariance matrix

used for PCA differently. Instead of using the difference of the image intensities and the mean

image intensities, the logarithm of the ratio is used. This leads to less sensitivity concerning con-

trast and intensity scaling and is superior to histogram equalization. This is especially important

if the image database consists of images obtained with different acquisition methods, for exam-

ple T1 and T2-weighted MR images, which leads to different contrast and intensity scaling. For

evaluation purposes an expert assigned classes to all training images. Images showing the same

anatomical structures refer to the same class. For every query image the expert selects the best

matching image from the training set. A query is counted as accurate if this image is retrieved or

one that is maximally three slices apart from it. Hence, for their evaluation only the first image

which gets retrieved counts. They see their use case in automatically listing the structures visible
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in an image. This can be done by assigning the query image the class of the best matching im-

age and a mapping of class and structures exist. Another use case is to retrieve images showing

specific anatomical structures by selecting a query image of an appropriate class.

Breast density is a risk index for developing breast cancer. Therefore MammoSys [23] was

developed which should assist the physician when looking at a mammography. The texture of the

breast is described with a variation of ordinary PCA called 2DPCA [107]. It is easier to compute

because it can be applied directly to an image and does not expect the image to be transformed

into a 1D vector. The ROI, which contains only breast tissue, is automatically segmented and

from this region the features are extracted with 2DPCA. An experiment shows that using the first

five principal components provides the best result. A Support Vector Machine (SVM) is used for

classification and also retrieval. Because the density is divided into four classes the conventional

SVM is not suitable and the one-against-one method was used. This means for every pair of

classes an SVM is trained.

3.5 Relation to this work

Most of the previously mentioned methods simplify the retrieval task of 3D images by using

only 2D slices. The method developed in the course of this thesis also works just on a 2D image.

However, it is not simply one slice extracted of the image volume, but the result of a maximum

intensity projection (see Section 4.1 for details).

Liu et al. [49] and Batty et al. [5] register their images based on an atlas and segment them

into anatomical regions. Comparable to this work the features are computed for each of the

regions separately and the user can decide which regions are of interest and should be taken into

account for the retrieval.

The related works, which state which distance measure they use, mainly use Euclidean dis-

tance [32], [100], [49], [13]. It is one of the two distances applied in this work.

Many methods use statistical measures or Gabor filter responses as features. These features

are not suitable for the fruit fly brain images because of the high variability of the brain structures

and the many falsifying pixel which contain just noise. Therefore a feature selection based on

Bucci et al.’s work [13] is used. With a set of representative images a lower dimensional space

is computed with the principal component analysis (see Section 4.2.3 for details).

For the evaluation of their methods Shyu et al. [81] and Liu et al. [50] compute just the

precision, which alone is not a sufficient measure. Berretti et al. [6] state precision and recall.

An extensive evaluation is performed by Song et al [87]. For one experiment they compute the

average precision and recall and for the other one they state precision at k for three different

ks. To indicate the accuracy of the proposed method the precision-recall curve, the ROC-curve,

the average precision and the F-measure are computed for each query. To get an overview of

the whole test run the mean average precision can be stated as single-figure measure and the

11-point interpolated average precision curve can be plotted for an overview.
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CHAPTER 4
Methodology

In this section concepts are explained which were used in the practical work in the course of the

thesis. How and during which processing steps they are applied is described in Chapter 5.

4.1 Maximum Intensity Projection

Maximum Intensity Projection (MIP) is a simple volume rendering method which is used since

the late 1980s especially for medical images [102], [27]. It simplifies a 3D image in the sense

that it gets projected onto a 2D image. For a 3D image three possible axis aligned projection

directions exist: back to front, left to right and up to down. Projections in the opposite directions

result in the same output. The size of the resulting 2D image is the same as when looking on the

image from the chosen direction. For each output pixel a ray is casted through the 3D image in

the projection direction and the highest value of a voxel along the ray is the resulting pixel value

in the projection image at this position:

I = maxk=1..N (vk), (4.1)

where I is the resulting intensity value, vk is the value of the pixel at position k along the ray

and N is the number of pixels sampled by the ray. Figure 4.1 demonstrates on an example how

MIP works. The dimension of the original image is 4 × 4 × 3. It can be seen that projecting the

image along the z-direction the dimension of the resulting image is the same as the dimensions

in x- and y-direction of the original image.

One disadvantage of removing a dimension is the loss of the information if an object in the

resulting image is near or far away from the observer.

4.2 Dimension Reduction

Dimension reduction is a critical aspect when dealing with high dimensional data like images.

A relative small image with a quadratic dimension of 768 pixels consists of already 589824
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Figure 4.1: A 3D image with dimension 4 × 4 × 3 sliced along the z-axis. The first three

rasters represent the voxel values of the three slices and the most right raster is the projection

image after MIP is applied in the z-direction.

pixels in total. Pixelwise comparison of images, especially bigger ones, is very costly. Also in

some cases it is not practical to compare images pixel by pixel, but to extract the most important

structures. Therefore the aim of dimension reduction is to reduce the amount of data and keep

as much information as possible at the same time. PCA is explained in detail on the following

pages as it is the chosen method for dimension reduction for this thesis.

4.2.1 Covariance and Covariance Matrix

Covariance is a statistic measure that provides information about the monotonic correlation be-

tween two random variables [71]. It is the expected value E of the product of two mean-centered

random variables X and Y given by Equation 4.2. The covariance is positive if the values change

together, that means that a high/low value of one variable goes along with a high/low value of

the other variable. If the two variables have an opposite behavior (if a variable has a high/low

value the other has a low/high value) the covariance is negative and if no monotonic correlation

exists at all the covariance is zero and the two random variables are uncorrelated. The covariance

informs only about the direction of the relationship between two variables, however it does not

state anything about the strength.

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] (4.2)

Considering n samples with k variables a covariance matrix S with dimension k × k can be

estimated. The sample covariance σij between two variables i and j can be calculated as

σij =
1

n− 1

n∑
l=1

(xli − μi)(xlj − μj), (4.3)

where n is the number of samples, xli respectively xlj are the ith respectively jth element of

the lth sample vector and μ is the mean of a variable. If i = j the covariance is identical to the

variance. Computing the covariance between all variables leads to a symmetric matrix because

multiplication is an associative operation. The matrix dimension corresponds to the number of
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variables and its diagonal consists of the variances of the variables. Another characteristic of the

covariance matrix is that it is positive semi-definite [88].

4.2.2 Eigenvectors and Eigenvalues

Let C be an k×k matrix, then maximally k eigenvectors with their corresponding eigenvalues

can be extracted from C. An eigenvector e has to be a non-zero vector with k elements fulfilling

Equation 4.4 for a scalar value λ which is the corresponding eigenvalue [31].

Ce = eλ (4.4)

Eigenvectors can only be computed from square matrices. The direction of an eigenvector is

unique. Eigenvectors with the same direction but a different length count only as one eigenvector

as the length does not matter. Therefore it is very common to normalize the eigenvector length

to one [71]. A very important characteristic of eigenvectors is that they are orthogonal to each

other and uncorrelated.

On the other hand eigenvalues are estimations of how well eigenvectors can explain the data.

They represent the variance of the transformed variables [31]. The value of such an eigenvalue

provides information about how much the corresponding eigenvector contributes to the total

variance. Eigenvalues are positive or zero if they are computed for a positive semi-definite

matrix [71].

