
1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

Run Watchers: Automatic Simulation-Based Decision Support in
Flood Management

Artem Konev, Jürgen Waser, Bernhard Sadransky, Daniel Cornel, Rui A.P. Perdigão,
Zsolt Horváth, and M. Eduard Gröller

00:00 Breach

02:30 Identified Buildings to Protect

00:23 Barrier

00:36 Construction Time Exceededded

Fig. 1. (Left) Breach scenario in an urban area imposes severe time limitations. Based on flood simulations, Run Watchers automat-
ically compute whether a response plan exists that protects the important infrastructure and, possibly, other buildings. Automatically
generated visualization justifies the computed action plans. (Right) During the computation, Run Watchers generate large decision
trees. The decision cluster visualization allows the user to navigate the whole set of decisions.

Abstract— In this paper, we introduce a simulation-based approach to design protection plans for flood events. Existing solutions
require a lot of computation time for an exhaustive search, or demand for a time-consuming expert supervision and steering. We
present a faster alternative based on the automated control of multiple parallel simulation runs. Run Watchers are dedicated system
components authorized to monitor simulation runs, terminate them, and start new runs originating from existing ones according to
domain-specific rules. This approach allows for a more efficient traversal of the search space and overall performance improvements
due to a re-use of simulated states and early termination of failed runs. In the course of search, Run Watchers generate large and
complex decision trees. We visualize the entire set of decisions made by Run Watchers using interactive, clustered timelines. In
addition, we present visualizations to explain the resulting response plans. Run Watchers automatically generate storyboards to
convey plan details and to justify the underlying decisions, including those which leave particular buildings unprotected. We evaluate
our solution with domain experts.

Index Terms—Disaster management, simulation control, decision making, visual evidence, storytelling.

1 INTRODUCTION

Unpredictable aspects of natural disasters can have a devastating effect
on the safety of population and infrastructure. In flood management,
an unexpected failure of standard protection measures causes a situa-
tion where decisions should be made and executed within a very short
time frame. Thus, it is important to have a well-prepared response plan
that provides maximal protection in view of severe time limitations.

In Cologne, the primary flood protection line is based on the flood
walls along the Rhine river. Our collaboration partners from the Flood

• Artem Konev is with VRVis Vienna. E-mail: konev@vrvis.at.
• Jürgen Waser is with VRVis Vienna. E-mail: jwaser@vrvis.at.
• Bernhard Sadransky is with VRVis Vienna. E-mail: sadransky@vrvis.at.
• Daniel Cornel is with VRVis Vienna. E-mail: cornel@vrvis.at.
• Rui A.P. Perdigão is with TU Vienna. E-mail:

perdigao@hydro.tuwien.ac.at.
• Zsolt Horváth is with TU Vienna. E-mail: zhorvath@vrvis.at.
• M. Eduard Gröller is with TU Vienna. E-mail: groeller@cg.tuwien.ac.at.

Manuscript received 31 March 2014; accepted 1 August 2014; posted online
13 October 2014; mailed on 4 October 2014.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Protection Center are concerned with scenarios involving a breach in
the flood walls. In such cases, they would like to know whether or not
(and how) it is possible to quickly construct from mobile water barriers
a secondary protection line that covers as large an area as possible and
guarantees the safety of what they consider the important infrastruc-
ture. If no protection line can be built, the flood managers would like
to have an object protection plan. The goal of this paper is to provide
flood managers with an automated decision support tool that can gen-
erate infrastructure protection plans with maximum possible coverage
in the light of time and resource limitations. The tool should be able to
illustrate the decision making process and justify the decisions made
at every step. Justification is important for the verification of decisions
and explaining them to the authorities or stakeholders.

In order to find a good protection plan, one needs to simulate mul-
tiple barrier locations and type variations. This leads to a large search
space that can grow exponentially with the number of barrier locations
involved. One approach is to manually steer the search [32]. However,
this is tedious and requires a lot of user interaction. Alternatively,
one can use exhaustive sampling of the search space with multidimen-
sional ensembles of simulation runs [33]. Similar to other brute-force
approaches, this can take weeks of computation time for real-world
problems. In this paper, we suggest an approach that can be seen as
filling the gap between the above two strategies, i.e., automated search
space sampling guided by domain-specific rules. We introduce Run

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

Watchers, which are program agents capable of managing multiple
parallel simulation runs. Run Watchers can monitor the ongoing sim-
ulations of protection plans, terminate those where the protection fails,
and create new, more “promising” ones, thus performing an efficient
traversal of the search space and saving computation time.

Run Watchers’ activities can be represented as decision trees. How-
ever, for real-world scenarios, such trees can be large and have a com-
plex structure. Scalable visual representations are needed to facilitate
navigation through Run Watchers’ decisions and resulting response
plans (Figure 1, right). To handle this issue, Run Watchers create sto-
ryboard visualizations of the automated decision making process, dis-
playing the reasons for particular decisions and emphasizing the actual
response plan. Moreover, it is possible to generate and present the ra-
tionale for hard decisions of not protecting particular objects. This is
necessary if the protection of some less important buildings is compro-
mised in favor of more important ones. The storyboards are interactive
and provide multiple levels-of-detail (Figure 1, left).

The case study addressed in this paper deals with a breach in flood
protection walls at the time of a high water. If a breach happens, the
water starts flooding the area immediately, giving the city services no
time to protect the nearby neighborhood. However, protection is still
possible for more distant areas. In our case, we attempt to protect the
area where the flood wave arrives after some guaranteed response time,
i.e., the maximum time needed to detect a breach, alert the emergency
services, and start implementing a response plan. The domain experts
from Cologne pose the following questions:

Q1: For a given breach incident, does a secondary protection line exist
that can be constructed in time? If multiple protection lines are feasi-
ble, which one is the best? What is the detailed construction plan?
Q2: If no such line exists, is there an object protection that can be
done in time? What is the construction plan for it?
Q3: What is the rationale for a particular plan? Why is it not possible
to protect some of the buildings in the area?

The solution presented in this paper provides domain experts with
the answers to the above questions. Little user interaction is required,
since the decision making and generation of corresponding visualiza-
tions and reports are performed automatically by Run Watchers. We
summarize our contributions as follows:

• Automated rule-based simulation control for fast and efficient
parameter space traversal

• Scalable visualization of multiple simulation runs using con-
densed decision clusters

• Automatically generated storyboards for displaying derived re-
sponse plans and explaining the underlying decision making pro-
cess

• Workflow speed-up for setting up the problem and finding a so-
lution

2 RELATED WORK

Multidimensional parameter spaces require elaborated techniques for
their exploration. With exhaustive approaches, distributions of param-
eter values are sampled. Booshehrian et al. [5] use ensemble simu-
lations to support fisheries management. Waser et al. [33] compute a
pool of flood response plans for multiple incident scenarios. Torsney-
Weir et al. [31] sparsely sample the parameter space of an image seg-
mentation algorithm to guide the user through a tuning cycle. Bruck-
ner and Möller [8] randomly pick parameter sets for fluid simulation
to facilitate the result-driven design of visual effects.

