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Kurzfassung

Diese Arbeit stellt eine neue Herangehensweise vor, um Rauch mit minimaler Krafteinwirkung
zu kontrollieren, mit dem Ziel, natürlichere visuelle Resutlate zu erhalten. Der erste Teil besteht
aus einer Einführung zu Flüssigkeitssimulationen und Flüssigkeitskontrolle, gefolgt von einer
Auflistung vorhergehender Forschungsarbeiten im Bereich numerische Strömungsmechanik,
speziell im Bereich Computer Graphik. Danach werden die Navier-Stokes Gleichungen vorgestellt
sowie eine kurze Übersicht, mit welchen Verfahren diese gelöst werden können, gegeben. Der
letzte Teil beschreibt unseren Ansatz zur Kontrolle von Rauch mit „biased diffusion“ und „long-
range force“ und die daraus enstandenen Resultate werden gezeigt.
Von der numerischen Lösung wurde ein Kriterium abgeleitet, mit welchem der Algorithmus
entscheidet, ob Diffusion oder Kraft angewendet wird, um den Rauch zu verteilen. Die Resultate
zeigen, dass der Rauch die Zieldichte früher erreicht und die Bewegung weniger heftig ist, was
wiederum zu natürlicheren Ergebnissen beiträgt.
Unser Algorithmus wurde in der Open Source Animations-Software Blender implementiert und
gibt dem Benutzer zugang zu den Kontrollparametern.
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Abstract

This thesis introduces a novel approach to control smoke towards a target density distribution with
minimal force impact to reduce unnatural behavior and unconvincing visual results. The first part
consists of an introduction to fluid simulations and fluid control followed by an exploration of
previous research in the field of Computational fluid dynamics, especially in Computer Graphics.
After that, the Navier-Stokes equations are introduced and a short overview on how to solve them
is given. The last part describes our approach to controlling smoke based on biased diffusion and
long-range force and shows the results of this research.
Based on a criterion, which has emerged from the numerical solution of diffusion, the algorithm
decides whether to apply forces or use diffusion to distribute the smoke resulting in a great
reduction of forces applied to the smoke. Results show that the smoke reaches the target density
faster and the motion is much less furious, which contributes to more natural results.
Our algorithm is implemented in the open source animation software Blender and gives the artist
access to smoke control parameters.
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CHAPTER 1
Introduction

Fluid simulations have become very popular in the motion picture industry. Nowadays, smoke
and water are simulated and added to movies in post-processing steps rather than costly scene
setups being made to capture the right shot. This is not only due to the fact that computing power
got cheaper and faster, but physically correct algorithms were developed which present results
where it is hardly possible to distinguish them from reality.

The Abyss [1989], directed by James Cameron, was one of the first movies which was a
combination of real footage and rendered computer graphic images. The producers used a kind
of fluid simulation to bring water into specific shapes. In Terminator 2 - Judgment Day [1991],
also directed by James Cameron, the next step of fluid control was introduced. The Terminator
T-1000 was made of a "mimetic poly-alloy" (liquid metal) structure which can transform into
almost any shape it touches. What seemed to be impressive effects at the time, was not physically
correct and took many hours to simulate, not to mention the development of such animations.

Since then, much research has been done in the field of fluid simulation and nowadays a lot
of 3D animation software come with an integrated physically correct fluid simulation module.
However, fluid simulations can still be very time consuming because of their huge system of
equations which has to be solved. An extended overview on related work in the research field of
fluid simulation as well as fluid control is provided in chapter 2. In chapter 3 the Navier-Stokes
equations and how they can be solved efficiently is discussed.

In the case of fluid control, the main issue is that it is physically impossible to shape fluids.
That means we can only achieve physically plausible results which have to be tested visually.
According to the Navier-Stokes equations, external forces can be added in any number. This is
used for example to add wind to a scene which would blow smoke in one direction. These forces
have to be applied with much care because it can yield unnatural behavior very fast. While there
are attempts to use these forces to shape fluids [SY02], in this thesis we present an approach
to reduce the applied forces to a minimum and let the advection and diffusion help us reach a
defined target shape (see Fig. 1.1). The overall concept of how the fluid control algorithm is
designed is explained in more detail in chapter 4, which is followed by our approach on how to
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reduce the forces to a minimum while still preserving the intended distribution. The differences
between the old algorithm and ours as well as the results are presented in chapter 5.