4.2.3 Principal Component Analysis

PCA is a very common method for dimensionality reduction. A well known application example

is face recognition [98]. The gray values of an image are saved as a vector. It does not matter

if the pixel values are saved row by row or column by column. It just has to be the same order

for each image which is used to build a statistical model. The covariance matrix (4.2.1) of

these image samples is calculated and an eigenvalue decomposition of the covariance matrix

is performed. The fact that covariance matrices are always positive semi-definite leads to non

negative eigenvalues [31]. However, if less samples than variables exist (n < k), only k definite

eigenvectors and k non-zero eigenvalues exist.

The eigenvectors are the axes of the new coordinate system. The dimensions can be reduced

by reducing the number of eigenvectors. As the value of the eigenvalues is proportional to the

explained variance, only the eigenvectors with high corresponding eigenvalues are kept. The

discarded eigenvectors with low eigenvalues hold only little information about the data. If the

anisotropy is high, adjusting the coordinate system to the eigenvectors can compress the data a

lot while keeping most of the information.

Transforming an image x to the new coordinate system (often called eigenspace) can be

done by mean-centering the image and multiplying it by a matrix E of k eigenvectors (see Equa-

tion 4.5). The eigenvectors make up the transformation matrix because a multiplication by an

orthogonal matrix has always the effect of rotating the axes [71]. This transformation preserves

the Euclidean distances [31].

xtranformed = E[k]T (x − μ) (4.5)
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It often would be helpful to plot high dimensional data to get an overview, for example

about how they build clusters. With PCA it is possible to reduce the data to the two or three

most descriptive dimensions, which can then be easily plotted and analyzed. Figure 4.2 and

Figure 4.3 show a simple example on a 2D data set and the affect of dimension reduction by

using PCA. The former one shows 30 random data points which are mean-centered and have a

high variance in one direction. As the data points have two dimensions, two eigenvectors with

corresponding eigenvalues can be calculated. The first eigenvector with the highest eigenvalue

points in the direction of the highest variance. It is plotted in red and scaled by the eigenvalue.

The green arrow depicts the second eigenvector scaled with its corresponding eigenvalue. It is

perpendicular to the first eigenvector. The green arrow is much shorter than the red one because

of the smaller eigenvalue. The reason is that the data is not that much spread out in this direction

and therefore contains less information. The aim of PCA is to reduce one-dimension and get a

more compact data representation with the least information loss. For this purpose the data are

transformed into a new coordinate system with the eigenvectors as axes as Figure 4.3 shows.

The black lines show for two example points how they would be projected when using only one

dimension and how much information would be lost. Reducing the dimension with the lowest

eigenvalue depicted by the green arrow leads to a one dimensional data set lying on the first

eigenvector which can be seen in Figure 4.4.

4.3 Distance between Feature Vectors

A measure is needed which defines how close respectively similar two feature vectors are. A

feature vector can be seen as a point in a multidimensional space and its elements representing

the coordinates. Several different distance measures exist. In this section the Euclidean distance

and Mahalanobis distance are explained as they are used and compared in the practical work.

4.3.1 Euclidean Distance

The Euclidean distance, also called L2 distance, is a very common distance measure because it is

very simple to compute [63]. It is based on the Pythagorean theorem as Figure 4.5 shows for the

two-dimensional case. The two points p and q have the coordinates (p1, p2) respectively (q1, q2).
The orange line indicates the distance d(p,q) between these points and builds the hypotenuse of

a triangle. The remaining two sides of this triangle are represented as dashed lines and have a

length of |p1−q1| respectively |p2−q2|. Matching the Pythagorean theorem a2+b2 = c2 to this

triangle results in (p1 − q1)
2 + (p2 − q2)

2 = d(p, q)2. Taking the square root of this result leads

to the Euclidean distance between the two points and correspond to the Equation 4.6 which gives

the Euclidean distance for the general case, whereby p = (p1, p2, .., pN ) and q = (q1, q2, .., qN )
are two points in the N-dimensional space.

d(p, q) = d(q, p) =
√

(p − q)T (p − q) =

√√√√ N∑
i=1

(pi − qi)2 (4.6)
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Figure 4.2: Random, mean-centered data points with a high variance in one direction. The red

arrow depicts the first eigenvector and the green one the second eigenvector. Both vectors are

scaled with their eigenvalues.

Figure 4.3: Data points from Figure 4.2 rotated by the eigenvector matrix to a new coordinate

system. The black lines demonstrate how much information would get lost if the dimension with

the lowest variance would be discarded.
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Figure 4.4: Data points from Figure 4.2 reduced to one dimension by PCA.

To summarize, the Euclidean distance is the square root of the sum of the squared differences

between the corresponding coordinates of two points. In other words, it measures the length of

a straight line between two points as one would do it with a ruler. Two characteristics that can

be easily derived are the facts that the distance between a point and itself is always zero and that

the distance between p and q is the same as between q and p.

Each coordinate of a point is treated equally when computing the Euclidean distance between

points. In the two-dimensional case this leads to the fact that all points which have the same

distance to one specific point lie on a circle. This specific point is then the center of the circle.

This characteristic is not true, for example, for the Mahalanobis distance (see 4.3.2).

Data Normalization

The biggest disadvantage of the Euclidean distance is that it does not take variance into account.

For example, given a two-dimensional vector with values between zero and one in the first

dimension and between 200 and 1000 in the second dimension the maximum contribution to the

Euclidean distance would be one for the first dimension and 640 000 for the second dimension.

This example shows that computing the Euclidean distance for dimensions with different scales

leads to higher influences of dimensions with a broader range.

Normalizing the data is the standard way to get rid off the different value ranges. A very
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Figure 4.5: Drawing of two points p and q and the distance d(p,q) between them in orange

showing that the Euclidean distance is based on the Pythagorean theorem.

easy possibility to transform the values between zero and one is the min-max-normalization [39]

v′k =
vk −mink

maxk −mink
, (4.7)

where k ranges from one to the number of vector elements, vk is the original value from vector

v at position k, mink is the lowest value at position k of all data and maxk is the highest value

at position k of all data and v′k is then the normalized value. The values are scaled by a factor,

but the original distribution remains. This normalization method is not robust against outliers.

One outlier can be the reason that many transformed values are squeezed into a small range or

even get assigned to almost the same value.

Another very common way to normalize data is the standard score, also called z-score, nor-

malization [39]. The distribution of the data has to be known, otherwise the mean and standard

deviation have to be estimated and then it is called Student’s t-statistic, however it is computed

analog to the z-score given by Equation 4.8. The mean μ gets subtracted from the original data

value vk and the result is then divided by the standard deviation σ. The normalized data have

mean zero and standard deviation one. Transformed values are negative if the original value is

smaller than the mean. In contrast to the min-max-normalization the normalized values are not

in a specific range and the distribution of the data is not retained if the data are not normally
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distributed. This method is also sensible to outliers.

v′k =
vk − μ

σ
, (4.8)

4.3.2 Mahalanobis Distance

An alternative measure to the Euclidean distance is the Mahalanobis distance which was in-

vented 1936 [54]. It can be used to compute the distance between two points from the same

distribution and therefore having the same covariance. In contrast to the Euclidean distance the

Mahalanobis distance takes the variance of each coordinate as well as the covariance between

the coordinates into account. It ensures that coordinates with a high variance and also highly cor-

related coordinates do not contribute as much as low variance coordinates and coordinates which

are less correlated [71]. This is achieved by multiplying with the inverse covariance matrix:

d(p, q) =
√

(p − q)T S−1(p − q), (4.9)

where p = (p1, p2, .., pN ) and q = (q1, q2, .., qN ) are two points in the N-dimensional space,

d(p, q) is the Mahalanobis distance and S is the covariance matrix.