In a simulation-based search, high computational costs per sam-
ple constrain the exhaustive exploration. Manual exploration relies on
the user’s expertise in picking better samples. Effective monitoring
and control of running simulations have been relevant issues in com-
putational steering for over a decade [23]. World Lines [32] control
multiple parallel simulation runs and allow for various types of ag-
gregative and comparative analysis [25]. Matković et al. [19] use com-
putational steering to speed up the prototyping of automotive system

(a=3, b=4) t1t2 t4 t3

t5t6

Time steps

Terminated runs

Good run

Simulation runs
= decisions

(a=3, b=2)

(a=5, b=1)

(a=7, b=1)

Fig. 2. Multiple simulations running in parallel are managed. Simula-
tion runs originate from other simulation runs, sharing simulation states.
Some runs are terminated in the course of search, others proceed until
the end. The surviving ones are considered successful.

components. Santos et al. [27] assist the user in identifying and ana-
lyzing characteristic isosurfaces in turbulence combustion simulations.
Borrmann et al. [6] create a collaborative steering environment for de-
signing ventilation and illumination. Eickermann et al. describe a
visualization and steering extension to supercomputer interfaces [10].

Computational steering requires a lot of user attention. In this con-
text, systems providing automated simulation monitoring and con-
trol are of interest. Kapadia et al. [14] automatically compute time-
varying metrics to identify unwanted patterns in multi-agent simula-
tions. Swan II et al. [29] assist the user with parameter tuning to
produce desired behaviors in simulations of microwaves penetrating
missile bodies. A variety of works describe systems that automat-
ically vary intrinsic simulation parameters such as mesh resolution
and time step, or even the application itself [3, 9, 15, 21, 26]. Most
of them manipulate a single simulation run. The co-simulation ap-
proach operates the simulations of multiple subsystems of the target
system [11, 24, 36]. Yau et al. [35] automatically manage parallel
simulations for a helium model validation study using the SimX sys-
tem. They utilize application-specific knowledge to re-use simulation
results and to improve the performance. To our knowledge, no de-
cision support system exists for flood management that automatically
controls parallel simulations, trying multiple protection measures in
an efficient way.

Visual storytelling is an acknowledged way to present stories
through interactive visualizations. Lundblad and Jern [17] utilize vi-
sual storytelling techniques to explain variations of economic perfor-
mance and social indicators within and between countries. Jern et
al. [13] embed semi-guided interactive visualizations into standard
HTML documents, thus letting the users analyze data and save the in-
sights for sharing. Lu and Shen [16] generate interactive storyboards
from sample volume renderings and descriptive geometric primitives
gained through a data analysis process. Wohlfart and Hauser [34] sug-
gest that, along with comprehensibility of a visualization message,
credibility should be addressed as well. They present an approach
to volume visualization that delivers not only the results, but also the
creation process.

Providing interactive visualizations gives users freedom to explore,
yet lessens the control that visualization designers have over the actual
course of the presented story. Ma et al. [18] suggest that a compro-
mise might be to start with displaying the most salient features, and
then to allow the user to explore the rest of the data. Using levels-of-
detail in interactive visualizations can handle this. Matković et al. [20]
introduce levels-of-detail in virtual instruments for process monitor-
ing. Tominski et al. [30] visualize multiple time-dependent attributes
on maps and hide information to balance the amount of data displayed.
Balzer and Deussen [4] employ levels-of-detail techniques for display-
ing complex clustered graph layouts in 2D and 3D.

3 AUTOMATED DECISION MAKING WITH RUN WATCHERS

In this section, we present Run Watchers, the fundamental components
of our solution realizing an automated decision making. First, we in-
troduce the basic concepts and functions of Run Watchers. Further on,

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

Protection Line

Object Protection
Perimeter
Segments

Fig. 3. Problem setup. Example protection line and object protection
are shown. A perimeter is a closed line around one or more important
buildings. Perimeter segments are possible locations for water barriers.
A set of barriers forms a protection line. A smallest possible protection
line corresponds to an object protection.

we explain the details of the approach and describe the rules defining
the Run Watchers’ behavior.

3.1 Concepts and Functionality
Every simulation run is essentially a sequence of time steps. Run
Watchers control multiple simulations that run in parallel, having ac-
cess to all simulation data at every time step. They have authorities
to terminate simulation runs or create new ones originating from any
time step of any existing run by modifying simulation parameters. The
mechanism of originating simulations from other simulations allows
for re-use of simulation states and thus saves computation time. At
every simulated time step, Run Watchers inspect the data and make
decisions whether to leave the simulation running or to terminate it,
and whether a new simulation run should be initiated. If a new simu-
lation run is needed, Run Watchers decide how the parameters should
be changed, find the proper simulation run and time step to originate
from, and launch the new simulation.

When creating a new simulation originating from an existing one,
Run Watchers can terminate the original simulation run or let it con-
tinue. Generally, this depends on the problem specifics. In our case,
Run Watchers operate in two modes. In the normal mode, the original
simulation is kept running. In the greedy mode, the original simulation
is terminated as the new run is started. This results in having only one
simulation run at a time and leads to a much faster search. However,
this approach also cuts off possible solutions. In the end, the greedy
mode delivers at most one successful solution.

Simulation runs can be visually represented by horizontally ori-
ented timelines, as in Figure 2. In the demonstrated example, we as-
sume that simulations are parametrized by two quantities, a and b. The
first simulation run starts with a= 3 and b= 4. The Run Watcher mon-
itors every time step of the simulation and at the time step t1 detects
a reason to start a new simulation with b = 2. It tracks the simulation
back and finds the proper time step t2 to originate the new simulation
run. The two simulations for (3,4) and (3,2) are now running in paral-
lel. The simulation data until the time step t2 is re-used for both runs.
Subsequently, at the time step t3 of the run (3,4), the Run Watcher
detects a reason to create a simulation for a = 5 and b = 1. The proper
time step for this is t4, and the run (5,1) is added to the other two. At
the time step t5 of the run (5,1), the Run Watcher detects a reason for
termination, as well as a reason to launch a new run (7,1) originat-
ing from t6. Eventually, the Run Watcher terminates (3,2) and (3,4).
Only the run (7,1) survives until the end, which we consider a success.
The successful scenario can be extracted from the corresponding deci-
sion history. This is: use a = 3 and b = 4 until the time t4, then change
a to 5 and b to 1, and finally, at time t6, set a equal to 7.