Besides the motion picture industry, fluid simulations are widely used in the areas of engi-
neering and physics, for example, to validate the design of new cars or airplanes by performing
wind tunnel tests with a computer software or to forecast and prevent possible catastrophes such
as flooding and tsunamis. However, fluid control is not of vital importance in those areas because
of the fluid’s unnatural behavior. It is more of an extension of the fluid simulation to help artists
realise the visions and images they have in their minds.

In this paper smoke is used as a representative for simulations based on the Navier-Stokes
equations although it is not limited to smoke but to common gas-like phenomena.

Figure 1.1: Test rendering of the implemented algorithm with sphere as the target shape.
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CHAPTER 2
Related Work And Previous Work

20 years ago modelling of smoke was done using procedural textures and the density was animated
directly without modelling its velocity [EP90].

Later the equations of fluid dynamics were simulated directly resulting in a more natural
way. Because of the lack of computing power back then, the simulations had to be solved on a
relatively coarse grid resulting in bad resolutions and images.

Foster and Metaxas were the first to use the full Navier-Stokes equations in three dimensions
to model both water [FM96] and gases [FM97], producing convincing fluid flows on relatively
coarse grids. Solving the coupling of pressure and velocity, which is the key for realistic animation
of fluids, was essential. Also, they decoupled the temporal resolution with the spatial resolution
which results in better scaling and more freedom for the artist, because there is no need to
understand the underlying system of equations in order to initiate it or change parameters to get
the desired results [FM96]. Though one problem with their model is that it uses an explicit solver,
which gets unstable for large time steps and limits the speed and interactivity.

The first unconditional stable algorithm "which still produces complex fluid-like flows"
[Sta99] was introduced by Stam. It uses a combination of a semi-Lagrangian advection scheme
and implicit solvers. This algorithm is easy to implement and allows the users to interact in real
time with the simulation which is achieved by using much larger time steps. The down side is
that this model suffers from too much numerical dissipation resulting in rapidly damping the flow.
While it works rather well for graphical applications as the animator applies external forces to it
and thus keeps it alive, it is not accurate enough for most engineering applications. For a detailed
step by step explanation on how to implement this algorithm, see Real-Time Fluid Dynamics for
Games [Sta03].

To reduce the numerical dissipation Fedkiw et al. [FSJ01] implemented a technique called
vorticity confinement. As mentioned before, external forces can be applied by any number, so
"the basic idea is to inject the energy lost due to numerical dissipation back into the fluid using a
forcing term" [FSJ01], resulting in adding back the rotational and turbulent structure of the fluid
field on the coarse grid.
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Still, the resolution of the grid has to be high enough to produce visually acceptable results.
If features of the fluid smoke are smaller than the coarse grid they get lost. So the grid must be
refined in some way, which results in a linear increase in memory use and a greater than linear
increase in the running time.

Kim et al. presented "a novel wavelet method for the simulation of fluids at high spatial
resolution", which "enables large- and small-scale detail to be edited separately, allowing high-
resolution detail to be added as a post-processing step" [KTJG08]. This approach allows artists
and animators to simulate the Navier-Stokes equations on a low refined mesh and add the high
frequency details later on as a post-processing step, without changing the overall behaviour of the
fluid. The post-processing step only requires the velocity field of an existing fluid simulation as
input and can be processed highly parallel. Though it does not "produce the results of explicit
high-resolution simulations" [KTJG08], it uses much less memory and takes a lot less time.

Much less attention is given to smoke control. Initial methods only allowed users to define
velocity values on a specific grid cell to control the flow of the smoke. This approach is not really
suited for artists, since it requires a long process of trial and error to get the desired results and is
far from smoke control or smoke shaping.