With the Euclidean distance points in 2D depict a circle when they have the same distance

from a point. However, as Figure 4.6 shows, points with the same Mahalanobis distance rep-

resent an ellipse in the two-dimensional space. The data points are randomly selected from a

normal distribution and the plotted ellipses represent the points with a distance of one, two re-

spectively three standard deviations away from the center. The major axes of the ellipses point

in the direction with the highest variance. As a logical consequence, in directions with small

variances the distance between two points must be smaller to be similar than in directions with

high variances.

The Mahalanobis distance corresponds to the Euclidean distance if and only if the covariance

matrix is equal to the identity matrix (a matrix which elements are all zero, except the diagonal

elements which are one).
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Figure 4.6: 100 random generated points from a normal distribution are plotted in blue and their

mean in red. The three ellipses define the points which are one, two respectively three standard

deviations away from the mean point when using the Mahalanobis distance.
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CHAPTER 5
Implementation

In this chapter the single steps of the proposed approach are explained. The left mushroom body

is used as example for explanation and supportive images. Biologists are very interested in this

neuropil and it is used for a lot of studies.

5.1 Overview of Approach

Figure 5.1 gives an overview of the processing steps, shows their outcomes and additionally

provides information whether a step is performed for each image respectively each neuropil.

Initially, for each neuropil of each image three MIPs are generated. This step is conclusive as

biologists themselves do not look at images layer by layer, but use projected images if they

browse through an image set. The gray values can be extracted from the MIPs and for each

neuropil a PCA can be performed resulting in eigenvectors and eigenvalues. These outcomes

can then be used to transform each image neuropilwise to feature vectors in a lower dimensional

space. The content of two images can be compared by computing the differences between the

feature vectors of each neuropil and sum up the distances. The smaller the distance is the more

similar the images look like. The dissimilarity is computed between all images leading to a

symmetric dissimilarity matrix, which can be used for retrieval.

5.2 Preprocessing

As the method has to deal with 3D images some preprocessing is necessary to simplify the

problem. Initially, one dimension gets removed. This step is very common and related work

from the medical domain can be found in Section 3.3. Generating MIPs (see Section 4.1) results

in 2D images while losing information on one direction. The information loss should be as small

as possible. This is one reason why it makes sense to divide the images into neuropil regions

(see Figure 2.4). It has the advantage of being able to keep more information of the reduced

dimension than performing the MIP method on the whole image, because the regions overlap.
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Figure 5.1: Workflow of proposed method.
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The fact that the brain images are aligned to a template makes it easy to extract the neuropils.

For each neuropil a 3D mask has to be provided. The part of an image which matches the

neuropil can be extracted by setting all voxels to black except the ones where the mask value is

set. For each image these extracted volumes, where only a part of the voxels is considered, are

produced and three different MIPs are generated by reducing either the x-, y- or z-direction. The

three created images correspond to the side view, the view from above and the front view. As

mentioned in Section 2.2 the acquired images have a size of 768 × 768 × 165 voxels. Reducing

the z-direction leads to a 2D image with a dimension of 768 × 768, reducing the y-direction

to an image with 768 × 165 pixels and reducing the x-direction also to 768 × 165 pixels.

Table 5.1 shows how a volume looks like when removing one of the three dimensions using the

left mushroom body as example. The first image column presents the MIPs created from the

neuropil volume mask. The last two columns show the MIPs for the left mushroom body for

two example images. The images in Table 5.1 are plotted with dimensions being a fifth of the

original size. Computing a distance measure based on the MIPs in the original size would be

still too expensive. Therefore the MIPs are downsampled to a size of 64 × 64 respectively 64 ×
14 pixels.

5.3 Dimension Reduction using PCA

Even with the downsampled MIPs approximately 20.000 pixels need to be compared. Therefore

further dimension reduction is necessary. For this purpose PCA is suitable for several reasons.

It is a very efficient dimension reduction method and it can find patterns in high dimensional

space [3]. The only disadvantage of PCA is the amount of data needed for computing meaningful

eigenvectors. On the other hand it is an unsupervised method and no annotations are necessary.

PCA fits perfectly the needs of the retrieval task. It can be easily applied to the brain images

because they are co-registered and therefore anatomical regions have the same size and position

in each image. Eigenvectors and eigenvalues are computed for each neuropil based on the grey

values of the generated MIPs. The pixel values are extracted from the positions where the pixels

of the MIP masks are set. The grey values are concatenated to a vector. A neuropil is described

by three MIPs. Therefore the grey values of these three MIPs have to be merged to one vector

- the so called observation vector. A collection of such observation vectors from different brain

images but from the same neuropil is the input for the PCA. It is important that the order of the

grey values is the same. The order used in this thesis is the front view in the beginning, then

the view from above and at last the side view. The pixels from the MIPs are read from left to

right and from top to bottom. Supposing the observation vector has n elements, applying PCA

delivers n eigenvectors with n elements and n corresponding eigenvalues.

Figure 5.2 shows nine representations of eigenvectors with the highest eigenvalues using the

left mushroom body as example. They characterize the variation of this neuropil. The range of

values for eigenvectors is not between 0 and 255 as it is for the brain images. Values can also

be negative. The image contrast can be enhanced when using the whole grey value range. For

each image the values are mapped to 256 grey values individually. This has to be borne in mind

when comparing eigenvector representations in Figure 5.2 - same grey value in different images

does not mean same value in this case.
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1st eigenvector 2nd eigenvector 3rd eigenvector

4th eigenvector 5th eigenvector 6th eigenvector

7th eigenvector 8th eigenvector 9th eigenvector

Figure 5.2: The first nine eigenvector representations of the left mushroom body.

The aim is to reduce the dimensions and at the same time keep most of the information. Most

of the variance can be explained with the first few eigenvectors. Figure 5.3 shows the eigenvalues

for the first 20 eigenvectors of the left mushroom body and how rapidly the eigenvalues drop.

Already the forth eigenvector can only explain 6 % of the variance the first eigenvector can

explain.

The number of eigenvectors for the transformation into a lower dimensional space is de-

termined by defining the percentage of variance they should explain. For each neuropil the

eigenvalues have to be summed up and from this sum the defined percentage is calculated. With

the descendingly ordered eigenvalues a cumulative sum is computed until the value calculated

before is reached. The eigenvectors corresponding to the eigenvalues which were summed up

are then used for the transformation. The number of these eigenvector-eigenvalue-pairs gives the

number of elements of the feature vector. This means that it is not fixed how many elements the

feature vector has after dimension reduction. It differs from neuropil to neuropil and depends on

40



Figure 5.3: For the 20 first eigenvectors the corresponding eigenvalues are plotted for the left

mushroom body.

the one hand on how long the observation vector is and on the other hand how well eigenvectors

can describe the variance of a neuropil.

Table 5.2 shows for each neuropil how many elements the observations vector has and how

many elements the feature vector has after dimension reduction and with 60 %, 70 %, 80 %

and 90 % of the variance explained. The last row provides information about the number of

elements that have to be compared for global retrieval. This is the length of the vector if the

feature vectors from all neuropils would be concatenated.