Although Run Watchers require no user supervision of the decision
making process, the decision makers may want to try some specific
decisions, too. Our solution provides this functionality, allowing the

a b

Fig. 4. Initial perimeter derivation. (a) Important buildings are labeled.
The yellow area marks the flood extent after the guaranteed response
time, the blue area shows the region flooded at the end of the event
duration. From the four important buildings, the red one is classified as
unprotectable, the green one is safe, the orange ones can and need to
be protected. The green line shows the initial perimeter derived with an
importance radius of 50 m around the orange buildings. (b) An impor-
tance radius of 80 m leads to a larger initial perimeter. The violet line
shows the concave hull used for deriving the initial perimeter.

user to manually initiate new decisions at any time step of any simula-
tion run and thus to answer emerging “what-if” questions. Summing
up these two aspects, we provide a highly automated decision sup-
port tool, where domain experts are involved in the problem setup and
optional computational steering. The actual plan execution and coor-
dination is, however, solely the decision makers’ task.

3.2 Perimeters

The search of a good protection line is based on the notion of perime-
ters. We define a perimeter as a polyline whose vertices correspond
to buildings and whose segments are potential candidates for barrier
placement. Since the flood water can enter the region of interest from
any side, perimeters should be closed. Additionally, we assume that
perimeters contain no self-intersections. In the course of search, Run
Watchers place barriers at some perimeter segments according to sim-
ulation results, thus obtaining a candidate protection line.

Normally, a perimeter is meant to enclose a set of buildings. Object
protection corresponds to a special case of a perimeter that encloses
just one building. This can be seen as the “last chance” to protect
an important infrastructure object in cases when no larger perimeters
succeeded (Figure 3).

3.3 Initial Perimeter

The search starts with an initial perimeter. The initial perimeter is de-
rived automatically from the user-defined parameters. These param-
eters are: guaranteed response time, event duration, set of important
buildings, and a number specifying the radius of a circular area that the
flood managers wish to protect around each important building (impor-
tance radius). To compute the initial perimeter, Run Watchers initiate a
first, single simulation of the breach event with no barriers placed. The
flood is simulated for the specified event duration. The flood wave-
fronts at the end of the guaranteed response time (initial wavefront)
and, subsequently, at the end of the emergency event duration (final
wavefront) are used to classify the important buildings picked by the
domain experts. We assume that the area within the initial wavefront
cannot be protected, and therefore leave all important infrastructure
in this area out of consideration. The important buildings outside the
final wavefront are considered safe, hence no protection for them is
needed. Only the important buildings in the area between the two
wavefronts have to be considered. From now on, when referring to
important buildings, we mean these buildings only.

For circular areas of the given radius around all important buildings,
the common convex hull is computed. It is then intersected with the re-
gion between the initial and final wavefronts (Figure 4). Finally, each
circular area that is partly outside the final wavefront is added. For
all the buildings in the resulting region, a perimeter should be com-
puted. This computation involves a concave hull subroutine based on

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

Disabled segment
(water touches from inside)

Water at
segment

New run initiated

Same run continues

(only if greedy = false)

Barrier
created

a

b

c

Fig. 5. (a) When water is detected at a perimeter segment, a new run is
initiated by placing a barrier at that segment (b). In the greedy mode, the
original run is terminated. In the normal mode, the original run continues
without a barrier. Subsequently, the flowing water can touch other seg-
ments from inside the perimeter, and they should be disabled to prevent
placing barriers there (c).

the algorithm presented by Moreira and Santos [22] with the parame-
ter value k = 7. Note that the breach and the initial perimeter are the
first two Run Watchers’ decisions for every scenario.

3.4 Barrier Placement
At every time step of every simulation run, Run Watchers sample water
depths at all important buildings and all present perimeter segments.
If water is detected at an important building (water depth > 0), the
corresponding simulation run is terminated. Alternatively, if water is
encountered at a perimeter segment, Run Watchers make a decision to
place a barrier at this segment. A corresponding simulation run should
be created originating from the current one. Run Watchers track the
current simulation back to find the latest time step when no water was
present at the segment. The new simulation run with a barrier placed
at the segment will originate from that time step.

If Run Watchers operate in the greedy mode, the original simulation
is terminated as the new simulation starts. However, in the normal
mode, it keeps running, because a barrier at the considered segment
may not be actually needed for protecting the important infrastructure.
This can lead to a situation where water appears at a perimeter segment
from inside the perimeter, as illustrated in Figure 5. In such cases, no
action is taken, although this fact is recorded as a reason for not placing
a barrier.

3.5 Barrier Types
According to the needs of the Flood Protection Center, we con-
sider barriers of four different types. These types are sandbags,
AQUARIWA [2], and AquaBarrier [1] plates installed either horizon-
tally or vertically. They differ in a variety of properties. One group
of properties defines the capabilities of barrier types. It includes max-
imum water depth to handle and maximum terrain slope for barrier
installation. Another group of properties affects construction times.
This group includes loading and unloading times, assembly time, and
number of units per cargo. Table 1 shows the characteristics from the
first group. For the rest of the barrier type characteristics we refer to
related work [33].

Run Watchers decide on the barrier types to use by considering
the maximum water depth and maximum slopes at the corresponding
perimeter segment. The applicability of each barrier type is checked in
the order listed in Table 1. The first barrier type suitable for the given
slopes and water depth is tried when the decision to place a barrier
is made. If the newly created simulation run reveals that the created
barrier is eventually overtopped, the run is terminated. A new run is

a b

c d

Fig. 6. Perimeter shrinking and splitting. If barriers are overtopped or
cannot be built in time, Run Watchers remove the respective perime-
ter segments and consequently shrink the area to protect. (a) Water
touches the yellow segments. The depth is too big, and no barrier type
can be applied. (b) The perimeter is shrunk by removing the faulty seg-
ments. (c) One more segment has to be removed due to overly big
water depths. (d) If the important buildings (yellow) cannot be enclosed
by the same perimeter anymore, the perimeter is split. Here, the left
perimeter degrades to an object protection, while the right one still of-
fers a protection line for a set of buildings.

created instead with the next applicable barrier type from the list. This
corresponds to a barrier change decision. Alternatively, if the corre-
sponding barrier cannot be constructed in time, the run is terminated,
but there is no need to try the next barrier type in the list. The ordering
of the barrier types not only corresponds to increasing water depths,
but also to increasing construction times. The construction times com-
putation is analogous to what is described in related work [33]. Gen-
erally, if no barrier type from the list can be applied due to time limi-
tations or high water levels, the faulty segment should be removed in a
newly created simulation run. The new, smaller perimeter is obtained
by shrinking the current perimeter.