Treuille et al. [TMPS03] developed a control algorithm with which it is possible to shape
smoke to a wanted target shape based on user-specified keyframes. These keyframes consist
of a smoke density field and velocity field which are used to calculate specific external forces
to reach the smokes density in each keyframe. This control algorithm presented a "significant
advance over previous methods of controlling fluids through direct manipulation of simulation
parameters" [TMPS03], although it was still very computationally intense and suffered from
various drawbacks.

Inspired by the work of Treuille et al. [TMPS03], Fattal et al. [FL04] developed a so-called
target-driven algorithm. The simulation is controlled by target objects which attract the smoke
and drive it in the right direction. This algorithm can be implemented at a lower cost compared
to a standard smoke simulation, since it does not approximate the target optimally and doesn’t
guarantee that the target density is ever reached before switching to the next one.

A similar algorithm was introduced by Shi et al. [SY02]. A target object is modeled as
volumetric density function and again an external force field, including long-range and short-
range force fields, is carefully designed to match the smoke density with the target density.
Additionally, a nonuniform, biased diffusion equation is introduced to enforce high-resolution
details in the target density.

4



CHAPTER 3
The Navier-Stokes Equations -

Theoretical Background

The following section gives an overview of the theoretical background of this thesis. First, the
Navier-Stokes equations for incompressible, homogeneous Newtonian fluids is introduced and
described in more detail. Next, we describe a solution to these equations proposed by Fedkiw
et al. in Visual Simulation of Smoke [FSJ01] and the last part provides a short overview of the
algorithm.

Following mathematical conventions, bold letters are use for vector types and non-bold letters
are used for scalar types. All mathematical descriptions are valid either in 2D or 3D space.

3.1 The Navier-Stokes Equations

Named after Claude Louis Marie Henri Navier and George Gabriel Stokes, who were both
physicists and mathematicians, the equations provide a mathematical model of motion of fluids
and are of very importance in the field of fluid dynamics, hence they have been studied by many
researchers.

The Navier-Stokes equations for an incompressible, homogeneous Newtonian fluid is de-
scribed by a set of two equations. First, the momentum equation (3.1) and second, the equation
of conservation of mass (3.2).

ρ

(
∂u
∂ t

+(u ·∇)u
)
=−∇p+µ∇

2u+ f (3.1)

∇ ·u = 0 (3.2)

5



3.1.1 The Momentum Equation

The first of the Navier-Stokes equations (3.1) is derived from Newton’s second law of motion,
the momentum equation (3.3).

F = ma (3.3)

It states that the force F of an object is equal to the mass m of the same object multiplied by the
acceleration a of that object.

In order to describe the force through density and velocity, the following substitutions are
made: First, the mass is substituted for density, which is possible because we are operating in
constant volume and mass is conserved. Second, the acceleration is described as the derivative
of velocity in space and time. After applying the chain rule, we get a similar equation which
describes the force through a density field and a velocity field (3.4).

F = ρ

(
∂u
∂ t

+(u ·∇)u
)

(3.4)

The left hand side of the previous equation (3.4) describes the forces acting on the fluid. There
are many different forces acting on a fluid, some are always present such as the pressure p, some
are added from the "outside", called external forces f and some depend on the flow-properties of
a fluid. These flow properties are described through a general term, the stress tensor ∇ ·T .
After substituting the general force term F with the forces acting on a fluid, the result is the most
general form of the first Navier-Stokes equation (3.5).

−∇p+∇ ·T + f = ρ

(
∂u
∂ t

+(u ·∇)u
)

(3.5)

These single parts of the equation can be described as follows:

Pressure Term: −∇p

The pressure also known as the volumetric stress tensor is a normal stress, meaning it acts normal
to the surface of the fluid. Regions of higher pressure push to regions with lower pressure and the
direction can be determined by calculating the gradient field of the pressure, so in every point of
the grid cell the direction of the pressure is known. The pressure change itself can be directly
caused by external sources.

Stress Tensor As Viscous Stress:

For a Newtonian fluid the stress tensor describes the viscosity of the fluid and has to be stated
more precisely, resulting in viscous stress.