Name 100 % 90 % 80 % 70 % 60 %

right optic tubercle 150 33 13 6 3

right middle superiorlateral protocerebrum 129 22 8 4 2

subesophageal ganglion 743 129 41 14 6

left optic tubercle 155 34 14 6 3

right medulla 310 25 6 3 2

left mushroom body a’ lobe 27 7 3 2 1

right middle inferiorlateral protocerebrum 148 39 16 7 4

right lateral horn 166 39 15 6 3

right ventrolateral protocerebrum 465 90 33 14 6

right mushroom body a’ lobe 30 9 4 2 1

brain cortical layer 4377 720 340 159 70
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Name 100 % 90 % 80 % 70 % 60 %

left antennal mechanosensory and motor center 135 28 11 6 3

left ventrolateral protocerebrum 480 95 35 14 7

fanshaped body 239 28 8 4 2

left posterior superiormedial protocerebrum 196 48 20 10 6

left unclassified brain neuropil structure 97 21 8 4 2

left lateral horn 160 37 14 6 3

left posterior inferiormedial protocerebrum 181 53 23 11 6

left middle superiormedial protocerebrum 255 49 18 8 5

left lobula 437 57 19 8 4

right antennal mechanosensory and motor center 130 27 12 5 3

right posterior inferiormedial protocerebrum 188 54 24 12 6

right lobula 529 57 18 8 4

left mushroom body y neuron innervation 26 6 3 1 1

right posterior superiormedial protocerebrum 193 48 20 10 5

brain internal cavity 1795 385 161 67 29

left posterior superiorlateral protocerebrum 140 29 12 5 3

right ventral body 427 89 34 15 8

protocerebral bridge 132 26 9 3 1

ellipsoid body 132 12 3 2 1

right mushroom body y neuron innervation 27 4 2 1 1

left middle inferiormedial protocerebrum 271 58 22 11 6

right medial posterior 519 144 63 30 15

right ventral 696 167 70 32 16

left medial posterior 547 149 65 30 15

right middle inferiormedial protocerebrum 274 59 23 11 6

right lobula plate 347 33 10 5 3

left ventral 716 157 62 27 13

left ventral body 446 101 42 18 9

right middle superiormedial protocerebrum 237 44 17 8 5

left posterior inferiorlateral protocerebrum 159 42 18 8 5

left medulla 200 28 9 3 2

left middle superiorlateral protocerebrum 139 26 10 4 2

right antennal lobe 273 32 10 4 1

right posterior inferiorlateral protocerebrum 137 38 16 8 4

right posterior superiorlateral protocerebrum 126 24 9 4 3

right unclassified brain neuropil structure 94 21 9 4 2

noduli 32 9 4 2 1

left lobula plate 212 24 8 4 2

right mushroom body 375 46 14 5 3

left mushroom body 392 49 15 6 3

left middle inferiorlateral protocerebrum 149 39 16 8 4

left antennal lobe 286 35 11 4 1

42



Name 100 % 90 % 80 % 70 % 60 %

numbers of elements to compare 19226 3625 1470 659 322

Table 5.2: For each of the 53 neuropils the length of the observation vector (= 100 %) and the

length of the feature vectors with 60 %, 70 %, 80 % and 90 % of the variance explained is given.

5.4 Distance Measure

Depending on the interest of the biologist the similarity between images can be computed for

the whole image or just for some neuropils which are of interest. Both use cases can be eas-

ily achieved by comparing the feature vectors of neuropils and sum up the vector distances. In

this thesis two methods of computing vector distances are implemented and evaluated. The Eu-

clidean distance is a very simple distance measure (see Section 4.3.1) summing up the quadratic

differences of each vector element. The Mahalanobis distance (see Section 4.3.2) takes the

variance of the different dimensions into account by multiplying the Euclidean distance by a

covariance matrix. This covariance matrix can be reused from the PCA computation. With the

distances between all images a dissimilarity matrix can be generated. It is a symmetric matrix

with zeros in the diagonal. For a retrieval task just the row or column corresponding to the query

images has to be extracted and ordered ascendingly.
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CHAPTER 6
Evaluation and Results

At the beginning of retrieval research text documents were used. Later on also image retrieval

was an issue. As the thesis deals with images, the term images will be used in this chapter, but

can be substituted with the term document as the evaluation techniques are the same for both. In

order to compare different retrieval systems it is necessary to evaluate their performance. It is

possible to ask a user to rate the retrieved results. However, the satisfaction of a person is hard

to measure and to compare and very subjective. An easier and more objective way is to compute

some measures based on the retrieved objects and a ground truth. Three components are needed

for an objective comparison between systems and have to be the same for each system for the

performance evaluation:

1. Image collection

No constraints exist which images the collection can contain, but it makes sense that they

are somehow related. For example, an image collection could consist of only medical

images.

2. Query images

A subset of the image collection represents the query images. For each of these query

images, images from the image collection are retrieved, which are relevant to the query

image according to the tested retrieval system. These retrieval results are the basis for the

evaluation.

3. Ground truth

For each query image it has to be defined which images of the image collection are relevant

and should be retrieved and which are not. If this can not be done automatically with

some meta-information, it has to be done manually. For big image collections this is an

impossible task. However, it is advisable that more than one person does the annotation

to reduce the subjectiveness.

According to the retrieved images and the ground truth several measures can be computed to

indicate how well a retrieval system performs. Other factors, like speed and layout, can also be
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important for a user. In the following section the most important and well-known measures for

retrieval are presented based on the work of Manning et al. [56].

6.1 Evaluation Measures for Retrieval Tasks

For evaluation purposes every retrieved image has to be categorized according to Table 6.1. An

image which is in the retrieval result and is relevant for the query is True Positive (TP). On the

other hand relevant images not in the retrieved image set are False Negative (FN). All images

which are not classified as relevant and are not retrieved are True Negatives (TN), but if they are

retrieved they are False Positives (FP).

retrieved

yes no

relevant
yes True Positive (TP) False Negative (FN)

no False Positive (FP) True Negative (TN)

Table 6.1: An overview of how images are usually classified in retrieval.

With this classification it is possible to define some performance measures. The two, which

are most often used, are precision and recall. They are defined in Equation 6.1 and in Equation

6.2. The precision measure tries to answer the question about the relevance of the retrieved

result. Recall provides information whether the system retrieved many of the relevant images.

The value of these measures lie between 0 and 1 respectively 0 and 100 when dealing with

percentages. The higher the value the better is the retrieved result.

Precision (P) =
number of relevant retrieved images

number of retrieved images
=

TP

TP + FP
(6.1)

Recall (R) =
number of relevant retrieved images

number of relevant images
=

TP

TP + FN
(6.2)

Retrieval can be seen as a classification task because images can be classified as relevant and

not relevant. Therefore it is reasonable to compute the accuracy of a system with Equation 6.3.

However, most of the time this is not a very useful measure for retrieval because many images

are non relevant and are classified as such. Precision and recall are a better choice as they have

a reference to the TPs and this is what users are interested in.