Barrier Type Water Depth Slope (t) Slope (n)
Aquabarrier (h) 0.65 m 20 % 20 %
AQUARIWA 0.8 m 20 % 10 %

Aquabarrier (v) 0.95 m 20 % 20 %
Sandbags 1.2 m - -

Table 1. Attributes of barrier types: Maximum water level; Maximum
slope (tangential to the barrier line); Maximum slope (normal to the bar-
rier line). Aquabarrier plates can be installed either horizontally (h) or
vertically (v). Sandbags are usable for any terrain slope

3.6 Perimeter Shrinking
Perimeter shrinking is done by removing one or more segments of the
given perimeter. The concave hull subroutine is applied to obtain the
new, smaller perimeter. Figure 6 demonstrates an example of perime-
ter shrinking. Notice that, after a series of segment removals, a single
perimeter may split into two or more components. According to the
domain experts, it only makes sense to build a protection line if it
protects at least one important building. Our algorithm takes care of
this by discarding the perimeters containing no important buildings.
Additionally, if some important building gets exposed to flood after a
segment removal, an object protection is tried for it. Should the object
protection eventually fail, we consider the building as impossible to
protect. The complete list of causes, decisions, and rules connecting
them is given in Figure 7.

3.7 Avoiding Duplicates
In the normal mode, uncoordinated creation of multiple parallel sim-
ulations may lead to duplicate barrier configurations in different sce-

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

Identified Buildings to Protect

Breach

Initial Perimeter

Terminate only

Water Detected

Perimeter Shrunk

Barrier

Barrier Type ChangedConstruction Time Exceeded

Line Segment Disabled

Overtopping

Water Detected from Inside

Critical Water Depth Detected

Important Building Flooded

Fig. 7. Run Watcher rules. The left column lists causes that Run
Watcher can detect, the right column shows decisions that Run Watch-
ers can make. Arrows indicate the connection between causes and re-
spective decisions. For some causes, multiple decisions can be taken.
In this case, a solid arrow corresponds to the preferred decision. Red
arrows indicate subsequent termination of the run where the cause has
been detected. In case of a green arrow, the original run continues.

narios. If a barrier is placed at a perimeter segment due to a water
detection, the original run continues without a barrier. At subsequent
time steps, water at this segment will be detected again, and further at-
tempts of Run Watchers to create the same barrier should be blocked.
Moreover, creation of identical perimeters should be avoided as well.
To handle these issues, Run Watchers analyze the present hierarchy of
decisions before creating new simulation runs.

4 AUTOMATED VISUALIZATION AND REPORTING

When searching for successful response plans, Run Watchers make
multiple decisions to operate simulation runs. The corresponding de-
cision trees are large and complex. Visualizations are needed to under-
stand causes and effects of the decision making process and to explain
them to stakeholders. A fragment of a decision tree in Figure 8 is a
generic illustration of Run Watchers’ activities. A cause requires Run
Watchers to make a decision. Multiple decisions are possible as a re-
action to the cause. Any decision eventually leads to another cause.

Decision

Cause

Fig. 8. Decision tree. Decisions (circles) have a unique cause but can
have multiple child causes (diamonds). For navigating the tree starting
with the highlighted element, the elements displayed in solid are most
important, since they are the direct neighbors.

From the perspective of our solution, a decision is coupled with a
simulation run consisting of a sequence of time steps. A cause corre-
sponds to a time step satisfying some conditions. In this setup, a vast
number of time steps in multiple simulation runs should be traversed
to extract relevant causes and decisions. Run Watchers automatically
extract causes and decisions relevant to the scenario of interest and
generate visualizations and reports to convey them to the user.

4.1 Condensed Decision Clusters
In the context of our solution, time-dependent visualization of the au-
tomated decision making process poses several challenges related to
scalability. Multiple alternative runs may simulate the same sequence
of time steps, hence a vertical stacking of simulation timelines is re-
quired to resolve spatial collisions. In case of too many such runs in

a

b

Perimeter

Line Segment Disabled

Barrier

Selected

Ranking

Density of
runs

Time

Survivors

Fig. 9. Condensed Decision Clusters. (a) Plain timelines are not scal-
able, hard to interact with, and do not convey what has been decided by
Run Watchers. Good solutions are the only few survivors on the right,
and lots of white space is present there. (b) Decisions are grouped into
clusters. Decision clusters rescale time steps of surviving runs vertically.
Successful runs are colored according to performance. The ranking bar
on the right facilitates the selection of better scenarios.

a stack, thinner timelines are needed for displaying them all. How-
ever, for thin timelines, no performance visualization or interaction is
possible. Moreover, since the number of simulation runs may vary
between time steps, multiple white spaces occur among the timelines
(Figure 9a). This becomes even more prominent at the right end of
the view, where the few “survivors” can be found. Note that exactly
these “survivors” are of interest, since a response plan is considered
successful if and only if it managed to protect the important infras-
tructure through the whole event duration. Finally, stacked timelines
as in Figure 9a give no idea of the number and types of decisions made
in the course of the search.

We propose a visualization of decisions that solves the above issues.
For our application, we identify three classes of decisions: barrier
decisions, perimeter decisions, and line segment disabling decisions.
The first class contains all decisions to place a barrier (of the first appli-
cable type) or to change a barrier type. The second class contains the
initial perimeter decision and all decisions to shrink a perimeter. Fi-
nally, the third type contains decisions disabling a perimeter segment
in cases when water touches this segment from inside the perimeter.
Keeping in mind the tight coupling between decisions and simulation
runs, we can view any scenario as a sequence of decisions made by
Run Watchers. We cluster these decisions according to the class they
belong to. In the view, each cluster occupies a rectangular area called
a cluster box (Figure 9b). Decisions of each scenario are distributed
over the clusters. In the (horizontal) clusters, they are stacked ver-
tically and aligned relative to the common time axis. At every time
step, we rescale the timelines in the vertical direction to always fully
occupy the vertical space within the cluster boxes. Color bars above
the clusters show the relative densities of decisions in the clusters for
each time step. Note that the number of clusters can be arbitrary. It is
up to the user to decide which decision classes should be distinguished.