Viscosity describes the resistance against deformation and different types of fluids have
different viscosity. For example, honey has a much higher viscosity than water. Assuming it is a
Newtonian fluid a more accurate term for the stress tensor can be achieved. Newtonian fluids
obey Newton’s law of viscosity, which states that there is a linear relation between shear rate and
shear stress (not like in non-Newtonian fluids) [Bat00]. Thus the stress tensor can be described as
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the velocity gradient multiplied by the viscosity µ , whereas the viscosity µ is a constant value
depending on the fluid. Higher viscosity values counteracts more against fluid movements than
lower values. Figure 3.1 shows different fluid types and their relationship of shear stress and
shear rate.

∇ ·T = µ∇
2u (3.6)

Figure 3.1: Relationship of shear rate and shear stress of different fluid types.

Image courtesy of Chucklingcanuck. [Chu14]

This part of the equation is also known as diffusion and can be described as exchange of
density between neighbouring cells if there is a density difference. As a consequence, parts with
higher density even out parts with lower density resulting in an equilibrium state.

Advection: (u ·∇)u

Advection describes the movement of quantities in the fluid and also the movement of the velocity
field itself. This results in the mathematical formulation as directional derivative of the velocity
field [Zso12]. This term makes the Navier-Stokes equations non-linear and thus difficult to solve.

3.1.2 Conservation Of Mass

Conservation of mass means that the total amount of mass in a system must remain constant over
time if nothing is added or removed.
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Derived from the general continuity equation, which describes the transport of conserved
quantity in a volume, which in case of fluids is density ρ , we get the differential form of
conservation of mass.

∂ρ

∂ t
+∇ · (ρu) = 0 (3.7)

The first term describes the change rate of density over time and the second the change rate
of density in space.

For incompressible fluids where the density within a volume is constant we can simplify it
further. The derivative of the density becomes zero and by dividing through the constant density
ρ we get:

∇ ·u = 0 (3.8)

This is the incompressibility condition and means that the divergence of the velocity field is
zero everywhere.

As of now, the first Navier-Stokes equation is derived from Newtons second law of motion and
the incompressibility condition is introduced. These equations describe the motion of complex
fluids, for which the next step is to find numerical solutions.
As we describe in the next part, it is not straight forward to find a numerical solution which is
stable and can be used in every part of Computational Fluid Dynamics. Though in this field much
research and mathematical investigation has been done, there are still unanswered questions. In
fact, the existence of a "smooth solution" for every initial condition is not yet proven and is one
of the greatest unsolved problems in physics. This is called the Navier-Stokes existence and
smoothness problem.
The Clay Mathematics Institute states the Navier-Stokes equations as one of the seven Millennium
Prize Problems and allocated $1 million to the solution of each problem [Ins14]. The official
description of the problem can be found on the website of the Clay Mathematics Institute 1.

3.1.3 Simplified Navier-Stokes Equation

Before we describe the numerical solution we apply some simplifications to the first Navier-
Stokes equation, which are specifically introduced to simulate gas-like effects like smoke or fire.
Fedwik et al. [FSJ01] use a gas model which has the following properties:

• It is inviscid (zero viscosity),

• it is incompressible,

• it has constant density.

The viscosity can be ignored because "in gases especially on coarse grids" the "numerical
dissipation dominates physical viscosity and molecular diffusion." [FSJ01]. With these assump-
tions we obtain the incompressible Euler equations (3.9) and (3.10) which look almost the same

1http://www.claymath.org/sites/default/files/navierstokes.pdf [Accessed 01-June-
2014]",
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as the Navier-Stokes equations, except that the diffusion term is zero and the constant density
is arbitrarily set to one. Later on, when introducing smoke control we reintroduce the diffusion
term in a derived version called biased-diffusion.

∂u
∂ t

+(u ·∇)u =−∇p+ f (3.9)

∇ ·u = 0 (3.10)

3.2 Numerical Solution To the Navier-Stokes Equations

There are two different approaches to obtain a numerical solution of the Navier-Stokes equations,
the Eulerian and the Lagrangian approach. In order to describe fluid movement we have to specify
characteristic values such as velocity and density of certain points in the fluid. We can do that
either by defining these values at fixed points in the volume of a fluid, the Eulerian method (see
left side of Figure 3.2), or we can define small fluid material volumes like a particle system and
track the characteristic values for every "particle", the Lagrangian approach (see right side of
Figure 3.2).