Accuracy =
number of correctly classified images

number of all images
=

TP + TN

TP + FP + TN + FN
(6.3)

A meaningful evaluation of systems is only possible when both measures, recall and preci-

sion, are stated. A good system must have high values for both. It is easy to develop a retrieval

system with either high precision or high recall. Retrieving all images leads to a recall of 1
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because each relevant document gets retrieved, but leads usually to a low precision. On the other

hand retrieving only the first few results can lead to a high precision because the possibility that

many TP are in the beginning is high, but some relevant objects will be neglected. Therefore it is

necessary to consider both values, whereby a weighting of these two measures can make sense

depending on the retrieval task. F-measure can be used to quantify the trade-off between preci-

sion and recall. It is the weighted harmonic mean of precision and recall and the most common

way to use it is to equally weight them like in Equation 6.4. Equal to precision and recall the

value for F-measure is between 0 and 1 respectively 0 and 100 % and a high value is desirable.

F-measure =
2PR

P +R
(6.4)

The measures introduced so far are for unranked retrieval results. They do not take into

account if relevant images are retrieved in the beginning or at the end, but only if they are re-

trieved at all. However, for most applications it is important for the user, that relevant results are

retrieved in the beginning. The following measures take this into account.

A precision-recall curve gives an overview of how precision and recall change with the size

of the retrieved image set. After the first, second, third, kth retrieved image the two measures

are computed and the values are plotted and connected in a diagram. This results in a curve with

a saw-tooth shape. For a good system the curve reaches to the upper right corner. Figure 6.1

shows an example of a precision-recall curve in blue.

A precision-recall curve can be easily smoothed by using the interpolated precision. This

means that for a recall level r the maximum of the precision values of recall levels that are equal

or greater than r is taken (see Equation 6.5, where P (r) is the precision of the recall value r).

The result of such an interpolated precision-recall curve can also be seen in Figure 6.1.

interpolated precision for recall level r = max
r′�r

P (r′) (6.5)

Receiver Operating Characteristics (ROC) curves are often used to evaluate classifiers and

can therefore also be used in retrieval. The true positive rate, also called sensitivity (which

corresponds to recall, therefore see Equation 6.2 for the formula), is plotted against the false

positive rate (1-specificity) stated in Equation 6.6. The curve always starts at the bottom left

and goes to the top right and is optimally very steep in the beginning. The curve is not very

expressive if the image set contains many non-relevant images because the false positive rate is

then always almost 0. An example of an ROC-curve can be seen in Figure 6.2.

false positive rate = 1 - specificity =
FP

FP + TN
(6.6)

Müller et al. [61] suggest several alternative graphs for performance evaluation for retrieval

systems.
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Figure 6.1: Example of a precision-recall curve in blue and the interpolation in red [56].

For a single query the Average Precision (AP) can be computed with

AP =

∫ 1

0
P (r) dr ≈

N∑
k=1

P (k) ∗ΔR(k), (6.7)

where P (r) gives the precision for the recall r, N is the size of the image collection and ΔR(k)
is the difference between the recall value after the k-1th and the kth retrieved images. AP defines

the average of the precision values after each retrieved relevant image. It approximates the area

under the precision-recall curve as the integral in Equation 6.7 indicates.

For most systems it is not interesting how they perform for one single query, but for several

queries. A very common single-figure measure for this purpose is the Mean Average Preci-
sion (MAP). For Q queries it is defined as the mean over their APs.

MAP =
1

Q

Q∑
q=1

AP (q) (6.8)

A way to visualize the query results from a system in only one curve is the 11-point inter-
polated average precision curve. For every query the interpolated precision (see Equation 6.5)

for the eleven recall values 0, 0.1, 0.2,..,1 has to be calculated. The interpolated precision for

the recall value 0 is always 1. If the query does not retrieve all relevant images and therefore

no interpolated precision value exists for a specific recall value (and consequently for non of

the higher recall levels) a precision of 0 is assumed. The interpolated precision values are then
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Figure 6.2: An ROC-curve corresponding to the precision-recall curve in 6.1 [56].

averaged over all queries. Figure 6.3 shows an example of an 11-point interpolated average pre-

cision curve depicting the eleven recall/interpolated precision-pairs. The area below and above

the curve shows the standard deviation.

Precision at k is also a very common measure. The precision is computed after the first k

retrieved images. Precision at 10 refers to the precision computed after 10 retrieved images. A

disadvantage of this measure is its instability. It strongly depends on the total number of relevant

images. Also a very good system can score badly if the precision at 20 is computed and only

five relevant documents exist. The precision would then be only 0.25.

Another suggested measure for evaluation is the rank of the first relevant image. However,

in our particular case this information is not very useful because the user is not satisfied with

just one good result. The user is not looking for a specific target image, but wants to retrieve all

images showing similar content to the query image.

6.2 Global Evaluation

The global evaluation provides information about the suitability of the proposed approach if

the similarity of the whole image is of interest. The lack of ground truth data for the fly brain

images is a heavy restriction for evaluation purposes. After defining the data set used for global

evaluation, two different evaluation strategies are provided in this section.
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Figure 6.3: 11-point interpolated average precision curve of a test run with 3809 queries. The

blue area depicts the standard deviation.

6.2.1 Image Dataset

For the evaluation flies with a database entry fulfilling the following requirements are appropri-

ate:

• flies bred at IMP and therefore be part of the Vienna Tiles (VT) library

• available at the beginning of the thesis

• volumetric image acquired and stored

• images showing the brain (and not the VNC)

• sex has to be male (only a few females with bad quality are available)

In total 11169 images from 6063 different lines are used. Table 6.2 gives the distribution of

how many different gene sets with a specific number of scanned flies exist.

6.2.2 Evaluation based on meta-data

It would be too time-consuming and expensive to generate a ground truth for the retrieval task,

therefore the information that images from the same line should have a similar appearance is
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x
Number of lines

containing x images

1 2310

2 2652

3 910

4 153

5 26

6 5

7 4

8 2

9 1

Table 6.2: The integers x in the first column represent the number of images belonging to one

line. In the second column the number of lines consisting of x images is given.

exploited. An image is only chosen as query image if at least one other image belongs to the

same line. Hence, at least one true positive exists. Another criterion for an image to become

a query image is the amount of staining. A lot of images have no visible expression, contain

only glia cells (do not participate in synaptic interaction and have no axons and dendrites) or are

overstained (the image contains so much noise that no patterns can be recognized). A biologist

would never search for such images as they hold no information about expressed neurons. An

example for each of these three cases as preview image can be seen in Figure 6.4. Such images

have to be excluded from the query image set. This is done by simple empirical thresholding.

For each image all pixels within the template are extracted and the values of the green channel

are summed up if they are higher than 120. This value was chosen because most pixel which

show only noise have a lower value. If the image has a bad quality it contains a lot of noise

and therefore it is very important to exclude these pixel, otherwise they falsify the result. A sum

between 303600 and 2160170 indicates an image suited as query image. This range was picked

by visual exploration. After filtering 3809 images remain as query images.

For computing the eigenvectors and eigenvalues of PCA only a subset of the available images

is used. Basically it is the set of query images with the restriction that only one image per line is

selected. The reason is to avoid biased results because otherwise lines containing a lot of images

would have a higher impact. Therefore only 2724 images are used for PCA.

After determining the eigenvectors and eigenvalues the images can be reduced and for each

query image a retrieval can be performed. The query image itself is excluded from the retrieved

image set. It always has a distance of 0 to the query image and is retrieved as the first image.