The described visualization has important advantages. First and
foremost, the successful scenarios are easier to find and to interact
with. The vast majority of all simulation runs are terminated early,
and there are normally only few timelines present on the right edge
of decision clusters. They are assigned more display space and thus
are easy to select. Performance visualization with a color over these
timelines is clearly visible. An interactive ranking bar to the right of
the decision clusters allows the user to quickly pick the scenario cor-
responding to the best response plan. If selected, a scenario is high-
lighted through the decision clusters (Figure 9b). Second, the better of
the failed solutions are also easy to find and select, since they are close
to the successful ones. These solutions can be useful for explanations

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

Perimeter

Barrier Barrier Barrier Barrier

Barrier Barrier

a

c

b

Fig. 10. Different layouts for the storyboard view. (a) Action plan. Only
barrier decisions are shown that belong to the actual response plan. (b)
Decisions justification. Shows all decisions relevant to the active sce-
nario in the top row, and associated causes in the bottom row. Parts
of the action plan are highlighted. (c) Hard decisions. Perimeters that
could have potentially protected a building of interest are shown on the
left. Next to it the causes are given demonstrating why particular solu-
tions based on this perimeter could not be applied.

and comparisons. Third, since the clusters show only the computed
time steps, the user can observe the real-time progress of the simu-
lation and see how many promising scenarios are being simulated at
any time by looking at the colors corresponding to the ongoing runs.
Finally, the user can comprehend the number of decisions of different
types from the densities in the clusters.

4.2 Storyboards
Run Watchers are capable of generating visualizations and reports of
their decision making activities. Three target groups are taken into
account, for which the information is provided from different perspec-
tives (Figure 10). In the first mode, the detailed action plan is extracted
from the scenario. This mode targets response personnel working on-
site. Exact material amounts and timings are presented along with
barrier locations and types. The second mode is meant to be used by
flood managers. In this mode, Run Watchers present the whole set of
causes and decisions that led to a particular scenario. This is needed
when flood managers justify their decisions post factum to the admin-
istration. The third mode is useful for explaining hard decisions to
stakeholders. Run Watchers provide a set of reasons for not protecting
particular buildings in the region.

Action plan In the action plan mode, Run Watchers generate a
storyboard showing the sequence of actions to be taken by the re-
sponse personnel. An action plan for a selected scenario is presented
by a horizontally oriented sequence of story blocks, where the left-to-
right direction corresponds to the chronological order (Figure 10). For
our current application, each story block represents a barrier place-
ment. A story block displays a thumbnail image with a 3D view of
the actual barrier location. A toggle button in the block header al-
lows for switching perspectives. Three perspectives are available for
each action, they range from an overview perspective showing the sur-
roundings to a close-up perspective where the details of the barrier
placement can be seen. The relevant barrier is highlighted in the 3D
view. The thumbnail image is linked to the main view, where the user
can interactively navigate the 3D rendering. Another button enables
the detailed textual report on the action. The report is automatically
generated by Run Watchers and includes the barrier type, construction
duration, barrier length, and GPS coordinates of the barrier. Addition-
ally, every story block of the action plan has a label showing the time
until which the action should be completed. For further details like
local barrier height variations, the user can consult the 3D view.

Decisions justification In this mode, the storyboard shows the
chronological sequence of causes and decisions that led to a selected
scenario. Story blocks in this view are aligned in two rows. The upper

row corresponds to decisions made by Run Watchers, and the lower
row contains causes for those decisions (Figure 11). The causes are
aligned with the gaps between decisions, thus representing the cause-
and-effect relation. Decisions belonging to the actual action plan are
highlighted in yellow, and causes that led to a simulation run termi-
nation are marked in red. Toggled textual reports display information
relevant to the given cause or decision, e.g., the water depth that caused
a barrier overtopping or perimeter segments removed while shrinking.
Thumbnail views highlight the actual details.

Hard decisions After a catastrophic event, flood managers may
have to explain the implemented response plan from a different per-
spective. Stakeholders might want to know why their building was
not protected. In this case, flood managers should be able to convey
the underlying tradeoff between protecting the important infrastructure
and protecting that building. Generating a strict proof of the inability
to protect a building would be an extremely complex problem. How-
ever, Run Watchers can aid the user by providing a set of examples
of what would have happened if the building of interest had been pro-
tected. In the corresponding view, example perimeters are shown that
could protect the building of interest. For every such perimeter, Run
Watchers traverse the related decisions, pick the reasons why all re-
sponse plans based on this perimeter failed, and present them as a list
of story blocks. This approach can be seen as applying a certain type
of a query to the set of generated results, where the search criterion is
the building of interest being protected.

4.3 Linked Navigation through Decisions and Causes
Here we describe a mechanism for navigating through the complete
decision tree. It is based on the selection of causes and decisions
in the condensed decision clusters and involves multiple, coordinated
views. If the user clicks on any time step in the decision clusters, a
corresponding scenario is selected and highlighted (Figure 12). The
storyboard view presents the scenario, and the main 3D view shows a
perspective for the selected time step. In addition, the decision clus-
ters display the local neighborhood in the decision tree, mentioned in
Figure 8. The current decision is shown by a thick dot, as well as the
previous decision. The cause for the current decision is displayed by
a diamond and visually related to it by an arrowed bar. In addition,
the next cause in the selected scenario is shown by another diamond.
Number labels specify the absolute ordering of causes and decisions
in the scenario. Clicking on a cause diamond displays alternative de-
cisions for this cause and shows the corresponding story box in the
storyboard view and a 3D rendering in the main view. Selecting a de-
cision is equivalent to selecting the alternative scenario where this de-
cision is implemented, so the storyboard is updated correspondingly.
The control elements described above are necessary and sufficient for
navigating the whole decision tree. Additionally, for a selected sce-
nario, navigation back and forth through the related decision chain is
possible by means of the slider control.

5 IMPLEMENTATION

The parallel data-flow architecture implemented in our solution makes
it possible to realize the concept of Run Watchers. Our system features
two types of parallelism. On the one hand, modules of different types
can be executed in parallel, e.g., those providing simulation parame-
ters and boundary conditions; those carrying out the simulation proper;
or those analyzing the simulation data. On the other hand, multiple
scenarios can be simulated in parallel, taking into account their hier-
archical dependencies. In this setup, a Run Watcher itself is a module
authorized to control other modules. The data-flow is asynchronous,
meaning that the Run Watcher can create new scenarios while others
are being simulated and analyzed in parallel. We use a GPU-based
flood simulation based on the shallow-water method [7]. No terrain
roughness is taken into account in the numeric scheme, which corre-
sponds to the absence of friction. This can be seen as the worst-case
scenario where the water spreads the fastest.