Figure 3.2: On the left side the Eulerian approach and on the right side the Lagrangian approach
are shown.

Though both methods are widely used "almost all of the theory in fluid mechanics has been
developed in the Eulerian system" [Pri06]. As Price et al. [Pri06] mentioned, this is due to the
fact that fluid properties in fluid dynamics are required to be known at fixed positions rather than
a moving material volume. In engineering, for example, one wants to know the temperature of a
material at a specific point or the pressure at a valve.
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These described methods are used to convert the characteristic values from continuous space
in an equivalent discrete space which is called discretisation. This is done to bring differential
equations in a computer understandable form and numerically solve these with approximations
like finite difference, finite element or finite volume methods. As one can imagine when describing
the fluid on grid points it is only an approximation of the real fluid and thus the quality highly
depends on the resolution of the grid. So the higher the resolution the better the result, but also
the higher the time to calculate each step. For example, if we want to double the resolution of a
3D volume without adding optimisation techniques the calculation time is eight times higher.

The aim in computer graphics is to generate visually pleasing results in a reasonable amount
time, while in other areas of Computational Fluid Dynamics such as aviation it is important to
calculate the most accurate solutions possible. On the one hand, some simplifications to the
Navier-Stokes equations are applied in order to speed up calculations, on the other hand a bigger
time step between each calculation step is used.

However, when using methods like finite difference the time steps have to be sufficiently small
in order to get a stable simulation. As previously mentioned, Stam [Sta99] introduced a different
solution using a semi-Lagrangian integration scheme followed by a pressure-Poisson equation
resulting in an unconditional stable algorithm. Although this approach suffers from too much
numerical dissipation, it still gives visually pleasing results. This leads us to the paper Visual
simulation of smoke [FSJ01], also mentioned before, where a force is introduced to counteract
this numerical dissipation. This is the basis for our implementation of smoke control. The basic
algorithm for solving the Navier-Stokes equations is described in the following sections.

3.2.1 Helmholtz-Hodge Decomposition And the Final Equation To Solve

The fluids movement is described through velocity and pressure. Both vary in space and time and
are related to each other. In this part, the Helmholtz-Hodge Decomposition is introduced and how
equation (3.1) and equation (3.2) can be combined to obtain a single equation for the velocity.

"The key advantage of using the Helmholtz-Hodge Decomposition in this context is the
decoupling of pressure and velocity fields. If the computation preserves orthogonality of the
decomposition, any error in one of the terms is not reflected in the other. This procedure is more
efficient than solving a coupled system of NSEs for velocity and pressure." [BNPB13]

The Helmholtz-Hodge Decomposition, named after Hermann von Helmholtz, states that any
vector field w can be decomposed in its divergence-free and curl-free components:

w = v+∇q (3.11)

where v is the divergence-free (incompressible) vector field satisfying ∇ ·v = 0 and q is a
scalar field [BNPB13].

In terms of the numerical solution of the Navier-Stokes equations, the velocity field has to
conserve mass (incompressibility condition) (3.2) after each calculation step. This is achieved
by first calculating an intermediate velocity field ut+1 from ut , where t indicates time and the
divergence-free velocity field ut is the result of the previous time step. Because ut+1 is not
divergence-free anymore, it has to be projected to its divergence-free component as a next
step. The projection step with can be written as v = P(w), where w is any vector field, v its
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divergence-free component and P the projection operator. Because P satisfies P(∇q) = 0 and v is
divergence-free (P(v) = v), v = P(w) is true.

"The operator is in fact defined implicitly by multiplying both sides of" the equation (3.11)
with the del operator ”∇” [Sta99]:

∇ ·w = ∇
2q (3.12)

Remember ∇ ·v = 0.
This is the previously bespoken Poisson equation of the scalar field q and leads to the

calculation of the projected vector field v:

v = Pw = w−∇q (3.13)

If this operator is applied on both sides of the momentum equation (3.1) the equation of the
conservation of mass (3.2) (impressionability condition) is maintained.