Additionally the biologists are not interested in retrieving the query image. For each query a

precision-recall curve, an ROC-curve, the average precision and the F-measure are computed

to evaluate the results. An HTML page with the query images, the corresponding retrieved

images (both as 2D previews) and the computed measurements is generated in order to have

also the possibility to visually evaluate the results. As the image set consists of more than 11000

images, it would be unreasonable to list them all in the retrieval result because only the most

similar images are of relevance and nobody looks at all of them. Therefore only the 30 most
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(a) Fly brain with no staining (b) Fly brain with no staining except glia cells and noise

(c) Overstained fly brain

Figure 6.4: Example images which are not suitable as query images.
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similar images are displayed for each query on the HTML page. Figure 6.5 and Figure 6.6

show two examples. Due to the lack of space only the first four retrieved images are displayed

here. The query images can be identified by the turquoise background. Below the picture the

name and information about how many images belong to the same line, and therefore how many

true positives exist, are stated. The retrieved images are listed below the query image. Again

some information can be found below each retrieved image. In particular, this is the name,

the distance to the query image computed by the approach and the four most similar neuropils

compared between the query image and the retrieved image. How much information content

the smallest neuropil distances have is discussed in Section 7.2. If a retrieved image is a true

positive one the information is highlighted in orange. For the query in Figure 6.5 two out of

three possible images from the same line are retrieved in the beginning. However, also the next

two images look very similar to the query image. They count as false positives, nevertheless for

biologists this could be very informative. The second example query shown in Figure 6.6 has

one true positive in the beginning. The following images do not match the query image perfectly,

however each of them is partly similar.

On the right next to the query image the average precision and F-measure values for the

query are written. Additionally, on the very right two graphs visualize the retrieval result for the

30 images displayed on the HTML page. If not all true positives are retrieved within the first 30

images the graphs are extended by as many images as necessary to achieve a recall of 1. The

precision-recall curve shows that a recall of 1 is achieved with a precision of around 0.6 for the

query shown in Figure 6.5. It can be seen that the precision is 1 for the first two images and drops

for the next two images to 0.5. The fifth point of the curve signals that the fifth retrieved image

is a true positive again (which can not be seen in Figure 6.5 as the results are cut away) and that

it is the last one of the line that was missing. The recall value is now constant at 1 and precision

drops significantly because no more true positives can be retrieved. The precision-recall curve

for the query shown in Figure 6.6 is completely different. Precision for the first retrieved image

is 1 as it is a true positive and recall is 0.5 because the line consists of three images. Whereby

one of them is the query image, one is retrieved and one is missing. The precision value drops

rapidly in the beginning and the second true positive image is retrieved as 30th image. Precision

is only 0.05 then. The ROC curve is not very meaningful for a retrieval task with a lot of non-

relevant images as it is the case here. The problem is that most of the time the false positive rate

is always around zero because the number of true negatives is part of the divisor. Only if true

positive images are retrieved very late the graph differs.

The mentioned measurements and curves are computed for every single query. To get an

overview of the whole test run an 11-point interpolated average precision curve, like the one in

Figure 6.3, is created.

6.2.3 Parameter Space Exploration

The evaluation based on meta-data is done for different parameters and for combinations of

these parameters. Table 6.3 gives an overview of parameters for which it makes sense to try out

different values. In total 48 different combinations of parameter values exist.

Changing the variance that should be explained affects on the one hand the length of the

feature vector and therefore the time it takes to compare two images. On the other hand it has
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Figure 6.5: An example query with query image in turquoise and the true positives in orange.

Additionally two measurements concerning the result are given and two graphs are plotted.
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Figure 6.6: Another example query with query image in turquoise and the true positives in

orange. Additionally two measurements concerning the result are given and two graphs are

plotted.

55



Parameters Possible values

Variance explained by PCA in % 60-85 in steps of 5 (both values inclusive)

Distance measure Euclidean or Mahalanobis distance

Ignore first eigenvector yes, no

Take neuropil size into account yes, no

Table 6.3: Parameters to explore and their possible values.

(a) Mean of left mushroom body (b) First eigenvector of left mushroom body

Figure 6.7: Comparison of mean and first eigenvector on the example of the left mushroom

body.

consequences on the staining patterns that can be described. Short feature vectors can be too

unspecific, however long ones can be too specific and inflexible.

Several possibilities to compare points in a high dimensional space exist. In the course of

this thesis Euclidean and Mahalanobis distances are compared. As explained in Section 4.3.1

the Euclidean distance does not take the different dimension variances into account and there-

fore the data need to be normalized to get meaningful results. Before the distance between two

feature vectors is computed, the elements of the feature vector get normalized by the min-max

normalization as it is explained in Section 4.3.1. The minimal and maximal values which are

possible are computed separately for each neuropil. Multiplying all positive values of an eigen-

vector by 255 and all negative ones by 0 and sum this up results in the highest possible value

that can theoretically be achieved when transforming an observation vector. This is done for

each eigenvector of a neuropil and results in the feature vector with the highest possible values.

Getting the minimal values follows the same scheme, but negative values are multiplied by 255

and positives by 0.

At first glance it does not make sense to ignore the first eigenvector, but Yambor et al. [106]

state that it could be that the first eigenvector does not contain relevant information. In contrast

to the other eigenvectors the first one does not show any structure and is very homogeneous (see

Figure 5.2). Figure 6.7 shows that it looks very similar to the mean image.

The last parameter that is tested is the influence of the neuropil size. The relative number of

voxels that a neuropil has compared to the whole fly brain is taken into account. The computed

distance between two feature vectors is multiplied by this value. This means that bigger neu-
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ropils have more influence. This scaling is explainable by the fact that larger neuropils contain

significant structures and are therefore more relevant.

The parameters are explored based on the image set and the approach described in Sec-

tion 6.2.2. Figure 6.8 shows the evaluation results when exploring the different values for the

explained variance and the distance measures. If additionally the first eigenvector is ignored the

results can be seen in Figure 6.9. If the distances are weighted according to the neuropil size

the results are given in Figure 6.10. Finally, Figure 6.11 shows the results for the case that the

last two mentioned options are combined. On the x-axis the variance explained by the PCA in

percent and on the y-axis the MAP is depicted. The red asterisks depict the results computed

with the Euclidean distance and the blue ones with the Mahalanobis distance. It can be seen at

a glance that the results computed with the Euclidean distance are always stable but the more

variance is explained the worse are the results if the Mahalanobis distance is used. In the two

cases, which take the size of the neuropils into account, the results for the Euclidean measure

is better than in the other two, however the opposite is true for the Mahalanobis distance. The

best MAP that is obtained is 0.85636 (see Figure 6.10). It can be achieved if explaining 70 % of

the variance, weight the distances according to the neuropil sizes and use Euclidean as distance

measure. The F-measure values are not plotted in the figures because then they would get too

cluttered. However, the maximum is 0.8732 and is also achieved with the before mentioned

parameter combination.

The k-fold cross-validation [35] is one method to show that it was not a coincidence that this

parameter combination delivers good results. The image collection is divided into k blocks. The

images are randomly assigned to a block resulting in equally sized blocks. k-1 blocks are used

for training and the images from the block, which was left out, are used for validation. The

blocks are cycled k times so that each block is used for validation once. In the case of the thesis

the training images correspond to the images used for PCA and the images from the validation

block are the query images. This approach is illustrated in Figure 6.12 for k=5, which is aside

from k=10 the recommended value [35]. For the thesis k=10 is chosen and not the images

themselves are divided but the lines. Therefore each block consists of about 600 lines, but has a

different number of images as the number of images per line varies. To get unbiased results only

one image per line is used to compute the PCA and also for validation.