A crucial part of our approach is the perimeter segment removal.
Multiple segments may need to be removed at once if the correspond-
ing barriers fail at the same time step. Let P be a perimeter obtained

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

Detected water at a perimeter segment

Water depth 0.47m

GPS from (50.031, 6.958)
GPS to (50.032, 6.941)

a

b

c

e

d

00:10 Overtopping 00:20 Water Detected

00:17 Barrier00:17 Protection Line

Fig. 11. Storyboard for decisions justification. (a) A barrier is overtopped causing (b) a perimeter shrinking. (c) Water is detected at a segment
(yellow). (d) Details about the local water depth and the segment position are reported. (e) The detected water causes the creation of a barrier.

from the set of vertices V of the “footprint” polygons, and let p be
a segment to remove. Assuming that v1 and v2 are the start and end
points of p, the new perimeter P′ is obtained from the set of vertices
V ′ =V/{v1,v2}. The algorithm takes care that the new perimeter will
not have a segment passing through the same pair of buildings as that
of v1 and v2. Several other conditions and edge cases are accounted
for, which we omit for brevity. The approach can be generalized to
the removal of multiple segments. As a result of a segment removal, a
perimeter is obtained that encloses a proper subset of the original set of
buildings. In certain cases, a perimeter is split into multiple ones after
a series of segment removals. This is naturally achieved if the result of
the concave hull algorithm no longer encloses all the important build-
ings at hand. In this case, the algorithm runs again for the remaining
buildings. Our algorithm drops the perimeters containing no impor-
tant buildings. If, after a segment removal, some important building
is left outside the perimeter, an individual protection is assigned to it,
surrounding this building only. Should the individual perimeter even-
tually fail, we consider the building as unprotectable.

6 CASE STUDY

In the case study, we considered a 14 m wide breach in the protec-
tion walls in the urban area of Cologne. The in-flow hydrograph at
the breach was set to a constant hydraulic discharge of 40 m3/s and a
constant water level of 11.9 m. Four important objects were identified
in the surrounding region, namely, a kindergarten, two schools, and
a subway entrance. Around each important building, a radius of 200
m was picked for the initial perimeter derivation. The guaranteed re-
sponse time was chosen to be 20 min, and the whole event duration to
be 2.5 hrs. Two resource depots were picked in a distance of approxi-
mately 0.5 km from the region of interest. We assumed one truck per
depot and one person for every two barrier meters to construct.

In order to save simulation time in the normal mode, we adopted
a “non-greediness” setting. That is, for the value k of the non-
greediness, each perimeter is allowed to have at most k simulation runs
where some barrier is not placed despite the detected water. This limits
the number of alternatives tried. The problem of protecting the impor-
tant buildings was solved on a single desktop PC (Intel Core i7-3770,
16 GB RAM, GeForce GTX 680) with a simulation grid consisting of
700×600 cells of 3 m size. We made two attempts: one in the greedy

a b

Selected

Selected
Protection Line Protection Line

BarrierBarrier

3

7

5 5

6

4

Fig. 12. Navigating a decision tree. The complete decision tree can
be navigated within decision clusters. The clusters display the neigh-
borhood of the selected cause or decision (see also Figure 8). Num-
ber labels are shown according to the path through the decision tree
leading to the selected plan. The navigation step (a) is followed by the
navigation step (b). Linked views (storyboard, main 3D view) display
information about the selected element.

mode, and the other one with a non-greediness k = 1. The greedy at-
tempt delivered the successful response plan in approximately 20 min,
after trying 38 decisions overall. The normal version took approxi-
mately 45 min to solve the problem. The result was 6 response plans
with slightly varying performances and 415 decisions tried during the
search. A simulation run through the whole event duration took ap-
proximately 5 min. Therefore, an exhaustive exploration of 415 de-
cisions would already take 415 runs×5 min ≈ 34.5 hrs of simulation
with one PC. However, a successful response plan is likely to consist
not of a single decision, but of some combinations of decisions. Ex-
tending the exhaustive search to combinations would greatly increase
the required computation time.

Figure 13 shows parts of the storyboard presenting the reasoning
chain for the normal case. The first decision (a) corresponds to the
breach. The yellow frame indicates that this story box is coordinated
with the other views. Based on the breach simulation, the important

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

a e

b d

f

g

h

i

j

c

00:00 Breach 00:19 Initial Protection Line

02:30 Identified Buildings to Protect 00:19 Water Detected

00:21 Barrier 00:19 Protection Line 01:04 Barrier

00:22 Construction Time Exceeded 01:04 Water Detected

00:19 Barrier

Fig. 13. Storyboard displaying the reasoning for the case study. The detailed description can be found in the text.

buildings are classified (b). The subway entrance cannot be protected
(red), one of the two schools does not require protection (green). The
kindergarten (orange, left) and the other school need protection. The
system derives the initial region (violet) using the initial wavefront
(yellow), the final wavefront (blue), and the important buildings to
be protected. The decision is made (c) for the initial perimeter (green
line). When water is detected (d) at one of the segments, highlighted in
yellow, Run Watchers place there a barrier (e) of horizontally oriented
Aquabarrier plates. The next shown episode happens later in time.
Sandbags are tried at one of the segments of the modified perimeter (f).
This barrier fails due to the construction time (g), hence the perimeter
is again shrunk (h). Further on, as water is detected at a perimeter
segment (i), Run Watchers decide to use Aquabarrier there (j). This
decision is a part of the actual action plan, hence the blue frame around
the story box. In the story box, the detailed perspective is selected.

Figure 14 shows an example of a hard decision explanation. The
building of interest, labeled with yellow, could have been protected
with the given perimeter (left), but then the important building, la-
beled with red, would be flooded (right). In Figure 15, the resulting
decision clusters are shown. The six successful plans are displayed

on the right. The third best plan is selected and the corresponding
scenario highlighted through the decision clusters.

7 EVALUATION

At the evaluation session, we presented our solution to the consortium
of domain experts from the Flood Protection Center. Here we describe
the results of the real-time demonstration and follow-up discussion.
After a quick recap of the main questions (Q1-Q3), we explained the
notion of protection perimeters and gave examples of segment removal
with multiple important buildings at hand. The concept was found to
be very intuitive and required little explanation. The same holds for the
idea to search for response plans by placing barriers on demand and
modifying perimeters when necessary. The experts concurred with the
whole approach, considering it reasonable to have larger perimeters
first and to shrink them gradually as the impossibility of protecting the
current area becomes evident. Although the way our system arranges
barriers between buildings was not always considered optimal, the ex-
perts agreed that it was indeed sufficient to answer the questions Q1
and Q2. The response personnel working on-site is always encouraged
to make local optimizations in the barrier placement. Nevertheless,

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

00:19 Protection Line 00:36 Important Building Flooded

Fig. 14. Justification of a hard decision. A perimeter on the left could
have protected the building (yellow label), but then the important building
would have been flooded.

this is a direction for future improvements.
The consortium welcomed how little user input was required to

set up the scenario. They found rational the way to derive the initial
perimeter from the flood wave and the important infrastructure loca-
tions. Moreover, the experts highly valued the fact that no sketching of
barrier locations was needed. However, they pointed out that the guar-
anteed response time and availability of construction personnel differ
between daytime and nighttime. If the breach happens at night, it may
take more time to get people ready for a response, and there may be
considerably less people available for construction. Therefore, they
suggested that in the preparation phase the search should be executed
at least twice with different parameters.