P
(

∂u
∂ t

+
1
ρ

∇p
)

︸ ︷︷ ︸
u+∇q

= P
(
−(u ·∇)u+µ∇

2u+ f
)︸ ︷︷ ︸

w

(3.14)

With the above described fact this equation simplifies to:

∂u
∂ t

= P
(
−(u ·∇)u+µ∇

2u+ f
)

(3.15)

For the sake of completeness we applied the projection step to the more complex equations
instead of the Euler equations (3.9) and (3.10).

This is the final form of the Navier-Stokes equation from which Stam [Sta99] developed a stable
fluid solver. In the following section we roughly describe the steps of the algorithm but refer to
the original papers [FSJ01], [Sta99] and [Sta03] for more detailed descriptions.

3.2.2 The Algorithm

Before the first step can be executed the initial state has to be defined. The simplest and, in most
cases of Computer Graphics, sufficient one is an empty vector field for velocity and empty scalar
fields for both density and pressure. The basic algorithm consists of 4 different steps.

1. Add forces to the velocity field.
This includes external forces from interactions with the fluid simulation, wind-like effects
as well as vorticity confinement or buoyancy.

2. Calculate diffusion of both the velocity and the density field.
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3. Project the velocity field to its divergence-free part.
This also includes solving the Poisson equation described in the previous part.

4. Calculate advection of both the velocity and the density field.

3.2.3 Sparse Systems of Linear Equations

All previously described steps, beside the first one, involve solving systems of linear equations.
There are many numerical methods for this problem like the Jacobi method, the Gauss-Seidel
method, the conjugate gradient and the multigrid method to name a few. All of these are not exact
solvers and result only in an approximation of the real solution. Hence, all of these have different
characteristics regarding calculation time and convergence. Choosing the right method depends
again on which area of Computational Fluid Dynamics the simulation is applied to.

A detailed exploration of this topic would be out of scope of this thesis.
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CHAPTER 4
Smoke Control

As already mentioned, it is not possible to control the shape of smoke physically correctly.
Hence, there is no mathematical plausible description of this problem which leads to results being
assessed subjectively, for example, by comparing two different simulations visually and observing
which one behaves more naturally. Although the Navier-Stokes equations allow us to add as many
forces as we want to the simulation this results in unnatural behaviour and unconvincing visual
results. As a consequence, the force field has to be designed with much care and it is desirable to
add only as many forces as needed to steer the density in the desired direction.

In the following, two methods, long-range force and biased diffusion, are introduced and it is
explained how they contribute to shape smoke. Additionally, we introduce altered methods on
the basis of the previous arguments, which reduce the force to a minimum while still preserving
the desired behavior. Again the goal is to simplify the work for artists and preserve the freedom
to create any shape they can imagine.

4.1 Method For Smoke Control

The approach from Shi and Yu [SY02](Figure 4.1) involves the introduction of a new density
field, the target density, an altered diffusion function called biased diffusion and a method to
carefully create a force field.

The target density is "a volume density function for the target object" which is used to
calculate a new force called long-range force "to drive the smoke so that the density function of
the smoke closely matches the target density function" [SY02]. The target density field can be
defined freely by the artist and has no restrictions regarding shapes.

Second, biased diffusion is introduced in order to be able to move the smoke density at
higher-resolution detail. Again, it uses the target density field to control the amount of diffusion
applied.
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Figure 4.1: "Top row: images from a real horse running sequence which serves as an evolving
target density function; Bottom row: images from a controlled smoke simulation approximating
both the shape and motion of the running horse" [SY02]

Image courtesy of Shi and Yu. [SY02]

4.1.1 Long Range Force

The long-range force is applied to regions with excess density and the direction points to locations
of regions with lower density. This results in transportation of density to these regions. Like other
physical forces it decreases as the distance of these two points increases.

The long-range force field is described by the following formula,

FL
i = ∑

j

[ρ j−ρ t
j]
+ri j

|ri j|α
(4.1)

whereas ρ j describes the current smoke density at grid point j, ρ t
j describes the target density

at grid point j, ri j is a vector from point i to j and α is the fall-off value.
It would be too costly (O(i j)) to calculate every interaction between i and all other grid

points. As Zsolnai pointed out, "every sensible choice of α will make the force decay in an at
least quadratic manner" [Zso12] , which allows us to restrict the distance between i and j to a
maximum value. This value depends on the grid resolution and should be adapted when the
resolution changes.