Figure 6.13 shows the MAP and F-measure for the ten-fold cross validation with the best

parameter combination. It can be seen that the results are stable and the two measurements

correlate. The mean for MAP is 0.69 and for F-measure 0.72. The corresponding standard

deviations are 0.025 and 0.024. The results are a little bit worse than the ones achieved while

exploring the parameter space. This has two reasons. First, the whole image collection is used

for the k-fold cross validation and therefore also images which are not suitable are used as query

images (see Figure 6.4 for such examples). And second, dividing the lines into blocks and leave

some out for validation could lead to the case that not all patterns are captured by PCA if a

specific pattern is only visible on images in the validation block.

57



Figure 6.8: MAP for the different variance values explained by PCA using Euclidean (red)

respectively Mahalanobis (blue) distance.

Figure 6.9: MAP for the different variance values explained by PCA when ignoring the first

eigenvector using Euclidean (red) respectively Mahalanobis (blue) distance.
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Figure 6.10: MAP for the different variance values explained by PCA when taking the neuropil

size into account using Euclidean (red) respectively Mahalanobis (blue) distance.

Figure 6.11: MAP for the different variance values explained by PCA when ignoring the first

eigenvector and weight the distances according to neuropil size using Euclidean (red) respec-

tively Mahalanobis (blue) distance.
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Figure 6.12: k-fold cross-validation with k=5 on the example of image retrieval using PCA.

Figure 6.13: MAP (blue) and F-measure (red) for the ten cross-validation runs.
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6.2.4 Evaluation by an expert

The evaluation by a domain expert is independent from a ground truth. However, it is very time-

consuming because the expert has to look at every retrieved image and make a decision if it is

a true positive or not. Therefore not all possible parameter combinations are tested when doing

the evaluation by an expert. The parameters space exploration in Section 6.2.3 gives already

an estimation which combination delivers the best results. Hence, this knowledge is used to

generate queries. A trade-off between the effort for the expert and significant results has to be

found. 5 % from the available query images are selected, which are 135 images. For each query

the 30 most similar images computed with the presented approach are retrieved. This means that

in total the expert has to compare 135 * 30 = 4050 images to the corresponding query image.

The expert is assisted in the evaluation task by a tool using HTML and JavaScript. Fig-

ure 6.14 shows the user interface of the evaluation tool. For each query an HTML page is

generated. On the top of such a page a short description of the task is given. The domain expert

has to decide for each retrieved image if it is relevant or not compared to the query image. The

query image is delineated on the left and the retrieved images are arranged in a table layout with

two columns on the right. The images are positioned from left to right and from top to bottom

according to their computed distances to the query image. The most similar image is in the top

left and the image with the greatest distance is on the bottom right. To see all retrieved images

one has to use the scroll bar at the very right. The expert has to decide for every image if it

matches the query image totally or just partially or if it is not similar at all. Clicking on an

image once gives it an orange border and indicates a partial match. Clicking again on the image

changes the color of the border to turquoise, which stands for total match. A third click lets

the border disappear again and has the same meaning as not clicking on the image. No border

means that the image is not interesting in respect to the query image. The expert sees the images

only as 2D previews, but clicking on the text below the image links to the image volume. The

text area below the query image leaves room for comments concerning the query image, the

retrieved image or decision making. The Next button on the very bottom right directs to the next

page with another query. When the expert is through with all queries the evaluation results can

be sent by mail.

The content of such a mail can be parsed and used for computing meaningful measurements.

For example, in this case it does not make sense to compute the recall because no information

about the number of relevant images exists. Both, total matches and partial matches, are rated as

true positives as it is suggested by Su [91]. This makes sense because it is possible that biologists

can also derive information from partial matching images which are therefore relevant results.

For future analysis a more detailed measurement, which distinguishes between these two groups

can be computed. Sakai [77] and Järvelin et al. [41], for example, suggest two different ways of

analysing graded evaluations.

A useful measurement in this case is the precision at k, whereby k = 1, 2, 3, 4, 5, 10, 15, 20,

25, 30. This measure provides information about how many total or partial matches are in the

first k images. For each query the values for the different ks are computed and averaged over the

queries. This leads to ten measuring points. Figure 6.15 shows the results from the evaluation

by an expert. The values for the ten ks are marked with an asterisk and the area above and below

the curve depicts the standard deviation. The graph shows that for nearly every query the first
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Figure 6.14: An evaluation tool supporting the expert.
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Figure 6.15: Graph showing precision at k values for ten ks with the standard deviation depicted

as the area around the curve. The values are from an evaluation by an expert.

image was rated as a match. In the top five around two thirds of the images are true positives

and in the top ten every second image is relevant on average.

6.3 Local Evaluation

The aim of a local search is to find images which are similar to the query image in some specific

neuropils and which are independent of the similarity between other - not interesting- neuropils.

The evaluation of the results of a local search is way more difficult than to perform a global

evaluation. On the one hand no ground truth data for only a set of neuropils exist and on the

other hand it is very tedious for an expert. It is not possible to make a decision just by looking at

the preview image as it is often the case for global similarity because the expert has to estimate

where the neuropils are on the image and they can overlap. Therefore, from an image where the

third dimension is removed it can not be said in which neuropil staining is visible. Hence, in the

course of this thesis an evaluation with quantitative measurements is not feasible.

Instead a use case simulating the similarity search based on a set of neuropils is shown. The

left and the right mushroom body are chosen for the local search because they are interesting

for biologists and have a very outstanding shape and it is an example for which it is possible

to visually get a feeling of the quality of the result. Figure 6.16 shows the two neuropils in
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combination with the brain template from the front and at an angle from above. In Figure 6.17

an example for a local search with the mushroom body neuropils is presented. Figure 6.18 and

Figure 6.19 show further retrieved images for this query. The query image is highlighted in

turquoise and from left to right and from top to bottom are the most similar images represented.

It can be seen that all retrieved images present the same structure as the query image for the left

and right mushroom body. The similarity of the other neuropils does not matter as for example

the fourth image shows. Another example query with a different staining of the two mushroom

body neuropils can be seen in Figure 6.20 and is continued in Figure 6.21 and Figure 6.22. Again

the results look very good. Nearly the whole neuropils are stained in the query image, therefore

some overstained images are retrieved. For the third query depicted in Figure 6.23 and continued

in Figure 6.24 and Figure 6.25 the neuropil set is extended by the ellipsoid body, which is the

circular neuropil with the center close to the hemisphere and which can be seen clearly in the

query image. In all retrieved images the staining in the mushroom body neuropils is similar to

the one in the query image. However, the ellipsoid body is only partial visible or not visible

at all in some result images. This retrieval result suggests that a feature vector with only two

elements, as it is the case for the ellipsoid body, is not suitable to compare staining in a neuropil.

Another use case is to find images which are similar in some specific neuropils but differ

in the remaining ones. This could be useful to find lines which show comparable neuronal

structures in some regions and therefore possibly allow a formulation of a hypothesis about

which genes are responsible for which staining. To achieve this the feature vectors are computed

as usual and the differences of the neuropils between the query image and the other images are

computed. The sum of the computed differences of the neuropils that should be similar is added

to the sum of the differences of the remaining neuropils subtracted from one. The second term

can be weighted by a suitable factor. It is more important that the similarity in the chosen

neuropils is higher than the dissimilarity for the others. A corresponding formula is given in

Equation 6.9, whereby di is the difference of the image i and the query image, SN stands for

the set of neuropils that should be similar and DN is the set of neuropils which should differ.