The decision clusters were considered next. After a demonstration
of branching timelines coming from multiple simulation runs in a sim-
ple, non-clustered view, the scalability issues were well understood.
The way of clustering simulation runs according to decision types was
not received well though. This was found neither intuitive enough nor
useful. However, the experts agreed that vertical rescaling of timelines
in the clusters according to their local density makes the visualization
clearer. They particularly welcomed the fact that only successful plans
were present and shown at the end of the time range, because for flood
managers mostly those scenarios are of interest. The ranking bar was
found useful for quickly picking the best response plans. In general,
the experts mentioned that it was good to have the whole variety of
simulated scenarios shown in the view. From this they could have an
idea of how many scenarios were simulated and, more importantly, ex-
plore some failed plans for documentation purposes. According to the
experts, failed plans were relevant for explaining particular decisions.

In the context of decision justification, the storyboard visualizations
were considered as a good complement to the decision making algo-
rithms. Automatically derived action plans with the timing and order
for constructing barriers were found very useful. According to the
domain experts, textual descriptions are more important for the re-
sponse phase, whereas the detailed 3D perspectives are more suitable
for conveying decisions to administrators after a catastrophic event.
Furthermore, the detailed perspectives are useful for proper stacking
of sandbags or for correctly orienting Aquabarrier plates towards the
flood wave. The experts requested a representation that distributes the
story boxes along the timeline so that periods of higher workload are
clearly visible [12, 28]. We take this as a possibility for improvement.
Finally, the domain experts approved the approach to explain why par-
ticular buildings could not be protected by providing a set of relevant
examples. They considered it rational and relevant for their purposes.

Summing up the evaluation, the consortium agreed that our solution
provides algorithms and visualizations to answer the questions Q1-
Q3. The overall positive assessment was strengthened by expressing a
desire for further collaboration on a commercial basis.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated an approach to explore a complex,
multidimensional parameter space of flood response plans. It makes
use of an automated simulation monitoring and steering according
to domain-specific rules. Unlike exhaustive approaches, our solution
does not require plenty of computation time. Unlike in manual steer-
ing approaches, little user interaction is needed. Moreover, due to the
automatic generation of visualizations and reports, the user is relieved

Fig. 15. Resulting decision clusters for the case study. Six successful
response plans have been found and ranked.

of the burden to extract the relevant knowledge from a large number
of decisions and causes underlying the search.

Despite the specificity of the field chosen for demonstration, the
presented approach is rather generic and applicable in other areas as
well. For example, one could think of planning an evacuation from
large crowded spaces, with an agent-based pedestrian simulation in
use. In general, any simulation-based search where simulation steps
are rather expensive and simulation states are reusable could benefit
from our approach. The approach could become even stronger with
a mechanism of weighing the decisions in order to figure out more
promising ones and give them more priority in the computational re-
sources allocation. A prominent issue spotted out by the evaluation
concerned the decision cluster visualization. One approach to make
navigation through the decision tree more intuitive could be to split
the visualization into multiple views, e.g., to show a non-temporal de-
cision tree separately from simulation timelines.

In the field of decision support for flood management, there are
still multiple ways to improve. First of all, the solutions delivered by
our system are educated guesses and thus not optimal, they should be
rather used for guidance. One example is an exact barrier placement
between buildings. This may need to be adjusted by the on-site per-
sonnel during the response time. The system could be more flexible
in arranging barriers and account for more factors while doing that.
An interesting improvement could be to make the system account for
terrain elevations which could constitute a natural protection. Addi-
tionally, the approach could make use of ensembles in order to search
for response plans applicable to multiple breach scenarios at once.

The hard decisions justification in our solution is based on execut-
ing a search over the set of computed results. Further interesting search
criteria could be added to answer important “what-if” questions deci-
sion makers often ask, e.g., “What if we want to protect this area?”
or “What if we use only that particular barrier type?”. Accounting for
the uncertainty in simulation results is on our list of future work as
well. Finally, our tool would greatly benefit from a practical evalua-
tion with flood managers during a planned exercise. By running it in
the simulated conditions set up by the exercise developers, we would
get valuable insights into problematic areas and identify the most im-
portant directions for further improvements.

ACKNOWLEDGMENTS

This work was supported by grants from the Vienna Science and Tech-
nology Fund (WWTF): ICT12-009 (Scenario Pool), and from the Aus-
trian Science Fund (FWF): W1219-N22 (Vienna Doctoral Programme
on Water Resource Systems) and P24597-N23 (VISAR). We thank the
Stadtentwässerungsbetriebe Köln, AöR.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346930, IEEE Transactions on Visualization and Computer Graphics

REFERENCES

[1] Aquabarrier Systems Limited - Complete flood defence solutions.

http://www.aquabarrier-systems.com/ (last visited on

March, 31st 2014).

[2] AQUARIWA - das innovative Hochwasserschutzsystem. http://
www.aquariwa.de/home/ (last visited on March, 31st 2014).

[3] D. Azócar, M. Elgueta, and M. C. Rivara. Automatic lefm crack propa-

gation method based on local lepp–delaunay mesh refinement. Advances
in Engineering Software, 41(2):111–119, 2010.

[4] M. Balzer and O. Deussen. Level-of-detail visualization of clustered

graph layouts. In Visualization, 2007. APVIS’07. 2007 6th International
Asia-Pacific Symposium on, pages 133–140. IEEE, 2007.

[5] M. Booshehrian, T. Möller, R. M. Peterman, and T. Munzner. Vismon:

Facilitating analysis of trade-offs, uncertainty, and sensitivity in fisheries

management decision making. Comp. Graph. Forum, 31(3pt3):1235–

1244, June 2012.

[6] A. Borrmann, P. Wenisch, M. Egger, C. van Treeck, and E. Rank. Collab-

orative Computational Steering: Interactive collaborative design of ven-

tilation and illumination of operating theatres. ICE08, Plymouth, 2008.

[7] A. R. Brodtkorb, M. L. Sætra, and M. Altinakar. Efficient shallow water

simulations on GPUs: Implementation, visualization, verification, and

validation. Computers & Fluids, 55:1–12, Feb. 2012.