4.1.2 Biased Diffusion

Since smoke does not have much diffusion it also has to be taken into account that there is no
excessive amount applied. As previously mentioned, the diffusion step was omitted completely
because for the same reason. Here, we reintroduce the diffusion part in order to help create the
fine details in regions with little density. The altered version, called biased diffusion, only applies
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diffusion where there is a difference in smoke density and target density and no diffusion if they
are the same.

Introduced by Shi and Yu [SY02], the original diffusion of the density is changed to the
following form

µ∇
2
ρ ⇒ µ∇

2[ρ t −ρ] (4.2)

which converges to zero if the density field becomes exactly the same as the target density
field.

In our approach we changed it to

µt(ρ,ρ
t)∇2[ρ] with µt ∈ [0,µ], (4.3)

where now the viscosity coefficient depends on the density and target density field and also
converges to zero if the density field becomes exactly the same as the target density field. This is
much simpler to implement with different solvers for linear systems with the drawback of having
a new field for the viscosity coefficients.

Figure 4.2: Left: more than half of the neighbours reached the target density in which case
long-range force is applied to the current grid point. Right: a case where most of the neighbours
did not reach the target density in which case the long-range force field is omitted as diffusion
takes care of the density distribution.
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4.2 Reducing Forces To A Minimum

As described before, excessive use of the long-range external force field results in unnatural
behaviour and unconvincing visual results. This is the reason why we introduce an approach
to reduce the force to a minimum and prefer biased diffusion to help reach the desired density
distribution. It is often the case that excess density in a cell needs to be transferred to many
neighbouring cells. Our key idea is that in these cases, we can control the smoke volume without
using the long-range field by using the natural, diffusion motions as a substitute. Figure 4.2 shows
the two cases of our criterion in 2D, which can be applied to 3D easily.

4.2.1 Criterion

In order to obtain a criterion on how to decide when to use long-range force and when to use
biased diffusion only, we look at the following example:

Imagine that a small volume in the centre of the simulation domain is filled with density. If
only diffusion is applied it diffuses in all directions in the same way and the density would even
out over time. There would be no need for an additional force if the target density has the same
shape as our simulation domain.

From this example we derive a criterion in order to decide when to use long-range force. If n
is the number of neighbouring grid points of point j which are suitable for diffusion and m is a
constant value, then long-range force is applied to grid point j if the following condition is true:

n <= m with m ∈ [0,nmax] (4.4)

where
nmax is the amount of neighbouring cells (4.5)

Smooth and convincing results can be achieved if the value of m is nmax
2 .

Finally, we have to define whether a neighbouring point is suitable for diffusion. As described
above, there has to be a density difference for diffusion and we apply the restriction that the cell
must not reach the target density.

In the following section the algorithm, as described here, is shown:
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Algorithm 4.1: Biased diffusion
Data: G all grid points, Ni all neighbours of current point i, D density field, Dt target

density field, V viscosity field, F long-range force field
1 i←− current grid point;
2 n←− 0;
3 m←− Ni

2 ;
4 µ ←− viscosity coefficient;
5 for i ∈ G do
6 // calculate amount of possible diffusion neighbours;
7 for x ∈ Ni do
8 if |D[x]−Dt [x]|> 0 then
9 n++;

10 end
11 end
12 // decide if we use long-range force;
13 if n <= m then
14 F [i] = true;
15 end
16 // calculate dynamic viscosity coefficient;
17 V [i] = µ ∗max(0,min(|Dt [i]−D[i]|,1));
18 end
19 // solve diffusion;
20 SolveDi f f usion(V,D);

17





CHAPTER 5
Results

In order to compare our approach with normal biased diffusion and long-range force we created
a basic test scene. This scene shows the distribution of smoke in a Y-target shape without any
additional forces like wind, buoyancy or others. The smoke is only driven by diffusion and
long-range force. The resolution of the simulation grid of this scene is 643 and in order to make
it more realistic we used the wavelet turbulence method introduced by [KTJG08], which does not
interfere with the actual smoke control algorithm.