Therefore dni indicates the difference of neuropil n between image i and the query image. α is a

weighting factor between 0 and 1.

di =
∑

n∈SN
dni + α ∗

∑
n∈DN

(1− dni ) (6.9)

An example of such a query is shown in Figure 6.26 and is continued in Figure 6.27 and

Figure 6.28. The same query image as for the local query search example in Figure 6.17 is used.

This time the retrieved images should not only be similar in the left and right mushroom body,

but should additionally differ in the remaining neuropils. The similarity for the differing neu-

ropils is weighted by α = 0.5 in this case so that the similarity of the mushroom body neuropils

has a stronger impact. The weight can be chosen according to the context and the needs of the

user. For this kind of queries overstained images constitute a problem if the query image has

less staining in the neuropils which should differ.
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(a) Front view

(b) View at an angle from above

Figure 6.16: Brain template with the left and right mushroom body highlighted.
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Figure 6.17: Local query search example A using left and right mushroom body showing the

first six retrieved images (continued in Figure 6.18 and Figure 6.19).
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Figure 6.18: Local query search example A (continuation of Figure 6.17) using left and right

mushroom body showing rank seven to twelve of the retrieved images.
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Figure 6.19: Local query search example A (continuation of Figure 6.18) using left and right

mushroom body showing rank 13 to 18 of the retrieved images.
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Figure 6.20: Local query search example B using left and right mushroom body showing the

first six retrieved images (continued in Figure 6.21 and Figure 6.22).
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Figure 6.21: Local query search example B (continuation of Figure 6.20) using left and right

mushroom body showing rank seven to twelve of the retrieved images.
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Figure 6.22: Local query search example B (continuation of Figure 6.21) using left and right

mushroom body showing rank 13 to 18 of the retrieved images.
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Figure 6.23: Local query search example C using left and right mushroom body and the ellip-

soid body showing the first six retrieved images (continued in Figure 6.24 and Figure 6.25).
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Figure 6.24: Local query search example C (continuation of Figure 6.23) using left and right

mushroom body and the ellipsoid body showing rank seven to twelve of the retrieved images.
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Figure 6.25: Local query search example C (continuation of Figure 6.24) using left and right

mushroom body and the ellipsoid body showing rank 13 to 18 of the retrieved images.

74



Figure 6.26: A complex query search where the staining in the left and right mushroom body

should be similar and different in the remaining neuropils. The first six retrieved images are

shown (continued in Figure 6.27 and Figure 6.28).
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Figure 6.27: A complex query search (continuation of Figure 6.26) where the staining in the

left and right mushroom body should be similar and different in the remaining neuropils. Rank

seven to twelve of the retrieved images are shown.
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Figure 6.28: A complex query search (continuation of Figure 6.27) where the staining in the

left and right mushroom body should be similar and different in the remaining neuropils. Rank

13 to 18 of the retrieved images are shown.
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CHAPTER 7
Conclusion and Future Work

This chapter sums up the invented approach and gives an overview of possible extensions and

improvements.

7.1 Summary and Conclusion

To get an insight into how the brain works the species Drosophila melanogaster is used as model

system. It is still unclear which neurons are connected, how they interact and which neurons

control which behavior. Scientists approach this problem by performing high throughput screen-

ings of large genetic line collections and subsequently search manually in the resulting image

database for those which possibly can be used in experiments and might help reveal the mechan-

ics of the investigated brain function.

The aim of this thesis is to significantly reduce biologists work load by giving them the

computer-assisted possibility to search for visually similar images and therefore only have to

look at a subset of images. Hence, a content based image retrieval approach for co-registered

3D images of fly brains was developed. According to a defined template the brain can be divided

into several regions, so called neuropils. For each image and each neuropil three MIPs along the

main axes are generated and the gray values are extracted. For each neuropil a PCA based on

the gray values is performed for dimension reduction purposes. Each neuropil from each image

is then transformed into a lower dimensional space while keeping most of the information. In

this spaces the neuropils can be compared in a computationally efficient way. Summing up the

distances between the neuropils of two images leads to an overall distance.

The comparison of two images with this approach is much faster than a voxel by voxel

comparison and is more robust against slight variations of neuronal structures. The distances

are computed separately for each neuropil, which is a big advantage because the needs of the

biologists can be addressed in a more flexible way. They can decide which regions are of interest

for their research and in which neuropils the images should be similar.

An extensive evaluation was carried out to show the effects of different parameter values

on the results. The parameter combination which provides the best retrieval results was found
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by an evaluation using meta-data. An expert of the Drosophila melanogaster research field

was asked to rate the retrieved images of more than 130 queries. The results indicate that the

proposed approach is one very satisfying way to search for fly brain images based on the present

expressed neuronal structures. The only prerequisites are a set of images to perform a reliable

PCA and the biologist needs an image showing interesting neurons as query image.

7.2 Future Work

The possibility to show the top most similar neuropils for each image compared to the query

image has to be improved. Most of the time very small neuropils are listed with a distance of

nearly zero. The reason for this is that they often contain no staining. Therefore the results

are mathematically correct and it is sometimes good to know that in both neuropils there is no

staining. However, it is desirable that the results make sense in a semantic way. The user should

have the possibility to decide that neuropils with no or less staining should not be listed. It is

context-sensitive where the threshold should be set. Additionally the length of the feature vector

has to be taken into account because comparing two vectors with few elements leads to a smaller

distance than vectors with many elements.

Using PCA on gray values extracted from MIPs is only one out of several ways to achieve the

goal of finding similar images. It would be possible to use PCA on 3D data like Russ et al. [76]

described it for the use of face recognition. This approach requires more memory to hold the

data needed to compute PCA and also the computation itself is more expensive.

Testing other feature descriptors like Gabor filter, Frangi filter, Sato filter or tensor structures is

worth a try. The outcomes can then be reduced by PCA again if the feature vectors are very

long.

Random projection [18] could be used as an alternative to PCA. Both are linear mapping meth-

ods, but random projection is computationally less expensive. The high dimensional data are

projected into a lower dimensional space using a random matrix R consisting of columns with

unit length. The elements of R can be chosen randomly and should be uniform and independent.

More details, examples and a comparison between PCA and random projection can be found in

the work of Bingham and Mannila [8] and in Dasgupta’s work [19]. It would take again some

time to evaluate the results to find out the optimal dimension of R.

The approach developed in the course of this thesis has the big disadvantage that very small

neuropils have only a few gray values as input for PCA after downsampling the MIPs. There-

fore structures get lost and results are fuzzy because the feature vector contains only very few

elements to describe this neuropil. One possibility to preserve the structure is to cut out the

neuropil according to its bounding box from the original MIP and downscale it afterwards to a

specified size. The drawback of this approach is that PCA takes very long because all neuropils

consist of many gray values and therefore have a big covariance matrix. Additionally the feature

vector length increases dramatically which raises the time to compare two images.
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A further development is to do the image retrieval based on semantic knowledge. For this a finer

subdivision than neuropils, for example three-dimensional blocks, is necessary. A suitable block

size has to be determined. A classification of the staining within each block should be done with

an appropriate feature descriptor. Then a biologist can search for example for images with a

projection or cell body at a specific position.

The information about image similarity can be used to build clusters. For example, the aver-

age distance between lines can be computed and clustered. This requires the extraction of the

similarity information of the images belonging to one line compared to the images belonging

to another line. These values have to be averaged by computing for example the mean or the

median.
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