[8] S. Bruckner and T. Möller. Result-driven exploration of simulation pa-

rameter spaces for visual effects design. IEEE Transactions on Visualiza-
tion and Computer Graphics, 16(6):1467–1475, 2010.

[9] P. Caymes-Scutari, A. Morajko, T. Margalef, and E. Luque. Scalable

dynamic monitoring, analysis and tuning environment for parallel appli-

cations. Journal of Parallel and Distributed Computing, 70(4):330–337,

2010.

[10] T. Eickermann, W. Frings, P. Gibbon, L. Kirtchakova, D. Mallmann, and

A. Visser. Steering UNICORE applications with VISIT. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 363(1833):1855–1865, 2005.

[11] F. González, M. Á. Naya, A. Luaces, and M. González. On the effect

of multirate co-simulation techniques in the efficiency and accuracy of

multibody system dynamics. Multibody System Dynamics, 25(4):461–

483, 2011.

[12] O. Hoeber and J. Gorner. Browseline: 2d timeline visualization of web

browsing histories. In Information Visualisation, 2009 13th International
Conference, pages 156–161. IEEE, 2009.

[13] M. Jern, J. Rogstadius, T. Astrom, and A. Ynnerman. Visual analytics

presentation tools applied in html documents. In Information Visualisa-
tion, 2008. IV’08. 12th International Conference, pages 200–207. IEEE,

2008.

[14] M. Kapadia, S. Singh, B. Allen, G. Reinman, and P. Faloutsos. Steerbug:

an interactive framework for specifying and detecting steering behaviors.

In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’09, pages 209–216, New York, NY, USA,

2009. ACM.

[15] D. Ling, L. Bu, F. Tu, Q. Yang, and Y. Chen. A finite element method

with mesh-separation-based approximation technique and its application

in modeling crack propagation with adaptive mesh refinement. Interna-
tional Journal for Numerical Methods in Engineering, 2014.

[16] A. Lu and H.-W. Shen. Interactive storyboard for overall time-varying

data visualization. In Visualization Symposium, 2008. PacificVIS’08.
IEEE Pacific, pages 143–150. IEEE, 2008.

[17] P. Lundblad and M. Jern. Visual storytelling in education applied to

spatial-temporal multivariate statistics data. In Expanding the Frontiers
of Visual Analytics and Visualization, pages 175–193. Springer, 2012.

[18] K.-L. Ma, I. Liao, J. Frazier, H. Hauser, and H.-N. Kostis. Scientific sto-

rytelling using visualization. IEEE Computer Graphics and Applications,

32(1):12–19, 2012.

[19] K. Matkovic, D. Gracanin, M. Jelovic, and H. Hauser. Interactive visual

steering - rapid visual prototyping of a common rail injection system.

IEEE Trans. Vis. Comput. Graph., 14(6):1699–1706, 2008.

[20] K. Matković, H. Hauser, R. Sainitzer, and M. E. Gröller. Process vi-

sualization with levels of detail. In Proceedings IEEE Symposium on
Information Visualization 2002 (InfoVis 2002), pages 67–70, 2002.

[21] A. Morajko, T. Margalef, and E. Luque. Design and implementation of a

dynamic tuning environment. Journal of Parallel and Distributed Com-
puting, 67(4):474–490, 2007.

[22] A. Moreira and M. Y. Santos. Concave hull: A k-nearest neighbours

approach for the computation of the region occupied by a set of points.

2007.

[23] J. D. Mulder, J. van Wijk, and R. V. Liere. A survey of computational

steering environments. Future Generation Computer Systems, 13, 1998.

[24] B. Nairouz, M. Hoepfer, N. Weston, and D. Mavris. Investigations for

time step settings in a dynamic system co-simulation environment. In

Electric Ship Design Symposium, 2009.

[25] H. Ribičić, J. Waser, R. Fuchs, G. Blöschl, and E. Gröller. Visual analysis

and steering of flooding simulations. IEEE Transactions on Visualization
and Computer Graphics, 19(6):1062–1075, 2013.

[26] P. Ruponen. Adaptive time step in simulation of progressive flooding.

Ocean Engineering, 78:35–44, 2014.

[27] E. Santos, J. Tierny, A. Khan, B. Grimm, L. D. Lins, J. Freire, V. Pas-

cucci, C. T. Silva, S. Klasky, R. Barreto, and N. Podhorszki. Enabling

advanced visualization tools in a web-based simulation monitoring sys-

tem. In eScience, pages 358–365, 2009.

[28] C. Stab, K. Nazemi, and D. W. Fellner. SemaTime - timeline visualiza-

tion of time-dependent relations and semantics. In Advances in Visual
Computing, pages 514–523. Springer, 2010.

[29] J. E. Swan II, M. Lanzagorta, D. Maxwell, E. Kuo, J. Uhlmann, W. An-

derson, H.-J. Shyu, and W. Smith. A computational steering system for

studying microwave interactions with missile bodies. In Proceedings of
the conference on Visualization’00, pages 441–444. IEEE Computer So-

ciety Press, 2000.

[30] C. Tominski, P. Wollgast, and H. Schumann. 3D Information Visualiza-

tion for Time Dependent Data on Maps. In Proceedings IEEE Symposium
on Information Visualization 2005 (InfoVis 2005), pages 175–181, 2005.

[31] T. Torsney-Weir, A. Saad, T. Möller, H.-C. Hege, B. Weber, and J.-M.

Verbavatz. Tuner: Principled parameter finding for image segmentation

algorithms using visual response surface exploration. IEEE Transactions
on Visualization and Computer Graphics, 17(12):1892–1901, Dec. 2011.

[32] J. Waser, R. Fuchs, H. Ribičić, B. Schindler, G. Blöschl, and M. E.

Gröller. World Lines. IEEE Transactions on Visualization and Computer
Graphics, 16(6):1458–1467, 2010.

[33] J. Waser, A. Konev, B. Sadransky, Z. Horváth, H. Ribičić, R. Carnecky,

P. Kluding, and B. Schindler. Many Plans: Multidimensional Ensembles

for Visual Decision Support in Flood Management. Computer Graphics
Forum, 33(3):281–290, 2014.

[34] M. Wohlfart and H. Hauser. Story telling for presentation in volume vi-

sualization. In Proceedings of EuroVis 2007, pages 91–98, 2007.

[35] S. Yau, V. Karamcheti, D. Zorin, K. Damevski, and S. G. Parker.

Application-aware management of parallel simulation collections. In

ACM Sigplan Notices, volume 44, pages 35–44. ACM, 2009.

[36] Y. Zhang, Y. Wang, M. Wang, and J. Jiang. Co-simulation of Flexible

Body Based on ANSYS and ADAMS [J]. Journal of system simulation,

17:004, 2008.