The smoke control was then simulated with four different algorithms (Figure 5.1) in order to
highlight every single step. The first rendered image shows normal diffusion of smoke without
any forces applied. The second one shows the same but with boundaries applied to the Y-target
shape. The third scene uses biased diffusion and long-range force in order to distribute the smoke
within the target density. The fourth scene uses our optimised biased diffusion and long-range
force algorithm.

Figure 5.1: From left to right. 1: Diffusion without boundaries. 2: Diffusion with boundaries. 3:
Biased diffusion and long-range force. 4: Biased diffusion and reduced long-range force.
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The first thing that we noticed is that even when applying less force the target density is
reached faster. This is due to the fact that the force is only applied where it is needed to steer the
density into a desired direction. Figure 5.2 shows the difference between Shi and Yu’s approach
and ours.

Figure 5.2: Top row: simulation with the algorithm based on Shi and Yu’s approach [SY02],
average calculation time per frame: 651ms ; Bottom row: simulation with reduced force approach,
average calculation time per frame: 397ms.

The second thing we noticed is that with our approach much less furious smoke movements
are noticed. The reason for this is that the old approach applies forces in all directions resulting
in forces counteracting with each other and creating furious smoke movements. In the rendered
video sequence, which is part of this thesis, the difference can be seen very clearly.

After highlighting the difference of the algorithms Figure 5.3 and 5.4 show different target
shapes and Table 5.1 shows the different calculation time of our control algorithm per frame
compared to Shi and Yu’s approach [SY02]. The time was measured on a computer with Intel
Core i7-2700QM CPU @ 2.40GHz (8 logical CPUs), 8 GB DDR3 RAM and an AMD Radeon
HD 6700M 1GB. Although the calculation time is not of very importance here it shows that the
calculation of the control part is speed up too.
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Figure 5.3: Top row: Grid resolution 643. Target shape: Stanford Bunny; Bottom row: Grid
resolution 643 with Wavelet Turbulence, 4 divisions. Target shape: Stanford Bunny.

Figure 5.4: Grid resolution 643 with Wavelet Turbulence, 4 divisions. Target shape: Letter Y.

Algorithm Bunny 323 Bunny 643 Y-Shape 323 Y-Shape 643

Our 114ms 975ms 45ms 397ms
[SY02] 222ms 1192ms 92ms 651ms

Table 5.1: Shows the different calculation time between our approach and the simplified version
of Shi and Yu’s approach using only the long-range force field. Note that the complete version of
their algorithm takes 5-8 minutes per frame. The time was measured for the smoke control part
of the algorithm and all values are average values per frame.
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CHAPTER 6
Conclusions and Discussion

We demonstrated an approach for smoke control with minimal force impact in order to get
better natural behaviour and visual results. Our approach is derived from smoke control methods
introduced by Shi and Yu [SY02]. Our method uses the long-range force field and biased diffusion
combined together with a novel decision rule that restricts the use of long-range forces where
natural diffusion does not help the convergence towards a chosen target distribution.

As mentioned, physically correct smoke control is not possible and leaves a wide variety of
implementations with different approaches to be experimented with. We showed that our approach
contributes to a natural overall behaviour to reach the target density and that it contributes to
more realistic smoke motion during the control process.

We note that values for parameters like long-range force strength or long-range force distance,
presented in equation 4.1, greatly depend on the resolution of the grid, the target shape and also on
the target density. This leaves an artist to find out the right values and try different combinations
of them in order to get the desired results.

It would be also desirable to remove the hard boundaries from the target density and design
the force field so it keeps the smoke inside without suddenly stopping it at the boundaries. While
this can be implemented in 2D with an approach that uses the direction of the tangent on the
boundary position to keep the smoke "around", the same approach is not possible in 3D.

The implementation of the algorithm in the open source animation software Blender features
the creation of target shapes from any mesh and all necessary parameters for smoke control are
accessible through the user interface.
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